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Abstract. In this article we compare two competing approaches to ecological
modelling using test data. The first approach is based on the “traditional” method
of Ordinary Least Squares (OLS), assuming constancy of parameters across dis-
aggregated spatial units (spatial homogeneity). The second (new) approach is
based on the method of Generalised Cross-Entropy (GCE), assuming varying
parameters (spatial heterogeneity). The latter approach is designated as entropy-
based “distributionally weighted regression” (DWR). The two approaches are
tested in a real-world application, using data on per-capita GDP for the 17 regions
and some covariates for the 50 provinces of Spain. Specifically, the performances
of the two approaches are assessed by examining their capability in tracking the
actual per-capita GDP data for the provinces (while treating them as if they were
not observed by the econometrician), and in showing evidence of spatial hetero-
geneity. Our findings indicate that the GCE varying-parameter approach outper-
forms the OLS approach in terms of predictive power. Specifically, we find that the
GCE predictions make efficient use of the lower-level information that is available.
In addition, it is shown that entropy-based DWR has some potential as a useful
technique for investigating spatially heterogeneous relationships at the lower level
of analysis that might otherwise be overlooked.
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1 Introduction

Situations where the only available data are aggregated at a level other than the
level of interest are quite common. This is the typical setting for “ecological
inference” or EI (e.g., Freedman et al. 1998; Schuessler 1999) or “cross-level
inference” (e.g., Achen and Shively 1995; Cho 2001), which can be roughly
described as making inferences about individual behaviour drawn from data about
aggregates. Clearly, observations at an aggregated level of analysis do not neces-
sarily provide useful information about lower levels of analysis, particularly when
spatial heterogeneity (non-stationarity) is present.

In his seminal paper, Robinson (1950) introduced the term “ecological corre-
lation” in a situation where the unit of analysis is a group or an aggregate of
people, which may be entirely different from the correlation at the individual or
micro-level. This is a well-known methodological problem, designated by soci-
ologists as the “ecological fallacy” (King 1997). Basically, the ecological fallacy
consists of thinking that relationships observed for groups necessarily hold for
individuals.1

One perspective on the EI problem is that it may be impossible to solve,
because the properties of the predicted values remain unverifiable. Given that the
micro-data we are interested in are not available, the accuracy of any predicted
value simply cannot be verified. Accordingly, most efforts to recover disaggregate
information from aggregate data generally result in “ill-posed” or “under-
determined” inverse problems (because there are more unknowns than data
points), which yield a multitude of feasible solutions, due to the lack of sufficient
information (Judge et al. 2004). In other words, many different possible relation-
ships at the individual or subgroup level can generate the same observations at the
aggregate or group level (King 1997; Schuessler 1999).

Despite such inauspicious conditions, some “real-world” applications require
the use of EI to recover disaggregate information from aggregate data. For that
very purpose, several solutions have been formulated to overcome the main
obstacle of EI, the problem of confounding and aggregation bias, which is said to
occur when the parameters in a regression model are correlated with the regres-
sors. In this sense, EI can be seen as an example of spatial heterogeneity – that is,
the phenomenon whereby a specific relationship (e.g., its parameters, functional
specification, error specification, and so on) is not constant across spatial obser-
vations (Anselin 1990).

1 EI is an “old” and familiar methodological problem, known to geographers as the “modifiable areal
unit problem” (Openshaw and Taylor 1979; Arbia 1989), to earth scientists as the “change-of-support
problem” (Chilès and Delfiner 1999), and to statisticians as “small-area estimation” (Rao 2003).
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The purpose of the present article is to propose a new approach to EI, based
on Generalised Cross-Entropy (GCE), which assumes varying individual or
subgroup-specific parameters. Specifically, we compare the performances of two
alternative approaches to EI. The first one is the traditional approach based on
Ordinary Least Squares (OLS), assuming constancy of parameters across the
disaggregated spatial units (spatial homogeneity) – an assumption that is rarely
tenable, since the aggregation process usually generates macro-level observations
across which the parameters describing individuals may vary (Cho 2001). The
second one is GCE, which does not take the “constancy assumption”, assuming
spatial heterogeneity. The two approaches will be compared in two real-world
applications or cases, using a testing procedure.

The remainder of the article is organised as follows. Section 2 introduces the
theoretical framework of EI or cross-level regressions as a spatial-heterogeneity
problem. Section 3 presents two alternative approaches to ecological modelling:
the “classical” OLS estimation, and the new GCE estimation. In Section 4, we test
the performance of these two approaches by applying them to a “real-world” data
set for Spain. The last section provides concluding remarks and outlines some
directions for further research.

