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Abstract 

Improving proof-of-concept (PoC) studies is a primary lever for improving drug development.  Since drug development is often done 

by institutions that work on multiple drugs simultaneously, the present work focused on optimum choices for rates of false positive (α) 

and false negative (β) results across a portfolio of PoC studies.  Simple examples and a newly derived equation provided conceptual 

understanding of basic principles regarding optimum choices of α and β in PoC trials.  In examples that incorporated realistic 

development costs and constraints, the levels of α and β that maximized the number of approved drugs and portfolio value varied by 

scenario.   Optimum choices were sensitive to the probability the drug was effective and to the proportion of total investment cost 

prior to establishing PoC.  Results of the present investigation agree with previous research in that it is important to assess optimum 

levels of α and β.  However, the present work also highlighted the need to consider cost structure using realistic input parameters 

relevant to the question of interest.  
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Introduction 

Only 11% of the drugs that enter phase I testing receive regulatory approval (Kola and Landis, 2004).  Much of this attrition comes 

late in development, after significant investment.  For example, the attrition rate in phase II is 62%.  Despite this high culling rate, 

45% of compounds fail in phase III (Kola and Landis, 2004).  Approximately 50% of compound attrition is due to not demonstrating 

efficacy, which is a 15% increase compared with the previous decade (Hurko and Ryan, 2005).  The probability of success in phase II 

is the most important factor in determining the overall cost per approval of new molecular entities (Paul et al, 2010).  And, improving 

the quality of Proof of Concept (PoC) trials where the efficacy of a drug is first evaluated is an important factor in improving drug 

development (Gelenberg et al, 2008; Kola and Landis, 2004).   

 

A key aspect of PoC studies is the rate of false positive and false negative results.  False negative results in PoC studies may terminate 

development of effective therapies.  False positive results may mistakenly trigger large, expensive, but futile phase III programs.  

Statistical issues are key considerations regarding false negative and false positive results.  Therefore, it is not surprising that many 

manuscripts and text books have been devoted to the design and analysis of clinical trials.  See for example Piantadosi (2005).   

However, developing a drug involves a series of studies, and optimizing each individual trial in that series does not necessarily 

optimize the series (Mallinckrodt et al, 2010).  Moreover, most drug approvals come from large companies that have many 

compounds in development (Munos, 2009).  Optimizing each individual compound in a portfolio does not necessarily optimize the 
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portfolio.  Thus, when seeking to optimize any individual clinical trial, consideration must be given to individual trial-level factors, 

project-level (program-level) factors, and portfolio-level (franchise-level) factors (Chen and Beckman, 2009ab).   

   

Chen and Beckman (2009ab) considered cost effective designs for PoC studies in oncology, focus on the rate of false positive (α) and 

false negative (β) results.  The current research also focused on optimum choices of α and β in PoC studies, but the problem was not 

limited to oncology and development costs included varying levels of fixed costs plus the variable costs due to differing sample sizes 

whereas the previous research defined efficiency based solely on patient numbers.  In considering optimum choices for α and β, it was 

assumed that the individual trials were designed efficiently, using such things as futility analyses or adaptive designs to deliver the 

chosen levels of α and β in the most efficient manner.  The focus here was on what levels of α and β should be chosen.   

 

In the next section motivating scenarios are used to introduce key questions regarding choice of α and β in PoC studies.  Subsequently, 

basic principles of how α and β influence portfolio outcomes are illustrated using a simple example and with an equation whose 

derivation arises from similar problems in statistics.  With these basic ideas fixed, the impact of α and β on portfolio outcomes is 

evaluated in realistic situations, incorporating realistic cost structures and investment constraints.  Results from these quantitative 

evaluations are put into context and summarized in the discussion section and concluding remarks.   
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Motivating Scenarios   

To illustrate the need to consider the portfolio as a whole when optimizing choices of α and β in an individual PoC trial consider a 

portfolio of 100 drugs to be tested in PoC studies.  The PoC study is by definition the first chance to evaluate efficacy and the 

successful development of each drug hinges on making the correct decision in the PoC study.  Therefore, intuition suggests that for 

each individual drug, more power and more rigorous control of Type I error for the PoC study is ideal.     

