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Abstract

These days, road safety has become a major concern in most modern societies. In

this respect, the determination of road locations that are more dangerous than others

(black spots or also called ’sites with promise’) can help in better scheduling road safety

policies. The present paper proposes a multivariate model to identify and rank sites

according to their total expected cost to the society. Bayesian estimation of the model

via a Markov Chain Monte Carlo (MCMC) approach is discussed in the paper. To

illustrate the proposed model, accident data from 23184 accident locations in Flanders

(Belgium) are used and a cost function proposed by the European Transport Safety

Council is adopted to illustrate the model. It is shown in the paper that the model pro-

duces insightful results that can help policy makers in prioritizing road infrastructure

investments.
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1 Introduction

During recent years, road safety has become a major concern for many governments. Indeed, for

most European countries, road accidents constitute a large problem and cost to the society. In

the first place, there are the non-material costs associated with road accidents, including the pain,

the suffer, the reduced joy of life, and the personal damage in so far it does not affect the wealth

but rather the welfare of the victim (Lindenbergh, 1998). Secondly, there are the material costs

associated with road accidents, including direct and indirect costs. The direct costs are related

to the accident itself, such as administrative costs (e.g. police and emergency services), material

damage (e.g. damage to cars, road infrastructure, buildings, etc.), medical costs (e.g. hospital,

rehabilitation, prothesis, etc.), and costs related to resulting traffic jams. The indirect costs are

caused by the fact that the victim is not able to participate in the economic life for some period,

i.e. either temporarily (due to illness) or permanent (when the victim is crippled for life or has

died). In Belgium, this total cost to the society of traffic accidents is estimated at 3.72 billion Euro

per year (Dieleman, 2000).

Social interest therefore lies mainly in preventing traffic accidents. However, this is not an

easy task at all. In fact, it is well-known that a traffic accident is usually caused by the failure

of one or more of a multitude of factors, including the safety condition of the vehicle, the safety

condition of the road (and its environment) and finally the safe behavior of the driver (Haddon,

1970). Reducing the number of traffic accidents therefore requires an integrated approach (known

as shared responsibility). For example, this can be carried out by improving the active and passive

safety of cars, by sensitizing and enforcing car drivers to be more careful and by reducing the

hazardousness of roads. The latter involves identifying sites with large accident risk so as to make

the necessary infrastructure changes for reducing the risk of the site. Furthermore, methods that

can measure and produce comparable results concerning the risk of each site are of special interest

for designing new roads or to enforce rules. Such rules imply the existence of criteria that assess

that a specific site is hazardous. Such criteria can be comparative, i.e. to find the r, say, most

hazardous roads, or they might be based on threshold values and hence all the roads passing the

threshold are to be considered for changes. In practice, these criteria can be combined using relative

information about the cost of infrastructure works. But the main goal remains evident, i.e., the

need for quantifying the risk of specific sites.

In this paper, we will concentrate on so-called black spots, i.e. dangerous locations where many

accidents occur. These situations are, to a great extent, the result of the infrastructure, or the

way in which it is being used. Treating black spots is a well-known and frequently used means of

improving road safety. In this study, we will focus on intersections, which are classified as black

spots after an assessment of the level of risk, both in terms of the number and the severity of the

accidents. At some intersections, risk will be higher than what one would expect for a similar

location. Other approaches define black zones (instead of black spots) as spatial concentrations of
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interdependent high-frequency accident locations (see Flahaut et al., 2003; Thomas, 1996).

From a statistical point of view, we will treat road accidents, almost by definition, as random

events. In fact, they are indeed the unintentional result of human behavior (OECD, 1997). As

a result, it is impossible to predict the exact circumstances of a single accident. However, in

the literature, it is commonly assumed that there is an underlying mean accident rate for each

individual intersection. In fact, one can find a high variety in statistical models in the literature for

analyzing black spot data, but compelling arguments can be found to support the assumption that

accident counts follow the Poisson probability law. In this context, to correct for the extra Poisson

variation mostly present in accident counts, authors used negative binomial regression models, as

for example in Persaud (1990), Hauer (1997) and Abdel-Aty and Radwan (2000). Other authors

used generalized Poisson (Kemp, 1973) and logarithmic models (Andreassen and Hoque, 1986).

Hauer and Persaud (1987) introduced the Poisson-gamma generalized linear model, allowing the

Poisson mean to vary between locations. A comprehensive and elaborate overview of black spot

identification techniques is found in Hauer and Persaud (1987), Hauer (1996), Nassar (1996) and

Geurts and Wets (2003).

More recently, Bayesian techniques have been used to tackle problems in traffic safety. Al-

though the problem of hazardous intersection identification has been widely discussed in literature,

the interest in Bayesian methods in this domain only originated in the eighties. Ever since, many

applications used in some way an empirical Bayes approach. For instance, Hauer (1986) pre-

sented the empirical Bayes approach to obtain better and more accurate estimates of the expected

number of accidents. Hauer and Persaud (1987) examined the performance of some identification

procedures. Empirical Bayes methods were used to estimate proportions of correctly and falsely

identified deviant road sections. Belanger (1994) applied empirical Bayes methods to estimate the

safety of four-legged un-signalized intersections. The results were used to identify black spot lo-

cations. Hauer (1996) reviewed the development of procedures to identify hazardous locations in

general. Vogelesang (1996) gives a comprehensive overview of empirical Bayes methods in road

safety research.

