
Made available by Hasselt University Library in https://documentserver.uhasselt.be

An End-to-end system for Free Viewpoint Video for Smooth Camera Transitions

Peer-reviewed author version

GOORTS, Patrik; DUMONT, Maarten; ROGMANS, Sammy & BEKAERT, Philippe

(2012) An End-to-end system for Free Viewpoint Video for Smooth Camera

Transitions. In: Proceedings of the Second International Conference on 3D Imaging,

p. 1-7.

DOI: 10.1109/IC3D.2012.6615136

Handle: http://hdl.handle.net/1942/15001



AN END-TO-END SYSTEM FOR FREE VIEWPOINT VIDEO
FOR SMOOTH CAMERA TRANSITIONS

Patrik Goorts, Maarten Dumont, Sammy Rogmans, Philippe Bekaert

Hasselt University - tUL - iMinds
Expertise Centre for Digital Media

Wetenschapspark 2, 3590 Diepenbeek, Belgium

ABSTRACT

In this paper, we present an end-to-end system for free view-
point video for smooth camera transitions in sport scenes. Our
system consists of a network of static computer vision cam-
eras, a storage infrastructure and an interpolation rendering
module, connected with a 10 Gigabit Ethernet network. The
user of the system requests a viewpath for the virtual camera
and the rendering module then generates the images using a
depth-aware plane sweep approach. First, the foreground and
background are separated and rendered independently. The
foreground is rendered using a plane-sweep approach and the
obtained depth map is split up in groups of players. Each
group is assigned a global depth, which is used in a sec-
ond plane sweep to restrict the depth. This will reduce ar-
tifacts, such as extra limbs and ghost players. The algorithm
is demonstrated on actual soccer recordings. The system is
fully automatic and can work in near real-time, thus provid-
ing virtual images of high quality in a fast manner.

Index Terms— Free Viewpoint Video, Interpolation, Plane
Sweep, CUDA, GPU, Soccer, Broadcasting

1. INTRODUCTION

Nowadays, broadcasting of entertainment events, such as soc-
cer games, require high quality video processing in real-time.
Streaming of raw camera images is no longer sufficient. Dif-
ferent stages of processing are required to provide high qual-
ity broadcasting that is pleasant and entertaining for the fi-
nal viewer. To provide a part of the high quality real-time
pipeline, we present an end-to-end system for view interpo-
lation to acquire smooth camera transitions in soccer games.
The user of the system, which can be the end user or a cam-
era operator, can choose a view path for a virtual camera.
This way, transition from one camera position to another can
be done without sudden hops, which can confuse the spec-
tator. Using view interpolation, a virtual camera can move
between physical camera positions, which allows the spec-
tators to keep track of their global viewing position in the
scene. Alternatively, the action can be freezed and the vir-
tual camera can be moved to allow novel ways of viewing

the soccer game. To achieve this setup, a network of cameras
with fixed locations is placed around the pitch, capturing the
game from different angles. These captured image sequences
are subsequently streamed to a storage infrastructure, where
they can be requested by the rendering module. This experi-
mental storage server is designed by EVS [4] to capture and
retrieve multimedia data. The rendering module can request
any stream of any camera at any time from the storage in-
frastructure to use in the interpolation. The rendering module
acquires a view path for a virtual camera from the user for a
certain time and generates a video stream for the virtual cam-
era. This generated video stream will be pushed to the storage
infrastructure, where it can be retrieved for broadcasting. The
rendering itself is near real-time and fully automatic, elimi-
nating the intervention of manual input. To provide flexible
and reliable communication between cameras, storage servers
and rendering modules, standard 10 Gigabit Ethernet connec-
tions are used.

The view interpolation is based on Image-Based Render-
ing (IBR), where no geometry is required or generated; all
required information is extracted from the camera images. In
our system, the foreground is first extracted and rendered in-
dependently from the background. The depth of the dynamic
objects, i.e. the foreground, is first determined by a plane
sweep approach. Next, we determine the general depth of ev-
ery connected group of pixels, which is used in a second plane
sweep to limit the used depth values. This way, we can effec-
tively eliminate ghosting artifacts, such as third legs, while
respecting local depth values. Indeed, these artifacts tend to
have very different depth values, which can be eliminated by
limiting the used depth values.

All rendering phases are implemented using a combina-
tion of NVIDIA’s Cg shader language and CUDA, allowing
the exploitation of the advantages of both frameworks, while
impeding the weaknesses.