 

However, the formula for sample size determination N = 2(Z1-α + Zβ)2 / Δ2  (Piantadosi, 2005 p 267) shows the diminishing marginal 

return from increasing sample size.  Increasing sample size from 50 to 100 increases power more than increasing sample size from 200 

to 250.  For an individual compound perspective, at some point, the cost from increasing sample size is prohibitive relative to the gain 

in α and/or β.    

 

Moreover, resource constraints may dictate that not all 100 drugs can be developed at the level of α and β desired for each compound.  

If so, would it be better to rigorously test only those drugs that the budget allows, or should α and β be relaxed to ensure all drugs can 

be tested?  It is further interesting to note from the sample size formula that many choices of α and β lead to the same sample size.  Put 

another way, if the budget (i.e., sample size) is fixed, latitude still exists to choose from a wide array of combinations of α and β in 

order to optimize the trial conditional on cost.   
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Additional consideration may be given to the disease state and magnitude of unmet medical need.   For example, is it appropriate to 

use the same α and β in PoC trials for drugs to treat erectile dysfunction and pancreatic cancer?  If not, in which case is need greater 

for control of false positive results and in which case is need greater for control of false negative results?   Similarly, within a 

particular disease state where existing treatments are well-established, say major depressive disorder, would it be appropriate to use 

the same α and β to test a drug with a mechanism of action similar to the approved drugs as for novel, potentially first-in-class 

treatments?      

 

Basic Principles 

The data in Table 1 summarizes how choices of α and β in PoC trials influence portfolio outcomes when there are no constraints and 

the portfolio is fixed.  In this illustration, 100 drugs entering phase II are modeled, with 20/100 or 30/100 of the drugs being effective.  

The number of true positives and false positives at the end of phase II are calculated based on the number of effective drugs, power, 

and the false positive rate.  The phase III success rate is also calculated, assuming 100% success of true positives in phase III and 0% 

success of false positives in Phase III.  The rate of false positive results is ½ the type I error rate (when using the traditional two-tailed 

test), and the false negative rate is 1 - power.  It is assumed that there is no attrition in phase III such that the number and percent of 

true positive PoC results is the number and percent of compounds that are successful in phase III and receive regulatory approval.  

Although some phase III attrition is inevitable due to safety, efficacy, and/or financial considerations, basic principles are best 

illustrated without additional complicating factors.     
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Comparing results within blocks of 3 in Table 1 (rows 1-3, 4-6, 7-9) illustrates that portfolio efficiency is influenced by choice of α, 

with lower rates of false positive PoC studies leading to higher success rates in phase III.  Also, the false positive rate has a greater 

influence on efficiency as the percentage of effective compounds [p(E)] decreases because the need for protection against false 

positive results increases as the percent of ineffective drugs increases.   Comparing the following sets of rows (1, 4, 7) (2, 5, 8) (3, 6, 

9) illustrates that portfolio effectiveness is influenced by choice of β, with greater power in PoC studies leading to more phase III 

successes and launches.  Also, the false negative rate has a greater influence on effectiveness as p(E) increases because the need for 

protection against false negative results increases as the percent of effective drugs increases.   Comparing differences in results from 

the scenarios with 20 vs. 30 effective drugs illustrates that both portfolio efficiency and effectiveness increase when a greater 

percentage of drugs are effective.    

 

These basic relationships can be quantified by drawing analogy to other optimization problems in statistics.  For example, choosing 

the optimum level of α and β for PoC studies with various levels of p(E) is similar to optimizing sensitivity and specificity of a 

diagnostic test at varying levels of disease prevalence.  In Appendix A this analogy is used to derive equation 1.    