However, the use of hierarchical Bayesian models in traffic safety is less widespread. Schlüter

et al. (1997) deal with the problem of selecting a subset of accident sites based on a probability

assertion that the worst sites are selected first. They propose different criteria for site selection. To

estimate accident frequencies, a hierarchical Bayesian Poisson model has been used. Christiansen

et al. (1992) developed a hierarchical Bayesian Poisson regression model to estimate and rank

accident sites using a modified posterior accident rate estimate as a selection criterion. Davis and

Yang (2001) combined hierarchical Bayes methods with an induced exposure model to identify

intersections where the crash risk for a subgroup is relatively high. Point and interval estimates of

the relative crash risk for older drivers were obtained using the Gibbs sampler.

In this paper, we will argue that when decisions have to be taken so as to spend money for

improving the quality of particular sites, it would be interesting to find a method which can examine
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the risk of the sites in a comparative way and to find the sites with higher risk. Problems that occur

hereby are due to the different observational period for different sites and to the different length of

the examined roads. Additionally, data concerning the traffic of each site are needed so as to make

fair comparisons. Statistical methods must therefore account for the sources of this variability. In

this context, ranking procedures based on a hierarchical Bayesian approach have been proposed.

Those methods can handle the uncertainty and the great variability of the data and produce a

probabilistic ranking of the sites. The approach has been applied to ranking problems in various

application domains, like educational institutions or hospitals (see, e.g. Goldstein and Spiegelhalter,

1996) as well as in traffic safety (Schlüter et al., 1997). Recently, Tunaru (2002) proposed an

hierarchical Bayesian approach for ranking accidents sites based on a bivariate Poisson-lognormal

distribution.

We extend this approach by considering a more realistic model for the accident behavior taking

into account (1) the number of accidents, (2) the number of fatalities, and (3) the number of light

and severely injured casualties for a given time period for each site. This is done by using a 3-

variate Poisson distribution which allows for covariance between the variables. The parameters of

the model are estimated via Bayesian estimation facilitated by MCMC methods. The reason for

adopting a Bayesian estimation is twofold. Firstly, although the data seem to contain a wealth of

information on different accident types, the number of observations per accident location is very

low and hence the choice for a Bayesian analysis is preferable. Secondly, the Bayesian treatment

of the model enables us to obtain a probabilistic ranking of the locations. The latter is important

to verify the impact of the uncertainty/variability that is present in the data on the ranking of

locations.

In order to combine all the data into a single number that will be used for ranking the sites,

we will introduce a cost function that measures the cost of an accident according to the number

of fatalities, heavy and light injured casualties. However, we want to point out that it is not the

objective of this paper to propose optimal values for the costs of each type of casualty. Indeed, since

there are ethical problems on defining such cost functions (Hauer, 1994), we adopt a well-known

cost function proposed by the European Safety Council merely for the purpose of illustration.

The remainder of the paper proceeds as follows. Section 2 briefly reviews the multivariate

Poisson distribution and provides the details for the particular version that we are going to use. In

section 3 we develop the proposed model and describe in detail the Bayesian estimation for that

model. The data are described in section 4. In section 5, we apply the model to the data set and

we discuss thoroughly the results. We also provide a criterion for deciding on the selection of the

most dangerous sites. Finally, concluding remarks can be found in section 6.
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2 Multivariate Poisson distribution

Multivariate count data occur in a wide range of different disciplines, including marketing, accident

analysis, economics, epidemiology, and many others. It must be recognized however that, despite

the wide range of applications that they can model, only few models for this type of data exist and

that the published work is not so large. Among them the multivariate Poisson distribution defined

in Johnson et al. (1997) plays an important role, basically as the theoretical tool to construct new

models. On the contrary the applications are usually limited to a special case of this distribution

limiting the insight provided by the model.

The derivation of multivariate Poisson distributions is based on a general multivariate reduction

scheme. Assuming Yr, r = 1, ..., k, are independent univariate Poisson random variables, i.e.

Yr ∼ Poisson(θr), r = 1, ..., k, then the definition of multivariate Poisson models is made through

the vector Y ′ = (Y1, Y2, ..., Yk) and an m × k matrix A with zeroes and ones and no duplicate

columns. Specifically, the vector X ′ = (X1, X2, ..., Xm) defined as X = AY follows a multivariate

Poisson distribution. Note that the elements of X are dependent as indicated by the structure of

the matrix A .

In the most general form k =
m∑

j=1


 m

j


. This form arises if matrix A has the form A =

[A1,A2, . . .Am], where Aj , j = 1, . . . , m is a sub-matrix of dimensions m×

 m

j


, each column

of Aj has exactly j ones and (m − j) zeroes and no duplicate columns exist. Thus, Am is the

column vector of ones, while A1 becomes the identity matrix of size m×m. It can be shown that

E(X) = AM and V ar(X) = AΣA′

where M and Σ are the mean vector and the variance-covariance matrix for the variables Y1, . . . , Yk

respectively. Σ is diagonal because of the independence of Yr’s and has the form

Σ = diag(θ1, θ2, . . . , θk)

Similarly

M = (θ1, θ2, . . . , θk)′

In this paper, we focus on the case where A = [A1,A2], for the analysis of multivariate data

sets. This is done in order not to impose too much structure to our data. An interesting feature of

this model is that it allows for covariance terms separately for each pair of variables and thus it can

be considered as a counterpart of the multivariate normal distributions suitable for multivariate

count data.