We demonstrated our system by making recordings of an
actual soccer game and storing them on the storage infras-
tructure. Generated results proved to be of high quality and
provided clear camera transitions from one viewpoint to the
other.



Fig. 1. Overview of the system. The setup consists of a network of cameras, a storage infrastructure and a rendering module,
connected with 10 Gigabit Ethernet. The cameras store the retrieved data on the storage device, where they can be retrieved by
the rendering module. The user can input a view path in the rendering module and the final rendered images are also stored on
the storage infrastructure.

2. RELATED WORK

There are typically two approaches to generate novel view-
points starting from existing viewpoints, Image-Based Ren-
dering (IBR) and geometry-based rendering.

For geometry-based rendering, a collection of 3D models
is required. These can be acquired by using, for example,
visual hull [17, 18], photo hull [14] or space carving [22].

Image-based rendering, on the other hand, does not use
geometry in its rendering process. Instead, only the informa-
tion from the input images is used to generate an interpolated
image. Stereo matching is a common method of image-based
rendering [21, 26]. Another method, where our method is
based on, is plane sweeping, where the space before the vir-
tual camera is subdivided in depth planes. Plane sweeping
finds the depth with the best color matching for every pixel
in the virtual camera [24, 5]; depth and color information
are generated simultaneously. Due to numerous possible ar-
tifacts using the standard algorithm, different improvements
have been proposed, such as segmentation and depth selec-
tion [20].

Some attempts have been made to create systems to in-
terpolate outdoor sport scenes. One of the early systems is
the Eye vision system [2], described by [13], where multiple
motorized cameras are placed around the scene. No real in-
terpolation is done; the cameras switch between the images
and hops can be perceived. The results are still plausible, be-
cause the cameras are close to each other. Yet, the system is
expensive and requires a dense camera setup. The iView sys-
tem [9] from Red Bee Media [1] generates billboards or visual
hull using a narrow baseline. This method reports some arti-
facts, such as missing limbs, ghosting, etc. The method of
Hilton et al.[11] reconstructs a layered 3D proxy representa-
tion to define the geometry of players, followed by a view-
dependent refinement step using multiple views. Hayashi and
Saito [10, 12] and Ohta et al.[19] propose a method that uses
billboards to represent dynamic objects. A more advanced

Fig. 2. Example of the camera line setup. Cameras are placed
approximately one meter apart from each other. The distance
to the field is about 20 meters.

method is used by Germann et al. [6] that estimate the 2D
pose using a database of silhouettes. Using the poses, bill-
boards can be refined to generate more pleasant results. How-
ever, manual intervention is still required.

3. SYSTEM OVERVIEW

The system consists of a computer vision camera network, a
storage infrastructure and a rendering module. An overview
can be seen in Figure 1.

Our system can handle two kinds of camera setups: linear
and all around (see Figure 2). When using a linear camera
setup, cameras are places along one side of the scene and the
focus is forward. This way, interpolation from one side of
the field to the other side is possible, for example to follow
the action. The all around setup places the cameras in a cir-
cle around the scene, where the focus is at one spot on the
pitch. Here, when there is action in the neighborhood of this
spot, interpolation of different angles of that action can be
shown. Nowadays, only one side of the pitch is covered by
cameras to avoid confusion of the spectator. When using an
all around setup, interpolation from one side to the other is
possible, thus allowing more rich broadcasting opportunities



Fig. 3. Overview of the rendering. The rendering consists of a one time preprocessing step and a rendering step. The rendering
step, furthermore, is divided in a background and foreground rendering to allow high quality results.

without confusing the spectator; the global viewing position
stays clear. In both setups, we use fixed cameras to reduce
the need of an operator and to ease the calibration process.
In our method, we employ a wide baseline setup. This way,
the rendering is less trivial, but reduces the hardware cost and
eases the process of preparing the setup. To allow a global
shutter synchronization, all cameras are attached to a global
clock which determines the exact time a frame is taken.

All captured images are transferred to an experimental
prototype of multimedia server, developed and provided by
EVS [4], using standard 10 Gigabit Ethernet connections us-
ing a network switch. The cameras itself are attached to the
switch using a 1 Gigabit Ethernet connection. To reduce the
storage and network load, all images are transferred in raw
format, i.e. before demosaicing. All frames are stored to-
gether with a global timestamp to allow easy retrieval of all
the frames of a specific time. The infrastructure also allows
the storage of the final rendered images to be retrieved later
on.