 
        [1] 
 
Where:  
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α  =  false positive rate (one-tailed) 
 
β  =  false negative rate 
 
p(E)  =  probability the drug is effective, which is also the opportunity for false negative results 
 
1–p(E) =  probability the drug is not effective, which is also the opportunity for false positive results 
 
Cα   =  cost of a false positive result 
 
Cβ  =  cost of a false negative result 
 
 

The equation can be rearranged as follows to solve for the optimum ratio of α and β, 

 

    [2] 

Similarly, the equation can be rearranged to solve for specific values of α given a choice for β, and vice verse, 

 

The cost terms in equation 1 and 2 deserve careful consideration.   For example, Cα describes the cost (i.e., consequence) of a false 

positive result in a PoC study.  It is assumed that a false positive PoC triggers phase III development that fails.  Hence, the economic 

cost of a false positive PoC is the phase III development cost.  The cost (i.e., consequences) of a false negative PoC (Cβ) can be 

defined, using similar economic logic, as the profit that would have been earned had the drug become a marketed medicine.   
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It can be argued that profit is a less than perfect indicator of value.  However, given the difficulties in quantifying the true value in 

prolonging the life of a cancer patient, reducing the pain caused by arthritis, or maintaining glycemic control in diabetics, profit is a 

usable proxy.   

 

The p(E) term can also involve complexity.  For example, p(E) may be the probability associated with being superior to placebo or to 

a standard of care (SoC).  The placebo comparison may be used for novel therapies and in uncrowded therapeutic areas, whereas the 

SoC comparison may be more useful in crowded therapeutic areas.  The key aspect is that p(E) be defined based on the same criteria 

and comparison as Cβ. 

 

If p(E) = 0.50, and if Cα = Cβ, the two terms left of the equal sign in equation 2 simplify to 1 and the optimum ratio of α and β = 1; for 

example, α = 0.10 (two-tailed α = 0.20) with power = 90% (β = 0.10).  Since the circumstances under which a false positive or false 

negative error can occur are equally likely and the errors are equally costly, the optimum is to have equal protection against them.  

Given the same costs, but p(E) = 0.20 the optimum ratio = 4/1 since the circumstances under which a false positive result can occur 

are now 4-fold more likely. 

 

If the anticipated profit is 10-fold greater than the phase III development cost (e.g., Cα = 1 and Cβ = 10), with p(E) = 0.20 the 

optimum ratio of α and β = 4/10 = 1/2.5; for example if α=0.025 (two-tailed α = 0.05) then the optimum β = 6.25% (power = 93.75%).  
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Alternatively, if p(E) = 0.33 the optimum ratio of α and β is now 1/5; for example, if α=0.025 then the optimum β = 0.5% (power = 

99.5%).  Alternatively, if power is 95% the corresponding α = 0.25 (two-tailed α = 0.50).   

 

 

The impact of α and β on portfolio outcomes in realistic situations. 

With basic ideas fixed in the previous section, the impact of α and β in PoC studies on portfolio outcomes can be evaluated in realistic 

situations by incorporating realistic cost structures and investment constraints.  For this exercise, industry average costs of $40 million 

for phase II and $150 for phase III were taken from Paul et al (2010).  Two development paradigms were considered:  The so-called 

fast to PoC and fast to registration archetypes discussed by Mallinckrodt et al (2010).  In the fast to PoC approach, investments are 

minimized prior to establishing proof of concept.   For example, the toxicology studies needed to support longer phase III studies, dose 

ranging studies, carcinogicity studies, etc are only begin after establishing PoC.  In the fast to registration paradigm all phase II 

investments are undertaken in parallel in order to accelerate timelines.  The fast to PoC approach terminates ineffective drugs at lower 

cost because it has lower fixed cost prior to PoC; however, this approach takes longer to get effective drugs to market.  The fast to 

registration approach gets effective drugs to market sooner, but is less efficient at terminating ineffective drugs.  However, total 

development costs for compounds making it to market are assumed to be the same for both approaches.   
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Specifically, the cost for each PoC trial in the fast to registration approach was modeled as a fixed cost of $35,000,000 plus $25,000 

per patient, with post PoC (phase III) cost of $150,000,000.  For the fast to PoC approach, each trial was modeled as a fixed cost of 

$5,000,000 plus $25,000 per patient, with the $30,000,000 in fixed cost deferred to phase III, yielding a total post PoC cost of 

$180,000,000.   Development was constrained to a total investment of $5 billion dollars for phase II and Phase III combined.   

