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Abstract

A real-life motorway in Belgium is studied and a comparison is made between a simulation of a morning rush hour situation
ol and a simulation of a morning rush hour situation with ramp metering implemented. Two types of controllers are
compared: a traditional ALINEA based controller and a model predictive control based ramp metering controller. In order to

evaluate the controllers in a realistic framework, the simulations presented in this paper are based on real-life traffic measurements,

and constraints on the maximal allowed queue lengths at the on-ramps are imposed. The presented simulations are indicative for the

reduction in the total time spent (on the studied motorway and on the on-ramps) that can be achieved by ramp metering during a

typical morning rush hour.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction traffic demand during rush hours, accidents, manifesta-
tions, ... The research on and implementation of
untries around the world invest large
resources in attempts to reduce the

dynamic traffic control systems is aimed at increasing
the traffic operation efficiency without building new
occurrence of congestion and as such its negative impact
on e.g., traffic safety, the environment (air pollution,
wasted fuel) and the quality of life (health problems,
noise, stress). Since the construction of new roads is not
always a viable option due to economical and environ-
mental issues, other solutions are needed. One solution
that can be implemented in the short term is dynamic
traffic control. Dynamic traffic control is a traffic
responsive control method that takes the variations of
the traffic situation over time into account. These
variations in the traffic state can result from a changing
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roads.
This paper focuses on increasing the efficiency of

traffic operations on motorways using dynamic control.
One way to control traffic on a motorway is ramp
metering or admission control. The control signals or
metering rates can be obtained by using traditional PID-
like control (ALINEA) or they can be optimized in a
receding horizon framework as will be presented later.

This paper is organized as follows: First, the concept
of ramp metering for control of motorway traffic is
presented followed by two methods to calculate dynamic
or traffic responsive metering rates. The method
presented first consists of a traffic regulator ALINEA
while the second method relies on a receding horizon
framework. In the third section a motorway in Belgium
is considered as a real-life case study. Traffic simulations
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of the case study illustrate the positive impact of ramp
metering on the traffic situation and allow for a
comparison of the performance of an ALINEA based
controller with a controller based on model predictive

motorway is typically around 6000 vehicles per hour.
Once the critical density is reached, traffic breakdown
occurs and the traffic flow starts decreasing with further
increasing traffic density. As soon as breakdown of the
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control.

2. Motorway control using ramp metering

This section deals with ramp metering as a means to

control traffic operations on a motorway. Before

is placed at the on-ramp of a motorway as schematically
discussing ramp metering, the fundamental diagrams
from traffic theory are presented in order to get a better
understanding of the concept behind ramp metering. As
far as determining the appropriate control signals is
concerned, the ALINEA controller is presented fol-
lowed by a presentation of the model predictive control
approach.

2.1. The fundamental diagrams

Observations and measurements of traffic on motor-
ways show that traffic behaves approximately according
to what are known as the fundamental diagrams in
traffic flow theory (May, 1990). The fundamental
diagrams plot the relations between the traffic density,
the average speed, and the traffic flow. A typical flow-
density fundamental diagram is presented in Fig. 1. In
low traffic conditions, the traffic flow increases in a
nearly proportional way with increasing traffic density.
If the traffic density keeps increasing, the traffic flow
starts saturating until a maximal flow is reached at the
critical density rcr. The maximal flow associated with
the critical density rcr is called the capacity qcap of the
motorway. A typical value of rcr is 34 vehicles per
kilometer and per lane. The capacity qcap of a three-lane
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Fig. 1. The flow-density fundamental diagram showing the relation

between the traffic flow and the traffic density on a motorway.
traffic flow at rcr occurs, congestion sets in and traffic
starts operating in a congested regime. This congested
regime is unstable in the sense that a perturbation that
momentarily increases the density on the motorway
section will cause the traffic flow to decrease, thus giving
rise to an even larger traffic density. The traffic density
in congested regime where the average traffic speed is
zero or, in other words, where the traffic comes to a
stand-still is called the jam density rjam (see Fig. 1). A
typical value of rjam is 180 vehicles per hour and per
lane. The values of rcr, rjam and qcap depend on the
motorway characteristics such as e.g., the curvature, the
speed limits, the slope, . . . Stable, free flowing traffic
operation can only occur at densities below the critical
density.

2.2. Ramp metering

A ramp metering set-up consists of a traffic light that
represented in Fig. 2. The traffic light alternates between
the red and the green phase. During the green phase
only one vehicle is allowed to enter the motorway using
the on-ramp. By varying the timing of the red and the
green phases, the number of vehicles that enters the
motorway through the on-ramp is controlled. When the
traffic density on the motorway tends to exceed the
critical density, the ramp metering set-up limits the
inflow of vehicles onto the motorway in order to keep
the traffic density below the critical density, thus
avoiding traffic breakdown and congestion. Whenever
the traffic demand is larger than the number of cars that
is allowed to enter the motorway, a waiting queue of
vehicles is formed at the on-ramp.

