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Summary 

Road traffic injuries and fatalities have nowadays been recognized as one of the 

most important public health issues that requires concerted efforts for effective 

and sustainable prevention. Given the fact that more and more countries are 

taking steps to improve their road safety situation, there is a growing need for a 

country to evaluate its own road safety performance, to compare it with that of 

other countries, and moreover, to learn from those best-performers as a basis 

for developing their own road safety policy. In this dissertation research, we 

implemented road safety product benchmarking and road safety programme 

benchmarking based on road safety risk indicators and safety performance 

indicators (SPIs), respectively for 28 European countries. The technique of data 

envelopment analysis (DEA), originally developed to assess the so-called relative 

efficiency of a homogeneous set of decision making units on the basis of multiple 

inputs and multiple outputs, was investigated and applied throughout this 

dissertation. Various extensions to the methodology were explored to answer 

the specific research questions that were associated with both road safety 

benchmarking studies. Useful insights were gained from benchmarking analyses, 

and valuable recommendations were given to road safety policymakers by 

indicating practical targets and formulating action priorities to enhance the level 

of road safety. 

In the road safety product benchmarking, we investigated different road safety 

final outcomes (such as road fatalities). The corresponding road safety risk 

indicators based on different measures of exposure as well as their evolution 

over time were compared between countries. Specifically, we developed a DEA-

based road safety model (DEA-RS) to evaluate the overall road safety risk of the 

28 European countries by simultaneously considering three main risk indicators 

(i.e., the number of fatalities per million inhabitants, the number of fatalities per 

10 billion passenger-kilometres travelled, and the number of fatalities per million 

passenger cars). That way, the ‘efficiency’ of each country’s current operations 

was identified. Moreover, by performing clustering analysis to group countries 

with inherent similarity in their practices, we further applied a categorical DEA-

RS model to identify best-performing and underperforming countries in each 
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group. Useful benchmarks were then identified and a set of practical targets in 

terms of road fatalities assigned for those underperforming countries.  

Furthermore, to capture the dynamic road safety development in each country, 

we applied the Malmquist productivity index to assess the road safety 

performance change of countries over time, in which we not only focused on the 

evolution of road safety final outcomes within a given period, but also took the 

changes in exposure in the same period into account. It therefore provided more 

objective results than the ones based on the traditional indicator that only 

measures the percentage change in road fatalities. Moreover, the decomposition 

of the index into efficiency change (or catch-up effect) and technical change (or 

frontier-shift effect) further provided valuable information on whether the 

improvement in road safety of each country was attained through country-

specific progress relative to the other countries that were considered, or just 

through an overall improvement in the technological environment. 

In addition, we also investigated the possibility to take a larger picture of the 

impact of road crashes into account by including the number of serious injuries 

as an additional indicator of road safety final outcome to perform road safety 

product benchmarking and further analyzed its impact on the countries’ ranking. 

In doing so, different types of weight restrictions were formulated in the DEA-RS 

model to indicate the relationship between road fatalities and serious injuries. 

Interesting results were obtained inspiring us to apply this kind of model to a 

more complete road safety product benchmarking practice in the future. 

With respect to the road safety programme benchmarking, which is to compare 

the human-vehicle-infrastructure performance between countries with the 

purpose of explaining more detailed aspects of crash causation and injury 

prevention,  safety performance indicators situated on the level of intermediate 

outcomes of road safety were studied, and the combination of individual 

indicators into a composite road safety performance index was the main focus of 

this research. Specifically, based on the identification of six leading road safety 

risk factors (i.e., alcohol, speed, protective systems, vehicle, road, and 

emergency medical services) within the three main road transport components 

(i.e., road user, vehicle and infrastructure), we developed a comprehensive set 

of hierarchically structured SPIs for capturing the road safety performance of a 
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country, and various international data sources providing indicator values for a 

large set of countries were consulted. Totally, 32 quantitative SPIs were specified 

with available data collected (or calculated) for 28 European countries, and 

necessary data processing procedures (including outlier detection and missing 

data imputation) were performed. 

Moreover, to measure the multi-dimensional concept of road safety performance 

which cannot be captured by a single indicator, we investigated the use of DEA 

to construct a composite road safety performance index for cross-country 

comparison. In doing so, a multiple layer DEA-based composite index model 

(MLDEA-CI) was proposed for hierarchical structure assessment. Based on this 

model, the most optimal road safety performance index score for each of the 28 

European countries was determined by combining all the 32 hierarchical SPIs. 

Best-performing countries were distinguished from underperforming ones and 

countries were ranked subsequently. A clear link with the overall road safety risk 

from the view of the final outcome level was verified. Moreover, country-specific 

benchmarks were identified for the underperforming countries, and useful 

insight in the areas of underperformance in each country was gained by 

analyzing the indicator weights allocated in each layer of the hierarchy. The 

results enabled policymakers to prioritize their actions to improve the level of 

road safety in their country. 

In addition, for the sake of meaningful and reliable benchmarking, two practical 

challenges related to data (including missing values and qualitative indicators) 

were explored in the development of a composite road safety performance index. 

Regarding the influence of the existence of missing data in the data set on the  

final index score of 28 European countries, we replaced them by approximations 

in the form of intervals deduced from multiple imputation in which the true 

values are believed to lie. An interval MLDEA-based CI model was subsequently 

applied to obtain for each country an upper and a lower bound of its index score 

corresponding to its most favorable and unfavorable option, respectively. The 

interval instead of the precise index score for each country highlighted the 

underlying imperfect nature of the indicator data, and provided us with a more 

credible representation of a country’s overall road safety performance. 

Furthermore, we investigated two approaches within the DEA framework for 

modeling qualitative (or ordinal) data in the context of composite index 
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construction. They are the imprecise DEA-based CI model and the fuzzy DEA-

based CI model. A crisp index score was achieved for each country by using the 

IDEA-based CI model, which is easy for interpretation and use, while in the 

FDEA-based CI model, fuzzy index scores were obtained based on different 

possibility levels, which are powerful on the other hand in capturing the 

uncertainties associated with human thinking. The high similarity of the ranking 

result based on these two models verified its robustness and implied the 

reliability of using either of these two approaches for modeling qualitative data. 

To conclude, inter-national benchmarking of road safety performance and 

development is a promising step to improve a country’s road safety level. We 

identified in this dissertation the main research issues with respect to road 

safety product and programme benchmarking based on different types of road 

safety indicators, and developed corresponding approaches to deal with these 

issues. This research mainly contributed to the literature on using the technique 

of DEA and its various extensions to implement meaningful road safety 

benchmarking practices. Although it is mathematical in nature, the theory 

behind it is straightforward and it is currently ready for implementation at the 

practical level. In addition, from the road safety policy point of view, based on 

the recommendations with respect to both target setting and action prioritizing 

from the benchmarking studies described in this dissertation, learning about 

best practices applied in country-specific benchmarks and (re)formulating 

concrete road safety strategies and programmes constitute the first next step for 

each country to take, which in turn, generates new challenges and opportunities 

for future research. 
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Chapter 1 General Introduction 

This introductory chapter provides a brief background of this dissertation 

research and defines the research questions as well as the methodology used in 

this research. The outline of the dissertation is presented at the end. 

1.1 Background 

The transport sector is an important component of today’s world economy 

directly impacting on the development of our present society and the welfare of 

human beings. As one of the most fast growing sectors in the post-crisis 

socioeconomic context, transport systems are expected to experience an 

accelerated expansion in the next decades due to ever increasing population, 

rapid motorization, and rising incomes. Projections indicate that by the year 

2050, there will be around 3 to 4 times as much global passenger mobility as at 

the beginning of this new millennium and 2.5 to 3.5 as much freight activity 

[Organization for Economic Co-operation and Development/International 

Transport Forum, 2011a]. However, rapid growth of traffic volume, especially 

motorized road mobility, has also resulted in continuously increasing safety 

problems. Road safety is important not only because of the lost travel time or 

cost of property damage, but mainly because of the loss of human life and 

serious injuries sustained. Since the first death involving a motor vehicle which 

is said to have taken place in London in 1896, road traffic crashes have claimed 

an estimated 40 million lives up to now, and many more suffer non-fatal injuries 

[World Road Association, 2003]. These not only lead up to reduced worker 

productivity and trauma affecting a victim’s private life, but also cause great 

emotional and financial stress to the millions of families affected. More seriously, 

in most regions of the world, especially for those low- and middle-income 

countries, this hidden epidemic is still spreading (see Table 1.1).  

As for the high-income countries, such as those in Europe, which has been 

recognized as one of the safest road traffic regions in the world, they also suffer 

from the road crash problem. Due to the high level of car ownership, road 

transport has emerged as the dominant segment in Europe’s transport sector 
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accounting for roughly 84% of all passenger transport and 47% of freight 

transport [European Commission, 2011a]. However, it is also responsible for the 

majority of negative impacts on safety, which accounts for over 100 times more 

deaths than all other transportation modes (rail, air, maritime, etc.) together 

[Forum of European Road Safety Research Institutes & European Conference of 

Transport Research Institutes, 2009]. 

Table 1.1 Predicted road traffic fatalities by region (in thousands), 1990-2020 

Region* 
No. of 

countries 
1990 2000 2010 2020 

Change 
(%)  
2000-
2020 

Mortality rate 
(Fatalities/million 

inhabitants) 

2000 2020 

East Asia & Pacific 15 112 188 278 337 79 109 168 

Eastern Europe & 
Central Asia 9 30 32 36 38 19 190 212 

Latin America & 
Caribbean 

31 90 122 154 180 48 261 310 

Middle East & North 
Africa 

13 41 56 73 94 68 192 223 

South Asia 7 87 135 212 330 144 102 189 

Sub-Saharan Africa 46 59 80 109 144 80 123 149 

Sub-total 121 419 613 862 1124 83 133 190 

High-income 
countries 35 123 110 95 80 -27 118 78 

Total 156 542 723 957 1204 67 130 174 

* Data are displayed according to the regional classifications of the World Bank. 

Source: World Health Organization (2004) 

In 2010, nearly 31,000 people died in the 27 Member States of the European 

Union (EU-27) as a consequence of road traffic crashes. Around 300,000 were 

seriously injured and many more suffered slight injuries [European Transport 

Safety Council, 2011]. Despite the fact that the number of road fatalities keeps 

decreasing over the last several decades, it is, however, still far away from the 

27,000 objective for 2010 [European Commission, 2001; 2003] (see Figure 1.1). 

Involvement in road crashes remains as one of the leading causes of death and 

hospital admission for EU citizens under 45 years of age [European Commission, 

2009]. Moreover, the huge costs in health services and the added burden on 

public finances due to road traffic injuries and fatalities representing 

approximately 130 billion Euro, or over 1% of the EU Gross Domestic Product 
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(GDP) in 2009 [European Commission, 2010a], have also become increasingly 

socially unacceptable and difficult to justify to citizens. Road safety therefore 

continues to be a priority area for action of the EU. 

 

Figure 1.1 Evolution of road fatalities in the EU-27 (1990-2010) 

Source: European Commission (2011b) 

On the other hand, the road traffic crashes and consequent injuries and fatalities, 

traditionally regarded as random, unavoidable ‘accidents’, have been more and 

more recognized as a preventable public health problem due to a better 

understanding of the nature of crashes over the past decades. As a result of this 

shift in perception, road traffic crashes and their health implications have 

demanded the attention of decision-makers all over the world and safety policy 

has been firmly placed in the public health arena. Under these circumstances, a 

large number of road safety strategies and programmes have been launched 

and put into effect at either a national, regional, or even global level. Worldwide, 

the United Nations proclaimed the period 2011 to 2020 as the ‘Decade of Action 

for Road Safety’ in May 2011. International cooperation for making road safety a 

priority is advocated with the purpose of 50% reduction in road fatalities and 

injuries on the predicted global death toll by 2020. Analyses conducted by the 

Global Road Safety Facility indicate that achieving this target would result in the 

saving of an estimated 5 million lives and 50 million serious injuries requiring 

hospitalization being avoided, with an estimated saving of more than US $3 

trillion (see also Figure 1.2) [Guria, 2009].  
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Figure 1.2 Changing direction: Potential of a decade of action for road safety 

Source: Guria (2009) 

In Europe, at the early 21st century, the EU has already set itself an ambitious 

target of reducing the number of road fatalities by half during the past decade 

[European Commission, 2001]. Although the initial target was not met by the 

end of 2010 (see Figure 1.1), the action has been a strong catalyst of efforts 

made by Member States to improve their road safety. Furthermore, in the 

European ‘Policy Orientations on Road Safety 2011-2020’ [European Commission, 

2010a], the Commission has proposed to continue with the target of halving the 

total number of road fatalities in the EU by 2020, which is apparently more 

challenging than the previous one yet gives a clear signal of Europe's 

commitment towards road safety. On the national level, an increasing number of 

countries begin or continue to implement long term road safety strategies 

towards their reduction or eventual elimination of road traffic injuries and 

fatalities, such as the Sustainable Safety concept in the Netherlands [Wegman & 

Aarts, 2006] and the Swedish Vision Zero [Organization for Economic Co-

operation and Development/International Transport Forum, 2008a]. 

Although more and more countries are taking steps to improve their road safety 

situation, they work in most cases on their own to tackle their specific road 

safety problems. This is right to a large extent because the socioeconomic 

conditions, the motorization levels, and the road safety experiences are different 
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from country to country and from region to region. However, for those countries 

within the same region or that have already passed through similar stages of 

challenges and development, such as the EU Member States, there are quite a 

number of common problems that can be identified in a close cooperation, and 

improvement can be expected by learning lessons from existing best practices in 

other countries (even if the final solutions or priorities could be different from 

one country to another in accordance with their own safety characteristics). 

Consequently, comparison between a range of countries in terms of their road 

safety performance and development or − using state-of-the-art terminology − 

inter-national benchmarking of road safety, is currently widely encouraged and 

advocated by governments, donors, practitioners, planners, and researchers for 

the purpose of better understanding each country’s relative safety situation, and 

moreover, trying to learn from those better-performing countries in terms of 

setting practical targets, designing effective strategies, determining intervention 

priorities, monitoring programme effectiveness, and ultimately, achieving its 

own safety objectives. 

1.2 Road Safety Benchmarking 

1.2.1 The concept of benchmarking 

The term benchmarking, originally derived from the work of cobblers who would 

place someone's foot on a ‘bench’ and mark it out to make the pattern for the 

shoes, was firstly invented in the private sector as a tool for improving various 

operations by establishing a point of reference by which it is possible to judge 

quality, value or other important factors. Now, the concept of benchmarking is 

further extended and widely adopted in both profit and non-profit organizations. 

One of the operational definitions of benchmarking is:  

“the process of continuously measuring and comparing ones 

business processes against comparable processes in leading 

organizations to obtain information that will help the organization 

identify and implement improvements.” [American Productivity and 

Quality Center, 1993].  



6 

 

First and foremost, benchmarking is a systematic comparison of the process and 

performance of one production entity against other entities, which could be 

countries, organizations, firms, industries, divisions, projects, or individuals. 

Moreover, the essence of benchmarking is the process of identifying the highest 

standard of excellence for products, services, or processes, and then making the 

improvements necessary to reach those standards − commonly known as ‘best 

practice’ [Bhutta & Huq, 1999]. In addition, benchmarking does not represent 

the end of the process, but is an ongoing diagnostic management tool focused 

on learning, collaboration and leadership to achieve continuous improvement in 

the organization over time [Garlick & Pryor, 2004].  

Benchmarking is a versatile tool that can be applied in a variety of ways to meet 

a range of requirements for improvement. It can firstly be used to make intra-

organizational comparisons, which involves benchmarking against internal 

operations or standards, usually in a multidivision or multinational enterprise. 

Benchmarking can also be − and most frequently is − used to make inter-

organizational comparisons. It deals with benchmarking against other entities in 

the same context, no matter whether they are direct competitors or not. In 

addition, benchmarking can also be used to make longitudinal comparisons, 

where the performance of one or more production entities in different time 

periods is compared.  

Since the first successful application implemented by Xerox Corporation in the 

late 1970s, benchmarking quickly became one of the fastest growing techniques 

for quality and performance improvement and has been receiving significant 

attention in a multitude of entities engaged in a variety of performance 

evaluation, quality management, and continuous improvement activities [Camp, 

1989; Spendolini, 1992; Andersen & Pettersen, 1996; Elmuti et al., 1997; 

Keehley et al., 1997; Srinivas, 2000; Garlick & Pryor, 2004; Geraedts &  

Selbmann, 2004; Lau et al., 2005; Luu et al., 2008; Cheng et al., 2009; Chung, 

2011; Lai et al., 2011]. 

In terms of road safety, more and more countries have recognized the 

importance of benchmarking practices in improving their level of road safety, 

especially the inter-national comparisons. Taking the EU as an example, the 

European Commission has claimed that “the establishment of a structured and 
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coherent cooperation framework which draws on best practices across the 

Member States, [i]s a necessary condition to implement in an effective manner 

the road safety policy orientations 2011-2020.” [European Commission 2010a]. 

An instructional definition on inter-national benchmarking of road safety is given 

as:  

“a process in which countries evaluate various aspects of their 

performance in relation to other practices, among which the so-

called 'best in class'. The benchmark results enable countries to 

learn from others as a basis for developing measures and 

programmes which are aimed at increasing their own performance.” 

[Wegman and Oppe, 2010]. 

1.2.2 Benchmarking process 

To implement benchmarking, a number of different process models have been 

proposed during the past decades describing the steps of a benchmarking study. 

One such model is the benchmarking wheel [Andersen, 1995], as shown in 

Figure 1.3. 

 

Figure 1.3 The benchmarking wheel 

Source: Anderson (1995) 
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The main content of each of the five phases in a typical benchmarking study is: 

Phase 1 Plan. Prepare the benchmarking study by laying the groundwork for 

the coming phases, such as selecting the process to be benchmarked and 

thoroughly understanding how that process is performed within one’s own 

organization.  

Phase 2 Find. Identify benchmarking partners and obtain acceptance for 

their participation in the study.  

Phase 3 Collect. Perform the same thorough documentation of the 

benchmarking partners’ process as was done for one’s own in the plan phase.  

Phase 4 Analyze. Find gaps between the performance of one’s own process 

and that of the benchmarking partners, and also determine the root causes for 

these gaps in practice.  

Phase 5 Improve. Implement improvements based on the findings from the 

observation and analysis of the benchmarking partners. The outcomes can be 

used for the next benchmarking study with the purpose of continuous 

improvement.  

 

Figure 1.4 The road safety benchmarking cycle  

Adapted from Wegman et al. (2008) 
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In the road safety context, a similar benchmarking cycle can be considered 

consisting of the following core activities (see Figure 1.4): determining the key 

components for road safety benchmarking, identifying the benchmarking 

partners (or countries), constructing indicators for meaningful comparisons and 

data gathering, examining gaps in performance and their root causes, and finally, 

establishing future attainable performance and monitoring progress. Each of 

these five activities poses different challenges for the benchmarking organization, 

and all of them are vital elements in a complete road safety benchmarking study. 

In this dissertation research, most of these five activities will be investigated 

except for the intervention and monitoring in the final phase of the cycle.  

1.2.2.1. Determining the key components for road safety benchmarking 

To compare the road safety performance between countries, we should always 

determine what to benchmark in the first place. In this respect, Eksler (2009) 

proposed a so-called process and performance benchmarking framework for 

road safety management, which is presented in Figure 1.5. 

