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Abstract

When two people interact in a relationship, the outcome of each person can

be affected by both his or her own inputs and his or her partner’s inputs. For

Gaussian dyadic outcomes, linear mixed models taking into account the corre-

lation within dyads, are frequently used to estimate actor’s and partner’s effects

based on the actor-partner interdependence model. In this paper, we explore the

potential of generalized linear mixed models (GLMMs) for the analysis of non-

Gaussian dyadic outcomes. Several approximation techniques that are available

in standard software packages for these GLMMs are investigated. Despite the

different modeling options related to these different techniques, none of these

have an overall satisfactory performance in estimating actor and partner effects

and the within-dyad correlation, especially when the latter is negative and/or

the number of dyads is small. In contrast, a generalized estimating equations

approach for the analysis of non-Gaussian dyadic data turns out to perform well

in all situations considered.

KEY WORDS: binary data, count data, dyadic data, generalized estimating

equations, generalized linear mixed models, multilevel analysis
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1 Introduction

Dyadic research has become immensely popular in the social and behavioral sci-

ences. When two people interact in a relationship, the outcome of each person

can be affected by both his or her own inputs and his or her partner’s inputs. The

Actor-Partner Interdependence Model (APIM) offers an appealing approach to

model such dyadic behavior (Kenny, Kashy, & Cook, 2006). Indeed, it allows to

simulataneously study the influence of a person’s own predictor variable on his

or her own outcome variable, which is called the actor effect, and on the outcome

variable of the partner, which is called the partner effect, while allowing for non-

independence in the two persons’ responses. Typically, two types of dyads are

considered. Dyads are called distinguishable when the two persons from all the

dyads can be ordered in the same way (for example, for hetero couples, persons

within a dyad can be ordered by gender). Indistinguishable dyads occur when

no ordering of persons exists within a dyad (like twins, for example). The left

panel of figure 1 shows a graphical presentation of the APIM with two distin-

guishable dyad members and an X and Y variable for each. The variables X1

and X2 represent the predictor variables of persons 1 and 2 of a dyad, respec-

tively, whereas Y1 and Y2 represent the outcome variables for the two members.

The model contains two actor effects a1 and a2 (represented by the horizon-

tal arrows), and two partner effects p12 and p21 (represented by the diagonal

arrows). The curved arrow on the left reflects the correlation between the pre-

dictor variables, while the one on the right represents the correlation between

the error terms. An alternative but underutilized model (Ledermann & Kenny,
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2012) to explore dyadic influences is the Common Fate Model (CFM). When

a construct representing a common fate variable exists at the level of the dyad

rather than at the individual level, the CFM is more appropriate (right panel

of Figure 1). In contrast, self-referential or partner-referential measures that

are expected to represent individual behaviors or attitudes are more suitable for

the APIM. We will focus here on the APIM, which has clearly dominated the

dyadic literature with more than 150 publications over the last 3 years (Kenny

& Ledermann, 2012).

Multilevel modeling, also referred to as hierarchical linear modeling, has

been shown to be a useful technique for the estimation of actor and partner

effects in dyadic data (Kenny et al., 2006). In these multi-level models two

different levels are distinguished: the lower level, or level 1, refers to the case

of persons nested within a dyad. The lower-level unit is person, whereas the

upper level, or level 2, is the dyad. Linear mixed models (LMM) are frequently

used and well understood for the analysis of such dyadic data but their use is

limited to (Gaussian) outcomes measured at the interval level. The analysis

of non-Gaussian dyadic data on the other hand has received little attention in

the literature so far. The generalized linear mixed model (GLMM), which is an

extension of both the generalized linear model (GLM) (Nelder & Wedderburn,

1972) and the LMM, is potentially suitable for the analysis of clustered ob-

servations from the exponential dispersion family distribution (Agresti, 2000).

McMahon, Pouget, and Tortu (2005) and Spain, Jackson and Edmonds (2012)

provide guidance on fitting the GLMM for dyadic data with binary outcomes
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but pay little attention to its properties. Two important issues need to be ac-

counted for when modeling dyadic data. While researchers in psychological or

social sciences are often faced with clustered data (in educational measurement

applications for example, when several test items are administered to students;

in longitudinal studies when psychological measurements are repeatedly assessed

over time, etc.), the cluster size of two when analyzing dyads is a first impor-

tant feature that needs consideration. Second, the possible negative correlation

between observations within a dyad also warrants further exploration. Indeed,

while in an item-response or longitudinal setting, measurements are typically

positively correlated, negative correlations may occur within dyads. The strict-

ness of parental supervision is one example of such negative correlation within

dyads, where the more extreme in strictness one parent becomes, the more

extreme in permissiveness the other parent is likely to become (Cook, 2001).

In this paper, we investigate in detail the performance of multilevel modeling

of non-Gaussian outcomes in a dyadic setting. We first discuss the traditional

use of the GLMM and its interpretation, point to its limitations, and explore

the potential of some other rather non-standard estimation techniques for these

GLMMs. Next, we introduce the generalized estimating equations (GEE) ap-

proach (Liang and Zeger, 1986) as a viable alternative. While multilevel models

have become immensely popular for the analyses of correlated data, GEE is

relatively unused in the educational and behavioral sciences (Bauer & Sterba,

2011). GEE can be considered as an extension of the generalized linear model

(GLM) that accommodates correlated outcome data too; but whereas multilevel
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models explicitly specify the joint distribution of the outcomes, GEE only mod-

els the univariate marginal expectations as a function of explanatory variables

and empirically accounts for the presence of correlation in the data. Simulations

for binary and count dyadic data are performed to compare under a wide range

of within-dyad correlations and for typical APIM sample sizes the performance

of the GEE-approach with different estimation techniques for the multilevel ap-

proach. Focus in these simulation studies lies on both the estimation of the

actor and partner effects and on the estimation of the within-dyad correlation.

