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Abstract

This paper proposes a flexible modeling approach for so-called comet assay data regularly
encountered in pre-clinical research. While such data consist of non-Gaussian outcomes in a
multi-level hierarchical structure, traditional analyses typically completely or partly ignore this
hierarchical nature by summarizing measurements within a cluster. Non-Gaussian outcomes are
often modeled using exponential family models. This is true not only for binary and count data,
but also for, e.g., time-to-event outcomes. Two important reasons for extending this family are:
(1) the possible occurrence of overdispersion, meaning that the variability in the data may not be
adequately described by the models which often exhibit a prescribed mean-variance link, and (2)
the accommodation of a hierarchical structure in the data, owing to clustering in the data. The
first issue is dealt with through so-called overdispersion models. Clustering is often accommodated
through the inclusion of random subject-specific effects. Though not always, one conventionally
assumes such random effects to be normally distributed. In the case of time-to-event data, one
encounters, for example, the gamma frailty model (Duchateau and Janssen 2007). While both
of these issues may occur simultaneously, models combining both are uncommon. Molenberghs
et al (2010) proposed a broad class of generalized linear models accommodating overdispersion
and clustering through two separate sets of random effects. Here, we use this method to model
data from a comet assay with a three-level hierarchical structure. Whereas a conjugate gamma
random effect is used for the overdispersion random effect, both gamma and Normal random
effects are considered for the hierarchical random effect. Apart from model formulation, we place
emphasis on Bayesian estimation. Our proposed method has upper hand over the traditional
analysis in that it: (1) uses the appropriate distribution stipulated in the literature; (2) deals with
the complete hierarchical nature; and (3) uses all information instead of summary measures. The
fit of the model to the comet assay is compared against the background of more conventional
model fits. Results indicate the toxicity of 1,2-Dimethylhydrazine dihydrochloride at different
dose levels (low, medium, and high).

Some Keywords: Frailty; Hierarchical model; Random effect; Weibull model.
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1 Introduction

The comet assay is a technique used to assess the genotoxic potential of a compound by means of

its ability to induce DNA damage in organ cells of male rats. Because the comet assay is quick,

sensitive, and cheap, the assay is now widely used and a number of protocols have been developed

for use in different types of investigations (Lovell and Omori 2008). However, the statistical analysis

of such a comet assay is complicated because of several issues in the data. In this paper, a method is

proposed accounting for different challenges: the multi-level structure of the data, the type of data,

and the skewness of the outcome of interest.

In a typical comet assay study, a set of cells from exposed animals are investigated for DNA damage.

This is done by considering the migration of DNA fragments out of the nucleus after electropheresism

which induces typical comet-like structures. Details on the comet assay are described in Section 2.

In many protocols, the cells from a single animal are placed on a number of slides. Each cell is then

investigated for DNA damage by measuring the tail length and tail intensity of the comet. Because

variability is expected between slides and between animals, as illustrated in Section 3, this needs to

be taken into account in the statistical analysis. This results in three-level hierarchies, with clustering

at the animal and slide level (Figure 4).

Moreover, exploration of the distribution of the gathered data and previous work in this area indicate

that the distribution for the responses (tail length and tail intensity) are asymmetric (Lovell and

Omori 2008). This is often completely or partly ignored in traditional analyses. The standard

approach of modeling non-normal data, such as the tail intensity and tail length in the comet assay

is using a generalized linear model (e.g., a Weibull model). The generalized linear model framework

(McCullagh and Nelder 1989) is a very rich one. Nevertheless, already in the univariate case, it is

well known that many standard members of the family may exhibit overdispersion. This results from

the fact that various commonly used members prescribe a relationship between mean and variance.

For example, in the Poisson model for count data, mean and variance are equal. In the exponential

and Weibull cases, there is a quadratic relationship between them, etc. This is why many proposals

have been made to extend the models such that they can deal with so-called overdispersion, which

is taken to mean that the actual relationship between mean and variance is different from the one
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prescribed. Overviews are given by Molenberghs, Verbeke, and Demétrio (2007) for the count-data

case and, more generally, by Molenberghs et al (2010).

Here, a model is proposed accounting for both the overdispersion in the data and the hierarchical

design of the assay. One way forward is by using random effects. Random effects are broadly used to

analyze outcomes collected in a repeated-measures, longitudinal, clustered, or multivariate fashion.

Random effects can also be used to accommodate the overdispersion in the data. For example,

when parameters in the Weibull model are thought of as being random and each observation is

drawn from a different Weibull distribution, this would lead to an overdispersed Weibull model. An

overview is given in Molenberghs et al (2010). Random effects are frequently assumed to be normal,

but they can take various distributional forms, such as beta random effects with binomial data,

gamma random effects with count data, etc. An illustrious counterexample is time-to-event data

where gamma random-effects, usually termed gamma frailties, are in common use. Molenberghs

et al (2010) proposed an extended framework where both types of random effects are considered

simultaneously, so as to deal, at the same time, with overdispersion on the one hand and data

hierarchies on the other.