Finally, a rendering module is attached to the storage in-
frastructure using standard 10 Gigabit Ethernet connections.
The rendering module is equipped with an NVIDIA GeForce
GTX 680 with 1536 cores running at 1006 MHz. In our setup,
the user input is integrated with the rendering module. Due
to the central storage of the image data, multiple rendering
modules can be attached to the network.

The rendering consists of a preprocessing step and a ren-
dering step. An overview is given in Figure 3.

4. PREPROCESSING STAGE

In the preprocessing stage, all cameras are calibrated to com-
pensate for lens distortions and to determine the positions rel-
ative to the pitch. Firstly, pixel correspondences are generated
using feature detection. In every camera image Ci, features
are detected using SIFT [15], and matched between the differ-
ent camera pairs using the k-d tree algorithm. These matching
pairs are then traced over every camera pair, thus resulting

in a multicamera group of matching features. This way, ro-
bust correspondences between camera images are generated,
which can be fed into the well-known calibration toolbox of
Svoboda et al. [23] using a bundle adjustment approach with
RANSAC. Here, the correspondences are used to determine
intrinsic and extrinsic calibration matrices, which fully define
the lens distortion and the position of the cameras.

Furthermore, background images are determined for ev-
ery input camera. About 30 images are stored over a time
period of a few minutes. These images are used to calculate
the median value of every pixel for every color channel, which
are used as the background color values.

5. RENDERING

In the rendering phase, the images for the virtual camera are
generated. The user of the system determines a path for the
virtual camera and a specific time in the video sequence. Us-
ing this information, the rendering module generates the im-
ages of the virtual camera for every position on the virtual
viewpath using the images of the input cameras on the corre-
sponding time. For every frame, the required images are re-
trieved from the storage facility. After retrieval, the images
are transferred to the GPU, where highly parallel process-
ing can be performed using traditional vertex and fragment
shaders, and the more generic parallel processing architecture
CUDA.

To reduce network and storage load, images are stored and
retrieved as raw data, i.e. before demosaicing. Therefore, im-
ages need to be demosaiced. To perform real-time demosaic-
ing using GPUs, we use the method of Malver et al. [16, 7],
where a FIR filtering method is used to perform edge-aware
demosaicing. Because FIR filtering is highly parallel [8], the
algorithm is easily mapped on GPU.

Next, the foreground-background segmentation is performed
to divide the players from the background. Foreground and
background are distinguished using a per pixel threshold-based
filtering approach using the backgrounds from the preprocess-



ing stage. To provide high-quality segmentation, we use three
thresholds, τf , τb, τa, with τf > τb:

si =


1 : τf < ‖ci − bi‖
1 : τf ≥ ‖ci − bi‖ ≥ τb and cos(ĉibi) ≤ τa
0 : ‖ci − bi‖ < τb
0 : τf ≥ ‖ci − bi‖ ≥ τb and cos(ĉibi) > τa

(1)
with si = Si(x, y), ci = Ci(x, y) and bi = Bi(x, y), for

all pixels (x, y). ĉibi is the angle between the foreground and
background color. First, we calculate the difference between
the foreground and background pixels and compare them with
τf and τb. When the difference is between τf and τb, we
calculate the angle between the color values and compare with
τa. We enhance the segmentation using erosion and dilation
to reduce errors caused by noise in the input images [25].

The thresholds are chosen such that shadows are consid-
ered as background to reduce matching errors and occlusion
in the foreground interpolation. The shadows are blended
in the background, because they are in essence darker back-
ground and small location errors are not noticeable. The fore-
ground objects, on the other hand, are not related to the back-
ground and cannot be blended accordingly.

The foreground and background are then processed inde-
pendently.

6. BACKGROUND RENDERING

After the segmentation, the foreground pixels in the back-
grounds are filled up with the color values of the backgrounds
of the preprocessing stage. This way, we have an actual back-
ground for every input image, where the shadows of the play-
ers are present and the foreground pixels are removed. Next,
we project the backgrounds on the pitch, blend the color val-
ues and reproject the blended values to the virtual camera.
Because the camera locations are calibrated relatively to the
pitch, we can determine the projected location of the back-
grounds. The backgrounds are blended together to acquire
good approximations of the shadows of the players as seen
from the virtual viewpoint. This way, we avoid the interpo-
lation of shadows, which is sensitive to occlusion and mis-
matching.