Consider the case of trivariate data. With slightly different notation, assume that Y ′ =

5



(Y1, Y2, Y3, Y12, Y13, Y23). Define A = [A1,A2], i.e. A has the form

A =




1 0 0 | 1 1 0

0 1 0 | 1 0 1

0 0 1 | 0 1 1


 .

Then, define X = (X1, X2, X3)′ = AY and thus we have the following representation:

X1 = Y1 + Y12 + Y13

X2 = Y2 + Y12 + Y23 (1)

X3 = Y3 + Y13 + Y23

where Yi ∼ Poisson(θi), i ∈ {1, 2, 3} and Yij ∼ Poisson(θij), i, j ∈ {1, 2, 3}, i < j. Now, the

random variables X1, X2, X3 follow jointly a trivariate Poisson distribution with parameter θ =

(θ1, θ2, θ3, θ12,θ13, θ23)′. The mean vector of this distribution is AM=(θ1 + θ12 + θ13, θ2 + θ12 +

θ23, θ3 + θ13 + θ23)′ and its variance-covariance matrix is given as

AΣA′ =




θ1 + θ12 + θ13 θ12 θ13

θ12 θ2 + θ12 + θ23 θ23

θ13 θ23 θ3 + θ13 + θ23


 .

The parameters θij , i, j = 1, 2, 3, i < j, have the straightforward interpretation of being the covari-

ances between the variables Xi and Xj and, thus, we refer to them as the covariance parameters.

The parameters θi, i = 1, 2, 3, appear only at the marginal means and we refer to them as the mean

parameters.

In the sequel, we call as 3-variate Poisson distribution the joint probability function given by

P (X1 = x1, X2 = x2, X3 = x3) = P (x1, x2, x3)

=
s1∑

k=0

s2∑

r=0

s3∑

s=0

e−θ12θk
12

k!
e−θ13θr

13

r!
e−θ23θs

23

s!
e−θ1θx1−k−r

1

(x1 − k − r)!
e−θ2θx2−k−s

2

(x2 − k − s)!
e−θ3θx3−r−s

3

(x3 − r − s)!

where x1, x2, x3 = 0, 1, . . ., s1 = min(x1, x2), s2 = min(x1 − k, x3), s3 = min(x2 − k, x3 − r). The

above distribution will be denoted as 3 − Poisson(θ1, θ2, θ3, θ12, θ13, θ23). It can be seen that the

marginal distributions are univariate Poisson distributions.

We will base our model on this multivariate Poisson model. Multivariate extensions of the

simple Poisson distribution have been proposed in the literature and since the name has been used

for different probability functions, it has caused a lot of confusion. Our model allows for pairwise

covariances for each pair of variables, instead of the usual model that assumes the same covariance

term for all the pairs and has been examined in Tsionas (1999) and Karlis (2003).

Drawbacks of this model are firstly that it has Poisson marginal distributions and thus it

cannot handle overdispersion and secondly that it can model only positive dependence. For more

complicated models to improve in both aspects the reader is referred to the papers of Chib and
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Winkelmann (2001), Munkin and Trivedi (1999), Karlis and Meligkotsidou (2003), Van Ophem

(1999), Cameron et al. (2004), Berkout and Plug (2004). However in our case, the data are

in accordance with Poisson marginals and the correlation is positive as it is usually the case for

accident data. In addition, our model is much simpler than the other models referred above. So,

we believe that this model provides an interesting and realistic device for the purpose of ranking

accident sites.

3 The Model

Suppose that the data consist of n different sites. The number of accidents for the i-th site is denoted

by Vi, while the i-th site has been monitored for a time period ti. We assume that the number of

accidents for this site follows a Poisson distribution with parameter φiti. Note that according to

this definition, ti is not necessarily the time but it can also incorporate different lengths for the sites

and/or different traffic flows. In any case, it is an offset that makes the different sites comparable

by cancelling out all other information that may lead to differences. Thus φi, i = 1, . . . , n are the

pure accident rate for the i-th site.

For each site, we have also the triplets (Yi, Zi,Wi) that correspond to the number of fatalities,

the number of lightly injured persons and the number of severely injured persons, respectively. We

assume that jointly and conditional on the number of accidents Vi, they follow a 3-variate Poisson

distribution. In other words, the above model allows for different correlations between each pair

of variables, which is clearly a realistic assumption in the context of traffic accident injuries. In

notational form, we assume that

(Yi, Zi,Wi) | Vi = vi ∼ 3− Poisson(µ1ivi, µ2ivi, µ3ivi, λ12vi, λ13vi, λ23vi)

Hence, µ·i reflects the mean parameter for fatalities, light injuries and severe injuries per accident

for the site i, while λij are the covariance parameters for each pair of variables.

Note that empirical evidence supports the assumption that there is positive correlation between

the three variables Yi, Zi, Wi. This is natural since it reflects the severity of the accidents on location

i. So, instead of assuming independence between the three variables, by imposing three independent

Poisson distributions, we propose a model that takes into account those correlations between the

variables, and hence it can model the interdependencies in a more realistic way.