Arguably, such model development, while requiring additional work, is necessary for a number of

reasons. First, Molenberghs, Verbeke, and Demétrio (2007) showed that classical generalized linear

mixed models (GLMM) can be inadequate to model, at the same time, overdispersion and data hier-

archies. Precisely, they modeled repeatedly measured epileptic-seizure data and found that the more

conventional GLMM exhibited inferior fit, but also that two types of inferences were incorrect under

the simpler model: (1) the correlation between repeated measures was substantially overestimated

with the GLMM and (2) the treatment effect with the GLMM was found significant whereas the

extended model showed that there was no treatment effect at all. Thus, the spurious treatment

effect was entirely a consequence of model misspecification. Second, the design considered here is

even more complex, with various hierarchical levels; it is generally inappropriate to consider a model

that does not fully accommodate the design. Third, even if the model could be simplified to a more

conventional model, this cannot be uncovered without considering a more general model. Thus, the

model development proposed here can be used additionally as a goodness-of-fit tool for, say, the
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GLMM.

Here, we will focus on the specific case of a non-negative continuous outcome in view of the comet

assay. Whereas Molenberghs et al (2010) considered a two-level hierarchy in the form of repeated

measures on the same subject, the comet assay data exhibit higher-order hierarchies.

In essence, the comet assay represents a hierarchical design with animals nested within doses, a

number of slides per animals and several cells measured per slide. Comet measures from an animal

are clearly not normally distributed but are rather asymmetric, skewed, bi- or multimodal, a mixture

of different distributions, etc. The complications that arise from the complex distributions of comet

endpoints are avoided in most standard analyses through the use of the central limit theorem. While

the original data at the cell level may not be normally distributed, mean (or median) summaries at

slide or animal level will be approximately normally distributed (given the typically large sample sizes)

and are thus amenable to standard statistical analyses. Hierarchical or multilevel models make use of

information on the various levels of variability but may be quite complex in terms of the distribution

between cells of the same animals and difficult to interpret and explain. Their advantage, however,

is that they provide estimates of the variability at each level and make use of the information at the

cell level thus increasing the power of the study especially if the between-animal variability is not too

large.

Also, these authors considered maximum likelihood estimation, but here we rather propose a Bayesian

approach. Not only does it have computational advantages, it allows to take relevant information

from preceding studies into account, a so-called Bayesian learning approach. The interest here is to

see the toxicity of 1,2-Dimethylhydrazine dihydrochloride at the different dose levels (low, medium,

and high) using the appropriate distribution and taking in to account the complete hierarchical nature.

The paper is organized as follows. In Section 2, the comet assay data are introduced. Data are

explored and the traditional analyses presented in Section 3. Section 4 presents the general framework

for combined overdispersion and hierarchical random effects, with then Section 5 zooming in on the

non-Gaussian continuous case. Estimation methodology is discussed in Section 6. The effect of

overdispersion and clustering is illustrated in Section 7. The data are analyzed in Section 8.
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2 Comet Assay Data

The comet assay is a single cell microgel electrophoresis method detecting DNA damage in any target

tissue or organ of which a single cell suspension can be prepared. Cells are embedded in agarose,

membranes are lysed and proteins extracted. Exposure to high alkali (pH > 13.0) allows expression

of single strand breaks and subsequent alkaline electrophoresis ensures migration of DNA fragments

out of the nucleus. Visualization of this DNA migration (typical comet-like structures) is performed

by a fluorescent dye. An image analysis system coupled to a microscope permits quantification of

DNA damage at the single cell level.

Here, the data refer to four groups of six male rats that received a daily oral dose of a compound in

three dose levels (low, medium, and high) or vehicle control. On the day of necropsy, an extra group

of three animals received a single dose of a positive control (200 mg/kg ethyl methanesulfonate,

EMS, PC). The animals were sacrificed 3 hours after the last dose administration, their liver was

removed and processed for the comet assay. For each animal, a cell suspension is prepared. From

each cell suspension, three replicate samples were prepared for scoring. Fifty randomly selected,

non-overlapping cells per sample were then scored for DNA damage using a semi-automated scoring

system. A total of 150 liver cells were thus scored per animal. DNA damage was assessed by the

software system by measuring tail migration, % tail intensity, and tail moment. Tail migration is the

distance from the perimeter of the comet head to the last visible point in the tail; % tail intensity is

the percentage of DNA fragments present in the tail; and tail moment is the product of the amount

of DNA in the tail and the mean distance of migration in the tail.

3 Data Exploration and Traditional Models

Although for the purpose of comparison across studies, statistical analyses are commonly performed

on percentage of tail intensity, tail length is also used. Data for tail intensity and tail length are

represented in Figure 1. For these data, an non-negligble set of dispersed observations are encountered

and it was more pronounced for tail length. This may require attention in modeling with respect to

the adequacy of the model to handle the dispersion present in the data. Further exploration is done
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Figure 1: Box plots of tail intensity (left) and tail length (right) at each dose level

to get an idea of the variation at rat- and slide-level. Figure 2 shows scatter plots of the average

measurement at rat and slide levels after adjustment of the dose effect. Noticeable variability in the

average score of the slides was observed, illustrating the importance of slide effect. Looking at the

variability of the averages at slide level before and after adjusting for the rat effect, it can be seen

that the variation shrinks more for tail length, implying that the rat effect could be more important

for tail length as compared to tail intensity. This suggests the use of more elaborate models to

formally check the importance of clustering and overdispersion.