 

Figure 1.5 Process and performance benchmarking in road safety management 

Source: Eksler (2009) 

In this comprehensive benchmarking framework, four aspects of the road safety 

management and improvement process have been identified. They are: 

organization, strategy, programme and product. More specifically, product 

benchmarking is used to compare road safety final outcomes, such as road 
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traffic mortalities. So far, most of the road safety benchmarking studies have 

focused on this aspect. Programme benchmarking, which is used to compare 

activities related to human-vehicle-infrastructure performance, such as drink 

driving, seat belt wearing, vehicle and road safety ratings, and corresponding 

policy action, has also been given more attention in current road safety studies 

since they are causally related to crashes or injuries and can provide a better 

understanding of the process that leads to crashes. Worldwide, the two most 

representative benchmarking studies concerning the above two aspects are the 

‘IRTAD Road Safety Annual Report’ and the ‘Country Reports on Road Safety 

Performance’ conducted within the OECD vision [International Traffic Safety 

Data and Analysis Group, 2012; Organization for Economic Co-operation and 

Development/ International Transport Forum, 2008b].  

The remaining two aspects, i.e., strategic and organizational benchmarking, are 

used to compare national road safety strategies, resources, management and 

the organizational framework. However, due to the lack of appropriate indicators 

characterizing their features, only some initial attempts have been carried out at 

this moment, such as Al-Haji (2007), Wegman et al. (2008), and Eksler (2009). 

In addition, Al-Haji (2007) and Wegman et al. (2008) also proposed the use of a 

road safety index, which combines performance indicators/indexes developed in 

the above separate benchmarking aspects into one overall index, and it is 

named as integrated benchmarking. The application of this concept will be 

further discussed in Section 1.3. 

1.2.2.2. Identifying the benchmarking partners 

Having determined the subject of the exercise, no matter if it is for road safety 

product benchmarking, programme benchmarking, or even for strategic and 

organizational benchmarking, the next step is to identify the benchmarking 

partners, i.e., with whom to compare. It is not an easy task to define an uniform 

criterion on the selection of benchmarking partners (or countries) for inter-

national road safety benchmarking practices. In a general sense, all the 

countries are comparable in terms of their road safety performance. However, in 

order to achieve adequate and meaningful results during comparisons, road 

safety benchmarking studies usually have to be carried out between similar 
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countries or regions at as much as possible the same level of development, 

motorization and with a similar type of transport system [Al-Haji, 2007]. For 

instance, in Europe, the SUNFlower study [Koornstra et al., 2002] focused on 

the three best-performing countries in road safety (Sweden, United Kingdom 

and the Netherlands) and in the following SUNFlower+6 study [Wegman et al., 

2005], three Southern European countries (Greece, Portugal and Spain, with a 

special position for Catalonia) and three Central European countries (Hungary, 

Slovenia and the Czech Republic) were included; The SECBelt study [European 

Transport Safety Council, 2005] worked on road safety causes and problems in 

the Southern, Eastern and Central European countries; Another ETSC study 

concentrated on the performances of Nordic countries (Denmark, Finland, 

Iceland, Norway and Sweden) in different areas of road safety [Eksler et al., 

2009]. Moreover, some large-scale benchmarking studies were also carried out 

within the whole EU vision, such as the SafetyNet study [Thomas et al., 2009], 

the SUNFlowerNext study [Wegman et al., 2008], and the ongoing DaCoTA 

study (http://www.dacota-project.eu/). 

1.2.2.3. Constructing indicators for meaningful comparisons 

The third step for implementing inter-national benchmarking of road safety is to 

develop a set of relevant indicators for the selected benchmarking component. 

They can be measured in some common terms such as a rate (e.g., number of 

fatalities per population), a percentage (e.g., percentage of seat belt usage), or 

as qualitative information (e.g., level of national road safety intervention: ‘low’, 

‘relatively low’, ‘high’, and ‘extremely high’). Moreover, indicator values have to 

be collected for all the countries involved in the benchmarking study. In general, 

developing appropriate road safety indicators for a specific benchmarking study 

and structuring them in a logical way is the basis of a successful benchmarking 

practice. This part will be further elaborated in Section 1.3. 

1.2.2.4. Examining gaps in performance and their root causes 

In this step, the process knowledge from the previous steps is put together to 

identify the gaps in road safety performance between the countries under study 

and to understand the root causes for these gaps. This is the most important 

step in the entire benchmarking study, but also the most challenging task to 
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fulfill. Today, various benchmarking tools have been developed which range 

from relatively simple (e.g., using statistical tables and graphs) to highly 

complex (e.g., index-based approaches, see also Section 1.3) depending on the 

number of indicators involved, the details of data, and the complexity of 

techniques used in calculation and analysis. According to Camp (1995), an 

intuitive way for gap analysis is to present data in some graphical form. These 

graphics are easy to understand and are capable of illustrating multiple 

dimensions simultaneously. However, it is a difficult task for the analysts to 

integrate all the elements into complete and meaningful information. Ratio 

analysis [Schefcyzk, 1993] is another approach that is commonly used due to its 

simplicity, such as using the number of fatalities per population to rank countries 

in a road safety product benchmarking study. One problem with ratios is that 

there can be several of them (e.g., the number of fatalities per vehicles and the 

number of fatalities per distance travelled). Comparisons of a single ratio might 

thereby lead to misclassifications and incorrect judgments. In the applications of 

multiple ratios, the weighting of the ratios would require the formulation of 

complex decision rules and their justification, as well as a much greater 

computational workload. An available solution is to perform multi-criteria decision 

analysis, and one of the methods belonging to this category is known as analytic 

hierarchy process (AHP) [Saaty, 1980], which utilizes a weighted scoring method 

in the analysis of various indicators. It provides a single score using perceptual 

values as set forth by decision makers. Despite being effective, the main 

drawback of this method is the involvement of a high degree of subjectivity. The 

ordinary least squares (OLS) statistical techniques, such as multiple regression, 

are also widely applied to assess comparative performance of different entities 

[Hayashi, 2000]. Even though there is a strong theoretical foundation for such 

statistical tools, their primary limitation is in the underlying assumptions of 

normality, homoscedasticity, and serial independence of regression residuals. 

Also, Bessent et al. (1982) indicate that major difficulties arise when the OLS is 

used in multiple output cases due to the implicit impact on outputs having the 

same input resources. In addition, it measures a correlation or central tendency 

rather than best practice. Frontier analysis is one other technique recently 

receiving significant attention in benchmarking studies. The data envelopment 

analysis (DEA) and the stochastic frontier approach (SFA) are the two 
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representatives within this field [Coelli et al., 2005; Bogetoft & Otto, 2011]. The 

SFA uses statistical techniques to estimate a transformation frontier and to 

estimate efficiency relative to the estimated stochastic frontier [Aigner et al., 

1977]. A valuable characteristic of this approach is the introduction of a 

disturbance term representing noise, measurement error and exogenous shocks 

beyond the control of the production unit. This phenomenon permits 

decomposition of the deviation of an observation from the deterministic kernel of 

the frontier into two components: inefficiency and noise. On the other hand,  the 

method imposes an a priori assumption on the production technology by 

choosing a functional form (e.g., Cobb-Douglas, translog, etc.), which is risky 

because most of the distributional characteristics of the production technology 

are a priori unknown. Moreover, the precise specification of the error structure is 

difficult, sometimes even impossible to ascertain. Such specification is in fact 

likely to introduce another potential source of error. Compared with the 

stochastic parametric frontier approach, the DEA is a non-parametric method 

imposing no assumptions on the specific statistical distribution of the error terms. 

It applies mathematical programming methodology to measure the relative 

efficiency of a homogeneous set of decision making units (DMUs) by 

constructing an efficient production frontier based on best practice(s) [Charnes 

et al., 1978]. In doing so, the data are believed to be able to ‘speak for 

themselves’ and the specification error is minimized. However, the DEA model 

does not allow for measurement error or random shocks. Instead, all these 

factors are attributed to calculate (in)efficiency. In this study, the DEA approach 

will be adopted as a benchmarking tool to examine the gaps in road safety 

performance between countries as well as the root causes for those gaps. A 

more specific description of this technique will be given in Section 1.5. 

1.2.2.5. Establishing future attainable performance and monitoring 

progress 

After finishing the analysis, this step performs target-setting for those 

underperforming countries in terms of different road safety aspects, and also 

determines what needs to be done to match the best practice and to fill the gaps 

for the process. Moreover, as a cycle, such a benchmarking practice should be 

carried out at regular intervals so as to evaluate the results of interventions and 
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to monitor progress on road safety in each country in order to achieve 

continuous improvement over time. 

1.3 Road Safety Indicators and Indexes 

As indicated in the previous section, to be able to implement inter-national 

benchmarking in the field of road safety, a set of indicators that summarizes the 

country’s road safety performance from different benchmarking aspects has to 

be developed, which serves as the basis for a successful benchmarking process. 

However, when a number of indicators are considered for a particular 

benchmarking aspect, simple comparisons per indicator with the purpose of 

examining the gaps in performance may only show a small piece of the road 

safety picture, and can be misleading since different countries may operate in 

different circumstances with different focal points. Consequently, a composite 

road safety indicator (or index), which combines individual indicator values into 

one single score, is often computed for the sake of meaningful benchmarking. 

1.3.1 Road safety indicators 

Traditionally, crash data such as the number of fatalities gathered as part of the 

routine police procedures are viewed as road safety final outcomes and mostly 

investigated in road safety studies. Such numbers give an idea about the 

absolute size of the road safety problem in a country. However, they are not 

directly comparable between countries. Therefore, the concept of risk, which is 

defined as the ratio of road safety final outcomes and some measure of 

exposure (e.g., the population size, the number of registered vehicles, or 

distance travelled), is often used in the context of benchmarking. However, 

these final outcomes and the corresponding risk indicators are usually 

considered as the ‘worst case scenario’ in the insecure operational conditions of 

road traffic, and are insufficient in explaining more detailed aspects of crash 

causation and injury prevention [Vis, 2005]. Today, having recognized the 

complex character of the road safety phenomenon, countries all over the world 

are encouraged to develop data collection procedures in terms of road safety 

indicators to cover not only the final outcomes and the exposure measures, but 

also intermediate outcomes (e.g., levels of mean traffic speeds, seat belt 
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wearing, drink driving, and vehicle and infrastructure safety ratings), institutional 

delivery outputs (including different categories of enforcement effort), and socio-

economic costs associated with road trauma as well [Organization for Economic 

Co-operation and Development/International Transport Forum, 2008a]. Over the 

last decade, a large number of road safety indicators have been developed and 

increasingly used as a supportive instrument for inter-national (or inter-regional) 

comparisons and monitoring of road safety progress (e.g., European Transport 

Safety Council, 2001; Vis, 2005; Al-Haji, 2007; International Organization for 

Standardization, 2008; Wegman et al., 2008; Hermans, 2009a; Gitelman et al., 

2010).  

Particularly, a road safety target hierarchy was proposed for the development of 

various indicators. The concept originated in New Zealand [Land Transport Safety 

Authority, 2000], and further used in the European SUNflower study [Koornstra 

et al., 2002] and the European SafetyNet study [Thomas et al., 2009] as well. 

Now, it has also become the theoretical basis for the creation of the European 

Road Safety Observatory with the purpose of bringing together all Community 

activities in relation to safety data and knowledge. In general, the target 

hierarchy describes road safety as a pyramid consisting of five vertical layers as 

presented in Figure 1.6.  

 

Figure 1.6 Target hierarchy for road safety 

Source: Wegman et al. (2005) 
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From bottom to top they are: structure and culture (describing the background 

conditions of a country or its policy context); safety measures and programmes 

(or the road safety policy performance); safety performance indicators (also 

known as intermediate outcomes); the number of fatalities and casualties (as the 

final outcomes); and the social costs due to crashes and injuries at the very top. 

The layers of the pyramid are stacked simply but logically. They imply the causal 

relationship between indicators at the different layers. For instance, policy 

interventions such as a high frequency of road side alcohol check, will first have 

to result in a decreasing rate on drinking and driving before it can be made 

credible that the intervention has an effect on reducing alcohol-related crashes 

and risks. In other words, the pyramid enables us to better understand the 

development at the top by explaining the change at the bottom. 

Apart from this vertical dimension, two other dimensions should also be 

considered based on this pyramid (not depicted in Figure 1.6) [Morsink et al., 

2007]. At the horizontal level, road safety problems can be specified in a 

disaggregated way such as per road user group, transport mode, or road type. 

Comparisons can then be conducted in a country or between countries. The third 

dimension is time allowing to show the development of factors in both the 

horizontal and vertical dimension over time. Based on this 3-dimensional 

framework, relevant road safety indicators can be formulated at each layer as a 

basis for implementing inter-national benchmarking of road safety performance 

and development. 

1.3.2 Road safety indexes 

Different from separate indicators, a composite indicator or index (CI) is a 

mathematical aggregation of a set of individual indicators that measures multi-

dimensional concepts but usually has no common units of measurement 

[Saisana & Tarantola, 2002]. According to Saisana & Tarantola (2002) and the 

Organization for Economic Co-operation and Development (2008), the main pros 

and cons of using CIs are summarized as in Table 1.2. 
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Table 1.2 Pros and Cons of Composite indexes 

Pros Cons 

− Enable users to compare complex and 

multi-dimensional realities effectively 

and summarize them in view of 

supporting decision-makers 

− Are easier to interpret than trying to 

find a common trend in many separate 

indicators 

− Can assess progress of countries over 

time 

− Reduce the visible size of a set of 

indicators without dropping the 

underlying information base 

− Make it possible to include more 

information within the existing size 

limit 

− Place issues of country performance 

and progress at the centre of the 

policy arena 

− Facilitate communication with general 

public (i.e. citizens, media, etc.) and 

promote accountability 

− Help to construct/underpin narratives 

for lay and literate audiences 

− May send misleading policy 

messages if poorly constructed or 

misinterpreted 

− May invite simplistic policy 

conclusions 

− May be misused, e.g. to support a 

desired policy, if the construction 

process is not transparent and lacks 

sound statistical or conceptual 

principles 

− The selection of indicators and 

weights could be the subject of 

political dispute 

− May disguise serious failings in 

some dimensions and increase the 

difficulty of identifying proper 

remedial action 

− May lead to inappropriate policies if 

dimensions of performance that are 

difficult to measure are ignored 

 

In general, “… it is hard to imagine that debate on the use of composite 

indicators will ever be settled…” [Saisana et al., 2005]. However, in case the 

methodological aggregation process is sound and the results clear, the 

construction of a CI over a set of indicators is worthwhile, and it can be utilized 

as a powerful benchmarking tool in policy analysis and public communication. 

During the last decade, a large number of CIs have been developed by various 

national and international organizations including United Nations (UN), 

Organization for Economic Cooperation and Development (OECD), World Health 

Organization (WHO), World Bank, and European Commission (EC), amongst 

others, involved in wide ranging fields such as economy, society, governance, 
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security, environment, sustainable development, globalization and innovation 

[Saisana & Tarantola, 2002; Freudenberg, 2003; Munda, 2005; Organization for 

Economic Co-operation and Development, 2008; Singh et al., 2009]. According 

to a comprehensive review by Bandura (2008), around 180 different CIs have 

been identified all over the world. Some of them are listed as follows: 

• Human Development Index – UN; 

• Programme for International Student Assessment – OECD; 

• Overall Health System Achievement Index – WHO; 

• Governance Indicators – World bank; 

• Innovation Capacity Index – World Economic Forum; 

• Global Competitiveness Index – World Economic Forum; 

• Globalization Index – World Markets Research Centre; 

• Country Risk Rating – World Markets Research Centre; 

• Internal Market Scoreboard and Internal Market Index – EC; 

• Science and Technology Indicators – EC; 

• Environmental Sustainability Index – Columbia University and Yale 

University. 

Compared to other research fields, the development of a composite index for 

road safety benchmarking is relatively new, since the traditional studies mainly 

focus on the road safety final outcomes, and ratio analysis is commonly 

conducted, such as using the number of fatalities per head of population to 

assess the relative road safety situation of a country. Nowadays, since more and 

more indicators are developed describing the complex character of the road 

safety phenomenon, simple ratio analysis no longer satisfies the need of modern 

road safety benchmarking practices. Recently, several studies were carried out 

aiming at the development of a composite road safety index which enabled 

meaningful national or sub-national comparison and monitoring of road safety 

performance.  

Specifically, Al-Haji (2007) suggested a road safety development index (RSDI) 

which consists of three focuses of the road safety domain. They were product 

focus (fatality rates), people focus (road user behaviour), and system focus 

(safer vehicles, safer roads, socio-economic level, enforcement, and 

organizational performance). The index was then applied for the comparison of 
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road safety progress in both highly motorized countries (eight European 

countries) and less motorized countries (five Southeast Asian countries). 

Although different numbers of road safety indicators were selected representing 

the above three focuses in each empirical study due to data availability, one 

composite index was expected for both sub-studies. For this purpose, four 

weighting methods were adopted, which were equal weighting, expert 

judgments, subjective weights based on previous experience, and principal 

component analysis. The empirical and theoretical assessments indicated that 

the proposed RSDI could give a broader picture of the road safety situation in a 

country and could serve as a simple and easily understandable tool for policy 

makers and the public. 

In the SUNflowerNext study [Wegman et al., 2008], three different types of 

performance indicators were distinguished, which were road safety performance 

indicators (i.e., the top three layers of the pyramid in Figure 1.6), 

implementation performance indicators (dealing with different components of 

causal relationships between the different layers of the pyramid, such as 

between the changes in safety performance indicators and changes in the 

number of casualties), and policy performance indicators (i.e., the second layer 

of the pyramid from the bottom). Moreover, a composite road safety index 

combining the indicators in each layer of the pyramid was explored. Two 

weighting schemes, i.e., principal component analysis and factor analysis, were 

examined based on the data collected for 27 European countries. The analysis 

revealed that such an index gave a more enriched picture of road safety and the 

countries' ranking based on the combination of different indicators was not 

necessarily similar to the traditional ranking of countries based only on mortality 

or fatality rates. 

Hermans (2009a) explored a methodological framework for developing a 

composite road safety performance index for cross-country comparison. The 

following steps were distinguished: selecting indicators, collecting indicator data, 

univariate analysis, multivariate analysis, weighting, aggregation, robustness 

testing, and computing, evaluating and visualizing final index scores. This study 

could be considered as a valuable guideline for future research on developing 

composite road safety indexes. Moreover, to illustrate the use of this framework, 

six risk factors, i.e., alcohol and drugs, speed, protective systems, vehicle, roads, 
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and trauma management, were considered, one safety performance indicator for 

each risk factor was defined, and five weighting approaches were investigated to 

combine the separate indicators into one overall index for 21 European countries, 

which were: factor analysis, budget allocation, analytic hierarchy process, data 

envelopment analysis, and equal weighting [Hermans et al., 2008]. The results 

were further compared with one of the road safety risk indicators, which was the 

number of fatalities per million inhabitants. The study concluded that comparing 

the performance of countries in terms of road safety by means of an index at 

the intermediate outcome level enabled earlier and goal-oriented action. 

All the studies mentioned above clearly demonstrate the necessity and feasibility 

of creating a composite road safety index for road safety benchmarking 

purposes among a set of countries. However, research attention still needs to be 

paid to some theoretical and practical aspects of the road safety index 

construction. First of all, Al-Haji (2007) and Wegman et al. (2008) implemented 

integrated benchmarking by combining indicators in all the different 

benchmarking aspects (i.e., product benchmarking, programme benchmarking, 

strategic benchmarking, and also organizational benchmarking) in one road 

safety index. The idea itself is attractive, however, it is well accepted and proved 

that underlying causal relationships exist between different benchmarking 

components. Integrating all these components thereby implies to combine 

indicators that are actually inter-dependent, which is not in accordance with the 

basic principle of index construction and will generate a problem of double or 

even triple counting the effect of one factor in the final index. This obstacle 

restricts to a great extent the application of this concept unless a new 

theoretical framework appears.  

In Hermans (2009a), only the indicators belonging to the intermediate outcome 

layer of the pyramid were considered for the purpose of programme 

benchmarking. The created index score, however, was merely compared with 

one road safety risk indicator, which is insufficient in revealing their causal 

relationship. In other words, additional risk indicators (using different measures 

of exposure and other final outcomes) should also be taken into account in the 

product benchmarking area. Moreover, in Hermans (2009a), a relatively small 

number of road safety performance indicators were considered (i.e., one 

quantitative indicator for each risk factor), which is also insufficient to 
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completely measure the entire situation of all the risk factors. In the other two 

studies, although one or several indicators were suggested for each aspect 

constituting a hierarchical structure, all the indicators were actually treated as in 

the same layer under most of the weighting schemes. In fact, the structure of 

the indicators contains valuable information worthwhile to be considered in index 

construction.  