2 The ecological inference problem

EI is the process of drawing conclusions about individual or subgroup-level
behaviour from aggregate or group-level (historically labelled “ecological”) data,
when no individual or subgroup data are available. Ecological and micro-area
correlations are certainly not equal. This phenomenon should question the –
possibly fallacious – results of studies in which conclusions on micro-area behav-
iour has been drawn from grouped (macro or meso-area) data. The “ecological
fallacy” or “ecological bias” occurs when analysis based on grouped data lead to
conclusions different from those based on micro-data. The root of the problem lies
on the so-called “aggregation bias” due to the differential distribution of confound-
ing variables created by grouping (Morganstern 1982).

Although the term EI is typically used in social sciences, it is isomorphic to
the “modifiable areal unit problem” (MAUP) in geography (King 1997; Gotway
and Young 2004). The MAUP occurs when inference based on data aggregated
to a particular set of geographical regions changes if the same data are aggre-
gated to a different set of geographical regions (Openshaw and Taylor 1979;
Arbia 1989). The MAUP involves actually two inter-related problems: (1) the
scale or aggregation effect, which produces different results and inferences when
data are grouped into increasingly larger areal units, and (2) the grouping or
zoning effect, which reflects the variability in results due to alternative forma-
tions of the areal units. Both problems are closely connected to the aggregation
bias in EI.

The aggregation bias (EI), or the scale/aggregation effect (MAUP), consists
basically in a smoothing effect, which is similar to that of a spatial filter that results
from the averaging outcome of aggregation. In effect, as heterogeneity among
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units decreases through aggregation, the uniqueness of each unit and the dissimi-
larity among units is reduced. As Openshaw (1984) rightly pointed out, “(. . .)
whether the ecological fallacy problem exists or not depends on the nature of the
aggregation. A completely homogeneous grouping system would be free of this
problem”. Besides, spatial autocorrelation can be another mitigation factor when
it is positive (variability is moderated in this case), but exacerbated when it is
negative (e.g., Arbia 1986; Cressie 1993a).

The aggregation bias or scale/aggregation effect can be seen as an example of
spatial heterogeneity, where the parameters in the ecological regression model are
correlated with the regressors. In this case, the standard estimation techniques,
such as OLS, are not valid. Suppose one is investigating the relationship between
household income and education in a sub-region level using regional data. The
data exhibit no aggregation bias if this relationship is constant, that is, the same in
every region. Freedman et al. (1991) call this condition the “constancy assump-
tion”. In this context, the constancy assumption means that a determined educa-
tional level tends to provide households with the same income regardless of the
region of residence. If this assumption holds, then aggregate (regional) data analy-
sis is straightforward to estimate sub-region data using, for instance, OLS. Param-
eters that are constant will not be correlated with any set of regressors, and so
cross-level inferences are simple (as firstly proposed by Goodman 1953). A strong
assumption underlying this model, then, is that people with a determined educa-
tional level have the same income regardless of which region they live in. In real
data, this assumption is generally false as, for example, salaries are not the same
everywhere.

Consequently, when the aggregation bias is present in an EI, it is a typical case
of extreme spatial heterogeneity or incidental parameter problem, that is a differ-
ent parameter for each spatial unit (Anselin and Cho 2002). In this case, a
“solution” is to impose spatial or geographical structure on the nature of the
variation of the individual coefficients across observations. The typical spatial
heterogeneity specifications are only a partial solution (Anselin 1990, 2000), in the
sense that the parameters to be estimated are not incidental, and they must to be
constrained to vary either continuously as a function of a small set of “hyperpa-
rameters” (e.g., trend-surface and expansion models, Bayesian hierarchical mod-
elling) or in a discrete fashion by being constant across (spatial) subsets of the
observations (spatial ANOVA and spatial regimes model).

Recently, new approaches have been proposed to overcome aggregation bias in
EI, such as the Geographically Weighted Regression approach or GWR (Calvo and
Escobar 2003). GWR is a relatively simple technique that extends the traditional
regression framework by allowing local rather than global parameters to be esti-
mated (Fotheringham and Brunsdon 1999). In the calibration of this model, one
different parameter is estimated for each observation for the relationship between
each independent variable and the dependent variable. Hence, this relationship is
not assumed to be constant across the study region. In GWR, an observation is
weighted in accordance with its proximity to point i, so that the weighting of an
observation varies with i. Data from observations close to i are weighted more than
data from observations further away.
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3 Two alternative approaches to ecological modelling

In this section, we present two approaches to EI: (1) the “ecological (OLS)
regression”, assuming homogeneity across space, and (2) the entropy-based “Dis-
tributionally Weighted Regression” (DWR) technique, which is considered here as
a way to at least partly solve the problem of aggregation bias, by incorporating
spatial heterogeneity (varying parameters) in a hierarchical or multilevel model.
Also, the method of Generalized Cross-Entropy (GCE) will be described.