7. FOREGROUND RENDERING

The foreground, i.e. the players, are rendered using a plane
sweep approach, where depth and color values are generated
simultaneously. When a standard plane sweep approach is
used, different ghosting artifacts can occur, such as third legs.
Because players in a soccer setting are similar, mismatches
are frequent, resulting in low quality depth estimation and
rendering. Therefore, we use a depth-aware plane sweep ap-
proach. This approach uses three phases. First, depth and

Fig. 4. Principle of plane sweeping. The space before the
virtual camera is divided in planes. For each plane, all cam-
era images are projected on it and reprojected on the virtual
camera image. The reprojected pixels with the best color con-
sistencies are kept, resulting in a depth and color result.

color for every output pixel is determined using standard plane
sweeping. Next, foreground objects in the output image are
detected and a uniform depth for every object is determined.
Finally, these uniform depths are used to rerender the fore-
ground without artifacts using another plane sweep approach.

7.1. Initial Depth Calculation

In the first phase, a global depth map is acquired using plane
sweeping. We use a segmentation-aware adaptation of the
well-known method of Yang et al. [24]. The space before
the virtual camera is divided in planes, each with a depth D.
Then, for every depth Di, all input images are projected on
this plane, and reprojected on the virtual camera image (See
Figure 4). For every pixel, a metric is used to calculate the
difference between the reprojected color values, resulting in
an error value ε.

ε =

N∑
i=1

‖γ − Ci‖2

3N
with γ =

N∑
i=1

Ci

N
(2)

where γ is the average of the reprojected pixels and Ci

is the ith input image of total N . When the reprojected color
value belongs to the background in the input images, the er-
ror value is infinite. Finally, we select for every pixel in the
virtual camera image the depth with the lowest error value.



Fig. 5. Detection of connected pixels: a thread is assigned to every pixel. Every iteration, the threads compare the label of its
neighboring pixels with its own and stores the lowest label. All connected pixels have the same label if no more changes are
made.

When all error values are infinite, the pixel is considered as
background. This approach can be efficiently implemented
using Cg on graphics hardware, using its projective texturing
capabilities.

7.2. Depth Selection

In the second phase, all groups of foreground pixels are as-
signed one depth value. First, groups of unconnected pixels
are determined, which represent the dynamic foreground ob-
jects, i.e. (a group of) players. We use a region growing al-
gorithm using CUDA (see Figure 5). Initially, all foreground
pixels are assigned a unique label. Then we iteratively pro-
cess pairs of neighboring foreground pixels, where we assign
the lowest label of the two pixels to the pixel with the high-
est label. Background pixels don’t have a label, therefore no
assignment will be done when one of the pixels of the consid-
ered pair is background. We continue until no more assign-
ments can be done. Eventually, all neighboring foreground
pixels will have the same label and every group of foreground
pixels will have a unique label. Because the highly local
and parallel nature of the algorithm, realization using CUDA
is straightforward. Using the interoperability capabilities of
both frameworks, no penalty for the switch between Cg and
CUDA can be perceived.

Next, we calculate the median depth value of all the fore-
ground pixels with the same label and assign this depth value
to all these pixels. This way, we acquire a depth map of the
foreground where every group of pixels, i.e. players, have the
same filtered depth value. This depth value can be seen as the
global depth of a player, or a group of players.

7.3. Final Depth-aware Interpolation

We use these filtered depth values in the next phase, where
we perform a second plane sweep rendering, but the depth
range is limited on a per pixel base. Only depth values be-
tween Df − α and Df + α are considered, where Df is the
filtered depth value for a specific pixel and α is a parameter
controlling the tolerance. Depths that are not considered au-
tomatically get an error value ε of infinity. If every error ε
is infinite, the pixel is considered as background. The final
depth of a pixel in the virtual camera image can thus be dif-
ferent than the depth value calculated in the previous phase.

This way, excessive errors in the generated depth values are
eliminated and ghosting artifacts, such as third legs, are ef-
fectively removed. Indeed, these arise due to mismatching
in the plane sweep approach. For example, the left leg and
the right leg of a player are similar, resulting in a third leg
in the virtual camera image. This leg, however, will have a
depth that is very different from the rest of the player, and can
thus be eliminated using depth-selective plane sweeping. Our
method will consider the third leg as background and provide
thus higher quality interpolation results.

While many artifacts can be removed using our method,
some artifacts still remain. Mismatching can also occur be-
tween different players, resulting in ghost players. Therefore,
we also consider the depth of the background to determine
the correct depth values of the players. If the global depth
of a player, determined in the second phase, is very different
from the depth of the background, the whole player is consid-
ered as an artifact and eliminated. That is, only consider the
depths between Df − β and Df + β, where β is a parameter
controlling the tolerance. Because dynamic objects are typi-
cally not flat on the background, β should be relatively high.
This kind of mismatches rarely happen due to segmentation
constraints, but are very obnoxious. Therefore, filtering of
extreme foreground artifacts is required.