By keeping the traffic state on the motorway in the
region of stable operation, ramp metering tries to
Fig. 2. Schematic representation of ramp metering. The arrow denotes

the direction of the traffic flow.



prevent the occurrence of traffic breakdown and
congestion. This way, the throughput on the motorway
is as high as possible. The preservation of the higher
throughput results in a smaller travel time for the

to the value of the heuristically determined parameter
KR for a wide range of values (Hasan, Jha, & Ben-
Akiva, 2002).

Eq. (1) represents an integrating feedback controller,
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vehicles on the motorway. The travel time of the vehicles
on the on-ramp increases due to the presence of the on-
ramp queue. If the metering rates are determined in a
proper way, ramp metering optimizes the traffic flow in
the system, resulting in a net decrease of the travel time.
Sections 2.3 and 2.4 present two methods to determine
the appropriate metering rates.

The control of a single, locally controlled on-ramp
can be extended to the coordinated dynamic control of
several on-ramps in a motorway network. The coordi-
nation of the metering rates of the different on-ramps
assures that the control actions taken at different
locations in the network reinforce rather than cancel
each other. This way, coordinated ramp metering often
leads to better results than the combination of multiple
independently locally controlled ramp metering set-ups.
Sometimes, ramp metering set-ups are integrated into a
larger traffic control framework together with control
measures such as e.g., traffic density dependent speed
limits and route guidance. As the focus of this paper is
on-ramp metering control, integrated control of motor-
way traffic (Hegyi, De Schutter, Hellendoorn, & van
den Boom, 2002; Kotsialos, Papageorgiou, & Messmer,
1999; Kotsialos, Papageorgiou, Mangeas, & Haj-Salem,
2002) is beyond the scope of this paper.

The remainder of this section discusses two ways to
determine the appropriate on-ramp metering rates:
ALINEA and model predictive control.

2.3. ALINEA

ALINEA is the acronym for ‘Asservissement linéaire
d’entrée autoroutière’,1 a feedback control methodology
for ramp metering presented by Papageorgiou (Papa-
georgiou, Hadj-Salem, & Blosseville, 1991). A schematic
representation of ALINEA is given in Fig. 3. The goal
of ALINEA is to maintain the traffic density on the
motorway equal to a preset value r̂. The value of r̂ can
be chosen to be equal to the critical density rcr where the
traffic flow on the motorway is maximal and equal to the
capacity qcap. This results in a controller that optimizes
the traffic flow on the motorway. In discrete time,
ALINEA’s control law reads:

rðkÞ ¼ rðk � 1Þ þ KRðr̂� rðkÞÞ, (1)

where rðkÞ is the metering rate at sample step k, KR is a
positive constant, rðkÞ is the traffic density measured
downstream of the ramp metering set-up, and r̂ is the
set-point. The metering rate rðkÞ is confined to the
interval ½0; 1�. ALINEA’s control results are insensitive

1French for ‘Linear ramp metering control’.
i.e., a special type of PID control. If the traffic density
on the motorway becomes too high (larger than r̂), the
metering rate is reduced and vice versa.

2.4. Model predictive control

Model predictive control (MPC) (Camacho & Bor-
dons, 1995; Maciejowski, 2002) is a flexible approach
towards the ramp metering control problem that
optimizes an objective or cost function using a motor-
way traffic model in a receding horizon framework. The
choice of the objective function allows for a customiza-
tion of the controller to a desired policy. By merely
changing the cost function, the implemented policy can
be altered. Other advantages of MPC based ramp
metering are the ability to take constraints into account
and the ability to deal with slow changes in the behavior
of the traffic system.

2.4.1. General description of model predictive control

The main ingredients of MPC are that it is an on-line
control approach in which a model is used to predict the
future behavior of the system for a given input sequence
and in which a cost criterion is optimized subject to
constraints on the inputs and outputs. In addition, MPC
uses a receding horizon strategy.

In a receding horizon framework, a prediction
horizon Np is defined and at each sample step k the
metering rates for the time period ½kDTctrl; ðk þ
NpÞDT ctrlÞ are determined by minimizing an objective
function over this period. The controller time step DTctrl

is the rate at which the control signals are updated. A
typical value of the controller time step is 1min. During
the optimization, the objective function, which will be
discussed in detail in Section 2.4.3, is evaluated based on
a prediction of the future traffic behavior of the studied
traffic system. The future traffic behavior is simulated
using a traffic model. An example of such a model is
discussed in Section 2.4.2.



In order to reduce the computational complexity of
the optimization, the control horizon Nc ðNcpNpÞ is
defined (Fig. 4). The metering rate is only allowed to
change during the period ½kDT ctrl; ðk þNcÞDTctrlÞ, after

choice of the specific traffic model used is not imposed
by the model predictive framework but by considera-
tions concerning accuracy and computational require-
ments. Other traffic models than the one presented here,
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which it is considered to remain constant. In a receding
horizon framework, only the first calculated metering
rate is applied to the ramp metering set-up. The other
metering rates are discarded and recalculated during the
next iteration. Once the metering rate is implemented,
the state of the traffic in the studied area is updated
using measurements, and the whole process starts all
over again with the prediction and the control horizon
shifted one sample step forward.