With respect to the weighting schemes adopted in all three studies, no matter if 

they are objective or subjective ones, most of them (except for DEA) assign the 

same indicator weights for all the countries under study. It indeed enables the 

comparison among countries on a common base. However, in that way, we 

make no use of country-specific characteristics. In other words, the importance 

level of each indicator in each country is ignored, which makes the examination 

of root causes of poor performance in each country difficult. In this respect, the 

DEA approach, which is based on self appraisal, has much to be recommended. 

By using this technique, each country obtains its own best possible indicator 

weights. Thus, key problems on road safety can be identified for each country 

separately, and policy-makers could not complain about unfair weighting, 

because the highest possible index value is obtained and any other weighting 

scheme would generate lower composite scores.  

Furthermore, due to data unavailability, all these three studies only assessed the 

road safety performance of countries in one year. However, research on time 

series data collected at regular intervals would help in gaining a clear 

understanding of trends and expected progress towards postulated targets and 

benchmarks’ performance. Apart from this, there are still some issues related to 

data which need to be carefully handled in the development of road safety 

indexes, two of which are missing values and qualitative indicators. Specifically, 

obtainment of measurable and quantitative indicators is commonly the 

prerequisite of any index research. However, this becomes more and more 

difficult since the natural uncertainty of reality often leads up to imprecision and 

vagueness inherent in the information that can only be represented by means of 

qualitative data, such as the policy performance indicators used in Wegman et al. 

(2008). Simply treating them as quantitative ones could result in wrong 

conclusions. Moreover, an extension of the data set used for road safety index 

research raises the issue of missing values, which to a great extent restricts 
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researchers from performing classical analyses as complete data matrices are 

usually required. Consequently, how to effectively settle these data problems 

directly affects the result of road safety index research and the success of the 

benchmarking as well.  

Finally, it is necessary to mention here that benchmarking is mainly used as a 

tool for learning from each other. Therefore, obtainment of final index scores 

should not be the only interest, but the background of those scores, the factors 

that contribute to the scores, and the potential for improvement. 

1.4 Objective and Research Questions 

The main objective of this dissertation research is to perform comprehensive 

inter-national benchmarking on the road safety product and programme, 

respectively, so that countries can better understand their own relative road 

safety situation, and moreover, can learn from those better-performing 

countries as a basis for developing their own road safety policy. For this purpose, 

different road safety indicators have to be specified for each component, and 

indexes are then constructed for meaningful benchmarking. In doing so, the 

research challenges mentioned in the previous section need to be carefully taken 

into account, and a set of research questions can then be formulated as follows, 

which is actually the guiding link throughout this dissertation. 

In the road safety product benchmarking study, the main research questions are: 

RQ1: How to obtain an overall picture of a country’s road safety performance 

when different final outcome risk indicators are considered? 

RQ2: How to set practical targets for similar underperforming countries in 

terms of the number of road fatalities? 

RQ3: How to assess road safety performance change over time by taking 

both final outcome evolution and exposure change into account? 

RQ4: What is the impact of utilizing other final outcomes, e.g., serious 

injuries, in addition to fatalities for road safety product benchmarking? 

In the road safety programme benchmarking study, the main research questions 

are: 
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RQ5: Which are current available national safety performance indicators and 

how can they best be structured? 

RQ6: How to reflect a layered hierarchy of indicators in constructing a road 

safety performance index and what is the added value? 

RQ7: How to obtain a reliable index score for each country when missing data 

exist? 

RQ8: What is the possible way to incorporate qualitative indicators? 

1.5 Data Envelopment Analysis 

To achieve the main research objective, the technique of data envelopment 

analysis (DEA) − one of the powerful benchmarking tools currently receiving 

considerable attention in the Operations Research/Management Science (OR/MS) 

literature − is investigated and applied throughout this dissertation with its 

various extensions to answer the specific research questions mentioned above. 

In this section, we briefly introduce the historical development of this technique, 

its fundamental mechanisms, and different model formulations, based on which 

the main strengths and limitations of this technique are discussed, and finally, 

some important methodological extensions for this dissertation research are 

outlined.  

1.5.1 Brief history of the method 

The term data envelopment analysis was first reported in the European Journal 

of Operations Research by Charnes, Cooper and Rhodes in 1978 based on 

Rhodes’ PhD dissertation research entitled ‘A DEA Approach to Evaluation of the 

Program Follow Through Experiment in U.S. Public School Education’. It was the 

failure of using all the statistical-econometric approaches that led Rhodes to 

suggest Farrell (1957)’s work ‘The measurement of productive efficiency’ as an 

alternative for analyzing efficiency (E) as a measure of performance expressed 

in the form of a ratio as follows: 

Output
=

Input
E  (1-1) 



24 

 

Farrell identified two components of efficiency: a technical efficiency, which 

showed the ability to maximize output from a given input, and a price efficiency, 

which reflected the use of different inputs allocated in optimal proportions (and 

hence also referred to as allocative efficiency). Considering both measures 

together thus provided an overall (or economic) efficiency. However, Farrell’s 

empirical work had been confined to single-output cases. 

Building on the ideas of Farrell (1957), the seminal work "Measuring the 

efficiency of decision making units" by Charnes, Cooper & Rhodes (1978) 

provided a new approach of obtaining empirical estimates of relations between 

multiple inputs and multiple outputs by constructing an efficient production 

frontier and assessing the so-called relative efficiency for a set of entities, 

referred to as decision making units (DMUs), which has subsequently been titled 

data envelopment analysis or DEA. 

In microeconomic production theory, a firm's input and output combinations are 

depicted using a production function, also known as efficient production frontier. 

Such a frontier indicates the maximum quantity of outputs that can be obtained 

from a given combination of inputs. At the same time, it also expresses the 

minimum quantity of inputs that must be used to achieve a given output level 

[Seiford & Thrall, 1990; Coelli et al., 2005]. To construct this frontier, a set of 

observations that expresses the output level obtained by applying a specific 

combination of input production factors is needed. In the context of DEA, the 

observations correspond to the homogeneous DMUs being evaluated.  

A fundamental assumption behind this method is that if a DMU can produce a 

certain level of output utilizing specific input levels, other DMUs of equal scale 

should be capable of doing the same if they were to operate efficiently. Thus, 

the heart of the DEA analysis lies in finding the ‘best’ DMU(s) which are viewed 

as the most efficient under the given circumstances, and are used to construct 

the efficient production frontier. The others that either make less outputs with 

the same inputs or make the same outputs with more inputs are inefficient, and 

the degree of their inefficiency can be measured based on the distance from the 

frontier. In this way, the best-performer(s) can be set as the ‘benchmark’ for 

others to aspire to. Meanwhile, it indicates the potential for improvement under 

current conditions. 
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Since the initial study by Charnes, Cooper, and Rhodes, DEA has been quickly 

recognized as a powerful analytical research technique for modeling operational 

processes in terms of performance evaluation (e.g., Cherchye et al., 2008), 

decision making (e.g., Ertay & Ruan, 2005), and benchmarking (e.g., Hermans 

et al., 2009b). At the same time, various methodological extensions to the 

original model and variations to it have been successfully developed and 

extensively investigated (e.g., Charnes et al., 1994; Zhu & Cook, 2007). 

Although DEA is not always the right tool for a problem (see Section 1.5.4), its 

empirical orientation and minimization of a priori assumptions have caught great 

attention of analysts from different research fields, and has resulted in its 

applications to a host of different types of entities engaged in a wide variety of 

activities in many contexts [Cooper et al., 2000, 2004; Zhu, 2003; Emrouznejad 

et al., 2008; Cook & Seiford, 2009]. By 1992, 14 years later, 472 publications 

on DEA reflected a growing interest in this technique [Charnes et al., 1994]. By 

1999, over 800 citations were recorded, and up to the year 2007, the 

publication list including academic journals, book chapters, and conference 

proceedings stood at more than 4000 [Emrouznejad et al., 2008]. Additional 

bibliographic listings are available at http://www.deazone.com/. 

1.5.2 Numerical and Graphical Example 

To illustrate how DEA works, we consider a simple example consisting of five 

DMUs with the same scale (labeled A to E), each consuming one single input to 

produce one single output (see Table 1.3). 

Table 1.3 Single input and single output case 

DMU Input Output Efficiency 

A 2 1 0.5 

B 3 3 1 

C 5 2 0.4 

D 6 5 0.833 

E 7 4 0.571 

 

Based on the input and output values shown in the second and the third column 

of Table 1.3, we can calculate the corresponding efficiency score for each DMU 
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according to the expression (1-1). The results are shown in the last column of 

Table 1.3. Using this measure, we can identify B as the most efficient DMU while 

C is the least efficient. 

Let’s represent these data as in Figure 1.7 by plotting the input value of each 

DMU on the horizontal axis and the output value on the vertical axis. The slope 

of the line connecting each point to the origin thus indicates the efficiency score 

of the corresponding DMU, and the line with the maximum slope, which is from 

the origin through B shown in Figure 1.7, is the efficient production frontier for 

all DMUs being analyzed. The DMUs that are on this line correspond to efficient 

units, while those below the frontier are inefficient. The area between the 

frontier and the positive horizontal semi-axis is called the production possibility 

set, and all the DMUs are − in mathematical parlance − ‘enveloped’ within this 

set. 

 

Figure 1.7 Graphic representation of the efficiency production frontier 

In this case, in contrast with the best performer B, all the others are inefficient. 

We can then measure the efficiency of all the DMUs relative to B by 

Efficiency of each DMU
0 1

Efficiency of DMU B
≤ ≤  (1-2) 
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and arrange them in the following order: 1 0.4B D E A C= > > > > = . Thus, DMU 

B obtains the highest relative efficiency of 1, which differs in meaning from the 

one in Table 1.3 since it is ‘unit invariant’, and the worst-performer C, attains 

only 40% of B’s efficiency. 

Notice that the efficient production frontier also provides some indications for 

improving the performance of inefficient units. Taking DMU C in Figure 1.7 as an 

example, its efficiency can be improved in several ways. One is achieved by 

reducing the input to C1 with coordinates (2,2) on the frontier. Another is 

achieved by raising the output up to C2 (5,5). In fact, any point on the line 

segment C1C2 offers a chance to make DMU C efficient in a manner which 

assumes that the input should not be increased and the output should not be 

decreased. 

The graphical representation provides a visual description of the fundamental 

mechanisms of DEA, and it is useful in simple one or two dimensional examples. 

However, it becomes difficult when higher dimensions are considered. The 

normal approach is therefore to employ a linear programming formulation of 

DEA so as to estimate the efficient production frontier of the set of DMUs, and 

also to measure the relative efficiency of each DMU under consideration.  

1.5.3 The DEA models 

As a frontier analysis technique, DEA applies mathematical optimization 

techniques to estimate the relations between multiple inputs and multiple outputs 

related to a homogeneous set of DMUs. During these years, a number of different 

formulations have been proposed in the DEA context, the best-known of which is 

probably the Charnes–Cooper–Rhodes (CCR) model. Specifically, consider an n-

DMUs set, each consuming m different inputs to produce s different outputs. The 

relative efficiency of a DMU is defined as the ratio of its total weighted output to 

its total weighted input, subjected to (s.t.) lie between zero and the unity. 

Mathematically, the efficiency score of a particular DMU0, denoted as E0, is 

obtained by solving the following constrained optimization problem:  
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where yrj and xij are the rth output and ith input, respectively of the jth DMU, rµ  

is the weight given to output r, and iν  is the weight given to input i. This 

fractional program is computed separately for each DMU to determine its optimal 

input and output weights. In other words, the weights in the objective function 

are chosen automatically from the model with the purpose of maximizing the 

value of DMU0’s efficiency ratio and also respecting the less than unity constraint 

for all the DMUs. Meanwhile, all the weights are required to be non-negative. 

This condition is sometimes replaced by using a small non-Archimedean number 

0ε >  for restricting the model to assign a weight of zero to unfavorable factors 

[Charnes & Cooper, 1984]. 

To simplify the calculation and to avoid an infinite number of solutions1, the 

above fractional program can be converted into a linear program, which is 

known as the multiplier form of the problem: 
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The transformation is completed by constraining the efficiency ratio denominator 

(i.e., the weighted sum of inputs) in (1-3) to a value of one. Thus the objective 

function consists of the maximization of the weighted sum of outputs. It is also 

named the input-oriented CCR model. Analogously, the output-oriented one can 
                                                 
1 If ( *µ , *ν ) is an optimal solution, then ( *αµ , *αν ) is also optimal for α >0 [Cooper et 

al., 2004]. 
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be derived by requiring the weighted sum of outputs to be one and then 

minimizing the weighted sum of inputs (see also Cooper et al. (2004)). In 

general, a DMU is considered to be efficient if it obtains an efficiency score of 

one in (1-4), whereas a score less than one implies that it is inefficient. 

Furthermore, using the duality in linear programming, we can derive an 

equivalent envelopment form of the above problem, which can be formulated as 

follows: 

0
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where 0θ  is the uniform proportional reduction in the DMU0’s inputs. Its 

minimum amount is known as the DMU0’s efficiency score, which also equals to 

E0 calculated in (1-4). Moreover, jλ  ( , ,1j n= � ) is the dual weight given to the 

jth DMU’s inputs and outputs in constructing for DMU0 a hypothetical composite 

unit (HCU) which lies on the efficient production frontier and produces at least 

as much of each output as DMU0 does, yet meanwhile consumes no more than 

the proportion 0θ  of its inputs. For each feasible solution ( 0θ , λ ) to problem (1-

5), the slack variables is
−  ( , ,1i m= � ) and rs

+  ( , ,1r s= � ) can be defined, which 

represent respectively the quantity of input i used in excess by DMU0 and the 

quantity of output r produced in shortage by DMU0 with respect to the HCU: 
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Hence, if the value of 0θ  equals one and the value of all the slack variables 

equals zero, it means that no input reduction is needed for DMU0 to produce its 

output. In other words, it is efficient and its input-output combination lies on the 

frontier. If 0 1θ < , DMU0 is said to be technically inefficient, and it lies inside the 

frontier. It means that in order to obtain the same outputs, the inputs used 
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could be simultaneously reduced with the proportion 01 θ− . In addition, if 0 1θ = , 

but some slack variables are different from zero, DMU0 then presents a mix 

inefficiency since, keeping the same output level, it could reduce the 

consumption of some inputs without causing an increase in other inputs used. 

No matter which kind of inefficiency the DMU under consideration belongs to, 

those DMUs that contribute to the construction of the HCU (with a non-zero 

value of λ  in the optimal solution of the dual model) make up the reference set 

for it and can be treated as its benchmarks. Moreover, based on the value of λ , 

the relative importance of a DMU within the reference set can be identified, and 

the target values for the inefficient DMU can be determined as follows2  [El-

Mahgary et al., 1995]: 
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As indicated in the beginning of this section, DEA is regarded as a body of 

concepts and methodologies that has evolved since the seminal work of Charnes, 

Cooper & Rhodes (1978). Apart from the CCR model introduced in this section, a 

large number of other DEA models have also been successfully proposed and 

widely investigated during the last decades. Some of them are the Banker-

Charnes-Cooper (BCC) model, the additive model, the slacks-based measure of 

efficiency (SBM), the multiplicative model, and so on [Cooper et al., 2000]. 

Different DEA models have their own specific characteristics. For instance, the 

BCC model takes into account the most productive scale size while 

simultaneously identifying technical inefficiency [Banker et al., 1984], such that 

the assumption of variable returns to scale (VRS) rather than constant returns 

to scale (CRS) as in the CCR model is utilized, which produces results reflecting 

the contribution of factors such as the size of the DMU (see Banker et al. (2004) 

for discussions on returns-to-scale in DEA). The additive model is an extension 

of the BCC model and has VRS, but its main difference is that both input and 

                                                 
2 The target values in (1-7) emphasize input reduction since the input-oriented model is 

considered. When output enhancement is the main concern, the output-oriented model 

should be adopted. For more information, we refer to [Cooper et al., 2004]. 
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output orientations are combined in a single model by seeking to project the 

DMU values to the most distant point of efficiency on the frontier using only non-

zero slacks. The SBM further extended the additive model ‘to give scalar 

measures from 0 to 1 that identify all of the inefficiencies that the model can 

identify’ [Cooper et al., 2000]. Finally, the multiplicative model uses piecewise 

log-linear or piecewise Cobb-Douglas envelopment instead of the traditional 

linear piecewise surface and focuses on the impact of the weighting factors. In 

general, selecting which DEA model to use is to a great extent case-based. In 

this dissertation research, the CCR model is the main focus to highlight the 

fundamental mechanisms that have propelled the application of DEA. More 

importantly, the CRS assumption in the CCR model reflects the linear character 

between inputs and outputs when either one is changed. It is particularly 

suitable in our road safety benchmarking study, which guarantees the 

comparisons of road safety performance and development between countries on 

the same presupposition.    

1.5.4 Strengths and limitations of DEA 

DEA has proven valuable as a non-parametric optimization technique for 

measuring the relative efficiency of a homogeneous set of DMUs by allowing 

direct peer comparisons on the basis of multiple inputs and multiple outputs 

through a diverse range of models. As one of the powerful benchmarking tools, 

DEA has received significant attention in the last decades due to its prominent 

advantages over other traditional methods, such as the ratio analysis, the OLS 

techniques, and so on, as mentioned in Section 1.2.2.   

First of all, DEA provides a new way of obtaining empirical estimates of input-

output relations by constructing an efficient production frontier based only on 

the best performers within the observations. Thus, there is no need to make any 

assumptions about the functional form of the frontier which is often complex or 

even unknown in the real world situation [Charnes et al., 1994]. 

Second, DEA is capable of using multiple inputs and multiple outputs 

simultaneously, which is superior to the simple ratio analysis that provides only 

partial measures of the multiple input-output relations and thus often leads up 

to misclassifications and incorrect judgments [Lewin et al., 1982]. 
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Moreover, the inputs and outputs used in the model can be expressed in 

different units of measurement. In other words, the preliminary normalization 

(e.g., standardization) of raw data is not required, which is particularly 

convenient from a practical point of view and eliminates the sensitivity of the 

results with respect to the specific normalization scheme that is used 

[Organization for Economic Co-operation and Development, 2008]. 

Fourth, an a priori knowledge concerning the input and output weights is not 

necessary (although sometimes preferable) in DEA. Moreover, by applying the 

multiplier form of the model, each DMU obtains its own best possible input and 

output weights, which is objective in nature and also different from most of the 

other weighting schemes that assign the same input and output weights for all 

the DMUs, such as AHP. The flexibility enjoyed by the DMUs in choosing their 

own input and output weights represents an undisputed advantage, in that if a 

DMU turns out to be inefficient based on the most favorable set of weights, its 

inefficiency cannot be traced back to an inappropriate evaluation process 

[Vercellis, 2009]. 

In addition, DEA assesses the relative efficiency of a particular unit by 

comparing it against all others, and the final efficiency score is measured with 

respect to the best observed performance, which is different from other 

techniques such as the OLS and the SFA that are based on either the average 

observed or some predetermined performance [Hayashi, 2000; Kumbhakar & 

Lovell, 2000].  

Last but not least, by distinguishing between efficient units and inefficient units 

using the dual form of the model, DEA possesses the ability to analyze the 

sources of inefficiency and further determine the potential improvement for 

those inefficient units by indicating specific benchmarks and assigning practical 

targets for them, which mostly attracts analysts and decision makers, and 

results in the widespread application of this technique [Amirteimoori et al., 2005; 

Hermans et al., 2009b; Yang et al., 2009]. 