Since we have assumed site specific rates for all the variables of interest, it is not easy to proceed

with classical estimation methods, as for example with the maximum likelihood method. In order

to avoid this overparametrization problem, we will proceed from the Bayesian perspective, which

is the typical procedure for this kind of data. In fact, we will describe an empirical Bayes approach

where the prior parameters will be specified by the data.
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3.1 A Bayesian approach

Our model has the form

Vi ∼ Poisson(φiti)

(Yi, Zi,Wi) | Vi = vi ∼ 3− Poisson(µ1ivi, µ2ivi, µ3ivi, λ12vi, λ13vi, λ23vi) (2)

The likelihood can be written in the complicated form

L(V, Y, Z, W | λ, µ1, µ2, µ3, ρ) =
n∏

i=1

P (yi, zi, wi|vi)P (vi)

=
n∏

i=1

e−φiti(λiti)vi

vi!

s1∑

k=0

s2∑

r=0

s3∑

s=0

e−λ12ivi(λ12ivi)k

k!
×

e−λ13ivi(λ13ivi)r

r!
e−λ23ivi(λ23ivi)s

s!
×

e−µ1ivi(µ1ivi)yi−k−r

(yi − k − r)!
e−µ2ixi(µ2ivi)zi−k−s

(zi − k − s)!
e−µ3ivi(µ3ivi)wi−r−s

(wi − r − s)!

where s1 = min(yi, zi), s2 = min(yi − k, wi), s3 = min(zi − k, wi − r).

Full Bayesian inference is not easy for this likelihood as it involves multiple summations. There-

fore, a Markov Chain Monte Carlo (MCMC) technique based on Gibbs sampling with data aug-

mentation will be used in order to explore the posterior distribution of the parameters of interest.

A byproduct of this approach is that we can obtain at the same time the posterior distribution of

every summary function of the parameters, including ranks. This is exactly the key ingredient of

our approach as it enables ranking the sites according to some criteria and/or calculation of the

posterior distribution of any cost function.

The vector of parameters can be represented as θ = (φ, µ1, µ2, µ3,λ12, λ13, λ23), where the vec-

tors represented by boldface letters represent the corresponding parameters for all the observations,

i.e. φ = (φ1, . . . , φn) and similarly for the other vectors.

For each parameter, we will assume a gamma prior and we also assume that the prior distrib-

utions are independent. Thus, the prior distribution for the entire vector of parameters p(θ) will

be a product of 7n gamma densities. The choice of prior parameters can be based on either diffuse

gamma densities or an empirical Bayes approach (described in section 3.3).

More formally, let ω ∼ Gamma(a, b) denote the gamma distribution with density f(ω) =

ωa−1baexp(−bω)/Γ(a). Then, the priors are

φi ∼ Gamma(a1, b1)

µ1i ∼ Gamma(a2, b2)

µ2i ∼ Gamma(a3, b3)

µ3i ∼ Gamma(a4, b4)

λ12i ∼ Gamma(a5, b5)
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λ13i ∼ Gamma(a6, b6)

λ23i ∼ Gamma(a7, b7)

i = 1, . . . , n for all parameters.

Let X denote the totality of the data. Using these priors, the posterior takes the form of

p(θ | X) ∝ L(V, Y, Z, W | θ)p(θ)

=
n∏

i=1

e−φiti(φiti)vi

vi!

s1∑

k=0

s2∑

r=0

s3∑

s=0

e−λ12ivi(λ12ivi)k

k!
e−λ13ivi(λ13ivi)r

r!
e−λ23ivi(λ23ivi)s

s!
×

e−µ1ivi(µ1ivi)yi−k−r

(yi − k − r)!
e−µ2ivi(µ2ivi)zi−k−s

(zi − k − s)!
e−µ3ivi(µ3ivi)wi−r−s

(wi − r − s)!
×

[Γ(a1)]−1φa1−1
i b1

a1exp(−b1φi)[Γ(a2)]−1µa2−1
1i b2

a2exp(−b2µ1i)×
[Γ(a3)]−1µa3−1

2i b3
a3exp(−b3µ2i)[Γ(a4)]−1µa4−1

3i b4
a4exp(−b4µ3i)×

[Γ(a5)]−1λa5−1
12i b5

a5exp(−b5λ12i)[Γ(a6)]−1λa6−1
13i b6

a6exp(−b6λ13i)×
[Γ(a7)]−1λa7−1

23i b7
a7exp(−b7λ23i).

Details for the MCMC follow.

3.2 MCMC details

The key ingredient for constructing the MCMC approach is the data augmentation offered by the

multivariate reduction approach that is used to construct the multivariate Poisson distribution. We

will make use of the multivariate reduction representation of a multivariate Poisson distribution.

In our model, the above idea assumes that there are some latent variables δ1i, δ2i, δ3i, T1i, T2i, T3i,

each one following independently a Poisson distribution with parameter λ12i, λ13i, λ23i, µ1i, µ2i, µ3i,

respectively. From them we construct the working variables Yi = T1i + δ1i + δ2i, Zi = T2i +

δ1i + δ3i,Wi = T3i + δ2i + δ3i. The variables δji, j = 1, 2, 3 reflect site characteristics that introduce

correlation to the working variables. The data augmentation being used is based on considering the

unobservable quantities δji, j = 1, 2, 3, i = 1, . . . , n as parameters and then to proceed by updating

their values according to their posterior distribution. For the other parameters, one may use the

standard gamma conjugate priors to facilitate the computations. A similar data augmentation has

been used by Karlis and Meligkotsidou (2003) for a multivariate Poisson model including regressors.