The parameters Np and Nc need to be carefully
chosen in order to make a trade-off between the
computational complexity and the accuracy of the
controller. The larger the prediction horizon, the further
the controller can look ahead. This allows the controller
to foresee certain events that can be predicted such as
e.g., congestion due to increased traffic demand. A
larger prediction horizon also implies a larger computa-
tional complexity. For the choice of Nc a similar trade-
off is made. The length of the control horizon is directly
related to the number of metering rates that needs to be
optimized. Since the computational complexity of the
optimization increases strongly with the number of
parameters to be optimized, a trade-off between the
computational complexity and the accuracy of the
controller can be made. In Section 3.3.3 the values of
Np and Nc will be determined for the E17 motorway
case study.

2.4.2. Motorway traffic flow model

During optimization of the metering rates over the
prediction horizon, the controller uses a prediction of
the traffic behavior generated by a traffic model. This
section presents the traffic flow model that will be used
in the simulations discussed in Section 3. For the sake of
brevity, only those parts of the model that are relevant
for interpreting the simulation results of the benchmark
motorway are described. It is important to note that the
such as e.g., the models discussed in (Treiber & Helbing,
2001) and in (Barceló, 2002), can also be used in the
model predictive control framework.

Payne (1971) described a second-order traffic flow
model that was extended later on by Papageorgiou et al.
to the METANET model (TUC, 2000; Messmer &
Papageorgiou, 1990; Papageorgiou, Blosseville, & Hadj-
Salem, 1990). The METANET model is a second-order
model that is discrete in both space and time. The
modeled motorway is discretized in consecutive sections.
Typical values for the discretization in time and space
are DT sim ¼ 10 s and 500m respectively (Papageorgiou,
Blosseville, & Hadj-Salem, 1989).

The model equations can be written down for every
section of the motorway. The first equation expresses
the conservation of the number of vehicles in a section:

rjðl þ 1Þ ¼ rjðlÞ þ
DT sim

njlj

½qin ; jðlÞ � qout; jðlÞ�, (2)

where rjðl þ 1Þ is the traffic density in section j at sample
step l þ 1. The traffic density rjðl þ 1Þ depends on the
traffic density rjðlÞ at sample step l and on the net inflow
into the section during the time interval
½lDT sim; ðl þ 1ÞDT simÞ. The net inflow into section j

equals the inflow qin; jðlÞ minus the outflow qout; jðlÞ.
The number of lanes in section j is denoted by nj, and the
length of the sections by lj .

It is important to note that the simulation time step
DT sim of the traffic simulation model will in general be
different from the control time step DT ctrl. In order to
emphasize the difference between the simulation time
step and the control time step, the simulation step
counter is denoted in this paper by l, and the control
step counter by k.

The average speed in section j at time l þ 1 is given by

vjðl þ 1Þ ¼ vjðlÞ

þ
DT sim

t
½V ½rjðlÞ� � vjðlÞ� Relaxation

þ
DT sim

lj

vjðlÞ½vj�1ðlÞ � vjðlÞ� Convection

�
nDT sim½rjþ1ðlÞ � rjðlÞ�

tlj½rjðlÞ þ k�
; Anticipation ð3Þ

where t, n and k are parameters that can be fitted to
traffic data using conventional identification techniques
(Ljung, 1999). Three phenomena contribute to the
change of the average speed in a section: relaxation,
convection and anticipation. The relaxation term states
that the average speed in every section tends to evolve
towards a density dependent equilibrium value V ½rjðlÞ�.
An empirical expression for the relation between V ½rjðlÞ�



and the traffic density is given by (May, 1990):

V ½rjðlÞ� ¼ vf exp �
1

am

rjðlÞ

rcr; j

 !am
 !

. (4)

signal. In the receding horizon framework this leads to
the following expression:

Jðk0Þ ¼
Xk0þNp�1 X

rjðkÞljnj

"
þ a

X
wmðkÞ
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The parameter vf is the free flow speed or the speed that
a vehicle obtains in a section if there are no interactions
between vehicles. The parameter am is a model
parameter.

The traffic flow qjðlÞ in section j can be expressed in
terms of the traffic density and the average speed in the
section

qjðlÞ ¼ rjðlÞvjðlÞnj . (5)

When the traffic demand DmðlÞ at on-ramp m exceeds
the service rate of the on-ramp qon;mðlÞ, a queue is
formed. The evolution in time of the queue length wmðlÞ

is given by

wmðl þ 1Þ ¼ wmðlÞ þ DT simðDmðlÞ � qon; mðlÞÞ. (6)

The service rate of the on-ramp is the minimum of the
number of cars that want to enter and the number of
cars that can enter the motorway. This leads to the
following expression:

qon;mðlÞ ¼ min DmðlÞ þ
wmðlÞ

DT sim
;

�

Qm min rmðlÞ;
rmax; j � rjðlÞ

rmax; j � rcr; j

 !#
, ð7Þ

where Qm is the capacity of the on-ramp (veh/h) and
rmax;j is the maximal possible density in the section the
on-ramp feeds into (here section j). Through the
metering rate rmðlÞ, the service rate of the on-ramp can
be limited. The metering rate rmðlÞ theoretically lies in
the interval ½0; 1�, but often a lower bound is imposed on
the metering rate such that rmðlÞ 2 ½rmin; 1�.