Standard methods to investigate the dose-response relationship of tail length and tail intensity, are

based on first log-transforming the outcome to deal with the skewness of the outcome, and second,

taking animal-averages of the log-transformed outcomes as a summary measure of the measurements

in the animals. Thus, the hierarchical structure is completely ignored and the analysis is done using

simple analysis of variance techniques. Sometimes, summary measures for the cells at slide-level are

used instead of at the animal-level (Lovell and Omori 2008). The analysis is then performed using

a mixed model, fitting the group as a fixed effect and animal as a random effect, and using the

Kenward-Roger method for calculating degrees of freedom (Kenward and Roger 1997). However,
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(a) Tail Intensity
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(b) Tail Length

Figure 2: Scatter plot of average tail intensity and tail length after adjusting for the dose effect. (a)

Left: at rat level; (b) Middle: at slide level; (c) Right: at slide level, but adjusted for the rat effect.

with this method, one loses a lot of information. Indeed, 150 cell observations are summarized by, for

example, a single value. Such averaging effect may have a major impact on parameter estimation and

corresponding inferences. Therefore, it is of paramount importance to deal with the full hierarchical

structure using an appropriate probability distribution suggested in the literature. The results of the

traditionally used analysis of variance and classical Weibull model for tail intensity are presented in

Table 1, which will be compared to estimates from the proposed model in Section 8.
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Table 1: Parameter estimates from the conventional models for tail intensity.

Weibull Analysis of variance

Effect Parameter Estimate(s.e.) 95% C.I. Estimate(s.e.) 95% C.I.

Vehicle β0 -2.431(0.056) [-2.54,-2.32] 0.234(0.052) [0.13,0.34]

Low versus vehicle β1 -2.698(0.053) [-2.80,-2.59] 3.351(0.073) [3.21,3.49]

Medium versus vehicle β2 -2.947(0.054) [-3.05,-2.84] 3.527(0.074) [3.38,3.67]

High versus vehicle β3 -3.156(0.055) [-3.27,-3.05] 3.693(0.074) [3.55,3.84]

Pos. control versus vehicle β4 -1.711(0.060) [-1.83,-1.59] 2.543(0.09) [2.37,2.73]

Weibull shape ρ 1.376(0.018) [1.34,1.41]

4 Models Combining Conjugate and Normal Random Effects

The following general model family was proposed by Molenberghs et al (2010) for modeling overdis-

persed and correlated data:

fi(yij |bi, ξ) = exp
{
φ−1[yijλij − ψ(λij)] + c(yij , φ)

}
, (1)

for outcome yij on subject i = 1, . . . , N at occasion j = 1, . . . , ni. The unknown parameters λij and

φ are often termed natural parameter and scale parameter, respectively. The term c(yij , φ) is the

normalizing constant. The function ψ(·) is a known function with the property that E[yij |bi, ξ] =

ψ′(λij) and var(yij |bi, ξ) = φψ′′(λij). Model specification proceeds by assuming that the conditional

mean of yij is given by

E(Yij |θij , bi) = µc
ij = θijκij , (2)

where θij ∼ Gij(ξij , σ2
ij) for some distribution Gij with mean ξij and variance σ2

ij and κij = g(ηij) =

g(x′
ijξ+z′

ijbi) for some function g and bi ∼ N(0, D). The random variable θij is used to account for

the overdispersion in the data, while the random effect in κij accounts for the clustered or hierarchical

structure in the data. The two parameters ηij and λij refer to the linear predictor and/or the natural

parameter. The basic difference is λij encompasses the random variables θij , whereas ηij refers to

the ‘GLMM part’ only.
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It is convenient, but not strictly necessary, to assume that the two sets of random effects, θi and bi,

are independent of each other. Regarding the components θij of θi, three useful special cases result

from assuming that: (1) they are independent; (2) they are correlated, implying that the collection

of univariate distributions Gij(ξij , σ2
ij) needs to be replaced with a multivariate one; and (3) they are

equal to each other, useful in applications with exchangeable outcomes Yij .

Parameterization (2) allows for random effects θij capturing overdispersion, and formulated directly

at mean scale, whereas κij could be considered the generalized linear mixed model component

(Molenberghs and Verbeke 2005). The relationship between mean and natural parameter now is

λij = h(µc
ij) = h(θijκij). (3)

Standard GLM ideas can be applied to derive the mean and variance, combined with iterated-

expectation-based calculations. For the mean, it follows that

E(Yij) = E(θij)E(κij) = E[h−1(λij)]. (4)

For the Weibull-Exponential case, (4) allows for explicit expressions of moments and marginal den-

sities.

An important concept is conjugacy , in the sense of Cox and Hinkley (1974, p. 370) and Lee, Nelder,

and Pawitan (2006, p. 178). Conjugacy refers to the fact that the hierarchical and random-effects

densities have similar algebraic forms. Conjugate distributions produce a general and closed-form

solution for the corresponding marginal distribution. Molenberghs et al (2010) adapted conjugacy

to the situation where both normal and overdispersion random effects are included. This property

aims at maintaining conjugacy across the presence of normally distributed random effects. It has

been shown that the Weibull model, upon transformation, and in particular the exponential model,

not only enjoys conjugacy but, in its extended form, also strong conjugacy. For detailed explanation

on the combined model, concept of conjugacy, expression of moments and marginal densities, we

refer to Molenberghs et al (2010).
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5 Hierarchical, Overdispersed, Non-Gaussian Continuous Outcomes

In this section, the model of interest for the comet assay data will be outlined. Because tail intensity

and tail length are skewed, non-negative and continuous, which is similar to time-to-event data,

an exponential or Weibull model appears appropriate. It is well known that the exponential model

with gamma random effects is conjugate. The same holds for the Weibull model, when considered

exponential in the outcome yρ
ij . These facts are reviewed in Molenberghs et al (2010). In particular,

closed form expressions can be derived for the joint distribution, mean, variance, and higher-order

moments.