Let κ = (δ11, . . . , δ1n, δ21, . . . , δ2n, δ31, . . . , δ3n) be the unobserved data. Augmenting κ to the

observed data, the joint posterior of the complete data is of the form

p(θ, κ | data) =
n∏

i=1

e−φiti(φiti)vi

vi!
e−λ12ivi(λ12ivi)δ1i

δ1i!
e−λ13ivi(λ13ivi)δ2i

δ2i!
e−λ23ivi(λ23ivi)δ3i

δ3i!
×

e−µ1ivi(µ1ivi)yi−δ1i−δ2i

(yi − δ1i − δ2i)!
e−µ2ivi(µ2ivi)zi−δ1i−δ3i

(zi − δ1i − δ3i)!
e−µ3ivi(µ3ivi)wi−δ2i−δ3i

(wi − δ2i − δ3i)!
×

[Γ(a1)]−1φa1−1
i b1

a1exp(−b1φi)[Γ(a2)]−1µa2−1
1i b2

a2exp(−b2µ1i)×
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[Γ(a3)]−1µa3−1
2i b3

a3exp(−b3µ2i)[Γ(a4)]−1µa4−1
3i b4

a4exp(−b4µ3i)×
[Γ(a5)]−1λa5−1

12i b5
a5exp(−b5λ12i)[Γ(a6)]−1λa6−1

13i b6
a6exp(−b6λ13i)×

[Γ(a7)]−1λa7−1
23i b7

a7exp(−b7λ23i)

Now, the conditional posteriors can be derived (· denotes the remaining parameters) as

δ1i | · ∝ λδ1i
12i

δ1i!(yi − δ1i)!(zi − δ1i)!

(
1

µ1iµ2i

)δ1i

δ2i | · ∝ λδ2i
13i

δ2i!(yi − δ2i)!(wi − δ2i)!

(
1

µ1iµ3i

)δ2i

δ3i | · ∝ λδ3i
23i

δ3i!(zi − δ3i)!(wi − δ3i)!

(
1

µ2iµ3i

)δ3i

φi | · ∼ Gamma(a1 + vi, b1 + ti), i = 1, . . . , n

µ1i | · ∼ Gamma(a2 + yi − δi, b2 + vi), i = 1, . . . , n

µ2i | · ∼ Gamma(a3 + zi − δi, b3 + vi), i = 1, . . . , n

µ3i | · ∼ Gamma(a4 + wi − δi, b4 + vi), i = 1, . . . , n

λ12i | · ∼ Gamma(a5 + δ1i, b5 + vi), i = 1, . . . , n

λ13i | · ∼ Gamma(a6 + δ2i, b6 + vi), i = 1, . . . , n

λ23i | · ∼ Gamma(a7 + δ3i, b7 + vi), i = 1, . . . , n

Simulation from the gamma conditionals is straightforward, however, simulation from the pos-

terior density of δji, j = 1, 2, 3 is not easy. Yet, a simple table look-up method suffices since in

each case δji can take only finite values from 0 to s. Suppose the general case where we want to

simulate a random variable from a distribution with probability function

P (Y = y | ψ, x1, x2) ∝ ψy

y!(x1 − y)!(x2 − y)!
,

x1, x2 ∈ {0, 1, . . .}, y = 0, . . . , min(x1, x2), ψ > 0. This is of the same form as our conditionals.

Since the required probabilities are in a finite range, they can be computed via a recursive scheme.

The scheme is as follows: since the calculation of the normalizing constant is not trivial, start with

P ′(0) = 1 and then use the relationship P ′(k + 1) = P ′(k) ρ
k+1(x1 − k)(x2 − k), k = 0, . . . , si − 1.

Then, rescale the probabilities in order to sum to 1 and one obtains the conditional probabilities

needed for the simulation via table look-up.

The choice of the hyperparameters aj , bj , j = 1, . . . , 7 can be either diffuse priors in order to

reflect our ignorance or they can be obtained in an empirical Bayes way from the data. For practical

reasons, it is advocated to use informative priors for λji, because diffuse priors can have serious

effects on the convergence properties of the chain. Especially, for small counts the chain can be

trapped in 0 values for the pseudoparameters λji.
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One can see that the Bayesian estimation is split in two parts. The first part, involves only esti-

mation of Poisson parameters and this can be easily accomplished via standard conjugate analysis.

The second part, involves Bayesian estimation for a multivariate Poisson distribution.

MCMC offers the opportunity to derive the posterior distribution of any function of the para-

meters. For our case, the function of interest is the expected cost ci for the i-th site. For decision

purposes this cost, measured as a function of the expected accidents and fatalities and/or injuries,

can have a large impact as it measures the hazard of a site taking into account all these aspects.