 

The outcome variables of interest were number of launches and total portfolio value.  The potential value, such as lifetime profit, of a 

drug in development is particularly hard to estimate reliably (Munos et al, 2009).   Therefore, a simplistic approach was adopted where 

portfolio value was a function of the number of launches.  In the fast to PoC paradigm each launch (compound making it to market) 

was given a value of 1.0.  In the fast to registration paradigm each launch was valued at 1.2, assuming that the compound got to 

market faster, thereby having more time prior to patent expiration such that total profit increased by 20%.     

 

Using these two development paradigms, portfolio outcomes were investigated based on α (one-sided) at 0.025, 0.05, and 0.10, with 

power (1 – β) at 90%, 80%, and 65%.   These levels of α and β were applied to scenarios where the probability the drug was effective 

was either 30% or 60%, with a 20% phase III attrition rate assumed for safety outcomes in all scenarios, and assuming the true effect 

size for the effective drugs was either 0.3, 0.4, or 0.6.  Therefore, this investigation can be viewed as a 3 x 3 factorial arrangement of 

decision variables (α and β) applied to a 2 x 2 x 3 factorial arrangement of design variables (2 development paradigms, 2 levels of 
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probability of efficacy, and 3 magnitudes of treatment effect).  Results from the scenario using an effect size of 0.4 in effective drugs 

are summarized in Table 2.      

 

When the probability the drug was effective = 0.3, the number of launches ranged from 10 to 17 across the various scenarios.  The fast 

to PoC archetype yielded more launches and greater portfolio value as its lower costs allowed more drugs to be developed given the 

fixed budget.  In the fast to PoC archetype, the three scenarios with the greatest number of launches all had α = .025.  In contrast, for 

the fast to registration archetype, the three scenarios with the greatest number of launches and greatest portfolio value all had 90% 

power.   

 

When the probability the drug was effective = 0.6, development scenario and choice of α and β resulted in smaller differences in 

portfolio outcomes as across the scenarios portfolio value ranged from 18.5 to 20.9.  With power of 80% or 90% the fast to 

registration archetype yielded greater portfolio value than the fast to PoC archetype.  In the fast to PoC archetype, α = .025 or .05 

yielded more launches and greater portfolio value than α = .10.  In the fast to registration archetype the three scenarios with the 

greatest number of launches all had 90% power. 

 

When the effect size was 0.3 or 0.6 (results not shown) for the effective compounds, results were qualitatively similar to the 

previously described results where the effect size was 0.4.  After completing these pre-planned comparisons a post hoc comparison 



 12 

was done to investigate how the cost of phase III influenced the optimum levels of α and β (results not shown).  As phase III cost 

increased, the benefit from lower false positive rates increased; and, as phase III costs decreased the benefit from greater power 

increased.      

 

Discussion 

Optimizing PoC studies is important because the probability of success in phase II and early, accurate assessment of PoC are the most 

important drivers of drug development productivity (Paul et al, 2010; Gelenberg et al, 2008, Kola and Landis, 2004).  Since most 

drugs are developed by companies that work on multiple drugs simultaneously (Munos, 2009), the present work focused on 

optimizing the portfolio.  Specifically, it was assumed that individual trials were designed to efficiently deliver the chosen levels of α 

and β, and the focus here was on determining what levels of α and β these trials should seek to deliver.  