3.1 Ecological inference assuming homogeneity across space

A frequently used model in EI is that of a simple linear “ecological regression”,
which can be estimated by Ordinary Least Squares (OLS). Specifically, one may
run a simple OLS regression of yi on a set of covariates xi, both defined at the group
(regional) level, of the form:

y x u i Ni k i k i
k

K

= + + =
=

∑α β , , , ,1
1

. . . , (1)

where yi is an observed (aggregate) indicator, say, GDP per capita, for region i, xi,k

(k = 1, . . . , K) are explanatory variables for region i, and ui are error terms that are
generally assumed to be independently and normally distributed with zero mean
and common variance σu

2.
Then, the per-capita GDP indicator at the sub-regional level can be predicted

by taking the corresponding (available) covariates zij,k (=xij,k) at the level of the
subgroups (sub-regions) j = 1, . . . , Mi, contained in the larger region i (i.e., each
region i comprises a total of Mi sub-regions):

ˆ ˆ ˆ . . . ; . . .y z i N j Mij k ij k i
k

K

= + = =
=

∑α β , , , , , , ,1 1
1

(2)

where ŷij is the predicted per-capita income indicator for sub-region j in region i,
and zij,k (k = 1, . . . , K) are explanatory variables for sub-region j in region i.

However, individual behaviour can only be inferred from aggregate data under
very restrictive assumptions (Goodman 1953, 1959). Specifically, a problem of
“local” estimation bias may arise due to a false assumption of constancy of the
parameters across the spatial units (spatial homogeneity) within each region i (e.g.,
Cho 2001), because of the non-zero correlation that is assumed to exist between
the (unobserved) yij and the associated uij (e.g., Holt et al. 1996). This is the
problem usually referred to as the “ecological fallacy” (an unfortunate effect of
aggregation and confounding) mentioned above.
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3.2 Ecological inference assuming heterogeneity across space

Varying-parameter model. In developing our alternative approach to ecological
inference, we take Bidani and Ravallion (1997) as a point of departure. In their
paper, they are dealing with the problem of decomposing aggregate (health)
indicators using a random-coefficients model in which the aggregates are
regressed on the population distribution by sub-groups, taking into account the
statistical properties of the error terms. Their approach allows testing possible
determinants of the variation in the underlying subgroup indicators. More pre-
cisely, they are dealing with the problem of retrieving indicators for various
sub-groups of a population. The latent sub-group values are treated as random
coefficients in a regression of the observed aggregates on the distributional data.

To illustrate their approach, consider the following identity in which the index
i = 1, . . . , N denotes the regions, and index j = 1, . . . , Mi denotes the sub-regions
in each of the regions i:

y y i Ni ij ij
j

Mi

= =
=

∑ η , , ,1
1

. . . . (3)

In other words, the group i values are treated as a weighted arithmetic mean of the
latent sub-group values j in group i, where yi is the aggregate per-capita indicator
for region i, yij is the per-capita indicator of the j-th sub-region in region i, hij is the
share of the population of sub-region j in the total population of region i, with
0 � hij � 1, for all i, j, and Σ j

M
ij

i
= =1 1η , for all i. Obviously, this model implies a

weighted regression, capturing distributional “effects” by using data on population
shares.

The sub-regional indicators yij are not observed, whereas the yi’s and hij’s are.
Now, if we can observe covariates for each sub-region j in region i, and possibly
also covariates for each region i, we attain:

y z x u i N j Mij ij ij k ij k ij h i h ij i
h

H

= + + + = =
=

∑α β γ, , , , , , , , ,1 1
1

. . . ; . . .
kk

K

=
∑

1

, (4)

where zij,k (k = 1, . . . , K) are the covariates observed at the level of sub-region j
within region i, and xi,h (h = 1, . . . , H) are the covariates observed only at the level
of region i.

On substituting (4) into (3), yields the following regression equation:

y z x ii ij ij k ij k ij h i h
h

H

k

K

j

M

ij i

i

= + +⎛
⎝⎜

⎞
⎠⎟ + =

===
∑∑∑ α β γ η ε, , , , ,

111

11, , ,. . . N (5)
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where ε ηi j
M

ij ij
i u= =Σ 1 is a composite error term, which is heteroskedastic. Essen-

tially, this model implies some kind of weighted regression, capturing “distribu-
tional effects” by using data on population shares for each region.

Next, using the regression in (5), we can predict the unobserved (latent)
sub-regional indicators as:

ˆ ˆ ˆ ˆ . . . ; .y z x i N jij ij ij k ij k ij h i h
h

H

k

K

= + + = =
==

∑∑α β γ, , , , , , , ,
11

1 1 .. . ., Mi (6)

In contrast with Bidani and Ravallion (1997), though, we define yi now as the
weighted geometric mean of the yij’s within region i:

y y i Ni ij
j

M
ij

i

= ( ) =
=

∏ η
, . . .