We end with an application of the different approaches to data from the Inter-

disciplinary Project for the Optimization of Separation Trajectories conducted

in Flanders (IPOS) and present two illustrations. A first example illustrates

the analysis of negatively correlated binary data and investigates the effect of

actor’s and partner’s levels of feeling guilty, during the break-up, on showing

so-called forcing behavior or not during the post break-up negotations in 29

ex-couples. The second example presents the analysis of positively correlated

count data and explores in 33 ex-couples the effect of the actor’s and partner’s

level of anxious attachment in their relationship with their ex-partner prior to

the break-up on the number of unwanted pursuit behavior (UPB) perpetrations

after separation.
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2 Multilevel models

2.1 Linear mixed models

Let Yi denote a 2-dimensional vector of measurements available for dyad i =

1, . . . , N with components Yi1 and Yi2 (for example the measurement for a male

and female partner in a heterosexual couple 1). Using linear mixed models for

the actor-partner interdependence model, two different formulations are typi-

cally considered (Kenny et al., 2006). The first one takes a hierarchical view

(i.e. a multilevel approach) and specifies the so-called random-intercepts model,

with the random intercept capturing the correlation within a dyad:

Yij = xt
ijβ + bi + εij (1)

with bi ∼ N(0, τ) and εij ∼ N(0, σ2). In APIM (1) xij is a vector of known

covariates, typically including the actor’s predictor variable xact, the partner’s

predictor variable xpar, a distinguishing variable xdis (like gender) in case of

distinguishable dyads , and their interactions; β a vector of coefficients, called

fixed effects, and bi the random intercept. In a standard multilevel model,

the assumption is made that the variance of the random effect is positive (i.e.

τ ≥ 0).

The second formulation of the APIM takes a marginal view, which does not

1Throughout the manuscript we will assume distinguishable dyads but all models and

estimation techniques that are presented can easily accommodate for indistinguishable dyads

as well.
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incorporate random effects, i.e.

Yij = xt
ijβ + εij j = 1, 2 (2)

but simply models the variance-covariance in the data 2. Model (2) assumes in

its most general form that the residuals εij are bivariate normally zero-mean

distributed with an unstructured variance-covariance

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 .

Here, ρ reflects the within-dyad correlation 3 and can take any value in the

interval [−1,+1].

It is important to note here that marginal models like (2) describe so-called

population averaged effects which refer to an averaging over dyads particular

levels of predictors while dyad-specific models like (1) are conditional models

that describe effects at the dyad level. However, since the marginal and condi-

tional expectation of Yij are the same here (table 1), i.e. E(Yij) = E(Yij | bi),

the parameters β in (1) and (2) share their interpretation. In other words, if on

average within dyads, a 1-unit increase in the actor predictor xact for example

causes a shift of size β1 for the actor’s outcome Y (i.e. ‘the conditional effect’),

then this coefficient β1 can also be interpreted as the effect on the population

level, and the estimated overall sample means (i.e. ‘the marginal effect’) will

also change with the same coefficient β1 for such 1-unit increase. The marginal

2This method is sometimes referred to as the R-side covariance method.
3More precisely it measures the residual intra-cluster correlation (ICC), i.e. the correlation

between the measurement of the first person of the dyad and the measurement of the second

person of the dyad that is left after accounting for the predictor effects in model (2).
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variance-covariance matrix V under model (1) has a compound symmetry struc-

ture with correlation equal to τ/(σ2 + τ), and so in contrast to the marginal

model formulation (2), the hierarchical formulation with the restriction τ ≥ 0

does not allow for negative correlation within dyads. The latter can be a se-

rious restriction in dyadic settings where negative within-dyad correlations are

not uncommon and therefor formulation (2) is typically preferred above formu-

lation (1). If one takes a marginal view on model (1) though, negative values

for τ are perfectly possible (Molenberghs & Verbeke, 2011) 4. We will further

refer to the latter approach as the ‘unconstrained approach’ as opposed to the

more standard ‘constrained approach’.

2.2 Generalized linear mixed models: a conditional ap-

proach

While the APIM was considered for the Gaussian outcomes in the previous

section, we now focus on modeling dyadic binary and count data. Similar to

model (1) for Gaussian outcomes, we consider the logistic-normal random inter-

cept model (Snijder & Bosker, 1999) for binary dyadic data with a logit link5

and assume no overdispersion:

logit[E(Yij | bi)] = xt
ijβ + bi with bi ∼ N(0, τ), τ > 0 (3)

4In such approach the conceptual interpretation of the random effect is abandoned and the

hierarchical model approach merely used as a vehicle for estimation. The only restriction is

that τ ≥ −σ2/2 for V to be positive definite.
5Other link functions like the probit or log-log could be considered as well, but we will

restrict attention to the logit-link here.
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Unlike the linear mixed model (1) - the marginal interpretation of β is different

from the conditional interpretation here (table 1), unless the random intercept

variance τ equals zero. The outcomes Yi1 and Yi2 from dyad i are conditionally

independent (i.e. given bi) but are marginally nonnegatively correlated (table 1).

The marginal correlation is not straightforward to calculate for Bernoulli out-

comes, given the dependence of the variance on the mean. Pryseley, Tchonlafi,

Verbeke and Molenberghs (2011) derive an easy-to-calculate first order approx-

imation of the intra-cluster correlatioin (ICC) in the absence of any predictor

effects,

ρ ≈ τ

τ + exp(β0)(1 + exp(−β0))2
, (4)

where β0 is the intercept of model (3) (assuming centered predictors). Observe

that ρ = 0 when τ = 0 and ρ→ 1 as τ → +∞.

Next, we consider the Poisson-normal random intercept model for count data

with a log link and assume no overdispersion

log [E(Yij | bi)] = xt
ijβ + bi with bi ∼ N(0, τ), τ > 0 (5)

The marginal effects of the explanatory variables are the same as the dyad-

specific effects in model (5); Yi1 and Yi2 are marginally non-negatively correlated

when τ > 0 (table 1). Here too, the variance depends on the mean, but the ICC

can be approximated (Pryseley et al., 2011) by

ρ =
exp (β0 + 1

2τ) (exp τ − 1)

1 + exp (β0 + 1
2τ) (exp τ − 1)

(6)

where β0 is the intercept of model (5) (assuming again no effect of the centered

predictors). Again, ρ = 0 when τ = 0 and ρ→ 1 as τ → +∞.
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In summary, we have that - similar to the LMM with random intercept - the

generalized linear mixed model (GLMM) with random intercept, leads to non-

negative marginal correlations too when τ > 0 is restricted to be positive. The

similarity between marginal and conditional interpretation of the fixed effect

parameters in the GLMM on the other hand depends on the link-function 6.