A simple form of this expected cost can be

ci = E(Ci) = β1(µ1i + λ12i + λ13i)φi + β2(µ2i + λ12i + λ23i)φi + β3(µ3i + λ13i + λ23i)φi

for some coefficients βi, i = 1, 2, 3 where the three parts corresponds to expected cost of fatalities,

light injuries and severe injuries correspondingly. At each iteration of the chain, the values of

the costs can be calculated using the current values of the parameters and, thus, their posterior

distributions can be obtained. The costs can then be used to rank the sites according to their

expected total cost to the society.

So, if R
(j)
i denotes the rank of site i at the j-th iteration, then one can construct the posterior

distributions of the ranks as well, or any posterior summary of them. In other words, if the criterion

for taking corrective actions is to allocate funds to the most dangerous sites, the posterior mean

ranks offer such a classification. Otherwise, if the criterion is based on whether the expected cost

is above a given threshold, then the posterior distribution of the costs are of interest. In both

cases, the results of the analysis can be used for decision making. Perhaps, the most important

contribution of such a ranking is the fact that we take into account the uncertainty for the ranking

since it is not based on deterministic criteria. Thus, it allows for comparing different sites taking

into account the randomness in collecting and reporting the data. In the sequel we will propose

a criterion for selecting the most dangerous sites (perhaps for allocating funds for reconstruction)

which is based on such posterior summary measures.

Model checking for the proposed model can be done in the usual way based on predictive

densities (see, e.g. Gelfand et al., 1992, Gelfand and Ghosh, 1998) or the currently fashionable

deviance information criterion (DIC) (Spiegelhalter et al., 2002). Note also that the model can

have an interesting model selection nature by selecting appropriate covariance terms to retain in

the model, or as in the multivariate normal model, to check for specific covariance structures. All

these are, however, beyond the scope of the present paper. Finally, we adopt an empirical Bayes

approach, but examination of the sensitivity of the proposed methodology to the choice of priors

is important. In fact, informative priors for site specific parameters can have a large impact on

the results by favoring sites against others. In the general setting given in the paper, where all the

site-specific parameters have the same priors, the impact on the choice of αi’s and βi’s is however

small given the large number of sites.
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3.3 Empirical Bayes

Proceeding in an empirical Bayes spirit, the parameters of the prior distribution have to be obtained

from the data. Using the derivation of the model, we can proceed by using the results concerning

empirical Bayes estimation for a simple Poisson model derived by Gaver and O’Muircheartaigh

(1987). Alternatively, one can use the joint probability function to derive moment based empirical

Bayes estimates for the prior distributions.

Since we have 14 prior parameters, we need 14 equations from the data in order to get those

prior values via moment matching. In order both to simplify the problem but, at the same time, to

use some prior information useful for implementation reasons, we elicited only 11 prior parameters

from the data while we put b5 = b6 = b7 = 1. Those parameters affect the prior of the covariance

terms and thus, in order to avoid trapping the chain in zero values while we generate the posterior

distributions of δi, we use a rather small variance for the priors associated with the covariance

parameters.

For the remaining parameters, we used the marginal means and variances (8 equations) as well

as the three covariances. This system is sufficient to provide values for all the prior parameters.

Note that values for the other three prior parameters b5 = b6 = b7 can be elicited in this way, but

we believe that this is an unnecessary complication. Note also that in cases where the system of 11

equations does not have solutions in the admissible range (the prior parameters as being parameters

of the gamma density ought to be positive) we tried to satisfy the mean relationships so as the

priors to have the correct means.

4 The data

For this study, the official traffic accident records for the region of Flanders (Belgium) have been

used for the period 1997-1999. In total 50961 traffic accidents, with at least casualties involved,

were registered by the police services in this period at 23184 different road locations on motorways,

national and provincial roads2. The data consists both of isolated road segments and of intersec-

tions. For the road segments, the hectometer stone marker on the road provides the unique position

of the accident. For the intersections, all accidents that happen within 50 meters from the center

of the intersection are assigned to that intersection.

For each road location in the database, the number of accidents in the given period Vi is counted.

Furthermore, a distinction is made according to the severity of the accidents. For each intersection

i, Yi denotes the number of fatalities (including road users who died in the hospital within 30 days

2It should be mentioned, however, that underreporting may affect the results. This is caused by the fact

that some people involved in an accident fail to call the police and by the fact that not all accident forms

are sent to the National Institute of Statistics. The latter is especially true for accidents involving only one

road user, light accidents and accidents involving weak road users, like pedestrians.
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after the accident), and Wi is the number of heavily injured persons, being every road user who

got injured in an accident and whose condition involves an admission for at least 24 hours in the

hospital. Every road user who got injured in an accident, but to whom the specification of fatally

or heavily injured road user does not apply, is counted in the third group of light injuries, denoted

by Zi.

Based on these data, the Flemish government has recently identified a list of 800 dangerous

road locations, so called black spots, to be considered for road infrastructure works to reduce the

number of accidents. However, since their selection is not based on a statistical modeling procedure,

tt is interesting to compare them with the results obtained from the model suggested above.

5 Results

Before discussing the results of the proposed model, some remarks about the data set should be

added that are relevant to the put the results in the right perspective. First, since data is available

only for road locations where accidents happened, all results should be interpreted conditional on

the occurrence of accidents. This is also the reason why no explanatory variables are used, because

they would not be generally significant. Second, abstraction is made of the order of the accidents

over the years. Third, the model does not consider spatial correlations among intersections. In fact,

one could argue that neighboring sites might have an influence on the safety between each other.