 

Basic principles of how α and β influence portfolio outcomes were illustrated with a simplistic example and with an equation whose 

derivation arises from similar problems in statistics.  With these basic ideas fixed, the impact of α and β on portfolio outcomes was 

evaluated in realistic situations, incorporating realistic cost structures and investment constraints.   These examples further illustrated 

that the optimum choice for α and β can vary depending on compound attributes, such as the probability the drug is effective, and on 

the development approach (fast to PoC vs. fast to registration).   
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Although cost estimates that were representative of average costs were used, these costs were not intended to represent any specific 

situation.  Moreover, a simple model was used to determine how costs varied across the scenarios and to determine portfolio value 

from number of launches.  These simplistic approaches were intended to show general trends, but lacked the detail that is probably 

necessary to evaluate specific circumstances.  Therefore, these results illustrate that levels of α and β can have an important impact on 

portfolio productivity and can vary by scenario; but they do not illustrate what is optimum for any specific situation.   

 

Other limitations of the present work include that consideration was not given to situations where the outcome in the PoC study was 

different from the outcome used in confirmatory trials, which if not perfectly correlated would result in phase III success rates being 

different from what would be predicted by the α and β used in the PoC study.  In addition, the examples considered portfolios of drugs 

as if all were at the same stage of development.  In practice, research enterprises typically have drugs at all stages of development with 

decisions made one at a time, 

 

Similar to the present research, Chen and Beckman (2009ab) noted that optimum levels of α and β varied by scenario.  These authors 

used oncology specific examples and assessed portfolio outcome based on an efficiency score function driven by the number of 

patients per approval.   Unlike the previous research, the present investigation did not uncover scenarios where low power was optimal.  

This difference likely arises from the cost modeling assumptions.  When patient number is the only cost consideration, the benefit 

from smaller sample sizes will be greater than when also incorporating fixed costs into the scenarios.  Therefore, results of the present 
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investigation agree with previous research in that it is important to assess optimum levels of α and β.  However, the present work also 

highlights the need to consider cost structure using realistic input parameters for the situation and the question of interest.  For 

example, in a deadly illness such as cancer, it may be appropriate to describe efficiency in terms of numbers of patients studied 

whereas is other disease states a purely economic cost may be most useful. 

 

Conclusion 

Simple examples and a newly derived equation provided conceptual understanding of basic principles regarding optimum choices of α 

and β in PoC trials.  In examples incorporating realistic development costs and constraints, the optimum choice of α and β varied by 

scenario, and was particularly sensitive to cost structure and the probability the drug was effective   Results of the present 

investigation agree with previous research in that it is important to assess optimum levels of α and β.  However, the present work also 

highlights the need to consider cost structure using realistic input parameters relevant to the question of interest.  
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Table 1.  Outcomes from proof of concept trials with varying levels of power and false positive rate results and percentages of effective drugs.

Phase II Decisions
Scenario pts/Arm1 Power False+ rate2 True +s False +s Ph III success rate True +s False +s Ph III success rate

1 35 65 10 13 8 61.9 19.5 7 73.6
2 52 65 5 13 4 76.5 19.5 3.5 84.8
3 69 65 2.5 13 2 86.7 19.5 1.75 91.8

4 57 80 10 16 8 66.7 24 7 77.4
5 78 80 5 16 4 80 24 3.5 87.3
6 99 80 2.5 16 2 88.9 24 1.75 93.2

7 83 90 10 18 8 69.2 27 7 79.4
8 108 90 5 18 4 81.8 27 3.5 88.5
9 132 90 2.5 18 2 90 27 1.75 93.9

1.  All trials assume a standardized effect size of 0.4 and that is the true effect size for the effective drugs
2.  The rate of false positive results in PoC trials, whis is ½ α in two-tailed testing
3.  True +s = power multiplied by number of effective drugs, False +s = False + rate multiplied by the number of ineffective drugs
Ph III success rate = True +s / (True +s plus False +s)