Let us first assume that there is only one level of hierarchy in the data, e.g., the variability between

animals. We then propose to use a combined model with a normal random effect to handle the

hierarchy in the data and a conjugate random effect to account for overdisperion in the response.

Using the Weibull distribution, this leads to the following specification of the model:

yij |bi, θij ∼ Weibull(ρ, κ),

κ = λθij exp(x′
ijξ + z′

ijbi),

bi ∼ Normal(0, D),

θij ∼ Gamma(α, β),

with bi the animal-specific random effects to account for the clustering of observations and θij

the measurement-specific random effects to accommodate for overdispersion. This model can be

expressed as

f(yi|θi, bi) =
ni∏

j=1

λρθijy
ρ−1
ij eηije−λyρ

ijθijeηij
, (5)

ηij = x′
ijξ + z′

ijbi, (6)

f(θi) =
ni∏

j=1

1
β

αj

j Γ(αj)
θ

αj−1
ij e−θij/βj , (7)

f(bi) =
1

(2π)q/2|D|1/2
e−

1
2
bi

′
D−1bi . (8)

A few comments are in place. First, it is implicit that the gamma random effects are independent.
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This need not be the case and, like in the Poisson case, extension via multivariate gamma distribu-

tions is possible. Second, setting ρ = 1 leads to the special case of an exponential time-to-event

distribution. Third, it is evident that the classical gamma frailty model (i.e., no normal random ef-

fects) and the Weibull-based GLMM (i.e., no gamma random effects) follow as special cases. Fourth,

owing to the conjugacy result mentioned above and the following property of the gamma distribution:

1
κ
f(θ|α, β) =

1
κ

1
βαΓ(α)

θα−1e−θ/β =
1

(κβ)αΓ(α)
(κθ)α−1e−(κθ)/(κβ) = f(κβ|α, κβ), (9)

strong conjugacy applies. This is typically considered for the exponential model, but it holds for the

Weibull model too, merely by observing, as stated above, that the Weibull model is nothing but an

exponential model for the random variable Y ρ
ij . It is equally possible to derive this result by merely

re-writing the factor φ = λκ. Fifth, the above expressions are derived for a two-parameter gamma

density. It is customary in a gamma frailty context (Duchateau and Janssen 2007) to set αjβj = 1,

for reasons of identifiability. In this case, (7) is replaced by

f(θi) =
ni∏

j=1

1(
1
αj

)αj
Γ(αj)

θ
αj−1
ij e−αjθij , (10)

Alternatively, assuming αj = 1 and βj = 1/δj , one could write

f(θi) =
ni∏

j=1

δje
−δjθij , (11)

implying that the gamma density is reduced to an exponential one.

Next, let us propose an extension of the above model accounting for an extra level of hierarchy.

Indeed, in the comet assay there are two sources of variation: one coming from the slide effect and

one from the animal effect. The previous model can be extended by the use of three random effects

of which one is the overdispersion effect. In addition, while typically a normal random effect is

included in the linear predictor to account for the clustering, as in Molenberghs et al (2010), also a

multiplicative factor using a multivariate gamma distribution can be used, similar to the multiplicative

factor for the overdispersion random effect. For example, let us consider a model with a normally

distributed random effect for the first hierarchy in the data and a gamma random effect for the

second hierarchy in the data. In addition, we allow for the overdispersion in the model via another

gamma-random effect. Let the outcome Yijk be the measurement for unit k = 1, . . . , nij of cluster
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i = 1, . . . , N , sub-cluster j = 1, . . . , ni. The model can then be expressed as:

Yijk|bi, bij , θijk ∼ Weibull(ρ, k),

k = λθijkbij exp(x′
ijξ + z′

ijbi),

θijk ∼ Gamma(α1, 1/α1),

bij ∼ Gamma(α2, 1/α2),

bi ∼ Normal(0, D),

leading to

f(yijk|θijk, bi, bij) = λρθijkbijy
ρ−1
ijk e

x′
ijkξ+bie−λyρ

ijk
θijkbije

x′
ijk

ξ+bi

, (12)

f(θijk) =
1(

1
α1

)α1
Γ(α1)

θα1−1
ijk e−α1θijk , (13)

f(bi) =
1

(2πd)1/2
e−

1
2d

b2i , (14)

f(bij) =
1(

1
α2

)α2
Γ(α2)

bα2−1
ij e−α2bij , (15)

The conditional mean, given the overdispersion and hierarchical random effects is:

E(yijk|θijk, bi, bij) =
Γ(1

ρ + 1)

λθijkbije
x′

ijk
ξ+bi

, (16)

Similarly, other models can be defined where either a gamma or a normal random effect is consid-

ered. This results in four different models: (a) Weibull Gamma(OD) Normal(RE1) Normal(RE2);

(b) Weibull Gamma(OD) Normal(RE1) Gamma(RE2); (c) Weibull Gamma(OD) Gamma(RE1) Nor-

mal(RE2); and (d) Weibull Gamma(OD) Gamma(RE1) Gamma(RE2), where (.) explains what this

random effect is considered for: OD refers to the overdispersion random effect, RE1 and RE2 refer

to the first and second hierarchical random effect, respectively. As a result, a very flexible modeling

framework is obtained for which model selection can easily be performed.