2.4.3. Objective function

The objective function assigns a cost to every possible
traffic state on the studied motorway. This cost can be
composed of several components such as e.g., economic-
al, social, environmental, . . . terms that can be weighted
according to the studied area or according to local
policies.

The objective function used in this paper consists of
the total time spent by all vehicles in the studied area
and of a term that penalizes fluctuations in the control

500m
Fig. 5. Schematic representation of the E17 motorway Ghent–Antwerp
k¼k0 j2Is m2Io

þ arampðrðkÞ � rðk � 1ÞÞ2

#
DTctrl, ð8Þ

where Is denotes the set of all motorway sections and
Io is the set of all on-ramps. The total time spent by all
the vehicles in the studied area consists of the total time
spent by all the vehicles on the motorway sections (the
first term in (8)) plus the total time spent by the vehicles
in the queues at the on-ramps (the second term in (8)).
The parameter a allows for putting more or less
emphasis on the time spent by the vehicles in the
queues. In order to smooth the control signal, a penalty
on variations of the control signal is added to the
objective function (the third term in (8)). The value of
the parameter aramp determines the relative importance
of this smoothing term.

3. Case study

This section presents simulation results of ramp
metering in a real-life situation in Belgium. The
performance of MPC based ramp metering is compared
with the performance of ALINEA based ramp metering
and with the no-control case.

3.1. Set-up

In order to assess the performance of ramp metering,
a stretch of 9 km of the E17 motorway Ghent–Antwerp
is considered as a case study in this paper. Only traffic in
the direction of Antwerp is considered. The studied
motorway stretch, which is schematically presented in
Fig. 5, has some interesting features such as two on-
ramps on the left-hand side of the motorway, a tunnel
underneath the river Scheldt, and recurrent congestion
during the morning rush hour. The case study contains
four off-ramps and five on-ramps. The traffic measure-
ments for the E17 motorway stretch are available on a
minute by minute basis and consist of the traffic flow,
the average speed, and the occupancy for every of the
three lanes.

Tunnel
in Belgium. The arrow denotes the direction of the traffic flow.



Traffic drives on the right-hand side in Belgium.
Hence, on-ramps are normally on the right-hand side of
the motorway. In the case study presented here, the last
two on-ramps are located on the left-hand side of the

period ranging from Tuesday, February 22, 2000 up to
and including Friday, February 25, 2000. As an
example, Fig. 6 (left) shows the evolution over time of
the traffic flow on Thursday, February 24, 2000. For

motorway near the entrance of the tunnel underneath

simulated rush hour ranges from 5 a.m. till 10 a.m. The
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motorway. The last kilometer of the motorway in Fig. 5
is a tunnel underneath the river Scheldt. Both the on-
ramps on the left-hand side of the motorway and the
tunnel influence the traffic behavior in the correspond-
ing motorway sections. This behavior is captured by the
model parameters, which are identified based on the
real-life measurement data.

The motorway in Fig. 5 is divided in 18 sections
of 500m length. In order to model this motorway,
Eqs. (2)–(5) are written down for every section. For the
sections with an on-ramp equations (6) and (7) are
added. In case no ramp metering is implemented at the
on-ramp the metering rate in Eq. (7) is set equal to 1.

3.2. Experiment description

Based on the available traffic flow measurements, an
estimation of the traffic flows on the on-ramps and the
off-ramps can be made. The off-ramp traffic flows are
expressed as turning fractions or as the fractions of the
vehicle flows on the motorway that leave the motorway
through the off-ramps. The on-ramp flows result from
the on-ramp traffic demands. The traffic demands and
the turning fractions used in the simulations in this
paper are based on traffic measurements during a test
Fig. 6. Evolution of the measured traffic flow (left) at the entrance of the E17

the traffic demands on the E17 motorway Ghent–Antwerp during the morn

Fig. 7. Plots of the traffic density (left), the average speed (center
simplicity, the evolution of the traffic demands and the
turning fractions over time are approximated by a
piecewise affine function as illustrated in Fig. 6 (right).

Given the traffic demands and the turning fractions,
the parameters of the traffic flow model can be fitted
using standard nonlinear identification techniques
(Ljung, 1999).

3.3. Simulation results

Recurrent traffic congestion occurs on the studied
the river Scheldt i.e., near the fifth and the sixth on-
ramp. Therefore, ramp metering will be investigated at
these two large volume (two-lane) on-ramps.