So far, we have only discussed the counterpart of model (1) for non-Gaussian

outcomes. In the next paragraph we will see how we can get to a marginal

formulation similar to (2) in the GLMM-framework.

2.3 Generalized linear mixed models: a marginal approach

Fitting GLMMs like models (3) and (5) proceeds by integrating over the random

effects. Broadly speaking 3 different strategies have historically been considered

to overcome the integration over the (normally) distributed random effects:

(i) approximation of the integral using Gaussian quadrature, (ii) approxima-

tion of the integrand using Laplace’s method, and (iii) a quasi-likelihood ap-

proach based on a linearized approximation. We refer the interested reader to

Tuerlinckx, Rijmen, Verbeke and De Boeck (2006) for an in-depth review and

6It can be shown in general that when the conditional mean is additive in a random effect

on the log scale, the marginal mean equals the conditional mean plus a constant, such that

slope parameters have the same interpretation in both formulations. No further distributional

assumptions are needed in this case. When a logit or probit link is used with a normal

random effect, the marginal mean parameters become attenuated by a factor which depends

on parameters of the distribution of the covariates. For example for the binary case the

marginal effect can be approximated by β/
√
c2τ + 1 with β the conditional effect from the

logistic-normal model and c = 16
√

3/(15π), Molenberghs & Verbeke, 2005)

11



discussion of these different approximation methods. These 3 approximation

techniques are available in standard software package like SAS for example. We

skip the technical details of (i) and (ii) here, but elaborate a bit further on

(iii) as it will allow us the specification of a marginalized GLMM. To explain

the linearized approximation method, we can re-write models (3) and (5) for

example as

Yij = h(xt
ijβ + bi) + εij

with h the inverse of the logit and log function, respectively. A first order Taylor

expansion around the estimated fixed effect and posterior mode of the random

effect and further re-arrangements (Tuerlinck et al., 2006) lead to

Yij ≈ µ̂ij + v(µ̂ij)x
t
ij(β − β̂) + v(µ̂ij)(bi − b̂i) + εij (7)

with v(µ̂ij) the approximate variance of the error term. It can be shown that (7)

can be rewritten as a linear mixed model for pseudo data Y∗
i with fixed effects

β, random effects bi and error terms ε∗i . Therefore, estimation of β, the fixed

effect parameters, and the variance of bi, can be obtained by iterating between

updating the pseudo response and fitting the linear mixed model to the pseudo-

data. This approach is referred to as penalized quasi-likelihood (PQL). The

advantage of using such pseudo-likelihood approach is that it becomes possi-

ble to fit generalized linear mixed models without random effects and to take

a marginal view with only residual assocation effects. We will further label

this model as the marginalized GLMM. In contrast to the constrained random

intercept models (3) and (5) for example, this marginalized GLMM allows -
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similar to model (2) for Gaussian outcomes - to model negatively correlated

non-Gaussian outcomes. Alternatively, one may take a marginal view on the

random intercept models (3) and (5) and give up the constraint τ > 0 (‘the

unconstrained’ random intercept approach). By doing so, one can allow for a

negatively correlated outcomes as well. In practice, it turns out that this is

possible when the Laplace-approximation is used, but not under the Gaussian

quadrature approximation (Pryseley et al., 2011).

3 Generalized Estimating Equations

Generalized estimating equations, as introduced by Liang and Zeger (1986), can

be considered as an extension of the generalized linear model (GLM) that ac-

commodates correlated outcome data too. It provides a general framework for

the analysis of correlated continuous, ordinal, dichotomous, or count dependent

data. GEE is often referred to as a marginal (or population-averaged) approach

as opposed to the conditional approach exploited by multilevel models (Diggle,

Heagerty, Liang, & Zeger, 2002). Whereas multilevel models explicitly spec-

ify the joint distribution of the outcomes, focus on modeling the dyad-specific

expectation as a function of explanatory values, and allow one to disentangle

the variability at the different levels, GEE is a moment-based method and only

models the marginal expectations as a function of explanatory variables.

The GEE fitting algorithm can be described in 4 different steps (Ghisletta &

Spini, 2004).
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1. A GLM is fitted assuming independence between observations. This GLM

requires the specification of a link function that describes the linear rela-

tionship between the expected outcome and its predictors (for example the

identity link for Gaussian data, the logit link for dichotomous or ordinal

data and the log link for count data) and of the relationship between the

mean µ and the variance, denoted v(µ).

2. Standardized residuals, contrasting the observed and expected (model-

based) outcome, are calculated. Based on an assumed structure of the

correlation matrix (such as independence or unstructured), a “working”

correlation matrix C that characterizes the correlations among observa-

tions within dyads is computed using these standardized residuals. We

suggest to use the unstructured working correlation structure here. 7

3. An estimate of the covariance parameters is obtained from the assumed

mean-variance association v(µ) and the working correlation matrix C.

4. Given the covariance estimate obtained in step 3, a set of estimating equa-

tions for the regression coefficients is solved 8.

7An unstructured covariance matrix is no guarantee for a correct specification since the

covariance structure may further depend, for example, on certain covariates. Assuming inde-

pendent observations within dyads on the other hand, and hence the choice for an indepen-

dence working correlation matrix, may lead to some small gain in efficiency in estimating the

actor- and partner-effects provided the independence assumption truly holds.
8The ith dyad contributes a three-way product involving the partial derivative of µi with

respect to the regression parameter, times the inverse of the dyad’s variance-covariance matrix,

times the difference between the dyad’s responses and their mean.
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5. The steps 2 to 4 result in an iterative scheme that switches between es-

timating the regression coefficients for fixed values of the covariance pa-

rameters, and estimating the covariance given the regression coefficients,

and is continued until convergence occurs.