6 Bayesian Estimation Using MCMC

In the Bayesian framework, computation of the posterior probability is of main interest.The poste-

rior probabilities are obtained by updating the likelihood with prior probabilities. For the Weibull-
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Gamma(OD)-Normal(RE1)-Gamma(RE2) model for instance, combining the distribution of the out-

come variable given in (12) with prior densities f(ϑ, θijk, bi, bij), the posterior density is:

p(ϑ|y, x) ∝
N∏

i=1

J∏
j=1

n∏
k=1

f(yijk|λijk)f(ϑ, θijk, bi, bij), (17)

where λijk = θijkbij exp(x′
ijkξ + bi) and ϑ is a group of parameters(ξ, ρ).

Inference is typically made by taking random draws from this posterior density using Markov chain

Monte Carlo simulation (MCMC), particularly the Gibbs sampling. The basic idea of Gibbs sampling

is to partition the set of unknown parameters and then estimate them one at a time or in a group,

conditional on all others. The Gibbs sampler starts with initial values for all parameters and then

updates them in turn, giving each a random estimate based on the data and the current guess of

the other parameters in the model (Gelman and Hill 2006). Sampling was done in two chains and

dispersed initial values were given for all parameters in the two chains. 150,000 samples were drawn

from each chain and the first 100,000 samples were discarded. To ensure the samples are drawn from

the target posterior density, convergence was checked by comparing the between- and within-chain

variation for each parameter in the simulated samples.

For this analysis, non-informative or weak priors were used for all the parameters of interest:

β0, β1, β2, β3, β4 ∼ N(0, 106); σ2
r ∼ IG(0.1, 0.001); ρ ∼ exp(0.01); αθ ∼ Gamma(2, 2); and

αs ∼ Gamma(0.1, 0.1), where IG is the Inverse Gamma distribution. The mean was reported as

point estimate for each parameter, together with the 95 percent credible interval that ranges be-

tween the 2.5 and 97.5 percent quantiles. Note that, while α = 0.1 for the gamma distribution will

result in a relatively informative prior, given the size of the dataset, varying this value has little or no

impact on the conclusion. For relatively small sets of data, however, caution is needed and it would

be wise to undertake a sensitivity analysis towards the prior assumptions made.

7 Illustration of Overdispersion and of the Clustering Effect

Overdispersed data, in which the variability in the data is beyond the variance of the model considered,

occurs quite often in practice. This is basically because of the restricted relationship between mean

and variance functions. The extra-variability could be due to some unaccounted covariates/factors,

13
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Figure 3: Illustration of the effect of clustering and overdispersion.

heterogeneous population, clustering effect and many others. The extra unaccounted variability can

be accounted for by the use of mixture models or using an overdispersion parameter. In this case, a

continuous overdispersion random effect is used. We now illustrate how the effect of the overdisper-

sion random effect and the clustering random effect extend the Weibull model to accommodate more

dispersed data. This is illustrated by simulating data from models that accounts both the overdis-

persion and the clustering random effect, model that considers either of the two random effects

and models that considers neither of them. Let us first see the effect of overdispersion alone. The

set of data are generated from: (1) Weibull Model: Weibull(ρ, 1) and (2) Weibull-Gamma Model:

Weibull(ρ, θ). In the Weibull-Gamma model, we assume different choices for the Gamma(α, 1) dis-

tribution (different choices of α parameters) in order to see the effect of overdispersion. Similarly,

to have an idea of the effect of clustering alone and the effect overdispersion combined with cluster-

ing, we generate data from the following set: (1) Weibull Model: Weibull(ρ, 1); (2) Weibull-Normal

Model: Weibull(ρ, ebi); and (3) Weibull-Gamma-Normal Model: Weibull(ρ, θebi), where ρ = 1.4,

bi ∼ Normal(0, 1), i = 1, . . . , 20, and θ ∼ Gamma(α, 1).

The density plot of the data generated (Figure 3) indicates that with the inclusion of an overdispersion

random effect, the data were overdispersed. Also, introducing clustering led to more dispersion. With

the inclusion of both the overdispersion and clustering random effect it was even dispersed more and
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Figure 4: Hierarchical structure of the design.

the degree of dispersion depends on the α parameter. If this is the case, analyzing more dispersed

data using the traditional model which do not address overdispersion and clustering may leave a lot

of variability unexplained and it can affect the precision of the estimates.

8 Application to the Comet Assay Data

The primary goal is to assess the toxicity of 1,2-Dimethylhydrazine dihydrochloride at different dose

levels. The data described in Section 2 are analyzed taking the multilevel hierarchical nature as

illustrated in Figure 4 into account. Cells coming from the same rat could be more alike due to

biological reasons, implying clustering at the animal level. Moreover the fact that cells are grouped

into three slides could pose some sort of clustering due to uncontrolled differences in external factors

such as the amount of gel being used.

In addition to the hierarchical structure, the skewed nature of the outcome variable adds complexity.

Tail intensity and tail length are non-negative continuous outcomes. In the literature, a number of

probability distributions were proposed for modelling the distribution. These include the Weibull,

exponential, logistic, normal, log-normal, and log-logistic distributions (Lovell and Omori 2008).