On the other hand, the same characteristics that make DEA a powerful tool can 

also create problems. An analyst should keep these limitations in mind when 

deciding whether or not to use DEA: 
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Above all, as an extreme point technique, DEA is susceptible to ‘noise’ (even if it 

is symmetrical with zero mean) such as measurement error, and it can be 

similarly affected by an outlier impact especially when the number of DMUs 

increases dramatically [Golany & Roll, 1989]. Some outliers may exist on the 

production frontier thus changing the envelopment surface used for peer 

comparisons and affecting which ones are rated as efficient.  

There is an equally strong argument presented concerning the selection of 

inputs and outputs related to the DMUs as well as their quantity. The results of 

DEA are sensitive to the inputs and outputs utilized, and the number of efficient 

DMUs on the frontier tends to increase with the number of inputs and outputs. 

As a result, the discriminating power of the model is lost [Cooper et al., 2000]. 

The other widely debated feature of DEA is the assignment of weights to the 

various factors. The flexibility in selecting the weights in DEA is often presented 

as advantageous in its applications since a priori specification of the weights is 

not required and each DMU is evaluated in its best possible light. However, it 

also makes the comparison among DMUs on a common base impossible. 

Moreover, an unreasonable weight scheme could happen in which some DMUs 

would heavily weigh a few favorable inputs and outputs and completely ignore 

others in order to achieve a high relative efficiency score [Wong & Beasley, 1990; 

Allen et al., 1997; Thanassoulis et al., 2004]. Therefore, given a DMU that 

obtains an efficient score of one, it is important to determine whether its 

efficiency value should be attributed to an actual high-level performance or 

simply to an optimal selection of the weight structure. 

In addition, the non-parametric nature of DEA means that it does not allow the 

application of inferential statistics and traditional mechanisms such as 

hypothesis testing, which is actually the focus of ongoing DEA research [Zhu & 

Cook, 2007; Bogetoft & Otto, 2011].  

Although the limitations indicated above may be inimical to the successful 

applications of DEA, it should be noted that a better understanding of their 

threat and possible impact also provides the directions for future investigation. 
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1.5.5 Model extensions for this research 

Due to its prominent advantages, DEA is considered as an appropriate tool for 

our road safety benchmarking studies. However, to successfully apply DEA in 

this dissertation research, some methodological extensions have to be explored 

to handle some of the model limitations mentioned in the previous section and 

to answer the specific research questions listed in Section 1.4 as well. 

1.5.5.1. DEA-based road safety model (Model 1) 

In the basic DEA model, the definition of the best practices relies on the 

assumption that inputs have to be minimized and outputs have to be maximized. 

However, to use DEA for road safety evaluation, we want the outputs, e.g., the 

number of road fatalities, to be as low as possible with respect to the level of 

exposure to risk, such as distance travelled. As a result, a DEA-based road 

safety model is developed (see Chapter 2), in which the frontier DMUs, or the 

road safety best-performing countries are those with minimum output levels 

given input levels, and other countries’ efficiency is then measured relative to 

this frontier.  

1.5.5.2. Cross-efficiency method (Model 2) 

As indicated in Section 1.5.4, DEA possesses an attractive feature that each 

DMU is allowed to select its own most favorable input and output weights for 

calculating its best efficiency score, rather than the same weights for all the 

DMUs. However, this flexibility in selecting the weights makes the comparison 

among DMUs on a common base impossible. To overcome this difficulty, a cross-

efficiency method [Sexton et al., 1986] was developed with the main idea of 

using DEA in a peer evaluation instead of a self-evaluation mode (see Chapter 2). 

In this way, the results can be used to identify the best overall performers and 

to effectively rank all DMUs.  

1.5.5.3. Categorical DEA model (Model 3) 

As a remarkable benchmarking approach, DEA owns the capability of indicating 

a specific reference set for those inefficient DMUs and determining their potential 

improvement, or target, which is particularly suitable for answering our second 
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research question. However, the traditional benchmarking analysis also has 

some limitations − an inefficient DMU and its corresponding reference set may 

not be inherently similar in their practices, or the benchmarks are probably too 

far away for the inefficient DMU to learn from − which means that the resulted 

target may be very unrealistic and not attainable for this inefficient DMU. To 

solve this problem, clustering analysis is adopted to first cluster DMUs into a 

number of groups, and the best performers in a particular cluster, derived from 

a categorical DEA model, are then utilized as benchmarks for other DMUs in the 

same cluster (see Chapter 2).  

1.5.5.4. DEA-based Malmquist index (Model 4) 

Apart from assessing the road safety performance of countries at one specific 

point of time, research on time series data collected at regular intervals is also 

valuable in gaining a clear understanding of trends and expected progress 

towards postulated targets and benchmarks’ performance, which is our third 

research question. For this purpose, a DEA-based Malmquist productivity index, 

initially proposed by Malmquist (1953), can be applied. It has proven to be a 

proper tool for measuring the total factor productivity change of a DMU, in that 

it reflects progress (or regress) in efficiency along with progress (or regress) of 

the frontier technology over time [Chen & Ali, 2004; Yörük & Zaim, 2005; Greer, 

2008]. The calculation of this index for the road safety context will be illustrated 

in Chapter 3. 

1.5.5.5. Weight restrictions in DEA (Model 5) 

As a widely debated feature of DEA, an unreasonable weight scheme could 

happen due to the flexible allocation of input and output weights. To separate 

the DMUs that are really efficient from those whose efficiency score largely 

depends on the selected weights, apart from the cross-efficiency method, we 

may also impose different types of restrictions on the value of the weights to be 

associated with inputs and outputs. In doing so, a priori knowledge or 

requirements on the weights and also the value judgments from decision makers 

or experts can be incorporated. See Chapter 4 and Chapter 6 for the detailed 

discussion on weight restrictions. 
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1.5.5.6. DEA-based composite index (Model 6) 

The basic DEA model assesses the relative efficiency of a set of DMUs on the 

basis of multiple inputs and multiple outputs. However, to use DEA for 

composite index construction as in this research, i.e., aggregating a set of 

individual indicators into one overall index, it means that only inputs or outputs 

of the DMUs will be taken into account in the model. As noted by Adolphson et al. 

(1991), it is possible to adopt a broader perspective, in which DEA is also 

appropriate for comparing any set of homogeneous units on multiple dimensions. 

Based on this perspective, the DEA-based composite index model is realized 

(See Chapter 6), which is also known as the ‘benefit of the doubt’ approach 

[Cherchye et al., 2007a].  

1.5.5.7. Multiple layer DEA model (Model 7) 

One significant limitation of DEA indicated in Section 1.5.4 is that a large 

number of DMUs will obtain an efficiency score of one when the number of 

inputs and outputs used in the model is too large relative to the number of 

DMUs. On the other hand, as performance management becomes more and 

more complex, there are a great number of performance evaluation activities 

which not only need to be represented by a continuously increasing number of 

performance indicators, but these indicators might also belong to different 

categories and further be linked to one another constituting a multilayer 

hierarchical structure (corresponding to our sixth research question). In these 

cases, simply treating all the inputs and outputs to be in the same layer 

obviously ignores the information on the hierarchical structure of the indicators, 

and further leads up to weak discriminating power and unrealistic weight 

allocations. To this end, a multiple layer DEA model (MLDEA) is proposed in this 

research and applied to the road safety composite index construction (See 

Chapter 6). 

1.5.5.8. Interval DEA model (Model 8) 

As a ‘data-oriented’ technique, the applicability of DEA relies firstly on the 

availability of data. In other words, a complete data set with crisp positive 

values is commonly the prerequisite of the evaluation. However, in many 
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applications, the efficiency evaluation of the DMUs has to take into account 

missing values for some inputs and outputs (research question seven), which to 

a great extent restricts researchers from performing the basic DEA models. One 

of the possible solutions is to use interval DEA [Despotis & Smirlis, 2002; Smirlis 

et al. (2006); Cherchye et al., 2011], in which the missing values are replaced 

by approximations in the form of intervals in which the true values are believed 

to lie. The bounds of the intervals, depending on the application, can be 

estimated by using statistical or experiential techniques. The model provides for 

the DMUs with missing values an upper and a lower bound of their efficiency 

score corresponding to their most favorable and unfavorable option, respectively 

(See Chapter 7).  

1.5.5.9. Imprecise and Fuzzy DEA model (Models 9 & 10) 

Apart from data availability, the quality of data is also vital to the successful 

application of DEA. However, measurable or quantitative data are sometimes 

inadequate or even inappropriate to represent real world situations due to the 

complexity and uncertainty of the reality. Therefore, it is essential to take into 

account the presence of qualitative data when making a decision on the 

performance of a DMU, which corresponds to our eighth research question. 

Under these circumstances, the basic DEA model is out of its capability to derive 

a satisfactory solution. Generally, two strategies have appeared in the literature 

to the treatment of qualitative data within the DEA framework. One is to reflect 

the rank position of each DMU with respect to each ordinal factor by setting 

corresponding constraints, which is collectively referred to as imprecise DEA 

[Cook & Zhu, 2006]. The other strategy is to deal with the natural uncertainty 

inherent to some production processes by means of fuzzy mathematical 

programming, which leads up to the so-called fuzzy DEA [Guo, 2009]. In this 

research, both strategies are investigated to model qualitative data for the road 

safety benchmarking study (See Chapter 8). 

1.6 Structure of the Dissertation 

This thesis consists of nine chapters, with the structure illustrated in Table 1.4. 

This first chapter provided a general introduction to the dissertation research. 
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Chapters 2 to 4 constitute the first thematic part in which the road safety final 

outcomes are investigated for road safety product benchmarking. Chapters 5 to 

8 form together the second thematic part, which focuses on analyzing road 

safety performance indicators within the road safety programme benchmarking 

context. The dissertation ends with final conclusions and guidelines for future 

research in Chapter 9. 

Table 1.4 Structure of the dissertation 

Chapter 1 General Introduction 

Part I 

Benchmarking 

Road Safety 

Development: 

Evidence from 

Final Outcomes 

Chapter 2 Road Safety Risk 

Evaluation and Target Setting on 

Fatalities 
RQs 1 & 2 Models 1, 2, & 3 

Chapter 3 Road Safety 

Development in Europe: A 

Decade of Changes (2000-2009) 
RQ 3 Models 1 & 4 

Chapter 4 Serious Injuries: An 

Additional Indicator for Road 

Safety Evaluation 
RQ 4 Models 1 & 5 

Part II 

Towards a 

Composite 

Road Safety 

Performance 

Index 

Chapter 5 Development of 

Safety Performance Indicators 

and Data Processing 
RQ 5  

Chapter 6 Construction of a 

Composite Index (I): Hierarchical 

Structure Assessment 
RQ 6 Models 2, 4, 6, & 7 

Chapter 7 Construction of a 

Composite Index (II): Taking 

Interval Data into Account 
RQ 7 Models 6, 7, & 8 

Chapter 8 Construction of a 

Composite Index (III): Modeling 

Qualitative Data 
RQ 8 Models 6, 7, 9, & 10 

Chapter 9 Final Conclusions and Future Research 

 

Chapter 2 evaluates the overall road safety risk of a set of countries by 

simultaneously taking the different measures of exposure to risk into account, 

and identifies specific benchmarks and assigns practical targets for those 
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underperforming countries in terms of their number of road fatalities. This 

chapter thereby corresponds to the first two research questions of this 

dissertation. In doing so, DEA and its three model extensions (i.e., the DEA-

based road safety model, the cross-efficiency method, and the categorical DEA 

model) are investigated. 

Chapter 3 focuses on the third research question of this dissertation, i.e., how to 

evaluate the road safety performance change of countries over time. In doing so, 

we not only focus on the evolution in the number of road fatalities within a given 

period, but also take the change in exposure in the same period into account. 

The DEA-based road safety model and the Malmquist productivity index are 

employed to undertake the assessment. 

Chapter 4 discusses the possibility of including the number of serious injuries as 

an additional indicator of road safety final outcome to perform road safety 

product benchmarking and further illuminates its impact on the countries’ 

ranking. It thereby corresponds to the fourth research question of this 

dissertation. In doing so, different types of weight restrictions are formulated in 

the DEA-based road safety model to indicate the relationship between road 

fatalities and serious injuries. 

Chapter 5 identifies the current available national safety performance indicators 

that could be used for inter-national programme benchmarking of road safety, 

thereby corresponding to the fifth research question of this dissertation. Given 

the various categories of risk factors to consider and the idea of representing 

each risk factor with a number of safety performance indicators, the hierarchical 

structure of the indicators is established. Moreover, outliers in the data set are 

examined, and missing values are imputed. The complete data set provides us 

with the basis for the following road safety performance index research. 

Chapter 6 elaborates on the use of a DEA model for composite index 

construction, especially when the hierarchical structure of the indicators is taken 

into account, which therefore answers the sixth research question of this 

dissertation. The proposed multiple layer DEA model is applied to combine the 

hierarchical indicators developed in the previous chapter into a composite road 

safety performance index. Useful insights are gained from benchmarking 
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analyses enabling policymakers to prioritize their actions to improve the level of 

road safety. 

Chapter 7 investigates the influence of missing data on the final index score. In 

doing so, missing data are firstly replaced by approximations in the form of 

intervals deduced from multiple imputation in which the true values are believed 

to lie. An interval MLDEA-based CI model is thereafter developed and applied to 

provide for each country an upper and a lower bound of its index score 

corresponding to its most favorable and unfavorable option, respectively. This 

chapter therefore deals with the seventh research question of this dissertation. 

Chapter 8 focuses on the last research question of this dissertation, which is to 

model qualitative data in the context of composite index construction. Two 

strategies, i.e., an imprecise DEA-based CI model and a fuzzy DEA-based CI 

model are thereby investigated. The models are demonstrated by taking the 

qualitative alcohol indicator developed in Chapter 5 into account. Furthermore, 

by integrating fuzzy logic into the MLDEA-based CI model proposed in Chapter 6, 

we obtain a fuzzy MLDEA-based CI model, which is capable of combining all the  

hierarchical indicators (with both quantitative and qualitative data) into a 

composite road safety performance index. 

Finally, Chapter 9 summarizes the main conclusions from this dissertation 

research. Moreover, directions for future research are provided. 

 



 

 

 

 

 

 

 

 

 

 

Part I  Benchmarking Road Safety 

Development: Evidence from Final 
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Introduction to Part I 

In most of the current road safety benchmarking studies, crash data such as the 

number of fatalities − traditionally seen as road safety final outcomes or road 

traffic by-products − are inevitably investigated for all the countries under 

consideration. Their percentage change over the given period and the concept of 

risk, which is defined as the ratio of the final outcomes and some measure of 

exposure, are often used to make countries comparable. Evaluation and 

comparison based on these figures are accordingly also named as road safety 

product benchmarking, which enables countries not only to better understand 

their own relative road safety situation in terms of final outcomes, but more 

importantly, to learn from those better-performing countries in developing their 

own road safety policy, such as setting practical targets on their final outcomes. 

However, in computing the level of risk for a country, different exposure 

information can be used (e.g., the population size, the number of registered 

vehicles, and the distance travelled), and different evaluation results or ranking 

positions are normally obtained based on different risk indicators. So far, there 

is no consensus about which one is the most appropriate indication, and 

research on their combination is also quasi non-existing.  

Moreover, while road safety product benchmarking based on risk assessment 

enables us to find a specific reference set for those underperforming countries 

and further determine their potential improvement, e.g., the target number of 

fatalities, there are still some limitations involved in its practice such as that a 

underperforming country and its corresponding reference set may not be 

inherently similar, or the benchmarks are probably too far away for the 

underperforming country to learn from.  

Furthermore, to compare the development of road safety between countries, the 

percentage change in the number of people killed on the road is often the main 

indicator. However, simply considering the change in the final outcome may not 

correctly reflect the real development of road safety because the transport 

circumstances of a country having an impact on the final outcome, also changes 

over time.  
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In addition, from the view of road safety final outcomes, most of the current 

road safety product benchmarking studies focus entirely on fatalities, which 

however, represent only one measure of the magnitude of the road safety 

problem. Consequently, it is desirable to extend the inter-national comparisons 

of road safety by taking a larger picture of the impact of road crashes into 

account, such as serious injuries. 

In the first thematic part of this thesis, four research questions related to road 

safety product benchmarking are thereby formulated as below, and answers are 

given in the following three chapters. 

RQ1: How to obtain an overall picture of a country’s road safety performance 

when different final outcome risk indicators are considered? 

RQ2: How to set practical targets for similar underperforming countries in 

terms of the number of road fatalities? 

RQ3: How to assess road safety performance change over time by taking 

both final outcome evolution and exposure change into account? 

RQ4: What is the impact of utilizing other final outcomes, e.g., serious 

injuries, in addition to fatalities for road safety product benchmarking? 
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Chapter 2 Road Safety Risk Evaluation 

and Target Setting on Fatalities3 

This chapter evaluates the overall road safety risk of a set of countries by 

simultaneously taking the different measures of exposure to risk into account, 

and further identifies specific benchmarks and assigns practical targets for those 

underperforming countries in terms of their number of road fatalities. This 

chapter thereby corresponds to the first two research questions of this 

dissertation. 

2.1 Introduction 

Currently, the road safety situation of a country is mostly evaluated by means of 

crash data such as the number of road fatalities. However, the absolute 

numbers are not directly comparable between countries. In other words, the 

scale of different countries has to be considered when making comparisons. 

Therefore, the concept of risk, which is defined as the ratio of road safety 

outcomes and some measure of exposure, is often used in the context of 

benchmarking [European Transport Safety Council, 2003]. In this respect, the 

population size, the number of registered vehicles, and the distance travelled 

are the three most frequently used measures of exposure to risk [International 

Traffic Safety Data and Analysis Group, 2011]. Nevertheless, there has been 

considerable debate in the past about which one is the most appropriate 

indicator of exposure, because they describe risk from different points of view 

and are not consistent in most cases. In other words, countries may have 

different evaluation results or ranking positions using different exposure 

information, which to a great extent baffles decision makers in assessing their 

relative performance. Therefore, it would be desirable if all these three risk 

                                                 
3 Related research has been published in: Shen, Y., Hermans, E., Brijs, T., Wets, G. & 

Vanhoof, K.. Road safety risk evaluation and target setting using data envelopment 

analysis and its extensions, Accident Analysis & Prevention, doi: 10.1016/j.aap. 

2012.02.020. 
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indicators could be considered together in order to make comparisons of 

performance between countries. From the target setting point of view, however, 

numbers rather than rates are much more preferred since a declining rate such 

as the fatalities per distance travelled may conceal an increase in the raw 

number of fatalities [European Road Safety Observatory, 2006]. Consequently, 

an analytical research tool that can represent an overall perspective on a 

country’s road safety situation (in ratios, which make countries comparable), 

and also provide improvement potential for those underperforming countries (by 

numbers), is required.  

In this research, data envelopment analysis (DEA) and its several extensions, 

including the DEA-based road safety model, the cross-efficiency method, and the 

categorical DEA model are investigated and applied to evaluate the overall road 

safety performance of a country by simultaneously taking the aforementioned 

three aspects of exposure to risk into account, and to further assess whether the 

road safety outcomes registered in a country correspond to the ideal numbers 

that can be expected based on the level of exposure. The analysis, which is 

based on the combination of these model extensions, provides interesting 

insights and valuable recommendations for road safety policymakers in 

identifying the ‘efficiency’ of their current operations (i.e., an efficient 

transformation of input or exposure into output or road safety outcomes) and in 

suggesting useful benchmarks and practical targets for improvement. 

The remaining of this chapter is structured as follows. Section 2.2 introduces the 

three main risk indicators for road safety evaluation, and the idea of setting 

quantitative road safety targets is presented in Section 2.3. Section 2.4 specifies 

the relevant extensions of the basic DEA model for this study. The application of 

the methodology to the road safety risk evaluation and target setting is 

illustrated in Section 2.5 and the corresponding results are discussed 

subsequently. The chapter ends with the main conclusions in Section 2.6. 