This scheme yields consistent estimators for the regression coefficients even if

the correlational structure in step 2 was misspecified (but provided the linear

relationship is correctly specified). These estimators are asymptotically multi-

variate normally distributed with a covariance matrix that can be consistently

estimated (also in case the correlational structure was misspecified) by a so

called sandwich estimate (resulting in the “robust standard errors”).

As the GLMM, the GEE-approach can easily deal with a wide range of

outcome types like binary, categorical, count, or interval data. Unlike the con-

strained GLMM with a random intercept though, the correlation of outcomes

within a dyad is not restricted to be positive. The GEE-approach does not

make full distributional assumptions (only the mean-variance relationship), and

no likelihood-based methods as in the GLMM can be used for testing actor

and partner effects for example. Instead, parameter testing can be based on

Wald statistics constructed with the asymptotic normality of the estimators to-

gether with their estimated covariance matrix. A criticism often made is that

the sandwich variance estimate of GEE may underestimate the variability in

the parameter estimates when the number of clusters (dyads in this particular

case) is small (McCaffrey & Bell, 2006), resulting in tests that have greater than

nominal type 1 error rates. Rotnitzky and Jewell (1990) describe an alterna-
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tive procedure for testing effects of predictors, the so-called ‘score test’. The

test statistic for this score test is based on the generalized estimating ‘score-

like’ equations 9 that are solved to produce parameter estimates for the GEE

model. Finally, while GLMMs explicitly specify the correlation, the ‘unstruc-

tured’ working correlation (as suggested in step 2) in the GEE-approach is only

a device to support estimation of the regression parameters, and no standard er-

rors are given along these working correlations. The resulting correlations should

therefore only be interpreted informally (Molenberghs & Verbeke, 2005)10.

4 Simulations

In this section we compare the performance of 5 different approaches to the

estimation of actor and partner effects in the APIM-model and the estimation

of the within-dyad correlation for Bernoulli or Poisson dyadic outcomes, which

are either positively or negatively correlated, with GEEs or GLMMs:

(1) a GEE-approach with p-values for tests of fixed effect parameters based on

a robust Wald test, and using an unstructured working correlation matrix;

(2) the same GEE-approach as in (1) but with p-values based on the score

9Loosely speaking these score like equations are of similar form as the score equations

derived for GLM, and the principle of the GEE score test is the same as the likelihood-based

score test.
10When the association structure is of primary interest, one should turn to some extensions

of GEE. Examples of the latter are second-order extensions of GEE (GEE2) that include the

marginal pairwise association as well, or alternating logistic regressions that use conditional

probability ideas (Molenberghs & Verbeke, 2005).
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test;

(3) a GLMM with a random intercept (RI), a constrained variance component

(τ > 0), and computation based on adaptive Gaussian quadrature;

(4) a GLMM with a random intercept (RI), an unconstrained variance com-

ponent, and computation based on Laplace approximation;

(5) a marginalized GLMM, and computation based on linearized approxima-

tion (pseudo likelihood methods).

All simulations were performed in SAS version 9.2 and used the GENMOD

procedure for (1) and (2) (with TYPE3 option in the MODEL statement for

the latter), the NLMIXED procedure for (3) (with default method= adaptive

gaussian adaptive quadrature), and the GLIMMIX procedure for (4) and (5)

(with method=LAPLACE and option NOBOUND for (4), and method=RSPL

for (5)). A literature review of studies using the APIM revealed that sample

sizes typically ranged from 30 to 300 dyads (first quartile=60, median=100 and

third quartile=150) 11, but even dyadic sample sizes as small as 12 were recently

reported (Tambling, Johnson, & Johnson, 2012). We therefore considered num-

ber of dyads equal to 10, 30, 60, 100, 150 or 300 in the simulation study. Results

from each simulation settting are based on 2000 repetitions. It should be noted

though that in case of convergence issues for a particular estimation method,

estimates were not included for that approach. Such non-convergence occurred

11Special thanks to Robert Wickham from the university of Houston for sharing his database

on the use of the APIM.
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in about 15% of the cases for the marginalized GLMM when the ICC was pos-

itive or negative, and for the constrained GLMM with RI when the ICC was

negative (both for small and large samples).

4.1 Correlated Bernoulli outcomes

For the simulation settings with a positive intra-cluster correlation, responses

Yij were generated from a Bernoulli distribution with probability pij follow-

ing the APIM with fixed effects for the actor and partner’s predictor and a

distinguishing variable, and a random intercept

logit(pij | bi) = β0 + βactxact,ij + βparxpar,ij + βdisxdis,ij + bi, j = 1, 2, (8)

with xdis,ij coded as 1 if j = 1 and −1 if j = 2, actor and partner predictors

xact and xpar generated from a standard bivariate normal distribution with

correlation 0.50 12. We set β0, βact, βpar and βdis equal to zero, while values of

τ were chosen such that the intra-cluster correlations (ICCs) were approximately

equal to 0.30, 0.15, or 0.05.

For the simulation setting with a negative intra-cluster correlation, we rely on

Leisch, Weingessel and Hornik (1988) who show how to simulate multivariate bi-

nary distributions with a given correlation structure from a multivariate normal

distribution. By dichotomizing the normal variates and the appropriate choice

of the correlation between normal variates, one can obtain the required marginal

and pairwise probabilities. We generated binary dyad data with marginal prob-

12Smaller correlations between predictors were considered in this setting as well in all set-

tings described further, but did not reveal major differences from the results presented.
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abilities 0.5 and 0.5 (i.e., no actor and partner effect of the standard bivariate

normal distributed xact and xpar with correlation 0.50, and no effect of the dis-

tinguishing variable xdis) for Yi1 and Yi2 and joint probability 0.175, 0.2125 and

0.2375, leading to ICCs of −0.3, −0.15 and −0.05, respectively.

For the GEE-approaches and marginalized GLMM-approach, the following

working model is assumed:

logit(pij) = β0 + βactxact,ij + βparxpar,ij + βdisxdis,ij , j = 1, 2, (9)

while for the GLMM-approaches with random intercept, model (8) is assumed.