1

1, , , (7)

or

ln ln , . . . .y y i Ni ij ij
j

Mi

= =
=

∑η 1
1

, , (8)

Furthermore, the latent sub-group values are specified in a multiplicative form,
which is consistent with a Cobb-Douglas type of production function:

y z x e i N jij ij ij k i h
h

H

k

K
ij k ij h ij= = =

==
∏∏α β γ θ

, ,
, , , , , ,

11

1 1. . . ; . . . ,, Mi . (9)

Then, on substituting (9) into (8), we arrive at:

ln ln ln lny z xi ij ij k ij k ij h i h ij
h

H

k

K

ij= + + +⎛
⎝⎜

⎞
⎠⎟==

∑∑α β γ θ η, , , ,
11

,, , ,i N
j

Mi

=
=

∑ 1
1

. . . . (10)

Two remarks on Equation (10) are in order: (i) the model assumes unit-specific
coefficients for the sub-regions, thereby allowing for (continuous) parameter
variation; (ii) we use a parametric specification of the unobserved effects, through
the qij’s, which can be positive or negative.

Although this model is clearly underdetermined (i.e., the number of unknown
parameters is larger than the number of observations), it can be estimated by using
the “non-classical” maximum-entropy method, which will be discussed later in
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this article. The unobserved (latent) sub-regional per-capita indicators can be
predicted as:

ˆ ˆ . . . ;
ˆ ˆ ˆ

y z x e i N jij ij ij k i h
h

H

k

K
ij k ij h ij= = =

==
∏∏α β γ θ

, ,
, , , , ,

11

1 11, ,. . . .Mi (11)

Although the model we propose belongs to a class of other models that are
particularly designed for estimating varying parameters,2 our approach is remark-
ably different at least in two major respects. Firstly, the hierarchical (two-level)
structure of the model allows to usefully exploiting lower-level information for
modelling relationships at the sub-regional level. Secondly, the model adopts a
parametric specification of spatial heterogeneity, which means that each indi-
vidual coefficient at the sub-regional level is treated as a fixed or unique
(unknown) value.

Generalized cross-entropy estimation. Although the regression in (10) can be
treated as a “classical” random-coefficients models (Bidani and Ravallion 1997)
and can be estimated by using, say, Generalized Least Squares (GLS), we prefer to
use the Generalized Cross-Entropy (GCE) method, which is based on the well-
known Kullback-Leibler entropy criterion (Golan et al. 1996).

GCE has some useful advantages over the classical estimation techniques,
where the most important advantage, in the present context, is that it allows to
reformulate the fundamentally “ill-posed” or “under-determined” problem into a
“well-posed” problem, given that the number of parameters to be estimated,
(2 + K + H)M, is larger than the number of observations available (N on the
dependent variable, yi, and M and N on the covariates zij,k and xi,h, respectively).
This, in turn, allows for the estimation of each individual parameter directly, rather
than “predicting” them, as is usually done in a classical random-coefficients
modelling framework.

The practical implementation of the GCE method requires that the parameters
of the model in Equation (10) are specified as linear combinations of some
predetermined and discrete support values and unknown probabilities (weights).
Furthermore, the estimation problem is converted into a constrained minimisation
problem, where the objective function, specified in the Equation (12) below
consists of the joint cross-entropy.

Specifically, we define unknown probability (weight) vectors pα,ij =
p pij ij Q, ,, ,1

α α. . .[ ]′, pβ
β β

, , ,, ,ij ij ij Qp p= [ ]′1 . . . , pγ
γ γ

, , ,, ,ij ij ij Qp p= [ ]′1 . . . , and pθ
θ

, , , ,ij ijp= [ 1 . . .

2 Other noticeable approaches in EI for coping with varying parameters are, among others, the
expansion method (e.g., Cassetti and Jones 1992), the method of spatial adaptive filtering (e.g., Gorr
and Olligschlaeger 1994), (mixed) geographically weighted regression (e.g., Brunsdon et al. 1996;
Calvo and Escobar 2003; Mei et al. 2004), switching regression (Cho 2001), random-coefficients
modelling (e.g., King 1997; Greene 2004), or multi-level modelling (e.g., Goldstein 1987). Other
solutions to this same problem are the geostatistics “kriging” methods (Cressie 1993b, Chapter 3), the
multi-scale and hierarchical modelling (e.g., Goldstein 1987; for a recent review, see Gotway and
Young 2002), as well as some model-dependent small area estimation methods (Ghosh 2001; Rao
2003).
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pij R,
θ ]′, with Q, R � 2, and choose the corresponding (common) support vectors

sα
α α= [ ]′s sQ1 , ,. . . , sβ

β β= [ ]′s sQ1 , ,. . . , sγ
γ γ= [ ]′s sQ1 , ,. . . , and sθ

θ θ= [ ]′s sR1 , ,. . . , for
the parameters aij, bij, gij, and qij, respectively, where α α αij ij= ′s p , , β β βij ij= ′s p , ,
γ γ γij ij= ′s p , , and θ θ θij ij= ′s p , . In addition, prior information is included through
specifying the prior probability vectors p̃a,ij, p̃b,ij, p̃g,ij, and p̃q,ij, reflecting subjective
information, informed “guesses”, or any other sample and pre-sample information.