Ejchart and Sadlej-Sosnowska (2003) found that Weibull was the best fit for such data. In our

analyses, also the Weibull distribution was assumed. As explained in the previous section, a mean-

variance relationship exists in the Weibull case, unlike in the Gaussian case. Hence, variability in the

data may not be adequately accounted for by the model, and therefore an overdispersion random

15



Table 2: Overview of models considered with DIC for Tail Intensity(TI)and Tail Length(TL)

Distribution for

Response Overdispersion RE1(rat) RE2(slide)

Model Weibull Gamma Normal Gamma Normal Gamma DIC(TI) DIC(TL)

1
√

33869.6 30878.8

2
√ √

33823.9 30421.6

3
√ √

33823.5 30420.2

4
√ √

33895.6 27378.5

5
√ √ √

33853.7 26901.6

6
√ √ √

33852.5 26883

7
√ √

33728.9 29622.6

8
√ √

33728.5 29620.8

9
√ √ √

33760.7 26386.9

10
√ √ √

33760.6 26377

11
√ √ √

33728.7 29623.4

12
√ √ √

33728.6 29619.5

13
√ √ √

33730.3 29631.1

14
√ √ √

33729.7 29605.2

15
√ √ √ √

33761.6 26374.4

16
√ √ √ √

33760.5 26333.1

17
√ √ √ √

33760.6 26338

18
√ √ √ √

33758.6 26209.6

effect parameter is added. A gamma random effect is used for the overdispersion and both normal

and gamma random effects are used to explain the hierarchical structure. As described in Section 4,

the normal random effect is included in the linear predictor and the gamma random effect is included

as multiplicative effect together with the overdispersion factor. This creates a wide choice of models

to choose from. Table 2 presents an overview of the models considered.

Model 1 is the traditional Weibull model that ignores the hierarchical nature as well as overdispersion.

Model 4 considers the overdispersion but not the hierarchical nature. Models 2, 3, 7, and 8 consider

one random effect (rat or slide) and ignore the over-dispersion and the other random effect, the

classical gamma frailty model being part of it. Models 5, 6, 9, and 10 consider the overdispersion
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and one random effect but ignore the second one. Models 11–14 consider the correct hierarchical

structure but ignore the overdispersion. The last four models account for both the hierarchical nature

and overdispersion. Note that the DIC is subject to random variability and hence differences in value

by 2–4 should not be regarded as evidence for a difference. Therefore, Models 7 and 8 on the one

hand and Models 11–14 on the other should be regarded as roughly equivalent.

Let yijk represent the tail intensity or tail length measured for a kth cell (k = 1, . . . , 50) from rat

i = 1, . . . , 27 in slide j = 1, 2, 3. If we consider the Weibull-Gamma(OD)-Normal(RE1)-Normal(RE2)

model, for instance, the λijk will be:

λijk = θijk exp(β0 + β1Lijk + β2Mijk + β3Hijk + β4PCi + ri + sij), (18)

with θijk ∼ Gamma(α1,
1

α1
), ri ∼ N(0, d1) and sij ∼ N(0, d2). Here, Lijk is the indicator variable

whether rat i is given a Low dose (1 if it is given low dose; 0 otherwise). Similarly, Mijk, Hijk, PCijk

are the indicator variables for medium dose, high dose, or positive control, respectively. The random

intercept ri corresponds to the rat-specific effect whereas sij corresponds to the slide-specific effect j

of rat i. θijk is the overdispersion random effect. Similarly, the Weibull-Gamma(OD)-Normal(RE1)-

Gamma(RE2) is parameterized as:

λijk = θijk ∗ sij ∗ exp(β0 + β1 ∗ Lijk + β2 ∗Mijk + β3 ∗Hijk + β4 ∗ PCijk + ri), (19)

with θijk ∼ Gamma(α1,
1

α1
),ri ∼ N(0, d) and sij ∼ Gamma(α2,

1
α2

). The fixed effect β0 denotes

the control (vehicle) effect. The parameters β1 to β4 are the contrasts of interest that represent the

effect of low dose, medium dose, high dose, and positive control versus vehicle. All other models

follow similarly. The R2winbugs code for Models 8 and 16 is given in Appendix A.

The next issue is model comparison. In situations where non-informative priors are used or when

where huge amounts of data are available, the data overwhelm the choice of the prior and Bayesian

estimates are equivalent with maximum likelihood estimates. In such a case, the likelihood ratio

can be used to formally test hypotheses and compare nested models. In this case, the deviance

information criterion (DIC) as a penalty for the complexity of the model is used when comparing

models. Based on the deviance, which favors complex models, Weibull-Gamma(OD)-Gamma(RE1)-

Gamma(RE2) was to be preferred. For tail intensity based on the DIC, Model 8, was the preferred
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Table 3: Parameter estimates obtained from Models 8 [Weibull-Gamma(RE2)] and 12 [Weibull-

Normal(RE1)-Gamma(RE2)] for tail intensity.

Weibull-Gamma(RE2) Weib.-Norm.(RE1)-Gamma(RE2)

Effect Parameter Est.(s.e.) 95% C.I. Est.(s.e.) 95% C.I.

Vehicle β0 -2.419(0.079) [-2.57,-2.26] -2.427(0.085) [-2.59,-2.25]

Low versus vehicle β1 -2.854(0.097) [-3.04,-2.66] -2.850(0.104) [-3.06,-2.65]

Medium versus vehicle β2 -3.092(0.098) [-3.29,-2.90] -3.088(0.106) [-3.30,-2.88]

High versus vehicle β3 -3.317(0.098) [-3.51,-3.12] -3.312(0.107) [-3.53,-3.11]

Pos. control versus vehicle β4 -1.829(0.115) [-2.05,-1.60] -1.826(0.124) [-2.07,-1.58]

Weibull shape ρ 1.420(0.019) [1.38,1.46] 1.419 (0.019) [1.38,1.46]

Precision of RE1 1
d 114.2(79.29) [28.60,331.61]

RE2 parameter α2 18.33(4.036) [11.68,27.3] 19.99(4.493) [12.08,29.54]

model followed by Model 12. Note that the penalty term, measuring the complexity of the model, for

the models with overdispersion was large. Looking at the best two models, outperforming Model 8

was not unexpected from the exploratory data analysis for tail intensity, the variability at the slide

level did not reduce much after removing the rat effect.