To ensure equal marginal and conditional parameter effects, data were first

generated under the null hypothesis of no actor and no partner effect. By do-

ing so, the size of the test of βact = 0 (βpar=0, respectively) at the nominal

5% level under each of the 5 approaches can easily be assessed (note that with

2000 simulations, the standard error on the estimated size is about 0.5%, and

empirical type 1 errors for appropriate tests are therefor expected to lie be-

tween 4% and 6%). Empirical type 1 errors for the test of no actor effect are

presented in figure 3 (results for the test of no partner effect were very sim-

ilar). While under the GEE-approach, the robust Wald test tends to be too

liberal when the numbers of dyads is extremely small, the performance of the

score test is satisfactory under all settings considered (slightly conservative for

small number of dyads in some cases). Both the constrained and unconstrained

random-intercept model yield a too conservative test under positive ICC set-

tings when the number of dyads is small. With increasing negative values of

the ICC, the constrained random intercept model (which will then typically
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force the random intercept variance to be zero) yields a much too conservative

test. The unconstrained random-intercept approach jumps from too conser-

vative tests for small samples to too liberal tests for larger samples when the

ICC is negative. The marginalized GLMM-approach performs relatively well in

terms of type 1 error, both under positive and negative ICC scenarios, except

when the number of dyads is small. Overall, we conclude that under the null

the marginal approaches perform better than the conditional approaches, and

proceed for now with the former only to explore the performance in estimating

the residual ICC. The upper panel of figure 5 shows the median of the estimated

ICC under both marginal approaches for the 6 values we considered for the ICC.

Although the ‘standard’ GEE-approach does not formally aim to estimate the

ICC, its estimate obtained from the unstructured working correlation is very

informative and recovering the ICC well. In contrast, there is - regardless of the

sample size - indication of a serious negative bias for the ICC estimate from the

marginalized GLMM for increasing absolute values of the ICC.

Next data were generated following model (8) assuming an effect of xact

and xpar (β1 = log 1.5 ≈ 0.405 and β2 = log 0.75 ≈ −0.287, respectively).

Note that the marginal effect of xact and xpar have no longer the same value,

but can be approximated by β1/
√
c2τ + 1 and β2/

√
c2τ + 1 respectively, with

c = 16
√

3/(15π) (Molenberghs & Verbeke, 2005). Because of the approximation

techniques that are used for GLMMs, estimates of non-zero fixed effect in the

GLMMs are known to be frequently biased 13. The upper left panel of figure 6

13Breslow and Lin (1995) studied the ‘worst case’ scenario of binary responses in a matched-
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presents the mean of the estimated actor and partner effects for the scenario

where the ICC equals 0.15. We found no evidence of severe bias for either the

marginal or conditional effects using the 5 approaches, except when the sample

size is extremely small. The upper middle panel of figure 6 shows the power

to detect the actor effect at the nominal 5% significance level. Not surpisingly

we find the GEE-Wald test to have highest power at lower sample sizes (as the

test was seen to be too liberal). The robust score test from the GEE-approach

is performing well as compared to the multilevel approaches. Finally, to shed

some light on the performance of the approximation formula (4) for the ICC in

the random intercept model, the estimated within-dyad correlations under the

5 approaches are presented in the upper right panel of figure 6, illustrating once

more the excellent performance of the GEE-approach in recovering the ICC.

4.2 Correlated Poisson outcomes

For the simulation settings with a positive ICC, responses Yij were generated

from a Poisson distribution with mean µij following the APIM-model with

random-intercept

log(µij | bi) = β0 + βactxact,ij + βparxpar,ij + βdisxdis,ij + bi, j = 1, 2 (10)

with β0 = βact = βpar = βdis = 0 , bi ∼ N(0, τ) and xact, xpar and xdis as

before. The number of dyads i considered was again 10, 30, 60, 100, 150 or 300.

pairs design and found the asymptotic bias in the pseudo-likelihood estimator of β to be of

the order of | τ |. The bias for the Laplace estimator is of smaller order, while adaptive

quadrature leads to nearly unbiased estimated (Pinheiro and Chao, 2006).
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Values of τ were chosen such that ICCs approximately equal to 0.30, 0.15, or

0.05 were obtained.

For the simulation setting with a negative ICC, we extend the approach of

Leisch et al. (1988) and show how to simulate multivariate Poisson distributions

with a given correlation structure. We first generate samples from a bivariate

standard normal distribution with correlation ρN . Whereas before the Gaussian

random variables where dichotomized to yield binary events of 0 or 1, they

will now be discretized into M different states to yield counts of 0, 1, 2, . . . ,M .

Precisely, we want to generate counts Yij that have count probabilities Pr(Yij =

k) = pijk. Samples are generated by discretizing a 2-dimensional normal random

variable U by setting Yij = k if γij,k < Uij ≤ γij,k+1, with γij,k = Φ−1(Pr(Yij <

k)) for each k = 1, 2, . . . ,M . It can be shown that the value of ρN is uniquely

determined by the value of the desired correlation between Poisson outcomes.

We generated bivariate Poisson outcomes with marginal means equal to 2 (i.e.,

no effect of xact, xpar and xdis) for Yi1 and Yi2 and pairwise correlation equal

to −0.30, −0.15 and −0.05, respectively.

For the GEE-approaches and marginalized GLMM-approach, the following

working model was assumed

log(µij) = β0 + βactxact,ij + βparxpar,ij + βdisxdis,ij , j = 1, 2, (11)

while for the GLMM-approaches with random intercept, model (10) was as-

sumed.

As data were generated first under the null hypothesis of no effect of X here

too, we can again assess the size of the test of βact = 0 (βpar = 0, respectively)
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at the nominal 5% level. The empirical sizes for the test of no actor effect are

presented in figure 4. While under the GEE-approach, the robust Wald test is

far too liberal when the numbers of dyads is small, even more pronounced than

in the Bernoulli setting, the performance of the score test is satisfactory under

all settings considered, except for some conservatism in very small samples. The

constrained (and to a smaller extent the unconstrained) random-intercept model

yield a too conservative test under positive ICC settings when the number of

dyads is small. With increasing negative values of the ICC, the constrained

random-intercept model, which will then typically force the random intercept

variance to be zero, yields a way too liberal test. The unconstrained random-

intercept approach again jumps from too conservative tests for small samples to

too liberal tests for larger samples when the ICC is negative. The marginalized

GLMM-approach tends to perform well in all settings (except for extremely

small sample sizes). Interestingly when comparing the marginal approaches in

their performance to estimate the ICC, we observe similar findings as for the

Bernoulli outcomes (lower panel of figure 5).