2.2 Risk Indicators 

Reduction of road traffic crash risk and consequent damage, injury, and death is 

the key objective of policy concerning road safety. In order to obtain numerically 

reliable estimates of risk, recorded numbers of fatalities are usually related to 
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some measure of exposure, which is currently the main form of risk assessment 

in road transport between countries4 [European Transport Safety Council, 2003].  

Concerning exposure to risk, population data are most commonly used since 

they are readily available in most countries. The corresponding risk indicator, 

i.e., the number of fatalities per million inhabitants, is known as the mortality 

rate and regarded as an important criterion for road safety evaluation since it 

permits comparisons with other causes of death such as heart disease. However, 

for the comparison of traffic risks this indicator has the disadvantage of leaving 

the level of motorization out of account. Accordingly, an estimation of exposure 

to risk in terms of traffic volume is introduced representing the fatality risk, 

which is defined as the number of fatalities per distance travelled (e.g., fatalities 

per 10 billion passenger-kilometres (pkm) travelled). This risk indicator has 

traditionally been favored by road transport authorities as it implicitly discounts 

fatality rates if travel is increased. However, the definition of this exposure 

measure differs widely across countries, and only a limited number of countries 

collect data on this exposure measure. As a result, a third risk indicator − 

defined as the number of fatalities per million registered vehicles, which is also 

called the fatality rate − is often used as a substitution, although it differs in that 

the annual distance travelled is unknown. In addition, there are still some other 

variables which can be used as measures of exposure, such as road length, fuel 

consumption, the number of driving license holders, and so on. For more 

information, we refer to [Yannis et al., 2008]. 

In the European Commission’s report on EU Energy and Transport in Figures 

[European Commission, 2010b], 2008 data related to the above three risk 

indicators are collected for the 27 EU Member States, which are Austria (AT), 

Belgium (BE), Bulgaria (BG), Cyprus (CY), Czech Republic (CZ), Denmark (DK), 

Estonia (EE), Finland (FI), France (FR), Germany (DE), Greece (EL), Hungary 

(HU), Ireland (IE), Italy (IT), Latvia (LV), Lithuania (LT), Luxembourg (LU), 

Malta (MT), the Netherlands (NL), Romania (RO), Poland (PL), Portugal (PT), 

                                                 
4 Fatalities are used in most road safety analyses not because they are the only interest 

but mainly because there is no reliable reporting of the number of crashes and the range 

of injury severities. Even their definition varies greatly among countries. 
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Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE), and United Kingdom 

(UK). Country rankings in decreasing order of safety are indicated in Table 2.1. 

Table 2.1 Rankings of the 27 EU countries based on the three road safety 

risk indicators in 2008 

Fatalities per million 
inhabitants 

Fatalities per 10 billion       
pkm 

Fatalities per million  
passenger cars 

 MT 36   UK 39   MT 66  

 NL 41   SE 40   UK 91  

 SE 43   NL 45   NL 91  

 UK 43   LU 51   SE 93  

 DE 55   DE 51   LU 108  

 IE 63   FI 53   DE 109  

 FI 65   IE 56   FI 131  

 ES 68   FR 58   IT 132  

 FR 69   IT 59   FR 137  

 LU 72   MT 68   ES 141  

 DK 74   DK 75   IE 144  

 EU-27 78   EU-27 80   AT 159  

 IT 79   BE 84   EU-27 168  

 AT 81   SI 85   BE 185  

 PT 83   ES 89   CY 192  

 BE 88   AT 91   DK 195  

 EE 98   PT 99   PT 201  

 HU 99   EE 124   SI 208  

 SK 103   LT 129   EE 245  

 CZ 103   CY 139   CZ 247  

 CY 103   CZ 142   LT 306  

 SI 106   EL 147   EL 317  

 EL 138   LV 181   HU 328  

 BG 139   PL 196   LV 344  

 LV 139   SK 206   PL 355  

 RO 142   HU 230   SK 375  

 PL 143   BG 241   BG 477  

 LT 148   RO 420   RO 809  

Notes: 

Fatalities: number of persons who were recorded as dying immediately or within 30 

days from injuries sustained in a collision. 
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Inhabitants: sum of the population at 1 January 2008 and 1 January 2009 divided 

by two. 

pkm: passenger-kilometres of cars plus passenger-kilometres of motorised two-

wheelers. 

Passenger cars: sum of the stock of vehicles for 2007 and 2008 divided by two. 

Source: European Commission (2010b) 

These three risk indicators describe the relative performance in road safety of 

the 27 EU countries from different perspectives. However, their rankings also 

vary from one indicator to another. For instance, United Kingdom ranks first with 

respect to the fatalities per 10 billion pkm, but not with respect to the other two 

exposure measures. In fact, this is the case for all countries. Such kind of 

inconsistencies baffles the decision makers in identifying the best-performing 

countries and in deciding the extent to which those underperforming ones 

should improve. Consequently, obtaining an overall picture of a country’s road 

safety performance for cross-country comparison is valuable.  

2.3 Target Setting 

If we argue that risk analysis has the potential to make a powerful contribution 

to the development of effective strategies and programmes for crash prevention 

and casualty reduction, then the setting of challenging yet achievable 

quantitative road safety targets (usually expressed in terms of final outcomes, 

e.g., reduction in the number of fatalities) serves as a significant catalyst that 

motivates the whole range of stakeholders (from individuals who use the roads 

in different ways to government agencies at all levels) to support such strategies 

and programmes in order to achieve the safer use of roads. The value of setting 

targets to reduce road fatalities and casualties and thereby improve road safety 

performance has been widely recognized, see also [Elvik, 2001; Wong, 2006; 

Allsop et al., 2011]. An increasing number of countries are implementing long 

term road safety strategies towards their reduction or eventual elimination (e.g., 

the Swedish Vision Zero [Organization for Economic Co-operation and 

Development/International Transport Forum, 2008a]) within a framework of 

quantitative road safety targets. A range of targets in current use of a number of 

EU Member States is described in Table 2.2. 
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Table 2.2 Quantitative road safety targets in Europe  

Country Base year Target year Targets on road fatalities 

BE Mean of 1998-2000 2015 -33% (max 500 fatalities) 

DK 1998 2012 -40% 

EE 2002 2015 -55% 

EL 2000 2015 -40% 

FI 2000 2025 -75% (less than 100 fatalities) 

HU 2001 2015 -50% 

MT 2004 2014 -40% 

NL Mean of 2000-2002 2020 Less than 580 fatalities 

RO 2002 2012 -50% 

EU-27 2010 2020 -50% 

Source: Elvik (2003); Organization for Economic Co-operation and Development 

/International Transport Forum (2006); European Commission (2010a) 

No matter whether the target is expressed in percentage reductions or in 

absolute numbers, it represents the desired road safety results that a country 

wishes to achieve over a given timeframe. In practice, setting a challenging yet 

achievable quantitative target, however, is by no means easy. It needs to be 

ambitious in order to render all the stakeholders to come together and be 

motivated to share their responsibility in achieving common safety goals. 

Meanwhile, it should also be realistic so as to keep and strengthen this 

motivation during the whole target period. In doing so, many factors have to be 

taken into account, such as the economic status of a country, the level of 

ambition and commitment, the potential of different measures, the available 

resources, and so on. In the current research on target setting, such as 

[Organization for Economic Co-operation and Development, 2002], estimates of 

what is likely to be achievable are mostly based upon information about the 

current road safety situation of a country and its past evolution. In doing so, a 

reasonable assumption about the future is required, which, however, is to a 

great extent untraceable due to the complexity and uncertainty of the reality. In 

this study, an alternative way for target setting is introduced, in which each 

country is allowed to learn from other countries’ best performance. More 

specifically, since the achievements that have already been captured by those 
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best-performing countries provide valuable directions for the underperforming 

ones to go forward, the target value of one country can then be determined by 

its benchmarks. This objective is realized by using the technique of data 

envelopment analysis. 

2.4 Methodology 

Data envelopment analysis, as introduced in Section 1.5, is a powerful 

benchmarking tool with some prominent advantages over other traditional 

methods, which has resulted in the widespread application of this technique to a 

large number of benchmarking studies. However, to use DEA in this road safety 

evaluation and target setting research, some model considerations are still 

needed, which will be elaborated in the following sections. 

2.4.1 DEA-based road safety model 

In the basic DEA model, the definition of the best practices relies on the 

assumption that inputs have to be minimized and outputs have to be maximized 

(such as in the economics field). However, to use DEA for road safety evaluation, 

we want the output, i.e., the number of road fatalities to be as low as possible 

with respect to the level of exposure to risk. Therefore, the DEA frontier DMUs, 

or the road safety best-performing countries are those with minimum output 

levels given input levels, and other countries’ efficiency is then measured 

relative to this frontier. Graphically, consider the fatality risk (i.e., the number of 

fatalities per passenger-kilometres travelled) of two countries P and Q as in 

Figure 2.1.  

According to the DEA-based road safety principle that for a given amount of pkm 

travelled, countries having a lower number of fatalities are the efficient ones, we 

can thus identify that country Q is efficient. Thereby, the efficiency production 

frontier (F) is the ray extending from the origin through Q, and the area above 

this frontier constitutes the production possibilities set, i.e., the set of feasible 

activities, in which country P is located. Hence, P is inefficient, and its efficiency 

score can be computed as: AB/AP<1. Therefore, without any change of the 

exposure level, the number of fatalities in country P should be proportionally 
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reduced by 1-AB/AP=BP/AP to become efficient, and thus point B could be 

treated as its hypothetical composite unit (HCU). 

 

Figure 2.1 Graphic representation of the efficiency production 

frontier based on the DEA-based road safety model 

Mathematically, to use DEA for road safety evaluation, an adjusted road safety 

output-oriented DEA model5 is realized as follows: 
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and  

                                                 
5 The model can be deduced from the basic input-oriented DEA model (1-4) and (1-5) by 

switching each of the inputs and outputs into the place of the other.  
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where the weighted sum of inputs is to be maximized in the multiplier model (2-

1)6. The efficiency in DEA is now interpreted as the risk in road safety, and a 

higher efficiency score means a lower risk. Moreover, solving the corresponding 

envelopment model (2-2) enables us to find the lowest possible value of θ , for 

which there exists a HCU that owns at least as much of each input as DMUo, 

meanwhile leading to no more than θ  times each of the outputs of that DMU. 

2.4.2 Cross-efficiency model 

As indicated in Section 1.5.4, DEA possesses the attractive feature that each 

DMU is allowed to select its own most favorable input and output weights, or 

multipliers ( *

iv , *

ru ), for calculating its best efficiency, rather than the same 

weights for all the DMUs. However, this flexibility in selecting the weights makes 

the comparison among DMUs on a common base impossible. Moreover, an 

unreasonable weight scheme could also happen in which some DMUs would 

heavily weigh a few favorable inputs and outputs and completely ignore others 

in order to achieve a high relative efficiency score [Dyson & Thannassoulis, 1988; 

Wong & Beasley, 1990]. To overcome these difficulties, a cross-efficiency 

method [Sexton et al., 1986] was developed as a DEA extension tool that can be 

used to identify the best overall performers and to effectively rank all DMUs. Its 

main idea is to use DEA in a peer evaluation instead of a self-evaluation mode. 

Specifically, the cross-efficiency method evaluates the performance of a DMU 

using not only its own optimal input and output weights, but also the ones of all 

other DMUs. The resulting evaluations can then be aggregated in a cross-

                                                 
6 In other words, based on the same amount of the road safety final outcomes, we want 

the exposure to be as high as possible. The objective function can also be the minimization 

of the weighted sum of outputs. In doing so, however, the efficiency score of each DMU 

will be equal to or greater than one, rather than lying between zero and one. 
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efficiency matrix (CEM) as shown in Table 2.3. In the CEM, the element in the 

ith row and jth column represents the efficiency score of DMU j using the 

optimal weights of DMU i. The basic DEA efficiencies are thus located in the 

leading diagonal. Each column of the CEM is then averaged to obtain a mean 

cross-efficiency score for each DMU. Since all the DMUs are now evaluated 

based on the same weighting set, their comparisons can then be made, with a 

higher cross-efficiency score indicating better overall performance. Moreover, for 

those DMUs which are probably allocated with unreasonable weights in the basic 

DEA model, a relatively lower cross-efficiency score will be achieved 

[Boussofiane et al., 1991]. Therefore, it can also be treated as a kind of 

sensitivity analysis since different sets of weights are applied to each unit, and 

they are all internally derived rather than externally imposed. In addition, under 

some specific conditions, a common set of weights can be deduced from 

computing the cross-efficiency score [Anderson et al., 2002]. 

Table 2.3 A generalized cross-efficiency matrix 

Rating DMU 
Rated DMU 

1 2 3 … n 

1 11E  12E  13E  … 1nE  

2 21E  22E  23E  … 2nE  

3 31E  32E  33E  … 3nE  

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

n 1nE  2nE  3nE  … nnE  

Mean 1E  2E  3E  … nE  

 

One issue that may arise in using the CEM is that the optimal input and output 

weights obtained from the basic DEA model may not be unique. This makes the 

cross-efficiency analysis somewhat arbitrary and limits its applicability. During 

the last decades, some techniques have been proposed for obtaining robust 

weights for use in the construction of the CEM. The one that is most appropriate 

for this discussion is known as the aggressive formulation (see Doyle & Green 

(1994)), which identifies optimal weights that not only maximize the efficiency 
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of the DMU under study but also minimize the sum of efficiencies of all other 

DMUs. In practice, after calculating the efficiency score of each DMU by using 

model (2-1), the following formulation is used as the second phase for the cross 

evaluation of DMUp: 
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where pE*  is the efficiency score of DMUp derived from model (2-1). In model (2-

3), the weights will be selected to minimize the efficiency score of a composite 

DMU (all the DMUs under consideration except DMUp), given that pE*  cannot be 

changed. In this way, the uniqueness of the optimal input and output weights 

for DMUp is guaranteed to an utmost extent. 

2.4.3 Categorical DEA model 

As a remarkable benchmarking approach, DEA owns the capability of indicating 

a specific reference set for those inefficient DMUs and determining their potential 

improvement, or target. However, the traditional benchmarking analysis also 

has certain limitations − an inefficient DMU and its corresponding reference set 

may not be inherently similar in their practices, or the benchmarks are probably 

too far away for the inefficient DMU to learn from − which means that the 

resulted target may not be attainable for this inefficient DMU. To solve this 

problem, clustering analysis is adopted to first cluster homogeneous DMUs into 

one group, and the best performer(s) in a particular cluster, derived from a 

categorical DEA model, is then utilized as benchmark(s) for other DMUs in the 

same cluster.  

Suppose that the n DMUs are clustered into L different categories (K1, K2, …, KL), 

and the DMUs in K1 are assumed to be operating under worse circumstances 
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than the ones in K2, which are worse than the ones in K3, and so on. The 

categorical DEA model for road safety evaluation can then be expressed as: 
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where C denotes the number of categories used in the DEA calculation. 

Based on the multiplier form of the categorical model (2-4), we can see that 

each DMU is now compared only with DMUs in its own and less advantaged 

categories, rather than with all DMUs as in (2-1). Also, from the envelopment 

form’s point of view, the model (2-5) allows us to evaluate a DMU with respect 

to the envelopment surface determined for the units contained in it and all 

preceding categories. Thus, we assess all DMUs ∈ 1j K  with respect to the units 

in K1, all DMUs ∈ 2j K  with respect to the units in ∪1 2K K , and all DMUs ∈ Cj K  

with respect to the units in 
=∪ 1

C

ll
K . 

2.5 Application and Results 

In this section, the DEA approach and its extensions are applied to show an 

overall road safety risk picture of the 29 European countries (the 27 EU Member 

States together with Switzerland (CH) and Norway (NO)), and to further identify 

specific benchmarks and to assign practical targets for those underperforming 

ones in terms of the number of road fatalities. In doing so, the three common 
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measures of exposure to risk, i.e., the number of inhabitants, passenger-

kilometres travelled and passenger cars are used as the model’s input and the 

number of road fatalities as output (see Figure 2.2). This structure can be easily 

extended when other inputs and/or outputs are considered (see also Chapter 4). 

DMUpkm

population

passenger cars

fatalities

 

Figure 2.2 The input and output of the model 

Data for these 29 European countries are collected from the European 

Commission (2011a) for the year 2008 and are shown in Table 2.4. 

Table 2.4 Data on the three measures of exposure and the road fatalities for 

the 29 European countries in 2008 

Country 

Input Output 

Population 
(million) 

Passenger-kilometres 
(10 billion) 

Passenger cars 
(million) 

Fatalities 

BE 10.71 11.04 5.09 944 

BG 7.62 4.32 2.22 1061 

CZ 10.42 7.24 4.35 1076 

DK 5.49 5.22 2.08 406 

DE 82.11 87.13 41.25 4477 

EE 1.34 1.05 0.54 132 

IE 4.43 4.90 1.93 279 

EL 11.24 10.00 4.91 1555 

ES 45.56 34.26 21.95 3100 

FR 62.30 72.02 31.28 4275 

IT 59.83 73.68 35.89 4731 

CY 0.79 0.58 0.43 82 

LV 2.27 1.70 0.92 316 

LT 3.36 3.80 1.63 499 
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LU 0.49 0.67 0.33 35 

HU 10.04 4.20 3.03 996 

MT 0.41 0.22 0.23 15 

NL 16.45 14.70 7.47 677 

AT 8.34 7.33 4.27 679 

PL 38.13 27.35 15.33 5437 

PT 10.62 8.70 4.39 885 

RO 21.51 7.05 3.78 3061 

SI 2.02 2.49 1.03 214 

SK 5.41 2.64 1.49 558 

FI 5.31 6.34 2.64 344 

SE 9.22 9.84 4.27 397 

UK 61.39 67.81 28.96 2645 

NO 4.77 5.77 2.18 255 

CH 7.65 8.36 3.97 357 

Note: Only passenger-kilometres of cars are considered. 

Source: European Commission (2011a) 

2.5.1 Ranking based on road safety scores 

Now, by using the DEA-based road safety model (DEA-RS) as well as the CEM 

with the aggressive formulation, the overall road safety efficiency score of the 

29 European countries can be obtained. They are presented in Table 2.5, 

together with the standard deviation of each country’s 29 efficiency scores. The 

countries are ranked based on their average cross-efficiency score. 

Table 2.5 Overall road safety efficiency score of the 29 European 

countries based on the DEA-RS model and the CEM 

 
DEA-RS efficiency Cross-efficiency St. dev. 

UK 1.000 0.973 0.068 

SE 0.991 0.957 0.065 

NL 0.988 0.931 0.067 

MT 1.000 0.931 0.168 

CH 0.966 0.909 0.062 

NO 0.883 0.811 0.072 

DE 0.802 0.764 0.049 

LU 0.806 0.683 0.093 

FI 0.719 0.674 0.055 

IE 0.683 0.655 0.051 
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FR 0.663 0.629 0.048 

IT 0.652 0.579 0.059 

ES 0.574 0.536 0.053 

DK 0.559 0.516 0.048 

AT 0.500 0.478 0.034 

BE 0.479 0.463 0.029 

PT 0.478 0.439 0.042 

SI 0.454 0.420 0.037 

EE 0.400 0.364 0.039 

CY 0.381 0.357 0.039 

CZ 0.372 0.336 0.043 

HU 0.369 0.288 0.082 

LT 0.298 0.286 0.021 

SK 0.355 0.284 0.077 

EL 0.294 0.275 0.021 

LV 0.280 0.254 0.029 

PL 0.271 0.244 0.031 

BG 0.265 0.221 0.050 

RO 0.257 0.178 0.075 

 

It can be seen that United Kingdom and Malta are the two best-performing 

countries since they obtain the optimal efficiency score of one in the DEA-RS 

model, while the remaining 27 countries (obtaining a value less than one) are 

considered to be underperforming. Moreover, to represent a true peer 

assessment for each country, all other countries’ best possible weights are 

utilized to calculate the efficiency score of the country under study, and the 

average cross-efficiency score is then obtained reflecting this country’s all round 

performance, which is shown in the third column of Table 2.5. Countries can 

now be ranked by their scores. We can see that the SUN countries (Sweden, 

United Kingdom, and the Netherlands) are ranked at the top, while most of the 

Central and Eastern European countries, such as Romania and Bulgaria, are still 

facing great challenges to improve their road safety performance. Furthermore, 

comparing the ranking result with the ones in Table 2.1, which are based on the 

three risk indicators separately, we find that the result from the CEM gives us a 

global view on the country’s road safety performance by taking all three aspects 

of exposure into account, and yet it is not the simple average of those three 

rankings. In addition, by computing the standard deviation shown in the last 
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column of Table 2.5, we find that Malta obtains the highest value (0.168), which 

means that the set of efficiency scores calculated for Malta varies the most from 

its cross-efficiency score. In other words, Malta has the highest level of 

uncertainty on its efficiency score, and is probably allocated with unreasonable 

weights in the DEA-RS model. This result will be verified in the following section. 