The parameter estimates and 95 percent credible intervals for Models 8 and 12 are presented in

Table 3. Models 12 and 8 are nested models, where Model 12 is an extension of model 8 by inclusion

of the normal random effect for the animal level. The parameter estimates from both models are very

similar and we notice that the standard errors from Model 12 are consistently and slightly higher as

opposed to the ones obtained with Model 8. This is in line with the expectation that, with exclusion

of one hierarchical level, the effective degrees of freedom is usually overestimated which results in

underestimation of the standard errors.

The parameter estimates from the model with overdispersion only (Model 4) had higher standard

errors compared to the estimates from a classical Weibull model. In addition, they were lower

compared to that of Weibull Gamma(RE2), the preferred model. The estimates from models with

both overdispersion and clustering have higher standard errors compared with models with either

overdispersion or clustering.
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Figure 5: The distribution of the estimated random effects superimposed on the posterior density

for Models 8 (Left) and 12 (Middle and Right) for tail intensity.

The 95% credible interval for ρ did not include 1, which conveys that the Weibull distribution is more

plausible than the exponential. The 95% credible interval for the regression parameters describing

treatment contrasts of interest did not include zero indicating toxicity of the chemical at all dose

levels. This same final conclusion was reached by all models. However, the credible intervals were

affected by the choice of the model.

As explained in Section 3, conventional analyses transform the tail intensities using logarithmic

transformations. The mean of the transformed responses is then used as a summary measure for each

rat. The hierarchical nature of the data is thus completely ignored and a simple analysis of variance

is used to test whether there is a dose effect. Comparing this conventional model (Table 1) to our

preferred model would be rather difficult since as we are using different responses and different type

of models. We can, however, compare this with an equivalent model from our set of proposed models

which completely ignores the hierarchical structure, but which uses the appropriate distribution and

all the available information, namely the classical Weibull model. Upon comparison of the classical

Weibull model and Model 8, the parameters of interest are highly significant in both cases. Yet,

the standard errors, likewise the credible intervals of Model 8 are twice that of the classical Weibull

model. While not the case in this example because of the high toxicity of the compound of interest,
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Table 4: Parameter estimates obtained from Weibull-Gamma(oD)-Gamma(RE1)-Gamma(RE2) and

Weibull-Gamma(OD)-Normal(RE1)-Gamma(RE2) for Tail Length.

Weibull-G G G Weibull G N(RE1) G(RE2)

Effect Parameter Est.(s.e.) 95% C.I. Est.(s.e.) 95% C.I.

Vehicle β0 -30.44(0.6646) [-31.74,-29.12] -30.54(0.8001) [-32.01,-28.97]

Low versus vehicle β1 -11.99(0.4977) [-12.95,-11.01] -12.02(0.5171) [-13.05,-11.06]

Medium versus vehicle β2 -12.14(0.5061) [-13.1,-11.12] -12.19(0.5298) [-13.27,-11.23]

High versus vehicle β3 -12.57(0.4946) [-13.54,-11.58] -12.63(0.5357) [-13.75,-11.64]

Pos. control versus vehicle β4 -9.75(0.5523) [-10.84,-8.65] -9.752(0.5617) [-10.88,-8.68]

Weibull shape ρ 10.71(0.2192) [10.26,11.13] 10.71(0.2727) [10.17,11.22]

Precision of RE1 1
d 32.14(168.1) [1.27,323.2]

OD parameter α1 0.894(0.0431) [0.815,0.984] 0.8942(0.0494) [0.806,0.999]

RE1 parameter α2 4.597(3.179) [1.53,12.67]

RE2 parameter α3 1.611(0.2985) [1.10,2.25] 1.578(0.3135) [1.05,2.28]

this suggests that ignoring the hierarchical structure and overdispersion could have major influence

on the final conclusion. Significant estimates in the classical Weibull model may be insignificant in

Model 8. In other words, a compound might be erroneously declared toxic.

Based on the analysis for tail intensity, more elaborate models did not outperform (not much improve-

ment in terms of DIC). However, this was not the case for the second response, tail length. Based

on the DIC, the most complicated model has the best fit, showing the importance of the hierarchical

structure as well as overdispersion. Models with one hierarchical random effect were better fitting as

compared to the classical Weibull model. Models with two random effect improved the fit further,

and models with the complete hierarchical structure and overdispersion random effect appear to be

best. Further, notice that the model with only an overdispersion random effect is better fitting than

models with only the hierarchical structure, showing the importance of the overdispersion relative to

the hierarchical structure.

Note the effects of the model on the parameter estimates. When only one hierarchical structure (one

random effect) is added to the classical Weibull model, the point estimates were slightly higher and

the standard error for the contrast of interest was approximately four times smaller. Smaller DIC for
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Table 5: Parameter estimates obtained from Weibull-Gamma(OD) and Weibull-Normal(RE1)-

Gamma(RE2) and Weibull for Tail Length.

Weibull G(OD) Weibull N(RE1) G(RE2) Weibull

Effect Parameter Est.(s.e.) Est.(s.e.) Est.(s.e.)