Next data were generated following model (10) assuming an effect of xact

and xpar (β1 = log 1.25 ≈ 0.223 and β2 = log 0.85 ≈ −0.163, respectively).

As derived before, the marginal effect of xact and xpar are the same as the

conditional effects for this setting. The lower left panel of figure 6 presents the

mean of the estimated actor and partner effects for the scenario where the ICC

equals 0.30. We found no evidence of any bias for any of the 5 approaches,

except when the sample size is extremely small. The lower middle panel of
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figure 6 shows the power to detect the actor effect at the nominal 5% significance

level. Not surpisingly we find again the GEE-Wald test to have highest power

at lower sample sizes (as the test was seen to be too liberal). In contrast

to the setting with Bernoulli outcomes, the robust score test from the GEE-

approach is performing slightly worse now in terms of power as compared to

the multilevel approaches. The ICC is again well recovered from the working

correlation in the GEE-approach (the lower right panel of figure 6), better than

by the approximation (6) or the marginalized GLMM.

5 Examples

The two studies presented below are sub-samples of the Interdisciplinary Project

for the Optimization of Separation Trajectories conducted in Flanders (IPOS;

www.scheidingsonderzoek.be), which is a cooperation of psychologists, lawyers,

and economists from Ghent University and the University of Leuven. This re-

search project carried out a large-scale recruitment of formerly married partners.

All couples who divorced between March 2008 and March 2009 in four major

courts in Flanders were systematically approached in the waiting room to par-

ticipate in a study on divorce (N = 8896). The individual respondents (i.e., not

both ex-partners) willing to participate (N = 3921; response rate = 44.1%) were

subsequently contacted for an interview in view of a computerized survey. To

reduce the survey’s length and lessen the burden on the respondents, the survey

was divided into a basic intake assessment assigned to each respondent, and
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three different questionnaire packages (measuring emotions, parent-child rela-

tionships, or ex-partner relationships) which were randomly distributed among

the participants. As the recruitment strategy did not directly target the ex-

partners simultaneously, only dyadic data from about 30 ex-couples were of

part of the same sample for each of the questionnaire packages. Therefore re-

sults presented below should merely be seen as an illustration of the different

approaches.

5.1 Correlated binary data: forcing behavior or not dur-

ing negotiations in ex-couples

The first example explores the effect of feeling guilty on negotation behavior.

Negotiation behavior was assessed with the Dutch Test for Conflict Handling

(DUTCH, De Dreu, Evers, Beersma, Kluwer, & Nauta, 2001). One of the subs-

scales of the DUTCH measures forcing behavior (e.g., “I fight for a good outcome

for myself.”), measured with 4 items to be answered on a five-point Likert

scale from totally disagree (1) to totally agree (5). For illustration purposes,

participants with an average score higher than 3 were artificially classified here

as showing forcing behavior (denoted as Y = 1). Out of the 29 ex-couples in

total, there was 1 couple where both ex-partners showed forcing behavior, 6 cases

where only the male partner showed forcing behavior, 9 cases where only the

female partner showed forcing behavior and 13 couples were none of the partners

showed forcing behavior. Guilt was assessed with the Guilt in Separation Scale

(Wietzker, Buysse, Loeys, & Brondeel, 2012) and is computed as the mean
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of 10 items (e.g. “I am responsible for his/her misery.”), measured on a seven-

point Likert scale (from 1=never to 7=always). Throughout the analysis we will

use the mean values of guilt, with the person’s own score denoted as GUILTA

and his or her partner’s score as GUILTP. In addition, we use gender as the

distinguishing variable in the couple, denoted as SEX and effect coded as 1 for

men and -1 for women.

We used both marginal approaches and conditional approaches to explore

the impact of feeling guilty on forcing behavior. For the GEE-approach and the

marginalized multilevel approach, we specify the following linear relation on the

logit scale between showing forcing behavior and feeling guilty (as there was no

evidence of gender-specific actor or partner effects no additional interactions are

considered):

logit[E(Yij)] = β0 + β1 ∗GUILTAij + β2 ∗GUILTPij + β3 ∗ SEXij . (12)

For the conditional multilevel approach, we consider the following random-

intercepts model

logit[E(Yij | bi)] = β0+β1∗GUILTAij+β2∗GUILTPij+β3∗SEXij+bi, (13)

with bi ∼ N(0, τ) and τ either constrained (using adaptive Gaussian quadra-

ture for optimization) or not (using Laplace approximation for optimization).

Results are presented in Table 2 (corresponding SAS-code can be found in Ap-

pendix A1). The following trends are observed: feeling guilty is associated with

a decrease of the forcing behavior, while guilt emotions of the partner have a

reverse effect. Overall, males show less forcing behavior than females. We re-
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peat the different interpretation of the conditional and marginal models here.

For example, from the constrained random intercept approach, we estimate that

within a dyad, a one-unit increase in the guilty score of the partner, corresponds

to an increase of exp(0.69) of the odds of showing forcing behavior. Marginally,

we estimate with the GEE-approach that such increase is associated with an

increase of exp(0.58) of that odds in the sample of ex-couples. It’s worth noting

here that the estimated actor and partner effects under the marginalized mul-

tilevel approach are substantially different from the marginal effects under the

GEE-approach, as are the significance of the effects. This might be attributed to

poor convergence of the GLMM for these particular data. The estimated intra-

dyad correlation from the working GEE-correlation matrix equals -0.18. Given

this indication of negative correlation in forcing behavior between ex-partners,

it is therefore not surprising that the constrained random-intercept model (13)

resulted in an estimated zero random effect variance, and some conservatism in

the estimated standard errors of the predictors.