3.3.1. No control case

In order to have a point of reference, a simulation of
the traffic model for the morning rush hour is ran. The
traffic flow model provides the traffic density, the
average speed and the traffic flow in every section and
for every simulation step. These traffic states are plotted
in Fig. 7.
motorway stretch presented in Fig. 5. Piecewise affine approximation of

ing rush hour on a typical working day (right).

) and the traffic flow (right) for every section and time step.



In the left plot in Fig. 7 the evolution of the traffic
density is presented for every of the 18 sections. The
traffic density in the first section increases as the traffic
demand increases and decreases again after the peak

exceeded. In this case study this threshold value is set to
100 vehicles. The metering rate is set equal to 1
for as long as the queue length is above the threshold.
Once the queue length is smaller than the threshold,
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traffic demand is over. This plot also illustrates the
occurrence of congestion in the last sections of the
motorway. For example, in section 16 the traffic density
grows larger than the critical density ðrcr ¼
34 veh=km=laneÞ as the rush hour progresses. Conges-
tion sets in. This can be observed in the center plot in
Fig. 7 where the evolution of the average speed in the
sections over time is plotted. The average speed in
section 16 decreases drastically when the traffic density
in the section is larger than rcr. In the right plot of Fig.
7, the evolution of the traffic flow in every section over
time is shown. Note that although the average speed
decreases drastically in the congested motorway sec-
tions, the traffic flow decrease is limited due to the
increased traffic density in the congested motorway
sections.

In order to be able to compare the results of different
simulations and different controllers, the total time
spent (TTS) by all vehicles on the motorway and in the
queues at the on-ramps during the simulated morning
rush hour is considered. The lower the TTS during the
simulated 5 h period, the higher the performance of
the motorway system. The TTS by the vehicles during
the simulated five hour period is given by:

TTS ¼
XNsim

l¼1

X
j2Is

rjðlÞljnj þ
X

m2Io

wmðlÞ

" #
DT sim, (9)

where Nsim is the number of simulation steps in the
simulated period. The TTS in the network without
traffic control is equal to 2960 vehicle hours (veh.h).

3.3.2. ALINEA

Using Eq. (1) and the traffic flow model of the
motorway, a simulation can be run to assess the
performance of ALINEA as a traffic control measure
on the E17 motorway. Since during ramp metering a
queue can form and since this queue cannot be allowed
to grow larger than the available storage capacity of
vehicles at the on-ramp, the queue length must be
limited. ALINEA does not take the queue length into
account in its control law. The constraint on the queue
length can be imposed by overriding the metering rate
provided by ALINEA once a threshold queue length is

Table 1

Overview of the TTS by the vehicles on the E17 motorway and its on-ra
KR 0.0001 0.0005 0.001 0.005

TTS (veh.h) 2960 2943 2931 2902
the metering rates provided by ALINEA are implemen-
ted again.

ALINEA’s integrating control law of Eq. (1) contains
two parameters r̂ and KR. Some simulations of the
morning rush hour period were ran to determine
appropriate values of these parameters. The perfor-
mance of ALINEA was found not to be very sensitive to
the choice of the parameter r̂. Hence, r̂ ¼ rcr was
chosen since the motorway operates at full capacity at
the critical density.

The experiments with varying value of KR are
summarized in Table 1. Fig. 8 (left) shows the
simulation results of an ALINEA controller with KR ¼

0:0005 and Fig. 8 (right) the results of an ALINEA
controller with KR ¼ 0:005. From Table 1 it can be seen
that the controller with the larger gain (KR ¼ 0:005)
outperforms the controller with the smaller gain
(KR ¼ 0:0005) considering TTS.

In the upper plots in Fig. 8 the traffic demand at
the fifth on-ramp is presented as a solid line and the real
on-ramp flow (according to Eq. (7)) is presented as a
dotted line. The controller with the smaller gain (left)
results in a much smoother on-ramp flow than the
controller with the larger gain. The controller with
the larger gain oscillates at a higher frequency than
the one with the smaller gain. This is a known
phenomenon in control theory (Dorf & Bishop, 1995).
The larger the gain, the faster the switching bet-
ween ALINEA control and the overriding of the
control due to the constraint on the queue length. These
oscillations in the metering rate have an influence
on the traffic conditions on the motorway. In the lower
two plots in Fig. 8, the traffic density and the average
speed in the section fed by the fifth on-ramp are
presented. The larger the gain of the ALINEA
controller, the larger the oscillations in the average
speed and the traffic density. These oscillations in the
average speed on the motorway need to be suppressed as
much as possible since they can become dangerous if
their amplitude becomes too large.

A trade-off needs to be made between the perfor-
mance (TTS) of the controller and the suppression of
oscillations in the metering rate. An ALINEA controller
with a controller gain of KR ¼ 0:001 seems to provide a

realized by an ALINEA ramp metering controller on the fifth on-ramp
0.01 0.05 0.1 0.5 1

2890 2856 2854 2864 2858



good trade-off for the fifth and the sixth on-ramp of the
E17 motorway.