2.5.2 Country clustering 

In the benchmarking analysis, each underperforming country should learn from 

those best-performing ones so as to improve their road safety performance. 

However, as can be seen in Table 2.5, the efficiency of most of the Central and 

Eastern European countries are still far away from that of the SUN countries (all 

less than half). Therefore, clustering analysis is firstly conducted to group the 

countries with inherent similarity in their practices. In this study, a hierarchical 

clustering analysis is applied based on the three exposure measures of each 

country, which are unitized by the number of road fatalities, respectively. 

Moreover, three different techniques, i.e., the Ward’s method, the Centroid 

Linkage method, and the Average Linkage method (between and within groups) 

in SPSS 17.0 are used to derive various clusters. The dendrograms from these 

three methods are shown in Appendix I.  

No matter which clustering method is used, even though certain differences can 

be found between some countries, five clusters of countries can always be 

classified, which are listed as follows: 

Group 1: BG; CY; CZ; EE; EL; HU; LV; LT; RO; PL; SK  

Group 2: AT; BE; DK; PT; SI; ES 

Group 3: FI; FR; DE; IE; IT; LU; NO 

Group 4: NL; SE; UK; CH 

Group 5: MT 

They can also be presented in the following 2-dimensional figure indicating the 

population size and the pkm in each country relative to its number of road 

fatalities7. 

                                                 
7 The inverse risk indicators are applied here because the ratio between exposure and final 

outcome is maximized in the model. 
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Figure 2.3  29 European countries clustered in five groups 

We can see that most of the Central and Eastern European countries are 

clustered in Group 1, and they have the highest risk on road traffic fatal crashes 

compared to other countries. The SUN countries and Switzerland are also in one 

group (Group 4) and they exhibit the best road safety performance. For the 

remaining countries, three groups are classified, in which Malta appears to be 

quite different since it is not grouped with any other country. Its distinctive 

performance also interprets the reason why it obtains the highest standard 

deviation when calculating the cross-efficiency score (see Table 2.5). Therefore, 

in the following benchmarking analysis, Malta is excluded and only the four main 

groups of countries are taken into account.  

2.5.3 Benchmarking and target setting 

To provide a further evaluation for the 28 European countries, which are 

clustered in four groups, the categorical DEA-RS model is applied to indicate a 

specific reference set of benchmarks and to determine the potential 
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improvement for those underperforming countries. More specifically, a country 

in any group is now compared only with those other countries in the same or 

less-advantaged group. It means in our case that four DEA-RS models will be 

created. The first model contains the countries in Group 1 (having the lowest 

road safety performance), the second model includes the countries belonging to 

the first two groups, and so on. The results are shown in Table 2.6.  

Table 2.6 The efficiency score of the 28 European countries using the 

categorical DEA-RS model 

Country Category 
Efficiency score 

Category 1 Category 1-2 Category 1-3 Category 1-4 

PL 1 0.691 0.477 0.375 0.289 

RO 1 0.692 0.478 0.376 0.289 

BG 1 0.707 0.489 0.384 0.296 

LV 1 0.708 0.489 0.384 0.296 

EL 1 0.808 0.531 0.386 0.297 

SK 1 0.955 0.660 0.518 0.399 

LT 1 0.957 0.604 0.366 0.298 

CZ 1 0.959 0.659 0.518 0.399 

HU 1 0.993 0.686 0.539 0.415 

EE 1 1 0.700 0.543 0.418 

CY 1 1 0.741 0.565 0.472 

PT 2 
 

0.840 0.642 0.494 

SI 2 
 

0.914 0.544 0.454 

AT 2 
 

0.944 0.681 0.566 

BE 2 
 

0.948 0.611 0.490 

DK 2 
 

1 0.723 0.564 

ES 2 
 

1 0.794 0.639 

IT 3 
  

0.811 0.682 

FR 3 
  

0.815 0.667 

IE 3 
  

0.846 0.683 

FI 3 
  

0.866 0.719 

DE 3 
  

1 0.831 

LU 3 
  

1 0.848 

NO 3 
  

1 0.883 

SE 4 
   

0.993 

CH 4 
   

1 

NL 4 
   

1 

UK 4 
   

1 
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It can be seen that in each DEA-RS model, two or three different efficient 

countries are identified. For instance, Estonia and Cyprus are the two best-

performing countries since they obtain the optimal efficiency score of one in the 

first model, which means that they are at the top of the countries’ performance 

ranking in Group 1, while the remaining nine countries are considered to be 

underperforming. Moreover, when the final model is applied in which all the 28 

countries are included, United Kingdom, the Netherlands, and Switzerland are 

the three best performers, while Estonia and Cyprus are then only half on their 

way to become efficient.  

To better understand the computational process leading to the efficiency scores 

presented in Table 2.6, and especially the reasons why the underperforming 

countries are unable to obtain a value of one, we further explore the mechanism 

of the multiplier and envelopment forms of the categorical DEA-RS model, 

respectively. Theoretically, the multiplier or the primal DEA-RS model is to 

choose the best possible input and output weights under the imposed 

restrictions to maximize the efficiency score of a certain country. If the optimal 

weights of a country A under study do not result in a value of one for this 

country but cause the weighted score of another country B in the data set to 

become one, then the model stops. This implies that country B is characterized 

by a lower risk than country A with respect to at least one of the exposure 

aspects since the efficiency score of B is relatively higher with the same set of 

weights. Therefore, country A could take country B as an example for improving 

its road safety performance. From the envelopment or the dual DEA-RS model’s 

point of view, the dual weights, i.e., λ , can be viewed as indicating the amount 

of technical weight that is attributed by each benchmark country in the 

construction of an efficient HCU. In other words, the countries with non-zero 

dual weights make up the reference set for the country under study. Using this 

principle, the reference sets and dual weights of all the underperforming 

countries in each group can be identified and the corresponding targets obtained 

as well. The results are shown in Table 2.7, together with the registered number 

of fatalities in 2008 and 2009 [European Commission, 2011a]. 
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Firstly, it can be seen that the reference sets for each underperforming country 

are solely comprised of the best-performing countries in each model. Taking the 

first one as an example, Estonia acts as a benchmark country for all the nine 

other countries within this group while Cyprus for two of them.  

Moreover, since the value of the dual weight points out the extent to which each 

benchmark country contributes to the definition of the HCU for each 

underperforming country, it enables us to rank the benchmark countries in 

terms of their relative importance. Taking Latvia as an example, the dual weight 

of Estonia (1.666) is much larger than that of Cyprus (0.047) implying that 

Estonia plays a stronger role in determining the ideal performance of Latvia. 

More importantly, the constructed HCU offers information for setting a practical 

target for each underperforming country in order to become efficient. In other 

words, for each underperforming country, a quantitative road safety target can 

be formulated by learning from its benchmarks, using the following formula: 

1

1,
K

j Bk Bk
k

T λ F j n
=

= =∑ �  (2-6) 

where Tj denotes the target number of fatalities for the jth underperforming 

country, K denotes the number of benchmarks in the referent set, FBk is the 

number of road fatalities in the kth benchmark country, and Bkλ  is the 

corresponding dual weight. Thus, for the case of Latvia, its target number of 

fatalities can be calculated as: × + × =1.666 132 0.047 82 224 . Moreover, based 

on the different benchmark countries identified in each model, which are 

Denmark and Spain in the second model, Germany, Luxembourg and Norway in 

the third model, and Switzerland, United Kingdom and the Netherlands in the 

final model, three additional targets for the number of fatalities can be obtained 

for Latvia, which are 154, 121, and 93, respectively. We can see that the first 

target using Estonia and Cyprus as reference set is more realistic since these 

two countries are more inherently similar to Latvia in their practices and the 

assigned target value is more close to its current number of fatalities. However, 

all other target fatalities are also valuable for Latvia to set its mid- and long-

term targets.  
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To further illustrate the effectiveness of the assigned target(s) in Table 2.7, we 

compare the results with the actual target of a particular country in Table 2.2. 

Taking Belgium as an example, which has set a real target of maximum 500 

fatalities by 2015, we find that the number is located within the range of targets 

calculated in this study (i.e., 885, 584, and 461), and actually it is quite close to 

the last value which is derived by using the overall best-performing countries, 

i.e., United Kingdom and the Netherlands, as its reference set. 

Finally, by checking the number of fatalities of these 28 European countries in 

2009 (see the last column of Table 2.7), we find that 9 countries (Austria, Czech 

Republic, Finland, Hungary, Lithuania, Norway, Slovakia, Slovenia, and Sweden) 

have already achieved their first target, and Slovakia has even reached its 

second target. It means that the target setting approach used is practical and 

attainable. However, it should also be mentioned here that every year, the 

performance of each country changes and the benchmark countries could alter 

as well. Thus, the target value for each country should also modify 

correspondingly. Therefore, it is a dynamic process with respect to both target 

setting and target achieving. 

2.6 Conclusion 

In this chapter, the road safety performance of 29 European countries has been 

evaluated by considering three main risk indicators (i.e., the number of fatalities 

per million inhabitants, the number of fatalities per 10 billion passenger-

kilometres travelled, and the number of fatalities per million passenger cars) 

simultaneously, and useful benchmarks are identified for improving the 

operations of those underperforming countries by assigning practical targets for 

them. In doing so, data envelopment analysis and its three model extensions 

were investigated. First, a particular DEA-based road safety model was proposed 

to solve the problem that the outputs such as the number of fatalities need to be 

minimized rather than maximized in road safety risk evaluation. This can be 

treated as a natural extension of the basic DEA model. Second, the cross-

efficiency method was used to enable the comparison among countries on a 

common basis. The best overall performers could then be identified and all 

countries ranked. Third, the clustering analysis was conducted to group 
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countries with inherent similarity in their practices, and the categorical DEA-RS 

model was applied to indicate appropriate benchmarks within each cluster and 

determine the potential degree of improvement for those underperforming 

countries. 

The analysis, which was based on the combination of these model extensions, 

provided interesting insights and valuable recommendations for road safety 

policymakers in identifying the efficiency of their current operations and in 

suggesting targets for improvement. Specifically, using the DEA-RS model 

linking input (three measures of exposure to risk) and output (the number of 

fatalities), an overall road safety efficiency score was obtained for each country 

and the ranking of these countries was deduced by computing their cross-

efficiency. We found that United Kingdom, Sweden, and the Netherlands were 

three ‘SUN’ countries possessing the best road safety performance among all the 

European countries in 2008, while most of the Central and Eastern European 

countries were still facing great challenges in this aspect. Moreover, based on 

the results from the hierarchical clustering analysis, four groups of these 

European countries (except Malta) were classified with their road safety 

performance from worst to best. Then, by applying the categorical DEA-RS 

model, best-performing and underperforming countries were identified in each 

group, and reference sets or benchmarks for those underperforming ones were 

indicated. More importantly, the extent to which each reference set could be 

learned from was specified, and practical targets on fatalities were given for 

each underperforming country. They enable policymakers to recognize the gap 

with those best-performing countries and further develop their own road safety 

policy. In this study, we found that United Kingdom, the Netherlands, and 

Switzerland were the three benchmark countries, and could be used to derive 

potential improvement for all others. However, from the practical point of view, 

for those countries with a relatively high fatal risk, such as Latvia, the reference 

set consisting of for example Estonia and Cyprus was more suitable to be 

learned from, at least in the short term. Thus the target number of fatalities 

deduced from this reference set was more realistic and attainable. Nevertheless, 

other challenging targets are also valuable, especially for the long-term 

development. 
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To conclude, it would be interesting to perform in the future an empirical 

investigation on whether underperforming countries would choose the specific 

benchmarks indicated in this study as it will help in determining the validity of 

the methodology. Also, from the road safety policy point of view, we should 

keep in mind that setting targets does not guarantee their achievement unless 

keeping adequate political ambition, effective strategies, sufficient allocation of 

resources, successful implementation, and persistent monitoring and evaluation 

as an ongoing process throughout the whole target period. 
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Chapter 3 Road Safety Development in 

Europe: A Decade of Changes (2000-

2009) 8 

This chapter answers the third research question of this dissertation, i.e., how to 

evaluate the road safety performance change of countries over time. In doing so, 

we not only focus on the evolution in the number of road fatalities within a given 

period, but also take the change in exposure in the same period into account. 

The DEA-based road safety model and the Malmquist productivity index are 

employed to undertake the assessment. 

3.1 Introduction 

In the previous chapter, cross-sectional data analysis based on DEA and its 

several extensions was conducted to evaluate the road safety performance of 28 

European countries at one specific point of time, which was the year 2008. As a 

result, countries were ranked and benchmarked based on their relative road 

safety performance in that year. In other words, data with respect to only one 

time period were analyzed, while the evolution of road safety performance in 

each country was out of consideration. In doing so, it is not possible to reflect in 

the results such as that the best-performing countries in one year might not be 

the best in the previous or next year. Consequently, research on time series 

cross-sectional data collected at regular intervals, also known as longitudinal 

data analysis, is required to gain a clear understanding of the road safety 

development in each country relative to others. Interesting questions can then 

be asked that can never be answered with pure cross-sectional data, such as the 

performance change of countries over time. 

                                                 
8 Related research has been published in: Shen, Y., Ruan, D., Hermans, E., Brijs, T., Wets, 

G. & Vanhoof, K., (2011). Sustainable road transport in the European Union: Changes in 

undesirable impacts, Transportation Research Record: Journal of the Transportation 

Research Board, No. 2242, pp. 37-44. 
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Traditionally, the percentage change in the number of people killed on the road 

is the main indicator used to compare the development of road safety between 

countries with a higher reduction in road fatalities indicating a better rank 

[European Transport Safety Council, 2011] (see Figure 3.1). 

 

Figure 3.1 Fatality change of 28 European countries between 2000 and 2009 

Data source: European Commission (2011a) 

The idea is intuitive and the results are easy to obtain since the number of road 

fatalities in two years is the only information needed for the calculation. 

However, simply considering the reduction in the final outcome may not 

correctly reflect the real improvement in road safety because the transport 

circumstances of a country underlying the final outcome also change every year. 

For instance, consider a country that recorded 100 road fatalities in one year 

with a participation of 10 billion pkm in traffic, and 90 road fatalities with 9 

billion pkm in the second year. Although the number of fatalities is reduced by 

10% between these two years, there is actually no improvement in road safety 

performance because the degree of participation in traffic also decreases by 

10% in this country and its fatality risk has thereby not changed during these 

two years. Consequently, to capture the dynamic road safety progress in each 

country, this study not only focuses on the development of road fatalities within 

a given period, but also takes the change in exposure into account for the three 

measures used in the previous chapter, which are the number of inhabitants, 

passenger-kilometres travelled and passenger cars. The DEA-based road safety 

model proposed in Section 2.4.1 and the Malmquist productivity index 
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[Malmquist, 1953] are employed to undertake the assessment for the same 28 

European countries over the period 2000-2009.  

The remaining of this chapter is organized as follows. In Section 3.2, we 

elaborate the construction of the Malmquist productivity index based on the 

DEA-based road safety model. In Section 3.3, we demonstrate the application of 

this DEA-based Malmquist productivity index for measuring the road safety 

development of countries over time, and the results are subsequently provided 

and discussed. The chapter is summarized in Section 3.4. 

3.2 DEA-based Malmquist Productivity Index 

The concept of the Malmquist productivity index, originally introduced by 

Malmquist (1953) as a quantity for analyzing the consumption of inputs, has 

been further developed by Caves et al. (1982). Afterwards, Färe et al. (1992) 

combined the ideas on the measurement of efficiency and the measurement of 

productivity to construct a Malmquist productivity index directly from input and 

output data using DEA. Specifically, by using longitudinal data, the DEA-based 

Malmquist productivity index, hereafter referred to as DEA-MI, relies on firstly 

constructing an efficiency production frontier over the whole sample realized by 

DEA (as illustrated in Section 1.5.2), and then computing the distance of 

individual observations to the frontier. In practice, the DEA-MI has proven to be 

a proper tool for measuring the productivity change of DMUs over time [Chen & 

Ali, 2004; Yörük & Zaim, 2005; Greer, 2008]. 

Moreover, in contrast to conventional production functions or other index 

approaches, the DEA-MI can be further decomposed into two components, one 

measuring the change in efficiency (EFFCH) and the other indicating the change 

in the frontier technology (TECHCH). From the output-oriented view of road 

safety development assessed in this study, an improvement in efficiency occurs 

when there are decreases in the quantities of output (i.e., road fatalities) based 

on a given set of inputs. Operationally, it can for example be realized by more 

and better road user education and driver training. Moreover, encouraging 

citizens to use public transport instead of private cars is also widely recognized 

as a useful way in reducing the road crash risk in a country. In contrast to a 

change in efficiency, technical change occurs through the adoption of new 
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technologies that reduce the minimum quantities of output given a certain level 

of input. In this respect, the introduction of safer vehicles, betterment of road 

infrastructure, and improvement in medical treatment of people involved in 

crashes are all related to productivity-enhancing technical changes. 

Towards a safer use of the road, both efficiency enhancements and technical 

improvements are required. The DEA-MI calculated here allows us to measure 

the combined effect of EFFCH and TECHCH of each country within the given 

period, and it also captures the separate impact of each effect. 

Mathematically, the DEA-MI is computed as the product of EFFCH and TECHCH. 

Therefore, to obtain the total factor productivity change of a DMU over time, we 

need to firstly derive its EFFCH and TECHCH, respectively. In doing so, consider 

the same example as presented in Figure 2.1, but with two time periods t and 

t+1 for the two units P(x0, y0) and Q(x1, y1) now, which is illustrated in Figure 

3.2.  

 
Figure 3.2  Graphic representation for EFFCH and TECHCH computation 

By identifying the efficient unit in each time period, which is 1 1Q( , )t tx y  and 

1 1
1 1Q'( , )t tx y+ + , respectively, we derive the efficiency frontiers Ft and Ft+1 as in 

Figure 3.2, and the efficiency score of unit P in each time period can be 

measured as AB/AP and CD/CP’, respectively. Thus, the magnitude of the 
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efficiency change of unit P from period t to t+1 can be computed as the ratio of 

these two efficiency scores, which can be further expressed in the corresponding 

distance function forms as follows: 

1 1 1( , )
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t t t

o o o
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where the two distance functions can be computed by means of the DEA-based 

road safety model as in (2-2), and they are represented as below: 

1

1

( , ) min

. . , 1, ,

, 1, ,

0, 1, ,

t t t

o o o

n
t t

ij j io
j

n
t t

rj j ro
j

j

D x y θ

s t x λ x i m

y λ θy r s

λ j n

=

=

=

≥ =

≤ =

≥ =

∑

∑

�

�

�

 (3-2) 
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where t

ijx , t

rjy , 1t

ijx + , and 1t

rjy +  denote the ith input and rth output of the jth DMU 

at a given point in time t and t+1, respectively. 