5.2 Correlated count data: the number of unwanted pur-

suit behaviors in ex-couples

In the second example, we focus on a sample of 33 ex-couples who responded to

an adapted version of the Relational Pursuit-Pursuer Short Form (RP-PSF; Cu-

pach & Spitzberg, 2004) used to assess the extent of UPB-perpetrations towards

the ex-partner since the break-up. The total of 28 RP-PSF items (ranging from

‘leaving unwanted gifts’ to ‘threatening to hurt yourself’), each measured on a
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5-point Likert scale (from 0=never to 4=over 5 times), was used as an overall

index of perpetration (with higher scores indicating higher levels of perpetra-

tions). A participant who answered ‘never’ to all these 28 UPB-items will have

an UPB-outcome equal to 0; a participant who answered ‘over 5 times’ to ‘leav-

ing unwanted gifts’ and ’never’ to all other items will have an UPB-total equal to

4 for example; while a participant who answered ‘over 5 times’ to all items will

have the maximum score of 140. While many predictors for the UPB-outcome

were measured, we limit our attention here to the impact of the actor’s and

partner’s level of anxious attachment in their relationship with their ex-partner

before the break-up, which was measured using a total of five anxious attach-

ment items (e.g., ‘My desire to be very close sometimes scared my ex-partner

away’) from an adapted Experience in Close Relationships Scale-Short form

(ECR-S; Wei, Russell, Mallinckrodt, & Vogel, 2007). Throughout the analysis

we will use the mean-centered values of anxious attachment, with the person’s

own score denoted as ANXA and his or her partner’s score as ANXP.

Figure 2 shows the right-skewed distribution of the observed number of

UPB-perpetrations. Such count data are frequently modeled using the Pois-

son distribution, but the corresponding predicted frequencies in Figure 2 clearly

reveal lack-of-fit here. The negative binomial distribution, relaxing the Poisson-

assumption of equality of the mean and the variance, yields a much better fit,

and will further be assumed.

As in example 1, we used both marginal and conditional approaches to ex-

plore the impact of anxious attachment on the number of UPBs. For the GEE-
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approach and the marginalized multilevel-approach, we specify the following

linear relation on the logarithmic scale between the expected number of UPBs

and its predictors:

log[E(UPBij)] = β0 + β1 ∗ANXAij + β2 ∗ANXPij + β3 ∗ SEXij

+β4 ∗ANXPij ∗ SEXij + β5 ∗ANXPij ∗ SEXij ,(14)

while for the conditional multilevel-approach, we consider the following a ran-

dom intercept model

log[E(UPBij | bi)] = β0 + β1 ∗ANXAij + β2 ∗ANXPij + β3 ∗ SEXij (15)

+β4 ∗ANXPij ∗ SEXij + β5 ∗ANXPij ∗ SEXij + bi,

with bi ∼ N(0, τ). Estimated parameters under different estimation methods

are presented in Table 3 (the corresponding SAS code can be found in Appendix

A2).The estimated ICC from the working correlation in GEE equals 0.07. Be-

cause of the linearity of the random effect on the log-scale, the conditional and

marginal approaches lead to the same interpretation of parameters. Differences

between the 5 approaches are smaller than in example 1 (except again for the

marginalized multilevel approach). Both for male and female actors, we observe

an increase in the expected number of UPBs for increasing levels of the anxious

attachment level of the actor. In contrast, while increasing anxious attachment

levels of the male partner before the break-up is associated with an increase the

number of UPBs in females, the reverse trend is observed in men.
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6 Discussion

While linear mixed models have frequently been used to model Gaussian dyadic

outcomes, we have shown in this paper that generalized linear mixed models

might not be the best option to model non-Gaussian dyadic outcomes. This

becomes especially true when the correlation between outcomes in a dyad is

negative and/or the sample size is small. We explored the performance of dif-

ferent estimation techniques within the GLMM-framework, along with their

potential to allow for negative ICCs, but found none of these to be overall satis-

factory. While the marginalized GLMM performed relatively well with respect

to estimating actor and partner effects in settings with negative and positive

within-dyad correlation, the latter is poorly estimated under such approach.

The GEE-approach, which is relatively unused within the social sciences, offers

an interesting alternative in this context. The robust Wald test of GEE turned

out to perform well, except for (extremely) small samples where the score test

can be used instead. Although the GEE-approach treats the within-dyad cor-

relation as nuisance, we found that its estimate from the unstructured working

correlation can still be informative. If formal inference about the ICC is needed

though, GEE-extensions allowing for this are available (Molenberghs & Verbeke,

2005), but these are less commonly available in standard software packages.

Besides the LMM-framework, the structural equation modeling (SEM) frame-

work is frequently used to analyze Gaussian dyadic data too (Newsom, 2002).

In contrast to the LMM-framework the SEM-framework easily allows for for-
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mal tests of goodness of fit 14, for mediational models (see Ledermann, Macho,

& Kenny, 2011, for mediation in dyadic data) and for latent variables. When

dealing with binary or ordinal response scales, SEM assumes that these data

represent categorizations of underlying continuous variables. The relationships

of these underlying continuous variables are captured in a polychoric correlation

matrix, and (robust) weighted least square estimation could be used for the pa-

rameters of the marginal model matching the GEE-model. Such approach will

be theoretically reasonable only in some cases. While for attitude items, the

researcher may be more interested in the relationships among the continuous

underlying latent variables than in the relationship beween the observed ‘agree’

and ‘strongly agree’ responses on the items; it may be difficult for other vari-

ables like current drug user (‘yes’ or ‘no’) to conceive them as realizations of

an underlying continuous variable. Moreover for count outcomes such approach

does not work either. Interestingly, Muthén, du Toit and Spisic (1997) com-

pared the performance of robust WLS and (the second order extension of) GEE

for binary outcomes in a longitudinal simulation setting, and found superior

behavior of GEE in settings with 200 or 400 observation units, especially when

the prevalence of the outcome is small, but more comparable behavior in larger

samples that are less frequently seen in dyadic context though.