Phase II Results3 (20/100 drugs effective) Phase II Results3 (30/100 drugs effective)
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Table 2.  Portfolio outcomes for various choices of α and β across different development scenarios. 
________________________________________________________________________________________________________ 

Probability drug is effective = 0.3.  Effect size = 0.4 
 
    Prob1   Prob2                                      Fast to PoC archetype                .                        Fast to registration archetype             .  
    N per   Enter   Eff      Apprvl3 Cost Per4  Compds5 Compds6  Portfolio7 Cost Per4 Compds5 Compds6 Portfolio7

Power Alpha   Arm    PhIII     PHIII   Prob      Compd    Studied    Apprvd     Value  Compd    Studied    Apprvd    Value 
.65    .1   35 0.27 0.74  0.16    54.5       91.8        14.3   14.3    76.5       65.4         10.2  12.2 
.65 .05   52 0.23 0.85  0.16    49.0     102.0        15.9   15.9    72.1       69.3         10.8  13.0 
.65 .025   69 0.21 0.92  0.16    46.7     107.1        16.7   16.7    70.3       71.1         11.1  13.3 
.8 .1   57 0.31 0.77  0.19    63.7       78.6        15.1   15.1    84.4       59.3         11.4  13.7 
.8 .05   78 0.28 0.87  0.19    58.4       85.6        16.4   16.4    80.2       62.4         12.0  14.4 
.8 .025   99 0.26 0.93  0.19    56.3       88.8        17.1   17.1    78.6       63.6         12.2  14.7 
.9 .1   83 0.34 0.79  0.22    70.4       71.1        15.4   15.4    90.2       55.5         12.0  14.4 
.9 .05 105 0.31 0.89  0.22    65.2       76.7        16.6   16.6    86.0       58.1         12.6  15.1 
.9 .025 132 0.29 0.94  0.22    63.4       78.9        17.0   17.0    84.7       59.0         12.7  15.3 
 
 
Probability drug is effective = 0.6.  Effect size = 0.4 
                        
.65 .1   35 0.43 0.91  0.31    84.2       59.4        18.5   18.5  101.3       49.4         15.4  18.5 
.65 .05   52 0.41 0.95  0.31    81.4       61.4        19.2   19.2    99.1       50.5         15.7  18.8 
.65 .025   69 0.40 0.98  0.31    80.5       62.2        19.4   19.4    98.5       50.8         15.8  19.0 
.8 .1   57 0.52 0.92  0.38  101.5       49.3        18.9   18.9  115.9       43.2         16.6  19.9 
.8 .05   78 0.50 0.96  0.38    98.9       50.6        19.4   19.4  113.9       43.9         16.9  20.2 
.8 .025   99 0.49 0.98  0.38    98.2       50.9        19.6   19.6  113.5       44.1         16.9  20.2 
.9 .1   83 0.58 0.93  0.43  113.6       44.0        19.0   19.0  126.2       39.6         17.1  20.5 
.9 .05 105 0.56 0.96  0.43  111.1       45.0        19.5   19.5  124.3       40.2         17.4  20.9 
.9 .025 132 0.55 0.98  0.43  110.6       45.2        19.5   19.5  124.1       40.3         17.4  20.9 
________________________________________________________________________________________________________ 

1.  Probability a compound will enter phase III.  Includes true positive and false positive phase II compounds  
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2.  Probability that a phase III compound is effective.  
3.  Probability a compound will be approved.  Includes the 20% attrition in phase III due to safety and other reasons not due to 
     efficacy 
4.  Development cost per compound.  Total phase II cost + cost phase III cost for compounds entering phase III divided by 
     number of compounds entering phase II. 
5.  Number of compounds studied.  The $5 billion budget divided by average cost per compound. 
6.  Number of compounds approved.  Number of compounds studies multiplied by approval probability. 
7.  Portfolio value = number of launches for fast to PoC and = number of launches x 1.2 for fast to registration. 
 

 

 