For the effect of the efficiency change, which also reflects the capability of an 

inefficient DMU in catching up with those efficient ones, EFFCH>1 indicates 

progress in the relative efficiency of the DMUo from period t to t+1, while 

EFFCH=1 and EFFCH<1 means respectively no change and regress in efficiency. 

To fully evaluate the total factor productivity change, we should also take into 

account the technical change, which measures the shift in the technology 

frontier between two time periods. In Figure 3.2, we notice that the production 

possibilities set expands from period t to t+1, as a greater number of input-

output combinations become feasible when the frontier moves from Ft to Ft+1, 
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and the HCU of unit P also moves from B to G. Thus, the TECHCH at 0 0P( , )t tx y  is 

evaluated by: AB/AG, which is equivalent to: 

P 1

( , )AB AP
AG AP ( , )

t t t

o o o

t t t

o o o

D x y
TECHCH

D x y+
= =  (3-4) 

where the denominator 1( , )t t t

o o oD x y+  denotes the relative efficiency of 0 0P( , )t tx y  

with respect to the frontier at time t+1, i.e., Ft+1. 

Similarly, the TECHCH at 1 1
0 0P'( , )t tx y+ +  can be expressed by: 

1 1

P' 1 1 1

( , )CH CP'
CD CP' ( , )

t t t

o o o

t t t
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TECHCH

D x y
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where the numerator 1 1( , )t t t

o o oD x y+ +  represents the relative efficiency of 

1 1
0 0P'( , )t tx y+ +  relative to the frontier at time t, i.e., Ft. 

The overall TECHCH is therefore defined as the geometric mean9 of the above 

two TECHCHs: 

1 / 21 1

1 1 1 1

( , ) ( , )
( , ) ( , )

t t t t t t

o o o o o o

t t t t t t

o o o o o o

D x y D x y
TECHCH

D x y D x y

+ +

+ + + +

 
=  
 

 (3-6) 

where the two mixed-period measures, i.e., 1( , )t t t

o o oD x y+  and 1 1( , )t t t

o o oD x y+ + , can 

be derived from the following modification of the DEA-based road safety model 

as in (2-2): 
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and 

                                                 
9 It has to be noted that the geometric mean version of the Malmquist productivity index 

does not satisfy the circular test [Pastor & Lovell, 2007]. 
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For the change in the frontier technology, values greater than one indicate an 

improvement in this aspect, while values equal to and less than one imply status 

quo and deterioration, respectively. 

By now, the DEA-MI, which measures the total factor productivity change of a 

particular DMUo from period t to period t+1, can be computed as the product of 

EFFCH and TECHCH: 
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MIo>1 indicates progress in the total factor productivity of the DMUo from period 

t to t+1, while MIo=1 and MIo<1 means respectively status quo and decay in 

productivity. 

In the following section, the Malmquist productivity index based on the DEA-

based road safety model (DEA-RS-MI) is applied to evaluate the road safety 

performance change of countries over time. Meanwhile, the two effects on 

efficiency enhancements and technical improvements are measured separately 

for country comparisons. 

3.3 Application and Results 

In this study, the evolution in the number of road fatalities and the changes in 

three common measures of exposure to risk used in the previous chapter, i.e., 

the number of inhabitants, passenger-kilometres travelled and passenger cars, 

are considered simultaneously in order to assess the dynamic road safety 

progress in Europe during the last decade. The input-output structure is the 

same as in Figure 2.2, in which the three measures of exposure are used as the 



76 

 

model’s input and the number of road fatalities as output. Data are collected 

from 2000 to 2009 (the latest year for which data are available) for the same 28 

European countries as considered in Chapter 2 [European Commission, 2011a]. 

The data for 2000 and 2009 are shown in Table 3.1. 

Table 3.1 Input and output data of the 28 European countries for 2000 and 

2009  

Country 

Input Output 

Population 
(million) 

Passenger-
kilometres       
(10 billion) 

Passenger cars 
(million) Fatalities 

2000 2009 2000 2009 2000 2009 2000 2009 

BE 10.25 10.80 10.55 11.15 4.63 5.16 1470 955 

BG 8.17 7.59 2.69 4.63 1.95 2.43 1012 901 

CZ 10.27 10.49 6.39 7.23 3.44 4.43 1486 901 

DK 5.34 5.52 5.06 5.22 1.85 2.11 498 303 

DE 82.21 81.90 83.13 88.68 38.74 41.53 7503 4152 

EE 1.37 1.34 0.67 1.05 0.46 0.55 204 98 

IE 3.81 4.46 3.84 4.83 1.31 1.94 418 240 

EL 10.92 11.28 6.30 10.13 3.06 5.08 2037 1453 

ES 40.26 45.91 30.26 35.05 17.15 22.06 5777 2714 

FR 59.06 62.63 69.96 72.39 29.54 31.25 8079 4273 

IT 56.94 60.19 72.65 70.81 32.31 36.29 7061 4237 

CY 0.69 0.80 0.39 0.60 0.26 0.45 111 71 

LV 2.37 2.25 1.15 1.67 0.54 0.92 635 254 

LT 3.50 3.34 2.60 3.61 1.13 1.68 641 370 

LU 0.44 0.50 0.56 0.67 0.27 0.33 76 47 

HU 10.21 10.02 4.62 4.12 2.31 3.03 1200 822 

NL 15.93 16.53 14.11 14.63 6.44 7.58 1082 644 

AT 8.01 8.37 6.67 7.23 4.05 4.32 976 633 

PL 38.45 38.15 14.97 28.50 9.64 16.29 6294 4572 

PT 10.23 10.63 7.10 8.60 3.40 4.43 1877 840 

RO 22.44 21.48 5.10 7.55 2.74 4.14 2466 2796 

SI 1.99 2.04 2.03 2.49 0.86 1.05 314 171 

SK 5.39 5.42 2.39 2.64 1.26 1.57 628 384 

FI 5.18 5.34 5.57 6.43 2.11 2.74 396 279 

SE 8.87 9.30 9.19 9.94 3.94 4.29 591 358 

UK 58.89 61.80 63.97 68.02 24.85 29.10 3580 2337 

NO 4.49 4.83 5.12 5.83 1.83 2.22 341 212 

CH 7.18 7.74 7.86 8.49 3.51 4.00 592 349 

Source: European Commission (2011a) 
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3.3.1 The overall results 

The DEA-RS-MI is now adopted to measure the extent to which the 28 European 

countries have improved their level of road safety performance during the period 

under study. The overall results are shown in Figure 3.3. 

 

Figure 3.3 The evolution in MI of the 28 European countries and its 

decomposition into technical and efficiency changes in 2000-2009 

Figure 3.3 indicates the cumulative MI of the 28 European countries and its 

decomposition (i.e., in EFFCH and TECHCH) from 2000 to 2009 by sequential 

multiplication of the improvements in each year with 2000 as the index year 

(equal to one). From the trend of MI, we can see that the 28 European countries 

as a whole exhibit considerable improvement in road safety performance (nearly 

80%) during the last decade. Although a slight decrease existed in 2007, the 

total ‘productivity’ went steadily up during this period, and the trend was much 

steeper in the last two years. Moreover, we can find that this was mostly 

dominated by its technical component, which means that the main source of this 

growth came about more through the adoption of productivity-enhancing new 

technologies throughout the road transport sector in Europe than through the 

efficiency improvements among those relatively inefficient countries. More 

specifically, based on the trends of EFFCH and TECHCH, we can see that both 

efficiency and technology in these 28 European countries were improved during 



78 

 

the first three years of the last decade (2001-2003), and those underperforming 

countries did even a little better in catching up with those efficient ones as the 

EFFCH is somewhat greater than the TECHCH. However, in the following four 

years (2004-2007), great efforts have been made in Europe to update its road 

safety technology, resulting in a remarkable shift in the technology frontier. On 

the other hand, the countries seemed to have lost their momentum by 2007 for 

further improvement on their efficiency and those underperforming countries 

showed difficulties in keeping pace with their benchmarks. Finally, in 2008 and 

2009, both underperforming and best-performing countries made progress in 

terms of their road safety efficiency and technology together again, which 

enabled the total factor productivity to increase dramatically. 

3.3.2 Cross-country comparisons 

Although considerable improvement in terms of road safety performance has 

been achieved in Europe during the last decade, the situation differs widely 

from country to country. Therefore, apart from analyzing the road safety 

development of the 28 European countries by considering them as a whole, the 

progress in each of these countries is illustrated in Appendix II, and the cross-

country comparisons are provided in the following sections. 

3.3.2.1 Efficiency change 

To compare the road safety progress in these 28 European countries during the 

last decade, we firstly look at the changes in their relative efficiency. Tables 3.2 

and 3.3 present the DEA-RS efficiency scores and the corresponding efficiency 

changes of the 28 European countries over the period 2000-2009. It can be seen 

from Table 3.2 that the Netherlands, Sweden, United Kingdom, Norway, and 

Switzerland were the five best-performing countries in terms of road safety since 

they obtained the efficiency score of one alternatively during these ten years. In 

other words, they determined the efficiency levels of other countries since they 

were the ones that shifted the frontier in this period. The remaining countries, 

however, had an efficiency score less than one in each time period, and both 

improvement and decline occurred during these ten years. Within these 

countries, there were still seven, i.e., Belgium, Bulgaria, Greece, Hungary, 

Austria, Poland, and Romania, whose overall efficiency (2009 compared to 2000) 
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changed less than one (see the last column of Table 3.3), which implies their 

weak capability in catching up with those efficient countries. On the contrary, 

comparison of development up to 2009 shows that Spain, Latvia, and Portugal 

achieved the best improvement in terms of efficiency (all over 40%), which 

could be mainly attributable to the prominent reduction in their road fatalities 

during this period (see Figure 3.1). In addition, it should be noted that their poor 

efficiency scores in 2000 (0.43, 0.23, and 0.33, respectively) also provided them 

with more space for progress.  

Table 3.2  Efficiency scores of the 28 European countries over the period 

2000-2009 

Country 
Efficiency score  

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

BE 0.45 0.45 0.50 0.52 0.49 0.48 0.48 0.47 0.49 0.43 

BG 0.49 0.48 0.50 0.48 0.41 0.37 0.33 0.33 0.30 0.32 

CZ 0.42 0.47 0.43 0.42 0.37 0.37 0.43 0.37 0.40 0.44 

DK 0.65 0.76 0.70 0.74 0.73 0.76 0.80 0.59 0.56 0.69 

DE 0.74 0.80 0.79 0.79 0.79 0.80 0.78 0.81 0.83 0.80 

EE 0.41 0.42 0.37 0.49 0.39 0.37 0.29 0.30 0.42 0.52 

IE 0.55 0.57 0.63 0.70 0.57 0.50 0.57 0.61 0.68 0.70 

EL 0.33 0.36 0.41 0.41 0.33 0.31 0.30 0.30 0.30 0.29 

ES 0.43 0.46 0.47 0.46 0.47 0.48 0.50 0.54 0.64 0.65 

FR 0.53 0.52 0.55 0.67 0.66 0.61 0.69 0.69 0.67 0.59 

IT 0.66 0.66 0.66 0.68 0.65 0.63 0.59 0.69 0.68 0.69 

CY 0.38 0.44 0.46 0.44 0.32 0.36 0.42 0.43 0.47 0.51 

LV 0.23 0.26 0.25 0.26 0.22 0.24 0.25 0.24 0.30 0.34 

LT 0.33 0.30 0.30 0.29 0.23 0.21 0.23 0.23 0.30 0.37 

LU 0.51 0.56 0.63 0.71 0.70 0.70 0.82 0.67 0.84 0.56 

HU 0.52 0.50 0.43 0.45 0.39 0.36 0.35 0.35 0.42 0.46 

NL 0.90 0.98 0.99 0.93 1.00 1.00 1.00 1.00 1.00 0.97 

AT 0.60 0.61 0.59 0.56 0.54 0.57 0.55 0.59 0.57 0.55 

PL 0.37 0.42 0.40 0.40 0.33 0.32 0.33 0.30 0.29 0.32 

PT 0.33 0.38 0.38 0.40 0.40 0.39 0.49 0.47 0.49 0.48 

RO 0.55 0.55 0.55 0.57 0.44 0.40 0.39 0.33 0.29 0.29 

SI 0.39 0.45 0.45 0.49 0.40 0.39 0.39 0.36 0.45 0.50 

SK 0.52 0.53 0.53 0.49 0.44 0.44 0.42 0.37 0.40 0.53 

FI 0.80 0.73 0.76 0.84 0.78 0.69 0.82 0.71 0.72 0.79 

SE 0.96 0.97 0.99 1.00 1.00 1.00 1.00 0.93 0.99 0.98 

UK 1.00 1.00 1.00 0.99 0.99 0.90 0.93 0.97 1.00 1.00 

NO 0.84 1.00 0.91 1.00 1.00 1.00 1.00 1.00 0.88 0.95 

CH 0.85 0.93 0.98 0.89 0.86 1.00 1.00 1.00 1.00 0.92 
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Table 3.3 Efficiency changes of the 28 European countries from 2000 to 2009  

Country 
EFFCH 

01/00 02/01 03/02 04/03 05/04 06/05 07/06 08/07 09/08    09/00 

BE 0.99 1.11 1.03 0.94 0.99 0.99 0.99 1.04 0.89 0.96 

BG 0.98 1.02 0.97 0.85 0.91 0.89 1.00 0.90 1.07 0.65 

CZ 1.11 0.92 0.97 0.88 1.00 1.18 0.85 1.09 1.10 1.05 

DK 1.16 0.93 1.05 0.98 1.04 1.06 0.74 0.95 1.22 1.06 

DE 1.07 1.00 0.99 1.01 1.01 0.97 1.04 1.02 0.97 1.08 

EE 1.02 0.88 1.32 0.80 0.93 0.80 1.01 1.41 1.24 1.27 

IE 1.03 1.11 1.11 0.81 0.87 1.14 1.07 1.13 1.03 1.27 

EL 1.09 1.14 1.00 0.81 0.94 0.97 1.00 0.99 0.99 0.90 

ES 1.07 1.04 0.97 1.02 1.02 1.04 1.09 1.18 1.02 1.53 

FR 0.99 1.05 1.22 0.99 0.93 1.12 1.01 0.96 0.88 1.11 

IT 1.00 1.00 1.03 0.96 0.97 0.94 1.16 0.99 1.01 1.04 

CY 1.15 1.05 0.96 0.72 1.14 1.16 1.02 1.10 1.09 1.34 

LV 1.13 0.98 1.02 0.86 1.08 1.05 0.94 1.26 1.14 1.48 

LT 0.90 1.00 0.96 0.78 0.92 1.11 0.99 1.31 1.22 1.10 

LU 1.10 1.12 1.14 0.98 1.00 1.17 0.82 1.24 0.68 1.11 

HU 0.97 0.86 1.05 0.85 0.94 0.95 1.02 1.18 1.11 0.89 

NL 1.10 1.00 0.94 1.07 1.00 1.00 1.00 1.00 0.97 1.08 

AT 1.02 0.96 0.96 0.96 1.07 0.96 1.08 0.95 0.97 0.92 

PL 1.13 0.94 1.01 0.83 0.98 1.01 0.91 0.98 1.09 0.85 

PT 1.13 1.01 1.06 1.00 0.97 1.25 0.97 1.05 0.97 1.45 

RO 0.99 1.00 1.05 0.77 0.91 0.96 0.86 0.87 1.01 0.53 

SI 1.13 1.02 1.08 0.82 0.99 1.00 0.91 1.27 1.10 1.27 

SK 1.02 1.00 0.93 0.89 1.00 0.94 0.90 1.07 1.34 1.02 

FI 0.92 1.04 1.11 0.94 0.89 1.19 0.86 1.01 1.10 1.00 

SE 1.01 1.01 1.02 1.00 1.00 1.00 0.93 1.07 0.99 1.02 

UK 1.00 1.00 0.99 0.99 0.91 1.03 1.05 1.03 1.00 1.00 

NO 1.19 0.91 1.10 1.00 1.00 1.00 1.00 0.88 1.07 1.13 

CH 1.09 1.05 0.91 0.96 1.16 1.00 1.00 1.00 0.92   1.08 

 

3.3.2.2 Technical change 

Having analyzed the efficiency changes for all these countries, we now take into 

account their changes in the frontier technology so as to fully evaluate the total 

factor productivity change of each country. The results are shown in Table 3.4. 
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Table 3.4 Technical changes of the 28 European countries from 2000 to 2009  

Country 
TECHCH 

01/00 02/01 03/02 04/03 05/04 06/05 07/06 08/07 09/08    09/00 

BE 1.02 1.03 1.05 1.12 1.09 1.04 1.02 1.10 1.13 1.78 

BG 1.00 1.01 1.02 1.20 1.08 1.03 1.03 1.05 1.09 1.61 

CZ 1.00 1.01 1.02 1.20 1.08 1.03 1.03 1.05 1.09 1.61 

DK 1.00 1.01 1.02 1.19 1.07 1.02 1.04 1.06 1.10 1.62 

DE 1.02 1.03 1.05 1.13 1.09 1.09 0.99 1.09 1.12 1.79 

EE 1.00 1.01 1.02 1.20 1.08 1.03 1.03 1.05 1.09 1.61 

IE 1.00 1.01 1.02 1.13 1.11 0.98 1.05 1.10 1.14 1.64 

EL 1.00 1.01 1.02 1.20 1.08 1.03 1.03 1.05 1.09 1.61 

ES 1.01 1.03 1.03 1.14 1.09 1.07 1.02 1.07 1.12 1.76 

FR 1.02 1.03 1.04 1.11 1.10 1.01 1.02 1.12 1.14 1.75 

IT 1.02 1.03 1.05 1.13 1.09 1.11 0.98 1.09 1.12 1.80 

CY 1.00 1.01 1.02 1.19 1.09 1.07 1.01 1.08 1.12 1.73 

LV 1.00 1.01 1.02 1.20 1.08 1.03 1.03 1.05 1.09 1.61 

LT 1.00 1.01 1.02 1.20 1.09 0.98 1.05 1.11 1.13 1.72 

LU 1.02 1.03 1.05 1.13 1.09 1.12 0.98 1.08 1.12 1.79 

HU 1.00 1.01 1.02 1.20 1.08 1.03 1.03 1.05 1.09 1.61 

NL 1.00 1.01 1.02 1.20 1.08 1.04 1.04 1.06 1.09 1.65 

AT 1.02 1.03 1.05 1.13 1.09 1.10 0.99 1.08 1.12 1.79 

PL 1.00 1.01 1.02 1.20 1.08 1.03 1.03 1.05 1.09 1.61 

PT 1.00 1.01 1.02 1.20 1.08 1.03 1.03 1.05 1.09 1.61 

RO 1.00 1.01 1.02 1.20 1.08 1.03 1.03 1.05 1.09 1.61 

SI 1.02 1.03 1.04 1.11 1.10 1.01 1.03 1.11 1.14 1.73 

SK 1.00 1.01 1.02 1.20 1.08 1.03 1.03 1.05 1.09 1.61 

FI 1.00 1.01 1.00 1.10 1.14 0.97 1.05 1.10 1.14 1.61 

SE 1.02 1.03 1.05 1.11 1.10 1.00 1.03 1.11 1.13 1.74 

UK 1.01 1.02 1.00 1.11 1.11 1.00 1.03 1.12 1.14 1.66 

NO 1.06 0.99 1.01 1.10 1.15 0.94 1.07 1.06 1.14 1.62 

CH 1.02 1.03 1.05 1.13 1.09 1.11 0.97 1.09 1.12   1.79 

 

We can see from Table 3.4 that although fluctuations occurred in every country 

within these ten years, the overall technical changes of these 28 European 

countries were all greater than one and at least 60% improvement with respect 

to their technology performance has been achieved during the past decade (see 

the last column of Table 3.4). Among others, Italy, Switzerland, Austria, 

Luxembourg, Germany, and Belgium were the technological innovators, which 

recorded an improvement of around 80% compared to 2000.  
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3.3.2.3 Total factor productivity change 

Considering both efficiency change and technical change together, the overall 

road safety progress in each of these 28 European countries during the last 

decade can now be deduced, which is illustrated in Figure 3.4. Except for 

Romania, which had an overall MI value less than one indicating deterioration in 

its road safety productivity, all other countries have improved their road safety 

performance during this period, which is consistent with the fatality change as 

presented in Figure 3.1. Among others, Spain was the best performer, and 

seven countries, including Spain, Latvia, Cyprus, Portugal, Slovenia, Ireland, and 

Estonia, have already doubled their road safety performance compared with that 

in 2000. Luxembourg, France, Switzerland, and Germany also nearly made it 

with an improvement of above 90%, and they will possibly catch up with those 

better-performing ones by 2010 at the current rate of advance. The remaining 

countries have progressed however to a lesser extent, especially in Bulgaria, 

Poland, Hungary, and Greece, less than 50% improvement has been achieved 

during these ten years. Therefore, great efforts are still needed in such countries. 