Vehicle β0 -27.36(0.5968) -15.26(0.2519) -12.76(0.1543)

Low versus vehicle β1 -10.58(0.2612) -4.79(0.2468) -3.55(0.0530)

Medium versus vehicle β2 -10.76(0.2638) -4.89(0.2479) -3.65(0.0535)

High versus vehicle β3 -11.13(0.2705) -5.10(0.2509) -3.85(0.0550)

Pos. control versus vehicle β4 -8.55(0.2248) -3.79(0.3028) -2.70(0.0590)

Weibull shape ρ 9.48(0.2152) 4.96(0.0572) 4.01(0.0422)

Precision of RE1 1
d 45.83(54.60)

OD parameter α1 0.8569(0.0435)

RE2 parameter α3 3.031(0.5393)

models with the second random effect (slide) showed the importance of slide effect in contrast to rat.

Extending to two random effects, the standard error slightly increased further. The inclusion of an

overdispersion random effect had a very important impact on the estimate (approximately 3 times)

and standard error (four times) in contrast with the classical Weibull model. With the inclusion of

one hierarchical random effect to the overdispersion, the standard error was doubled. Models with

complete hierarchical structure and overdispersion yielded a slightly different estimate compared to

the estimate from a model with overdispersion alone and a changing estimate (approximately 2.5

times) in contrast to the estimate of the corresponding models with two hierarchical random effects

but no overdispersion; the standard error was double in contrast to both models. Generally, for tail

length, we did not reach a different conclusion, due to high toxicity of the compound; however,

inclusion of the hierarchical structure and overdispersion random effect had severe impact on the

magnitude, standard errors as well as the credible intervals. Results for the classical Weibull model

with overdispersion alone and a model with two hierarchical random effects are given in Table 5.
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9 Concluding Remarks

In this paper, we proposed a flexible modeling framework for the comet assay data using a Bayesian

hierarchical model. It takes not only the complete hierarchical nature but also the appropriate

non-Gaussian probability distribution for the response into account. It further includes a possible

overdispersion that may exist in the data. Both normal and gamma random effects can be considered

to account for clustering in the same framework, the more conventional models with either the

overdispersion, or just one hierarchical random effect being submodels.

The method was applied to the comet assay data gathered to assess the toxicity of 1,2-Dimethylhydrazine

dihydrochloride at different dose levels. For this particular dataset, a Weibull-gamma(RE2) model

seemed adequate for tail intensity, whereas a Weibull-gamma(OD)-gamma(RE1)-gamma(RE2) was

better fit for tail length. A comparison of these analysis with the conventional approach, which

ignores the overdispersion and the hierarchy in the data, revealed that both models led to the same

qualitative conclusion of severe toxicity of the compound at all dose levels. This notwithstanding,

estimates, standard errors, and credibility intervals were severely affected, underscoring the risk of

using models that are too simple. In general, proper models encompassing at the same time the

hierarchical nature in the data, combined with overdispersion effects, need to be adopted. In this

case, the use of the overdispersion and hierarchical structure improved the fit for one response. Fur-

thermore, even when the more elaborate model does not provide a substantially improved fit, nor

alters the inferences drawn, the development is still very useful because it provides further confidence,

by way of model specification assessment, on the quality of the purported model.
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A R2winbugs Code

\#Model 8 - Weibull gamma(re2)\#\\

model\{\\

\# N observations\\

for (i in 1:N) \{\\

intensity[i]$\sim$dweib(r,lamda[i])\\

lamda[i] <- h[slide[i]]*exp(eta[i])\\

eta[i] <- beta0+beta1*low[i] + beta2*med[i]+beta3*high[i]+beta4*pos[i] \}\\

\# P Slides\\

for (k in 1:P) { h[k] $\sim$ dgamma(alpha, alpha) \}\\

\# priors\\

beta0$\sim$dnorm(0.0, 1.0E-6)\\

beta1$\sim$dnorm(0.0, 1.0E-6)\\

beta2$\sim$dnorm(0.0, 1.0E-6)\\

beta3$\sim$dnorm(0.0, 1.0E-6)\\

beta4$\sim$dnorm(0.0, 1.0E-6)\\

alpha$\sim$dgamma(0.1,0.1)\\

r$\sim$dexp(0.01)\}\\

\# Model 16 - Weibull gamma(OD) normal(RE1) gamma(RE2) model\#\\

model\{\\

\# N observations\\

for (i in 1:N) \{\\

intensity[i]$\sim$dweib(r,lamda[i])\\

lamda[i] <- h[slide[i]]*theta[i]*exp(eta[i])\\

theta[i]$\sim$dgamma(alpha1, alpha1)\\

eta[i] <- beta0+beta1*low[i]+beta2*med[i]+beta3*high[i]+beta4*pos[i]+u[rat[i]]\}\\
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\# M rats\\

for (j in 1:M) \{ u[j] $\sim$ dnorm(0,tau)\}\\

\# P slides\\

for (k in 1:P) \{ h[k] $\sim$ dgamma(alpha2, alpha2) \}\\

\# priors\\

beta0$\sim$dnorm(0.0, 1.0E-6)\\

beta1$\sim$dnorm(0.0, 1.0E-6)\\

beta2$\sim$dnorm(0.0, 1.0E-6)\\

beta3$\sim$dnorm(0.0, 1.0E-6)\\

beta4$\sim$dnorm(0.0, 1.0E-6)\\

tau$\sim$dgamma(0.01, 0.01)\\

alpha1$\sim$dgamma(2, 2)\\

alpha2$\sim$dgamma(0.1,0.1)\\

r$\sim$dexp(0.01)\} \\
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