3.3.3. Model predictive control

on-ramp cannot grow larger than the physically avail-
able space is added as a hard constraint to the
optimization by limiting the queue lengths at the on-
ramps to 100 vehicles or less.
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Fig. 8. ALINEA based ramp metering control for KR ¼ 0:0005 (left) and KR ¼ 0:005 (right) on the fifth on-ramp. The dotted line in the upper plots

represents the real on-ramp traffic flow. The dotted line in the density graphs represents the critical density rcr.
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In a model predictive control framework as described
in Section 2.4.1, the metering rates for the controlled on-
ramps are computed using (numerical) optimization.
For every metered on-ramp, Nc metering rates are
computed such that an objective function is minimized
for the prediction horizon Np. Only the first metering
rate found for every on-ramp is applied to the system.
Next, the prediction and the control horizon are shifted
one sample forward and the traffic states are updated
after which the whole process is started all over again
during the next iteration step.

To allow for a traffic simulation, the studied E17
motorway stretch was implemented in Matlab using the
METANET traffic flow model presented in Section
2.4.2. The simulation time step DT sim of the model was
10 s. The metering rates provided by the controller are
only updated every minute, resulting in a controller time
step DTctrl of 1min. The optimization of the objective
function over the prediction horizon was conducted
using the function fmincon from Matlab’s optimization
toolbox (The Mathworks, 2002). This optimization
routine uses sequential quadratic programming and
allows for an easy incorporation of (nonlinear) con-
straints in the optimization. The fact that a queue at an
In a receding horizon framework, an optimization of
the metering rates is conducted during every iteration
step. During the optimization of the metering rates, the
optimization algorithm can get stuck in a local mini-
mum and return locally optimal values of the metering
rates. This problem can be overcome by restarting the
optimization process several times with different starting
values of the optimization variables. The number of
restarts, and also the computational complexity, can be
reduced by carefully choosing the starting values of the
optimization based on the optimization results of the
previous iteration step. For the simulations presented
here, it was found that three restarts suffice. This was
verified by looking at the values of the objective function
for the different restarts. The following three sets of
starting values for the optimization of the metering rates
were chosen:

(1) A set of initial values based on the optimization
results from the previous controller step. The first
sample of the metering rates found during the
previous controller step was applied to the system

in the previous iteration. In the current controller
step, the discarded metering rates from the previous



controller step can be used as initial values in
the current step.2 The last value is repeated in order
to obtain the required Nc initial values per metered
on-ramp.

(2)

(3)

Aft

fun
I

less emphasis on a smooth control signal. In order to
determine an appropriate value for aramp, MPC based
ramp metering was simulated on the fifth on-ramp, the
sixth on-ramp and both the fifth and the sixth on-ramps
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The second set of initial metering rates consists of the
minimal metering rates for every metered on-ramp.
This way, the optimization starts from the state where
the on-ramp traffic is maximally restricted at all
metered on-ramps. This will generally cause queues to

form at the on-ramps and force the optimization to
relax the metering rates to a higher value.
Finally, also a random sequence of initial values
confined within theinterval ½rmin; 1� is used.

er completion of all the optimizations, the metering

rate
 values resulting in the lowest value of the objective

ction are chosen.

n the MPC framework of Section 2.4, four tuning
parameters were defined: Np, Nc, a and aramp. The
parameter aramp in (8) assigns a weight to the total time
spent by the vehicles in the on-ramp queues relative to the
total time spent by the vehicles on the motorway. The
choice of the value of aramp is a policy decision, and
therefore aramp is chosen equal to 1 in this paper. In the next
two paragraphs, a description is given of how appropriate
values of the remaining parameters can be determined.

The values of the parameters Np and Nc are a trade-
off between the computational complexity and the
performance of the controller. In order to determine
appropriate lengths of the prediction horizon Np and
the control horizon Nc, several simulations were ran and
the performance of the controllers was observed. MPC
based ramp metering was simulated on the fifth, on the
sixth and on both the fifth and the sixth on-ramps. In
order not to bias the performance of the controller, the
weighting parameter aramp in the objective function (8)
was chosen equal to 0 while determining appropriate
values for Np and Nc. The performance of the
controllers was found not to be very sensitive to the
length of the prediction horizon. A prediction horizon of
10min, which is roughly the travel time through the
studied motorway at congested traffic operation, was
chosen. In order to limit the computational complexity
of the optimization, the control horizon was chosen to
be 5min, reducing the number of parameters to be
optimized per metered on-ramp to 5, while preserving
the ability of the controller to ‘see’ 10min ahead in time.

The objective function used is the total time spent
with an additional penalty term on variations in the
metering rate as presented in (8). The penalty term is
weighted by a factor aramp which allows to put more or

2If ~rðk � 1jk � 1Þ; . . . ; ~rðk þNc � 2jk � 1Þ is the optimal metering

rate sequence for control step k � 1 then ~rðkjk � 1Þ; . . . ; ~rðk þNc �

2jk � 1Þ; ~rðk þNc � 2jk � 1Þ can be used as the starting point for the

optimization at control step k.
with varying values of aramp. It was found that the value
of aramp had very little impact on the simulation results
for the traffic demands as presented in Fig. 6. Only if an
excessively large value of aramp was chosen, e.g.,
aramp ¼ 1000, the performance of the controller de-
creased. A value of aramp ¼ 40 was found to smooth the
metering rates with little or no loss of controller
performance.