After the appropriate re-parameterisation, the complete GCE optimization
problem for the ecological model, corresponding to Equation (10), can be formu-
lated as:

Min ,
,

,

,

p
p

p

p

p
p

CE ij
ij

ijj

M

i

N

ij

i

= ( )′ ⎛
⎝⎜

⎞
⎠⎟

+

( )′
==

∑∑ α
α

α

β
β

ln

ln

�11

,,

,
,

,

,

ij

ij
ij

ij

ijj

M

i

N

j

i

� �p
p

p

pβ
γ

γ

γ
γ

⎛
⎝⎜

⎞
⎠⎟

+ ( )′ ⎛
⎝⎜

⎞
⎠⎟===

∑∑ ln
11111

11

M

i

N

ij
ij

ijj

M

i

N

i

i

∑∑

∑∑

=

==

+

( )′ ⎛
⎝⎜

⎞
⎠⎟

p
p

pθ
θ

θ
,

,

,

ln
�

(12)

subject to:

ln ln lny z xi ij ij ij ij k
k

K

ij i h= ′ + ′( ) + ′( ) + ′
=

∑η α α β β γ γs p s p s p, , , , ,
1

ss pθ θ , ,ij
h

H

j

M

i
i

==
∑∑ ⎡

⎣⎢
⎤
⎦⎥

∀
11

(13)

p p p p i jij q ij q
q

Q

q

Q

ij q
q

Q

ij r
r

R

, , , , ,α β γ θ= = = = ∀
== = =

∑∑ ∑ ∑
11 1 1

1, (14)

� � � �p p p p i jij q ij q
q

Q

q

Q

ij q
q

Q

ij r
r

R

, , , , ,α β γ θ= = = = ∀
== = =

∑∑ ∑ ∑
11 1 1

1 . (15)

Equation (12) denotes the cross-entropy objective, which has to be minimised
subject to the data-consistency constraints in (13). The “normalisation” constraints
in (14) and (15) ensure that all unknown and prior probabilities, respectively, add
up to one.

The principle of minimum CE means that, given the various constraints, we are
choosing the estimates of the unknown pa,ij, pb,ij, pg,ij, and pq,ij that can be discrimi-
nated from the priors p̃a,ij, p̃b,ij, p̃g,ij, and p̃q,ij with a minimum of difference (Golan
et al. 1996, p. 11). In other words, we are looking for the “least informative” (i.e.,
most close to the uniform) probability distributions that are consistent with the
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data and other constraints, and with the prior information reflected in the support
ranges and the prior probabilities.

From the solution of this optimisation programme, the varying coefficients and
the residual terms can be calculated as follows: ˆ ˆα α αij ij= ′s p , , ˆ ˆβ β βij ij= ′s p ,

,
ˆ ˆγ γ γij ij= ′s p , , and ˆ ˆθ θ θij ij= ′s p , . Hence, a total of (1 + K + H)MQ + MR unknown

probabilities have to be estimated with only N observations on the dependent
variable (yi).

4 Real-world application

In this section, the entropy-based DWR technique will be applied to regional and
sub-regional data on per-capita GDP for Spain, for the year 2000. Specifically, our
intention is to predict GDP per capita at the (sub-regional) level of the 50 prov-
inces, assuming that GDP data (used in measuring the dependent variable) are only
available at the (regional) level of the 17 autonomous communities.

4.1 Definition of variables and data sources

A relationship is posited between GDP per capita (gdp), on the one hand, and the
primary inputs labour (lab) and capital (cap), corrected for R&D (r&d). The
variable lab is defined as the employment rate, while cap is defined as the real
capital stock (base year 1990) per capita, and r&d is defined as R&D expen-
ditures per capita. In addition, we take into account the existence of spatial
externalities or agglomeration economies (i.e., scale/localisation and scope/
urbanisation economies),3 which are assumed to be driven by the population
density (pop) in each of the provinces. For convenience, we treat population
agglomeration as an exogenous source of spatial externalities,4 and the effects of
r&d and pop on GDP per capita are assumed to be Hicks neutral (see also, e.g.,
Henderson 2003).

Data on labour, capital, and population density are available at the sub-regional
(province) level, whereas data on R&D expenditures are available only at the
regional (autonomous community) level. This disadvantage is dealt with by
assuming that R&D expenditures per capita are identical in all provinces within
the same community. More details on the variables are provided in Table 1.

3 A better but longer name would be net agglomeration economies. This terminology would make
explicit that the effect on GDP per capita depends on (positive) externalities, on the one hand, and
congestion, on the other.