7.4. Merging

After the foreground and the background are calculated inde-
pendently, we merge them using the mask obtained from the
foreground interpolation. To generate more pleasant-looking
results, we blend the foreground and background colors slightly
at the borders of the segments.

8. RESULTS

To test the quality of the interpolation results, we recorded
a real soccer game using a linear camera setup. We used 8
Basler avA1600-50gc cameras [3] with 25mm lenses, captur-
ing at a resolution of 1600x1200 at 30 Hz. The parameters
were fixed at 0.01 for α and 0.2 for β.

Figure 6 shows the details of the interpolation result. Fig-
ure 6a shows the result without depth-aware plane sweeping.
Third legs, multiple balls and noise can be perceived. This can



Fig. 6. Results with and without depth-selective plane sweeping. (a) and (b) show the results without depth-selective plane
sweeping. Many artifacts can be seen, such as extra limbs. (c) and (d) show the results with depth-selective plane sweeping,
where the artifacts are effectively removed.

also be seen in the depth map (Figure 6b), where the depth is
noisy. Furthermore, large depth differences between the ac-
tual global depth and the artifacts can be noticed.

These artifacts are effectively removed by using depth-
aware plane sweeping, as can be seen in Figure 6c and Figure
6d. The extra limb artifacts are removed by only considering a
specific range based on the global depth of the group of play-
ers. By using a second interpolation step, instead of using the
filtered depth map directly, we are able to preserve the subtle
depth variations on a dynamic object. The ghosting artifacts
of the ball are disconnected from the real ball or the players
and thus cannot be removed by this method. However, by also
considering the depth of the background and removing depth
values that vary too much, these artifacts are also eliminated
successfully.

Retrieving and rendering the images is near real-time, run-
ning at 15 Hz. The rendering itself runs at 30 Hz.

9. CONCLUSION

We presented an end-to-end system for virtual viewpoint gen-
eration for smooth camera transitions. Our system consists of
separated capturing, storage and rendering parts, easing the
extension and upgrade of individual parts. We demonstrated

our setup using a linear camera setup, recording a real soccer
game. This data is stored on the storage facility, where re-
trieving of the input images and storing of the rendered data
are demonstrated. For the rendering, we demonstrated an ap-
proach with different foreground and background interpola-
tion. The foreground interpolation uses a depth-aware method
to reduce artifacts due to mismatches. The rendering proved
to be pleasant-looking with significantly less artifacts than
more generic approaches. The whole rendering pipeline in
implemented using graphics hardware, resulting in high ren-
dering speed. The system is near real-time, running at 15
frames per second, including network transportation and ren-
dering. The rendering itself runs real-time.

Our system demonstrated to be a good method for free
viewpoint video for smooth camera transition.

10. ACKNOWLEDGMENTS

Patrik Goorts would like to thank the IWT for its PhD spe-
cialization bursary.

We would like to thank EVS, Michael Bastings and Olivier
Barnich for developing and providing the experimental proto-
type for the storage infrastructure.



11. REFERENCES

[1] 3d graphics systems by red bee media, 2001. http:
//redbeemedia.com/html/live-graphic.
html.

[2] Eye vision at the super bowl, 2001. http:
//www.ri.cmu.edu/events/sb35/
tksuperbowl.html.

[3] Basler ava1600-50gc cameras, 2012. http:
//www.baslerweb.com/products/aviator.
html?model=204.

[4] Evs belgium: video equipment and systems, 2012.
http://www.evs.tv.

[5] M. Dumont, S. Rogmans, S. Maesen, and P. Bekaert.
Optimized two-party video chat with restored eye con-
tact using graphics hardware. e-Business and Telecom-
munications, pages 358–372, 2009.

[6] M. Germann, A. Hornung, R. Keiser, R. Ziegler,
S. Würmlin, and M. Gross. Articulated billboards for
video-based rendering, 2010.

[7] P. Goorts, S. Rogmans, and P. Bekaert. Raw camera
image demosaicing using finite impulse response filter-
ing on commodity gpu hardware using cuda. In Pro-
ceedings of the Tenth International Conference on Sig-
nal Processing and Multimedia Applications (SIGMAP
2012). INSTICC, 2012.