Fig. 9 shows the results of a simulation of the E17
motorway with two independent MPC controllers, one
on the fifth on-ramp and one on the sixth on-ramp. The
values of the parameters Np ¼ 10, Nc ¼ 5, a ¼ 1 and
aramp ¼ 40 were chosen based on the reasoning pre-
sented above.

The metering rates in Fig. 9 remain 1 until the traffic
density on the motorway reaches the critical density rcr
and the metering rates drop thus limiting the number of
vehicles allowed to enter the motorway. This is
illustrated in the upper plots of Fig. 9, where the solid
line represents the on-ramp traffic demand and the
dotted line represents the real on-ramp flow. A queue
starts to form at the on-ramps until the maximal queue
length is reached. It can be seen in Fig. 9 that the
maximal queue length of 100 vehicles is never exceeded
as opposed to the ALINEA case from the previous
section. This means that once the queue length is 100
vehicles, the metering rate must be adjusted such that
the service rate of the queue equals the traffic demand of
the on-ramp. Looking at the traffic density in Fig. 9, it is
observed that the ramp metering controller postpones
the occurrence of too high a traffic density with
corresponding lower traffic flow. Once the queue reaches
its maximal length, the density cannot be further
controlled, the metering rate increases and the traffic
density on the motorway increases accordingly. Com-
paring the two lower left plots in Fig. 9, which show the
traffic density and the average speed in the section fed by
the fifth on-ramp, with the plots of the average speed
and the traffic density in the same section of the E17
motorway using ALINEA control (Fig. 8), it is clear
that the metering rates and the evolution of the average
speed and the traffic density are much smoother in the
MPC case than in the ALINEA case.

By adding the queue length constraints as hard
constraints to the optimization problem, the queue length
constraints are strictly respected usingMPC as opposed to
the ALINEA case presented in the previous section. In
case the constraints on the queue lengths are not added as
hard constraints to the optimization problem but as an
additional penalty term in the objective function as was
suggested by Kotsialos et al. (2002), the compliance with
the constraints cannot be guaranteed. Adding the



constraints to the optimization problem as was done in
this paper guarantees compliance of the MPC based
controller with the queue length constraints.

In general, coordination of control can contribute to

3.3.4. Summary of the simulation results

To conclude this section the simulation results are
summarized in Table 2.

In Table 2 an overview of the total time spent
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Fig. 9. Simulation results of non-coordinated model predictive control based ramp metering on the fifth and the sixth on-ramp of the E17

Ghent–Antwerp. The dotted line in the upper plots represents the real on-ramp traffic flow while the dotted line in the traffic density plots represents

the critical density rcr.

Table 2

Overview of the TTS on the E17 motorway for different ramp metering controllers

Controller No control ALINEA MPC

On-ramp – 5 6 5 & 6 5 6 5 & 6

TTS (veh.h) 2960 2931 2953 2922 2843 2856 2757

TTS red. (%) 0.0 0.9 0.2 1.3 4.0 3.5 6.9

The last row presents the realized reduction in TTS relative to the no control case.
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an additional increase in performance of the system. The
MPC based controllers for the fifth and the sixth on-
ramp presented in Fig. 9 were not coordinated.
Coordination of the controllers of these on-ramps was
investigated and was found not to enhance the
performance of the system for the traffic demands
presented in Fig. 6, although the computational com-
plexity did increase. This can be understood when
looking at the controllers in Fig. 9. Both controllers
become active at about the same time and due to the
intensity of the traffic demands both controllers reach
the queue length constraint rather quickly. Hence, there
is no way one controller could help the other by being
more restrictive (since they both are already maximally
restrictive in the non-coordinated case).
associated with the different simulations discussed
above is presented. The implementation of ALINEA
based ramp metering on the fifth on-ramp results in a
gain of 29 veh.h during the simulated rush hour
compared to the no-control case. The performance gain
resulting from ALINEA based ramp metering imple-
mented on the sixth on-ramp is smaller (7 veh.h). When
implementing ALINEA based ramp metering on both
the fifth and the sixth on-ramps, the gain compared to
the no-control case is 38 veh.h.

The gain in TTS by implementing MPC based ramp
metering on the fifth on-ramp is 117 veh.h, or more than
three times the gain achieved by ALINEA. For the sixth
on-ramp, the gain achieved by the MPC based
controller compared to the no control case is 104 veh.h,



versus 7 veh.h for the ALINEA controller. MPC based
control on both the fifth and the sixth on-ramp results in
a reduction of 203 veh.h compared to the no control
case or a performance improvement of nearly 7 percent.