4 This contrasts with Ciccone (2002, p. 214), who treated agglomeration effects as endogenous and,
accordingly, used an instrument for regional employment density. However, here it can reasonably be
expected that correcting for endogeneity (due, for example, to migration from relatively “poor” (low
per-capita GDP) provinces to relatively “rich” (high per-capita GDP) provinces) would only have a
minor or negligible effect on the estimation results, given the fact that the population-density variable
(pop) is quite persistent or “sticky” over time. Investigating this potential endogeneity problem (e.g., in
a dynamic panel-data framework) is also far beyond the scope of the present article.
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We aggregate the per-capita GDP data at the level of the 17 autonomous
communities (regions), deliberately “losing” information at the level of the 50
provinces (sub-regions), and then use the two proposed methods (OLS versus
GCE) to make ecological inferences about GDP per capita at the level of the
provinces. We present results for the ecological OLS model (“Eco-OLS”) corre-
sponding to Equation (1) and the ecological GCE model (“Eco-GCE”) corre-
sponding to Equation (10).

4.2 Ecological OLS model

The linear regression model, designated as the “Eco-OLS” model, is given by:

ln ln ln ln ln & .gdp lab cap pop r d ui i i i i i= + + + + +α β β β γ1 2 3 (16)

The results of the OLS estimation are reported in column [1] of Table 2. Overall,
the OLS results are quite satisfactory. All the slope coefficients have a positive sign
(consistent with prior expectations) and all of them (but one) are statistically
significant at the 10% level. However, the OLS model assumes “fixed” coefficients
and, as a result, the estimates may suffer from aggregation bias. In addition, the
estimated coefficients do not reveal any variation in the relationship across the
provinces.

Interestingly, though, the value for the estimated pop coefficient is equal to
0.041 (i.e., estimate of the agglomeration effects is 4.1%), which implies that a
doubling of the population density would lead to an increase in per-capita GDP of
roughly 4.0%, ceteris paribus. This value is very close to the results (around 5.0%)
obtained by Ciccone and Hall (1996) and Ciccone (2002), for the U.S. counties
and some European Nuts 3-regions, respectively.

4.3 Ecological GCE model

The varying-coefficients “Eco-GCE” model is as follows:

ln ln ln lngdp lab cap popi ij ij ij ij ij ij ij
j

Mi

= + + +( +
=

∑ α β β β

γ

1 2 3
1

, , ,

iij i ij ijr d iln & .+ ) ∀θ η
(17)

For implementing GCE, we have to choose appropriate support vectors for the
unknown parameters. Given the uncertainty concerning the values of the esti-
mates, we choose sa = sb = sg = (-100, -50, -10, 0, 10, 50, 100)′, with Q = 7, and
sq = (-100, 100)′, with R = 2. Although somewhat arbitrarily defined, these
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support ranges are expected to be wide enough to include all “possible” values. In
addition, as prior information we use the obtained OLS estimates at the level of
the autonomous communities (regions). For example, ′ = =s pα α α, OLSij

ˆ .4 106 (see
column [1] in Table 2), and so on.

Column [2] of Table 2 shows the results from the GCE-based model. Specifi-
cally, the mean values of the 50 estimated varying parameters, along with the
estimated standard deviations are reported.5 It should be noted that the GCE
procedure ensures (by construction) that the means of the individual coefficients
are equal to the corresponding OLS estimates reported in column [1] of Table 2.

5 The GCE method is implemented by using the GAMS software package (CONOPT3 solver).

Table 2. Estimation results from OLS and GCE with standard errors in
parenthesesa

Eco-OLS
[1]

Eco-GCE
[2]

constant 4.106 (0.175)*** 4.106 [0.006]
Min. 4.082
Max. 4.120
C.V.% 0.1%

lab (employment rate) 0.456 (0.282) 0.456 [0.006]
Min. 0.443
Max. 0.478
C.V.% 1.3%

cap (capital stock) 0.748 (0.156)*** 0.748 [0.008]
Min. 0.726
Max. 0.779
C.V.% 1.1%

r&d (R&D expenditures) 0.074 (0.035)* 0.074 [0.002]
Min. 0.062
Max. 0.080
C.V.% 3.2%

pop (population density) 0.041 (0.019)** 0.042 [0.010]
Min. 0.021
Max. 0.080
C.V.% 23.0%

θ̂ij
(unobserved effects) 0.00001 [0.00219]

Min. -0.00839
Max. 0.00448

R2 0.936
SER 0.061
N 17 17 (50)

a The symbols *, **, *** indicate significance at the 10, 5, and 1% levels,
respectively. In column [2], the standard deviations of the varying param-
eter estimates are reported between square brackets. SER is standard error
of regression.
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From the reported standard deviations (coefficients of variation) in column [2]
of Table 2, it can be seen that the coefficients associated with lab, cap, and r&d are
quite stable across the provinces, whereas the coefficients associated with pop
display a (relatively) wide variation. In other words, spatial externalities seem to
be markedly different across the provinces. Finally, the estimated unobserved
effects are, captured by the estimated qij’s, turn out to be negligible in size (i.e., the
minimum and maximum values are -0.008 and 0.004, respectively), and, thus,
hardly affecting the predicted ŷij’s.