[8] Patrik Goorts, Sammy Rogmans, and Philippe Bekaert.
Optimal Data Distribution for Versatile Finite Impulse
Response Filtering on Next-Generation Graphics Hard-
ware using CUDA . In Proc. of The Fifteenth Intl. Con-
ference on Parallel and Distributed Systems, pages 300–
307, 2009.

[9] O. Grau, A. Hilton, J. Kilner, G. Miller, T. Sargeant, and
J. Starck. A Free-Viewpoint Video System for Visual-
ization of Sport Scenes. SMPTE motion imaging jour-
nal, 116(5/6):213, 2007.

[10] K. Hayashi and H. Saito. Synthesizing Free-Viewpoing
Images from Multiple View Videos in Soccer Stadium.
In Intl. Conf. on Computer Graphics, Imaging and Visu-
alisation, pages 220–225, 2006.

[11] A. Hilton, J.Y. Guillemaut, J. Kilner, O. Grau, and
G. Thomas. 3d-tv production from conventional cam-
eras for sports broadcast. IEEE Transactions on Broad-
casting, (99):1–1, 2011.

[12] N. Inamoto and H. Saito. Virtual viewpoint replay for a
soccer match by view interpolation from multiple cam-
eras. IEEE Transactions on Multimedia, 9(6):1155–
1166, 2007.

[13] T. Kanade, P. Rander, and PJ Narayanan. Virtualized re-
ality: Constructing virtual worlds from real scenes. Mul-
timedia, IEEE, 4(1):34–47, 1997.

[14] K.N. Kutulakos and S.M. Seitz. A theory of shape
by space carving. Intl. Journal of Computer Vision,
38(3):199–218, 2000.

[15] D.G. Lowe. Distinctive image features from scale-
invariant keypoints. Intl. journal of computer vision,
60(2):91–110, 2004.

[16] H.S. Malvar, L. He, and R. Cutler. High-quality lin-
ear interpolation for demosaicing of bayer-patterned
color images. In Acoustics, Speech, and Signal Pro-
cessing, 2004. Proceedings.(ICASSP’04). IEEE Inter-
national Conference on, volume 3, pages 485–488.
IEEE, 2004.

[17] W. Matusik, C. Buehler, R. Raskar, S.J. Gortler, and
L. McMillan. Image-based visual hulls, 2000.

[18] G. Miller, A. Hilton, and J. Starck. Interactive free-
viewpoint video, 2005.

[19] Y. Ohta, I. Kitahara, Y. Kameda, H. Ishikawa, and
T. Koyama. Live 3D Video in Soccer Stadium. Intl.
Journal of Computer Vision, 75(1):173–187, 2007.

[20] S. Rogmans, M. Dumont, T. Cuypers, G. Lafruit, and
P. Bekaert. Complexity reduction of real-time depth
scanning on graphics hardware, 2009.

[21] S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, and
R. Szeliski. A comparison and evaluation of multi-view
stereo reconstruction algorithms, 2006.

[22] S.M. Seitz and C.R. Dyer. Photorealistic scene recon-
struction by voxel coloring. Intl. Journal of Computer
Vision, 35(2):151–173, 1999.

[23] T. Svoboda, D. Martinec, and T. Pajdla. A conve-
nient multicamera self-calibration for virtual environ-
ments. Presence: Teleoperators & Virtual Environ-
ments, 14(4):407–422, 2005.

[24] R. Yang, M. Pollefeys, H. Yang, and G. Welch. A unified
approach to real-time, multi-resolution, multi-baseline
2d view synthesis and 3d depth estimation using com-
modity graphics hardware. Intl. Journal of Image and
Graphics, 4(4):627–651, 2004.

[25] R. Yang and G. Welch. Fast image segmentation and
smoothing using commodity graphics hardware. Jour-
nal of graphics tools, 7(4):91–100, 2002.

[26] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski. High-quality video view interpolation using
a layered representation, 2004.

http://redbeemedia.com/html/live-graphic.html
http://redbeemedia.com/html/live-graphic.html
http://redbeemedia.com/html/live-graphic.html
http://www.ri.cmu.edu/events/sb35/tksuperbowl.html
http://www.ri.cmu.edu/events/sb35/tksuperbowl.html
http://www.ri.cmu.edu/events/sb35/tksuperbowl.html
http://www.baslerweb.com/products/aviator.html?model=204
http://www.baslerweb.com/products/aviator.html?model=204
http://www.baslerweb.com/products/aviator.html?model=204
http://www.evs.tv