On the other hand the flexibility of SEM to deal with latent variables should

not be neglected. Within the dyadic modeling world this might not only be an

14It should be noted that using SEM to estimate the APIM with distinguishable dyads

allowing for ‘gender-specific’ actor and ‘gender-specific’ partner effects is a saturated model

and so it has zero degrees of freedom and no measures of fit can be computed.
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important asset for the Actor Partner Interdependence Model discussed here,

but even more so for estimation in the Common Fate Model (right panel of fig-

ure 1). The latter is indeed most easily seen as a latent variable dyadic model,

and SEM the most natural framework to disentangle between variability at the

dyadic and at the subject level. While Gonzalez and Griffin (2002) showed how

the CFM with distinguishable dyads can be casted within the multilevel frame-

work too with the common-fate variables conceptualized as random intercepts,

the CFM can not be tackled with the marginal approach taken by GEE. Still,

given its ease of implementation for a large range of outcome types, this paper

has shown the merits of the GEE approach in the wide range of typicale dyadic

sample sizes. Indeed, by expanding the types of data that can easily be ana-

lyzed with the APIM and its straightforward allowance for both positive and

negative within-dyad correlations, GEE can add significantly to the toolbox of

relationship researchers everywhere.
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Appendix A1.

* GEE with binary outcome FORCING2*;

proc genmod data=couple1 descending;

class GENDER ID;

model FORCING2=GUILT_A GUILT_P SEX/D=binomial link=logit type3;

repeated subject=ID/type=un withinsubject=GENDER corrw;

run;

* constrained random intercept *;

proc nlmixed data=couple1;

parms beta0=-1.01 beta1=-0.61 beta2=0.59 beta3=-0.85 s2u=1;

eta=beta0+beta1*GUILT_A+beta2*GUILT_P+beta3*SEX+u;

mu=exp(eta)/(1+exp(eta));

model FORCING2~binary(mu);

random u~normal(0,s2u) subject=ID;

run;

* unconstrained random intercept *;

proc glimmix data=couple1 method=laplace nobound;

model FORCING2=GUILT_A GUILT_P SEX/dist=bin link=logit s;

random intercept/subject=ID;

run;

* marginalized multilevel model *;

proc glimmix data=couple1 method=RSPL;

model FORCING2=GUILT_A GUILT_P SEX/dist=bin link=logit s;

random _residual_/subject=ID type=un VCORR;

run;
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Appendix A2.

* GEE with count outcome UPB *;

proc genmod data=couple2;

class ID GENDER;

model UPB=ANX_A ANX_P SEX SEX*ANX_A SEX*ANX_P/D=nb link=log TYPE3;

REPEATED SUBJECT=ID/type=UN withinsubject=GENDER corrw;

run;

* constrained random intercept *;

proc nlmixed data=couple2;

parms b0=0, b1=0, b2=0, b3=0, b4=0, b5=0, k=4,s2u=0.1;

linp =b0+b1*ANX_A+b2*ANX_P+b3*SEX+b4*SEX*ANX_A+b5*SEX*ANX_P+u;

mu = exp(linp);

p = 1/(1+mu*k);

model UPB ~ negbin(1/k,p);

random u~normal(0,s2u) subject=ID;

run;

* unconstrained random intercept *;

proc glimmix data=couple2 method=laplace nobound;

model UPB = ANX_A ANX_P SEX SEX*ANX_A SEX*ANX_P / dist=negbin s;

random intercept/subject=ID;

run;

* marginalized multilevel model *;

proc glimmix data=couple2 method=RSPL;

model UPB = ANX_A ANX_P SEX SEX*ANX_A SEX*ANX_P / dist=negbin s;

random _residual_/subject=ID type=un VCORR;

run;
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Figure 1: Left panel: The Actor Partner Interdependence Model for distinguish-

able dyads where a is the actor effect and p is the partner effect. Right panel:

The Common Fate Model where d is direct effect.
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Figure 2: The observed distribution of the number of unwanted pursuit behav-

iors in the 33 ex-couples (with the expected distribution under a Poisson and

negative binomial distribution).
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GEE Multilevel

WALD SCORE RI CONSTR. RI UNCONSTR. MARGINALIZED

GUIA -0.61 (0.38) -0.74 (0.38) -0.53 (0.30) -2.20 (1.02)

p=0.103 p=0.043 p=0.058 p=0.093 p=0.671

GUIP 0.58 (0.27) 0.69 (0.38) 0.73 (0.30) 0.82 (0.44)

p=0.030 p=0.032 p=0.076 p=0.022 p=0.074

SEX -0.85 (0.41) -1.11 (0.65) -0.67 (0.40) -1.65 (3.20)

p=0.039 p=0.034 p=0.100 p=0.104 p=0.609

Table 2: Example 1: the effect of feeling guilty on forcing behavior: compari-

son of 5 estimation/modeling methods. Estimated parameters (with standard

errors) and corresponding p-values are presented
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GEE Multilevel

WALD SCORE RI CONSTR. RI UNCONSTR. MARGINALIZED

ANXA 0.122 (0.021) 0.123 (0.042) 0.125 (0.039) 0.181 (0.032)

p ≤ 0.001 p=0.005 p=0.007 p=0.004 p ≤ 0.001

ANXP -0.035 (0.022) -0.042 (0.044) -0.039 (0.041) -0.085 (0.032)

p=0.120 p=0.298 p=0.350 p=0.343 p=0.012

SEX -0.510 (0.226) -0.540 (0.293) -0.549 (0.275) -0.706 (0.218)

p=0.024 p=0.062 p=0.075 p=0.055 p=0.003

SEX*ANXA 0.041 (0.018) 0.052 (0.043) 0.036 (0.039) 0.093 (0.033)

p=0.027 p=0.121 p=0.234 p=0.368 p=0.008

SEX*ANXP -0.074 (0.024) -0.074 (0.042) -0.075 (0.041) -0.135 (0.033)

p=0.002 p=0.048 p=0.091 p=0.076 p ≤ 0.001

Table 3: Example 2: the effect of anxious attachment on unwanted pursuit be-

havior: comparison of 5 estimation/modeling methods. Estimated parameters

(with standard errors) and corresponding p-values are presented.
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Figure 5: Estimation of the ICC (true ICC=solid line) in the APIM based

on the working correlation under the GEE-approach (dotted line) and on the

correlation of the pseudo-residuals under the marginalized multilevel approach

(dashed line).
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