5 Predicting province level GDP per capita

In order to evaluate the predictive performances of the EI models, we examine
their ability of “tracking” the actual GDP per capita data for the Spanish provinces,
which have not been used in the estimation process.

Traditional measures of prediction accuracy are presented in Table 3. The
statistics reported are the pseudo-R2, the mean absolute percentage error (MAPE),
and the root mean squared error (RMSE). The pseudo-R2 is simply defined as the
squared correlation between the actual values, yij, and the predicted values, ŷij. The
RMSE is defined as:

RMSE
M

y y
i i

ij ij
j

M

i

N i

= −( )
==

∑∑1 2

11Σ
ˆ , (18)

while the MAPE is defined as:

MAPE
M

y y y
i i

ij ij ij
j

M

i

N i

= − ×
==

∑∑1
100

11Σ
ˆ . (19)

By all measures, the GCE-based predictions are more accurate than the OLS-based
predictions, in terms of pseudo-R2, MAPE, and RMSE. Most noticeable is the 1.6%
point reduction in the MAPE compared to OLS.

Table 3. Prediction accuracy measures

Eco-OLS
[1]

Eco-GCE
[2]

Pseudo-R2 0.834 0.884
RMSE 1.217 1.008
MAPE 7.1% 5.5%
Spearman’s rho 0.914 0.942
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Finally, we present Spearman’s (rho) rank correlations, to test the correspon-
dence in the rankings between the predicted and observed values at the level of
the province. Clearly, the GCE-based predictions are more closely matching the
ranking of the observed values.

6 Spatial heterogeneity

Since the OLS model of EI assumes “fixed” parameters, the estimated coefficients
do not provide any information about possible variations across the spatial units
(regions and/or provinces). This is a major drawback of the OLS model in the
context of EI. On the other hand, the GCE model is designed to provide some
evidence of spatial heterogeneity; that is, to produce maps of coefficient variation
over the provinces within each autonomous community.

One limitation of the present analysis, however, is that without direct obser-
vations on the individual parameters, there is no way to verify the spatial
heterogeneity.

6.1 Measures of dispersion

The results from GCE presented in column [2] of Table 2 are indicative of the
variability of the coefficients across spatial units. The dispersion is measured as the
standard deviation and the coefficient of variation.

Obviously, the estimated coefficients of the pop variable exhibit a much wider
dispersion than the other coefficients, with coefficients of variation of 23.0%. It is
not clear, though, why this is so. On the other hand, our results are broadly in line
with Ciccone’s (2002) findings for some European countries, where the estimated
agglomeration (density) effect ranges from 4.8% for Germany to 8.0% for the UK.
However, given the fact that we use a total of 50 observations, taken at a more
disaggregated geographical level, we find a wider dispersion of the agglomeration
effects across Spanish provinces ranging from a minimum of only 2.1% (Las
Palmas) to a maximum of 8.0% (Valencia), with an average value of 4.2%.

In order to provide a more informative picture of the variations across the pro-
vinces, Figure 1 presents the kernel density plot for the distribution of the esti-
mated, unit-specific pop coefficients.6 A cursory look at this plot reveals the
existence of (at least) four distinct segments or “clusters” in the distribution of
the pop coefficients. Furthermore, the clusters can be characterised by estimating
a four-component finite normal-mixture model (see also, e.g., Tsionas 2000).
The means and standard deviations for these four clusters are shown in Table 4.
They reveal no or only minimal overlap. A simple analysis of variance (one-way
ANOVA) further indicates that the mean coefficients are significantly different
across the four clusters (F3.46 = 81.65, with p � 0.0001). Thus, the variability in the

6 The kernel density is calculated using a Gaussian kernel with an adaptive bandwidth parameter set
as in Silverman (1986).
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workings of spatial externalities cannot reasonably be dismissed. Finally, it can be
seen that the distribution is strongly (positively) skewed, with only three provinces
situated at the right tail. In other words, the agglomeration effects seem to be quite
similar in most of the Spanish provinces (4.0%, on average), whereas they are very
high (6.7%, on average) in only three provinces.

6.2 Mapping spatial heterogeneity

Differences in the effect of spatial externalities may arise from a large number of
factors. They can differ because of differences in the industry mix across prov-
inces, such as services (in densely populated provinces) vs. manufacturing (in less
densely populated provinces), “old” vs. “new” sectors of the economy at varying
stages in the product life-cycle, small vs. large firms (varying firm-size distribu-
tions), and so on. Also, spatial externalities can be of a different type across
provinces: (i) localisation economies, (ii) urbanisation economies, and (iii)
“activity-complex” economies, originating from strong input-output linkages (Parr
2002).