Distances and geographical neighborhood should be measured in order to take spatial correlations

into account. This complex extension is not worked out in this paper. Although these restrictions

might limit somewhat the practical use of the data set, it is certainly useful and instructive to

illustrate the modeling approach followed in this paper.

Finally, ti = 1 for all i = 1, . . . , n locations, since all accident sites are comparable in length,

the time periods of the data are the same and we do not possess traffic flow information.

5.1 Computational details

A first problem in the data was the fact that counts related to fatalities and severe injuries were

rather small. The variance to the mean ratio was slightly smaller than 1 indicating that their mar-

ginal distribution is not overdispersed relative to the Poisson distribution. This caused a problem

in moment matching for deriving the prior parameters. In order to proceed in such cases, we set

the overdispersion parameter of the gamma prior equal to 1, i.e. bi = 1, i = 2, 3, 4, 5, 6, 7. The other

prior parameters for the accidents data set are the empirical Bayes estimates a1 = 0.85, a2 = 0.00,

a3 = 1.18, a4 = 0.02, a5 = 0.11, a6 = 0.01, a7 = 1.00 and b1 = 0.07.

We ran the MCMC for a burn-in period of 1000 iterations and then we sampled every 10th

value. From the autocorrelation plots, no interesting autocorrelations appeared. We found that the

chain converged easily and that the sampled values are indeed independent draws from the target
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posterior density 3.

5.2 Ranking sites using a cost function

As mentioned in the introduction, one of the strong points of the proposed methodology is the

ability to rank accident sites based on a combination of criteria, i.e. the number of fatalities, heavy

and light injuries for each site, instead of using only one of them. However, in order to combine

the information contained in those three variables, we will adopt a cost function that in some sense

assigns a cost to each variable, i.e. assigns a weight to each type of injury.

Once again, we want to stress that assigning costs to different injury types is a rather con-

troversial issue for a variety of reasons, including ethical arguments (e.g. can we assign a cost to

a human life?) or economic arguments (e.g. what are the quantities that have to be measured

in order to estimate the cost for a severely injured person?). Therefore, the cost function, which

is obtained from calculations made by the European Transport Safety Council (ETSC), is merely

used for illustrative purposes and does not reflect any ethical or political statement by the authors.

More specifically, the cost function from the ETSC values the loss of a human life as the result

of an accident equal to 6.9 heavy casualties and 22.8 light casualties. Consequently, the expected

total cost of accidents for a particular road location can be calculated using the following cost

function

ci = E(Ci) = 22.8E(Yi) + 3.3E(Wi) + E(Zi)

The cost function is based on economic arguments and includes all the expenses related to a death

or an injury. Using this cost function, individual sites can be ranked. Let the vector c(j) with

elements c
(j)
i , i = 1, . . . , n contain the expected costs for each site at the j-th MCMC iteration.

Then, one can assign a rank to each site according to its cost value and transform the vector c(j)

into a vector R(j) which contains the ranks for all the sites. The posterior distribution for the ranks

of each site can then easily be constructed as explained in section 3.2.

Figure 1 about here

Figure 1 shows the posterior mean ranks for a random selection of 100 sites out of the total of

23184 sites4. In fact, for each site one can see the posterior mean rank together with its ± posterior

standard deviation to show the variability present in estimating the ranks. From the traffic safety

point of view, figure 1 shows that some locations on the left tend to be ranked higher (i.e. more

dangerous), whereas several other locations exist with similar mean ranks indicating that these

locations are of the same hazard. It is also apparent that the variability is much larger for the

sites with a smaller mean rank. This is due to the fact that since it appears that there are several

3Details about convergence properties are available on request, but we omit them to save space.
4We chose to show the mean ranks of only 100 sites selected at random to improve the readability of the

graph.
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locations that are of similar hazard, their permutation during the MCMC iterations leads to a

higher variance.

In other words, the graph shows that there is a small group of locations that are ranked as

very dangerous during the entire MCMC chain, but that there is also a much larger group of

locations for which it is difficult to say if one location is more dangerous than the other, i.e., for

which the ranking over the MCMC iterations is subject to large perturbations. It would therefore

be interesting to construct a procedure to decide which locations should be considered to be a

candidate for the 800 most dangerous locations, as selected by the Flemish government.

5.3 A criterion for selecting sites

One of the advantages of the MCMC method is that it allows for exploring posterior distributions

of certain functions related to the parameters of interest.

Denote by θ(j) the vector of parameters at the j-th iteration of the MCMC. From this vector

we are able to calculate the expected cost for each site. We may proceed further by deriving the

probability for each site of being one of the r worst sites. To help the exposition and provide

generality suppose that we have n sites. Since the smaller the cost the better the site, a site is bad

if the cost is high. Suppose that we need to estimate the probability that the site i belongs to the r

worst sites. This implies that its cost is among the r highest and hence its rank is larger than n− r

(since the ranking procedures gives ranks from the smaller cost to the larger). Then the estimated

probability is calculated as

Pr(i) =

B∑
j=1

I(R(j)
i > n− r)

B

where I(A) is the indicator function and B the number of iterations kept after the burn-in.