FWO G.0256.97, G.0115.01, G.0240.99, G.0197.02,
G.0407.02, ICCoS, ANMMM, IWT, STWW Genprom,
GBOU McKnow, Eureka; Belgian Federal Govern-
ment: OSTC (IUAP IV-02 and IUAP V-10-29), PODO-
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Besides the improved performance of the MPC based
ramp metering compared to the ALINEA based
controllers, the control signal of the MPC based
controller is smooth (see Fig. 9) and the constraints on
the queue lengths are strictly respected.

4. Conclusions

The motorway E17 Ghent–Antwerp in Belgium was

modeled and ALINEA based ramp metering control

Proceedings of the international symposium on transport simulation,

Yokohama, Japan. http://www.aimsun.com/documents.html.

was compared to MPC based ramp metering control
using simulations.

First, the controller parameters of the ALINEA and the
MPC based controllers were determined after which the
performance of a number of controllers was compared.

It was observed that the ALINEA based controllers
resulted in a gain in TTS during the simulated rush hour.
The controllers were able to limit the queues approxi-
mately to the maximal queue length. The metering rates
oscillated due to the constraints on the maximal queue
lengths overriding the controller. This resulted in oscilla-
tions in the traffic density and the average speed in the
section fed by the on-ramp. These oscillations need to be
suppressed as much as possible. A very strong point of
ALINEA is its limited computational complexity.

The MPC based ramp metering controllers were
observed to realize a higher performance (smaller TTS)
than the ALINEA based controllers. Moreover, the
control signals of the MPC based controllers were very
smooth. The traffic density and the average speed in the
section fed by the on-ramps were behaving very
smoothly, even during the rush hour. No oscillations
occurred. The constraints on the queue lengths at the on-
ramps were strictly respected by the MPC based
controllers. The computational complexity of the MPC
based controllers is larger than the computational
complexity of ALINEA due to the optimization problem
that needs to be solved at every iteration step. By
appropriately choosing the prediction and the control
horizons, a trade-off was made between the performance
and the computational complexity of MPC based ramp
metering on the E17 motorway in Belgium.
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Barceló, J. (2002). Dynamic network simulation with Aimsun. In
Camacho, E., & Bordons, C. (1995). Model predictive control in the

process industry. Berlin, Germany: Springer.

Dorf, R. C., & Bishop, R. H. (1995). Modern control systems. Addison-

Wesley.

Hasan, M., Jha, M., & Ben-Akiva, M. (2002). Evaluation of ramp

control algorithms using microscopic traffic simulation. Transpor-

tation Research C, 10, 229–256.

Hegyi, A., De Schutter, B., Hellendoorn, H. & van den Boom, T.

(2002). Optimal coordination of ramp metering and variable speed

control—An MPC Approach. In Proceedings of the 2002 American

Control Conference. (pp. 3600–3605). Anchorage, Alaska.

Kotsialos, A., Papageorgiou, M., Mangeas, M., & Haj-Salem, H. (2002).

Coordinated and integrated control of motorway networks via non-

linear optimal control. Transportation Research C, 10(1), 65–84.

Kotsialos, A., Papageorgiou, M., Messmer, A. (1999). Optimal

coordinated and integrated control motorway traffic control. In

A. Ceder, (Ed.), Proceedings of the 14th international symposium on

transportation and traffic theory. (pp. 621–644). Jerusalem.

Ljung, L. (1999). System identification: theory for the user (2nd ed.).

Upper Saddle River, New Jersey: Prentice-Hall.

Maciejowski, J. (2002). Predictive control with constraints. Harlow,

England: Prentice Hall.

May, A. D. (1990). Traffic flow fundamentals. Englewood Cliffs, NJ:

Prentice-Hall.

Messmer, A., & Papageorgiou, M. (1990). METANET: A macroscopic

simulation program for motorway networks. Traffic Engineering

and Control, 31(9), 466–470.

Papageorgiou, M., Blosseville, J. M., & Hadj-Salem, H. (1989).

Macroscopic modelling of traffic flow on the Boulevard Périphér-

ique in Paris. Transportation Research B, 23B(1), 29–47.

Papageorgiou, M., Blosseville, J.-M., & Hadj-Salem, H. (1990).

Modelling and real-time control of traffic flow on the southern

part of Boulevard Périphérique in Paris: Part I: Modelling.

Transportation Research A, 24A(5), 345–359.

Papageorgiou, M., Hadj-Salem, H., & Blosseville, J.-M. (1991).

ALINEA: A local feedback control law for on-ramp metering.

Transportation Research Record, 1320, 58–64.

Payne, H. J. (1971). Models of freeway traffic and control. In G. A.

Bekey (Ed.), Mathematical models of public systems, simulation

council proceedings series (Vol. 1) (pp. 51–61), La Jolia, CA.

The Mathworks (2002). Optimization Toolbox User’s Guide v. 2.2.

Treiber, M., & Helbing, D. (2001). Microsimulations of freeway traffic

including control measures. Automatisierungstechnik, 49, 478–484.

TUC (2000). METANET—A simulation program for motorway

networks.

http://www.aimsun.com/documents.html