While a thorough analysis (explanation) of these differences is beyond the
scope of the present article, it is interesting to look at the geographical distribution

0.00
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0.04
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0.08

0.10

0.12

0.00 0.100.080.060.040.02

Fig. 1. Kernel density of estimated agglomeration effects from GCE (individual pop coefficients)

Table 4. Means and standard deviations for the four identified clusters of pop coefficients

Clusters
c

Means
mc

Standard deviations
sc

Probabilities
pc

Number of provinces
nc

1 0.030 0.006 0.164 8
2 0.038 0.002 0.424 21
3 0.047 0.003 0.362 18
4 0.067 0.011 0.050 3

Total 0.042 0.010 1.000 50
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of the estimated agglomeration effects as shown in Figure 2. From this map it can
be seen that the effects of spatial externalities are the highest in: (i) the provinces
of the Valencian Community and Murcia (east), Catalonia (north-east), which are
areas with high-tech industries and services (mainly urbanisation and/or “activity-
complex” economies), and (ii) the provinces of Castile-La Mancha (south/east of
Madrid) and Extremadura (west), which are predominantly rural (farm-based)
areas, benefiting to some extent from the urban sprawl of Madrid, and (iii) Galicia
and Asturias (north-west), which are areas with traditional, heavy industries
(mainly localisation economies). The leading position of Valencia is consistent
with earlier observations (OECD 2000) of the existence of “local pockets” in many
countries, exhibiting extremely high levels of entrepreneurial activity and benefit-
ing from strong “information spillovers” (e.g., Valencia in Spain, Arezzo and
Modena in Italy, Nüremberg in Germany, and so on). The relatively strong effect
of spatial externalities in the rural provinces of (ii) may be attributable to the
absence of (negative) congestion effects in these sparsely populated areas. The
same can be said about Valencia, with a low level of congestion, and Barcelona and
Cantabria, with moderate or decreasing levels of congestion (see also Brañas-
Garza and Alcalá-Olid 2000). On the other hand, spatial externalities seem to be of
relatively minor importance in the north-central part of Spain, in particular in the
provinces of Castile and Leon, Cantabria, the Basque Country, Navarre, Aragon,
where in most areas economic activity is based on heavy industries that are not
highly labour demanding, as well as the northern provinces of Andalusia, where
the population mainly consists of small farmers, generating a lower per-capita
GDP. Finally, spatial externalities seem to be minimal in the province of La Rioja,
as well as in the southern provinces of Andalusia and on the Canary and Balearic
Islands. In the case of La Rioja, there has been a major influx of people from
neighbouring regions recently, whereas in the cases of southern Andalusia and the
Islands, the population is increasing mainly with non-active people (European
“jubilees”).

Agglomeration effect 

High 

Middle-high  

Middle-low  

Low  

Fig. 2. Geographical distribution of estimated levels of agglomeration effect from GCE (pop coeffi-
cients), based on four-components normal-mixture model
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7 Conclusions and directions for further research

In this article we estimated a varying-parameter EI model by regressing aggregate
GDP per capita for the (17) Spanish autonomous communities against data on the
distribution of the population at the level of the (50) Spanish provinces, allowing
for differential effects of employment rate, capital stock per capita, R&D expen-
ditures per capita, and population density. Individual coefficients and per-capita
GDP predictions were then retrieved for each of the Spanish provinces. The
estimation was performed using the method of Generalised Cross-Entropy (GCE).

Subsequently, we evaluated the performance of this entropy-based “distribu-
tionally weighted regression” (DWR) by comparing its predictions with those
from a simple OLS-based EI regression. We found that the predictions from the
GCE-based model are “superior” to those from the OLS-based model, in terms of
accuracy. Furthermore, it was shown that the entropy-based DWR approach is a
useful tool for exploring spatially heterogeneous relationships at the disaggregate
level that might otherwise be overlooked or missed. In particular, our analysis
demonstrated that differences in GDP per capita at the level of the Spanish
provinces can largely be explained by differences in the effects of spatial
externalities.

An important question requiring further research is to investigate how the
(predicted) differences in spatial externalities across provinces are related to indus-
try structure. In particular, spatial externalities may be stronger in some industries
than in others. In densely populated areas one may find highly productive
industries.

Some other directions for future research, related to the methodology, are to
use different “mixed” models (for identifying the most appropriate mix of regional
and sub-regional covariates), to test the role of spatial effects in ecological infer-
ence, to examine alternative ways of incorporating distributional effects, and to
assess the sensitivity of the GCE results to the particular choice of informative
priors and support ranges.
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