It is interesting that the above probabilities allow for an heuristic rule for selecting the worst

sites. Suppose that all sites have the same characteristics. This way we expect that for all the

sites the required probabilities will be exactly the same as any differences will be merely random

perturbations. In that case, we expect that this probability will be equal to r/n for each site.

Sites with probability above this limit reveal a deviation from the argument about equal sites. Of

course, due to random perturbations, some probabilities will be larger even in the case of equal

sites. The situation resembles the case of the scree plot in Principal Components Analysis for

selecting the number of components. To facilitate further this approach we may calculate some

confidence intervals for the probabilities by replicating the procedure for a number of times. This

will reveal sites with probability above the limit in a more rigorous basis reducing the effect of

random perturbations.

For the Flemish data set, we have r = 800. From the 3000 sampled values during MCMC,

we split them in 30 batches of 100 replications each, and we calculated the probabilities as above

for each batch. This results with 30 values for each probability. In Figure 2 and 3, we plot the
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probability calculated from all 3000 sampled values together with its smaller and larger values from

the 30 replications. This provides an indication about the existing variability. Recall that since

we deal with estimated probabilities one may construct quick and rough confidence intervals for

probabilities using as an estimate of the variance of the probability p, i.e., the quantity Bp(1− p)

where B is the replication size or use the fact that the criterion is a kind of a sample mean and

thus based on asymptotic result to find a consistent estimate of its variance. In Figure 2 and 3, the

horizontal line represents the probability r/n i.e. the probability of each site in the case of pure

noise. For our case this equals 800/23184.

Figure 2 and 3 about here

Applying this procedure to the Flemish accident data set leads to the following interesting

results. From figure 2, which shows all 23184 locations, it can be seen that most of the locations

share a similar probability close to zero, indicating that they can be excluded as being candidates

for the 800 worst accident locations in Flanders. Only a limited number of sites (located at the left

of the figure) show a high probability of belonging to the 800 worst sites. Indeed, when looking more

closely at the left part of the figure 2, which is depicted in figure 3, some interesting conclusions

can be drawn.

First of all, figure 3 shows that although there is a small group of very dangerous locations

having a high probability (i.e. much above the baseline), there are at least 1500 locations that

could potentially belong to the 800 most dangerous locations to be considered for a safety audit,

because the lower limit of their confidence interval falls above the given baseline. This is an

extremely important finding since it shows that the current selection of 800 dangerous locations is

highly debatable. Indeed, apart from the small group of obviously dangerous locations with high

probabilities, there is a large group of locations (with probabilities around 0.2) that are more or less

equally dangerous and this shows that a large part of the current selection of 800 locations by the

Flemish government is somewhat subject to randomness. In other words, a large part of the selected

locations could equally well be interchanged with other locations that are equally dangerous.

Secondly, one can identify two jumps in figure 3, hereby creating three ’clusters’ of locations.

The first cluster of locations are those having a very high probability of belonging to the 800 worst

sites, i.e., say p > 0.4. These locations (some 250) are extremely dangerous and should in any case

deserve the attention of the traffic safety engineers. Their confidence intervals are also very small,

which supports their severeness. The second group is much larger and shows a rather constant

probability of about p = 0.4 with much larger confidence intervals. For this group, consisting of

about 1250 locations, it is much harder to say which of them should be considered as belonging to

the 800 most dangerous locations in Flanders. Indeed, the lower limit of their confidence intervals

is still above the baseline, which makes them almost equal candidates for the 800 worst sites.

Finally, there is a third group of locations (the rest) with probabilities p <= 0.1, for which

the probability of belonging to the 800 worst sites is extremely small. Furthermore, the estimated
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confidence limits are quite small, which corroborates the assumption that it is very unlikely that

one of these locations would be a valid candidate to belong to the 800 worst sites in Flanders.

6 Concluding Remarks

In this paper, a Bayesian procedure using an MCMC was developed for ranking accident locations

in Flanders, Belgium. The procedure takes into account not only the number of fatalities, but also

the number of injuries (severe and light) and combines this information by means of a cost function

in order to rank the sites.

From the methodological point of view, the model suggested in the present paper is based on a

3-variate Poisson distribution. The model assumes that the covariances vary across sites. Yet, there

is little evidence for this assumption and hence, naturally, one may assume constant covariances

across sites by not allowing the covariances in (2) to depend on the vi’s. This would reduce the

complexity of the model as one needs only to update three covariance parameters rather that 3n.

In fact, running this reduced model, we found that this assumption had negligible (if any) effect

on our results. Yet, in order to provide a general framework, we kept the more general model with

varying covariances.

From the traffic safety point of view, the most interesting insight offered by our model is that

it does not only rank the sites but that it also takes into account the variability of this ranking.

Hence, for decision making, one can see whether the chosen sites are really the most dangerous or

wether there are other sites with almost similar characteristics. It is important to note, however,

that this paper does not provide a cost-benefit analysis of road infrastructure investments. To this

end, one would need the cost of alternative road infrastructure investments together with their

respective accident modification factors (AMF’s). Indeed, per location, a number of alternatives

may be available (e.g. decrease speed, construct a median barrier, etc.) to increase safety with

different respective costs and effectiveness. Since this information is lacking, one could say that

this paper proposes the optimal ranking given an unlimited available budget.
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