 

Figure 3.4 Overall road safety progress in the 28 European countries from 

2000 to 2009  

Further comparing the result with the one in Figure 3.1, which is only based on 

the fatality change between 2000 and 2009, we can see that although Latvia 

achieved the highest reduction in road fatalities (i.e., 60%), its overall road 

safety performance change was inferior to Spain based on the DEA-RS-MI, which 
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could be mainly attributable to the reduction in its population size in the last 

decade (see Table 3.1). In other words, the great progress in the number of 

road fatalities in Latvia was partially offset by the reduction of its exposure 

during the same time period. On the contrary, due to the prominent reduction in 

road fatalities and rapid growth in the degree of participation in traffic as well, 

Spain actually achieved the highest road safety progress among all these 28 

European countries in this period (see also the evolution in EFFCH, TECHCH, and 

MI of Spain in Appendix II). The same goes for Cyprus, Slovenia, Ireland, and so 

on. All these verify the fact that simply considering the reduction of the final 

outcome may not correctly reflect the real improvement in road safety 

performance because the transport circumstances of a country which can impact 

on the final outcome also changes every year. The approach used in this study 

makes the comparisons between countries more justly. 

3.4 Conclusion 

By using the DEA-based road safety model and the Malmquist productivity index, 

this chapter presented a new way for assessing the road safety performance 

change of countries over time. In doing so, we not only focused on the evolution 

of road safety final outcomes within a given period, but also took the changes in 

exposure in the same period into account. More specifically, using the 

information on the three measures of exposure, i.e., the number of inhabitants, 

passenger-kilometres travelled and passenger cars on the one hand, and the 

number of fatalities in road transport on the other hand, the Malmquist 

productivity index based on the DEA-based road safety model has proven 

valuable as a benchmarking tool for measuring the extent to which the 28 

European countries have improved their ‘productivity’ on road safety over the 

period 2000-2009, and it has provided more objective results than the ones 

based on the traditional indicator only measuring the percentage change in road 

fatalities. The analysis found that there was a significant road safety progress in 

Europe during the last decade. However, the development in different countries 

was unbalanced. Some of them were still getting stuck in the rut or even 

deteriorating in terms of their road safety performance. Moreover, the 

decomposition of the DEA-RS-MI into technical change and efficiency change 
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further revealed that the bulk of the improvement was attained through an 

overall improvement in the technological environment, rather than through the 

relatively inefficient countries catching up with those efficient ones. In the 

future, explorations on the reasons behind the progress or decline in each 

country and the prediction for its future development are worthwhile. In doing 

so, however, detailed information (to be determined, e.g., by means of 

interviewing national experts) is required. 
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Chapter 4 Serious Injuries: An 

Additional Indicator for Road Safety 

Evaluation 

This chapter illuminates the impact of including serious injuries in addition to the 

fatalities in the road safety product benchmarking, thereby corresponding to the 

fourth research question of this dissertation. In doing so, different types of 

weight restrictions are formulated in the DEA-based road safety model to 

indicate their relationship. 

4.1 Introduction 

In the previous chapters of this thematic part, the number of road fatalities was 

used as the only road safety final outcome to benchmark the road safety 

performance and development of a set of European countries. This is not 

because road fatalities are the only interest but mainly because there is no 

reliable reporting or even the same definition on the number of crashes and the 

range of injury severities in different countries. As a result of this lack of 

comparability, most of the road safety studies for cross-country analysis (e.g., 

Al-Haji, 2007; Traynor, 2008, 2009; Gaygısız, 2010) focus entirely on fatalities, 

which however, represent only the ‘tip of the iceberg’ of the road crash problem 

and could lead up to an overestimation of this aspect. Consequently, it is highly 

desirable to extend the inter-national comparisons of road safety by taking a 

larger picture of the impact of road crashes into account. 

In recent years, great efforts are being made in Europe to accomplish the 

harmonization on common definitions of injury severity and also its reporting 

procedures for the purpose of more complete inter-national benchmarking of 

road safety [European Transport Safety Council, 2008; Organization for 

Economic Co-operation and Development/International Transport Forum, 2011b]. 

In this study, an initial attempt of including the number of serious injuries as an 

additional indicator for road safety product benchmarking is carried out. We give 

priority to the level of serious injuries because of its greater impacts on society. 



86 

 

More importantly, a similar definition of serious injuries has already been applied 

in some European countries and they are more likely to be reported to the police 

than slight injuries and property-damage-only crashes. More information on the 

serious injuries in Europe is presented in Section 4.2. Methodologically, to 

integrate serious injuries with fatalities in a road safety benchmarking study, 

apart from using the DEA-based road safety model, additional weight restrictions 

are needed to indicate their relationship. Different types of possible weight 

restrictions are therefore elaborated in Section 4.3. Specific models for this 

study are demonstrated in Section 4.4, and the results are compared 

subsequently to show the impact of including serious injuries in the road safety 

product benchmarking for the countries under consideration. Finally, the 

concluding remarks are given in Section 4.5. 

4.2 Serious Injuries in Europe 

Today, due in large part to reinforcement of road user training and education, to 

advances in vehicle and infrastructure design and technology, as well as to 

improvements in medical care (e.g., prompt emergency response, early 

diagnosis, and treatment capabilities), many road fatalities are prevented and 

the downward trend is likely to continue in Europe. However, many survivors 

remain seriously injured, and their physiological and psychological consequences 

may last for days, months, years or even the rest of their life. In 2010, apart 

from the 31,000 people killed in road traffic crashes in the EU, police reports 

mention more than 340,000 people that were seriously injured 10  [European 

Transport Safety Council, 2011]. For each road fatality on Europe's roads, at 

least 44 injuries are recorded, of which 8 are categorized as ‘serious’ [European 

Transport Safety Council, 2010]. In other words, road fatalities form only a 

small minority of the totals, whereas non-fatal injuries, especially those seriously 

injured, are of importance in terms of both social and economic costs, and now 

represent an increasing concern of public authorities [European Transport Safety 

Council, 2007].  

                                                 
10 The number of seriously injured persons recorded in hospital data is much larger, and 

the difference is, e.g., estimated as a factor of about 2 in countries such as the SUN 

countries [Broughton et al., 2008; European Transport Safety Council, 2010]. 
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At the international level in general and in Europe in particular, however, it is 

not yet possible to make comparisons between all the Member States with 

respect to their number of serious injuries because both the level of injury 

reporting and the national definition of a serious injury vary greatly among 

countries [Broughton et al., 2008]. At present, only 16 EU countries, i.e., 

Belgium, Cyprus, Czech Republic, Denmark, France, Germany, Greece, Ireland, 

Latvia, Luxembourg, the Netherlands, Portugal, Slovakia, Spain, Sweden and 

United Kingdom, as well as Switzerland, use the same definition about serious 

injuries, which is ‘spending at least one night in hospital as an in-patient or a 

close variant of this’ [European Transport Safety Council, 2010]. Despite the fact 

that the level of reporting could still be different under the same definition due 

to differences in legislation, insurance policy, police resources and quality of 

data collection and processing in different countries, it provides at least a 

common basis to integrate this measure together with the fatalities for the road 

safety benchmarking of countries. Figure 4.1 illustrates the evolution in the 

number of serious injuries recorded in these countries11 from 2001 to 2008, 

together with the fatality change during the same time period. 

 

Figure 4.1 Evolution in road fatalities and serious injuries in 15 

European countries over the period 2001 to 2008 

                                                 
11 Latvia and France are not included because they use the same definition on serious 

injuries only since 2004 and 2005, respectively. 
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Although the number of seriously injured road users registered in this group of 

European countries was reduced by 28% during this period, the absolute value 

was still much higher than the number of recorded fatalities and its progress was 

also slower than that of fatalities (33%). Moreover, the situation differs 

considerably from country to country (see Appendix III). For instance, Portugal 

and Ireland have reduced their number of serious injuries by more than half 

during this period, which was faster than the reduction of their fatalities; 

Countries like Spain and United Kingdom have made progress on their serious 

injuries at a similar pace as their fatalities; Whereas in Luxembourg, more 

serious injuries were recorded in 2008 compared to 2001, although its fatality 

number has been reduced by half over this period. Consequently, to evaluate a 

country’s road safety performance and to make comparisons with others, it is 

not correct to neglect this less-publicized part of the real picture by referring 

only to road fatalities. 

4.3 Weight Restrictions in DEA 

To integrate serious injuries with fatalities for road safety benchmarking 

purposes, the DEA-based road safety model (see Section 2.4.1) re-presented in 

(4-1) can be easily applied due to its powerful capability of handling multiple 

inputs and multiple outputs simultaneously.  
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However, when computing the efficiency in DEA, apart from the non-negativity 

of the weights (i.e., , 0r iu v ≥ ), the model allows the weights associated with 

each input and output to be freely estimated in order to maximize the relative 

efficiency score of the DMU under consideration. The flexible allocation of input 

and output weights is often presented as advantageous in its applications since 

an a priori specification of the weights is not required and each DMU is evaluated 
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in its best possible light. Thereby, if a DMU turns out to be inefficient, its 

inefficiency cannot be traced back to an inappropriate evaluation process 

[Vercellis, 2009]. Nevertheless, there are also disadvantages to this complete 

flexibility. Specifically, an unreasonable weight scheme could happen in which 

some DMUs would heavily weigh a few favorable inputs and outputs and 

completely ignore others in order to achieve a high relative efficiency score. One 

then faces the risk of basing global performance of a DMU on only a small subset 

of its factors. Moreover, since the weights derived from the model may vary a 

lot from one DMU to another, they can be in conflict with a priori knowledge or 

accepted views on the relative weights or rates of the factors.  

One way to limit the range of values that the weights can take is to use weight 

restrictions. They could be imposed based on a priori knowledge about the 

weights or on the value judgments from experts, and can be incorporated in the 

multiplier DEA model directly. A large diversity of weight restriction techniques 

have been proposed in the DEA literature and their classification is also well 

documented (e.g., Dyson & Thannassoulis, 1988; Wong & Beasley, 1990; Allen 

et al., 1997; Thanassoulis et al., 2004; Cherchye et al., 2007a). In the following 

sections, some commonly used types of weight restrictions are outlined, and 

their implications in the DEA modeling framework are interpreted. 

4.3.1 Absolute weight restrictions 

This type of weight restrictions assigns upper and/or lower bounds on the 

absolute values of the input or output weights, which is illustrated by (4-2). 
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The bounds used in the restrictions are mainly introduced to prevent the 

corresponding inputs or outputs from being overemphasized or ignored in the 

analysis. However, there is a strong interdependence between the bounds on 

different weights. For instance, setting an upper bound on one output weight 

means imposing a lower bound on the total weighted output of the remaining 

variables and this in turn has implications for the values that the remaining 

output weights can take. In general, the efficiency score of a DMU is worsened 

due to the additions of these restrictions and they may also render the model 
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infeasible. Hence, careful attention is needed in determining these bounds. In 

this respect, recourse to auxiliary information such as shadow prices12 , unit 

costs, etc, is often used. 

4.3.2 Relative weight restrictions 

The second type of weight restrictions is depicted in (4-3), which is also named 

the assurance region method [Thompson et al., 1990]. Different from assigning 

restrictions on the absolute values of input or output weights, this type of 

restriction is introduced to incorporate into the analysis the relative values of 

inputs and/or outputs weights that vary between an upper and/or lower bound. 
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 (4-3) 

Relative weight restrictions are particularly suitable when translating a priori 

knowledge or expert opinions on the pairwise relation of the factors. They would 

thus capture requirements or statements such as ‘the price/size of output X can 

at most be double the one of output Y’. 

It should be noted that the bound values for relative weight restrictions are 

dependent on the scaling of the inputs and outputs, that is, they are sensitive to 

the measurement unit of the related factors. Moreover, a DMU previously 

characterized as efficient may be found to be inefficient after such restrictions 

are imposed, and they may also render the model infeasible. 

4.3.3 Ordinal weight restrictions 

Combining both absolute and relative weight restrictions, we obtain the third 

type, called ordinal weight restrictions, in which the weights of more than two 

                                                 
12 The shadow price reflects the marginal rate of substitution between inputs and outputs, 

which measures the extra value that would come from increasing the most relevant 

production resource by one unit. In turn, this indicates the highest price the producer can 

pay for that added resource without becoming worse off overall [Kanbur, 1987]. 
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factors are compared simultaneously in an ordinal manner. One possible form of 

this restriction type is shown as follows. 
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The usage of this type of weight restrictions is context dependent. It inherits all 

the properties of the above two restrictions but their cautions also need to be 

paid attention to. 

4.3.4 Virtual weight restrictions 

Rather than directly restricting the actual input and output weights introduced 

above, another widely used type of weight restrictions is to limit the value of the 

virtual inputs or outputs, i.e., the product of the input or output and its 

corresponding weight [Wong & Beasley, 1990]. Let us consider a virtual weight 

restriction on output r shown in (4-5): 
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the proportion of the total virtual output of DMU j devoted to output r, i.e., the 

‘importance share’ attached to output r by DMU j, is restricted to range between 

[LOr, UOr], which have a value between 0 and 1, respectively. These restrictions 

are attractive in view of the fact that expert opinion is often collected by a 

budget allocation approach [Organization for Economic Co-operation and 

Development, 2008], in which experts are asked to distribute let’s say 100 

points over the different dimensions to indicate importance. A similar restriction 

can also be set on the virtual inputs. 
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(4-5) and (4-6) are actually the absolute virtual weight restrictions, and the 

relative and ordinal virtual weight restrictions can also be formulated accordingly. 

It is important to note that imposing such a weight restriction may introduce a 

comparison with non-existent targets. More information on these types of weight 

restrictions can be found in Sarrico & Dyson (2004) and Cherchye et al. (2007a). 
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4.3.5 Summary 

In this section, several approaches to the use of weight restrictions in DEA have 

been presented. They are all application driven, so no overall approach can be 

identified as suitable for all different circumstances, and there are still some 

other techniques available for restricting the weights in DEA, such as the cone-

ratio method [Charnes et al., 1990]. No matter which approach is applied in a 

specific context, the main purpose is to restrict the flexible selection of input 

and/or output weights in the basic DEA framework, and to guarantee the 

establishment of a proper weighting scheme. However, the key difficulty in using 

any of these weight restrictions outlined above is the estimation of appropriate 

values for the constants in the restrictions, compatible with a priori knowledge 

or the reflection of the value judgments from experts in the efficiency 

assessment. In this study, to exhibit a larger picture of the impact of road 

crashes by considering both the number of road fatalities and serious injuries, it 

is important to indicate their relationship so as to obtain reasonable 

benchmarking results. To this end, relative weight restrictions and virtual weight 

restrictions are applied respectively, and the results are discussed in the 

following section. 

4.4 Application and Results 

To benchmark the road safety performance of the aforementioned 17 European 

countries which have the same definition on both road fatalities and serious 

injuries, the DEA-based road safety model (4-1) is utilized. The three common 

measures of exposure to risk used in the previous Chapters, i.e., the number of 

inhabitants, passenger-kilometres travelled, and passenger cars, are still the 

model’s inputs and the number of road fatalities and the number of serious 

injuries are the two outputs (see Figure 4.2). Data from 2006 to 2008 are 

collected from the European Commission (2011a) and the European Transport 

Safety Council (2010), and the average values (see Table 4.1) are used in the 

analysis so as to avoid coincidental fluctuation in the data and to improve the 

reliability of the results.  
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Figure 4.2 The input and output of the model 

 

Table 4.1 Average input and output values of the 2006-2008 period for 17 

European countries 

Country 
 

Input Output 

Population 
(million) 

Passenger-
kilometres 
(10 billion) 

Passenger 
cars 

(million) 
Fatalities Serious 

injuries 

BE 10.63 11.09 5.02 1028.00 7043.00 

CY 0.78 0.54 0.39 85.67 702.67 

CZ 10.34 7.12 4.19 1120.00 3823.00 

DK 5.46 5.24 2.04 372.67 2960.00 

FR 61.95 72.39 31.08 4534.67 38080.67 

DE 82.25 86.12 41.06 4839.00 73529.67 

EL 11.19 9.50 4.67 1608.00 1898.67 

IE 4.35 4.72 1.84 327.33 802.33 

LV 2.28 1.57 0.85 380.67 686.33 

LU 0.48 0.66 0.32 38.00 289.33 

NL 16.39 14.79 7.31 705.33 9348.00 

PT 10.61 8.65 4.32 942.67 3068.33 

SK 5.40 2.62 1.40 588.00 1958.00 

ES 44.85 34.11 21.29 3675.67 19055.00 

SE 9.15 9.82 4.23 437.67 3813.33 

UK 60.99 68.20 28.67 3000.67 27859.33 

CH 7.56 8.27 3.93 370.33 5027.00 

Source: European Commission (2011a); European Transport Safety Council 

(2010) 
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Before applying the DEA-RS model, weight restrictions on the road fatalities and 

the serious injuries have to be specified in order to reflect their relationship and 

to guarantee reasonable results13. In this respect, information on their (relative) 

shadow price and a priori knowledge about the relative importance of these two 

aspects are possible recourses. 

4.4.1 Relative weight restrictions based on shadow 

price 

There has been much research relating to valuation (or shadow price) of fatal 

and non-fatal effects of accidents (e.g., European Conference of Ministers of 

Transport, 1998). Amongst others, O’Reilly et al. (1994) presented the results of 

a major UK research project on the valuation of serious injuries on the road. The 

main advantage of using these results is that the valuation of serious injuries 

was expressed as a ratio of that of fatalities (see Table 4.2), which is particularly 

suitable for imposing relative weight restrictions in this study. 

Table 4.2 Ratios of the valuation of serious injuries and that of fatalities 

Valuation method Ratio 

Standard gamble 8.6-12.2% (best=9.5%) 

Contingent valuation 29.1-54.1% (best=37%) 

Expert ranking 18-20% 

Source: O’Reilly et al. (1994) 

Three research techniques were utilized, in which the standard gamble method 

generated the lowest best ratio (9.5%) while the contingent valuation yielded 

the highest (37%). A third strand of research, using health experts’ rankings of 

severity of different injury states and recovery times, alongside relative 

measurements of ‘time lost’, gave values in between the two other techniques. 

In this study, the above information (in particular the best ratios) is used to 

indicate the relationship between fatalities (y1) and serious injuries (y2). A 

                                                 
13 Although the three inputs describe the exposure to risk in road transport from different 

perspectives, they are highly correlated. It is therefore not so necessary to impose a 

weight restriction for them.  
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relative weight restriction is thereby imposed and further incorporated in the 

DEA-RS model as follows:  
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4.4.2 Virtual weight restrictions based on a priori 

knowledge 

The shadow price offers valuable information to narrow the range of values that 

the weights of corresponding factors can take. However, the data are not always 

available and the values are also time-varying, which to a certain extent limits 

the use of this information for setting appropriate weight restrictions. In this 

study, an alternative way to reflect the relationship between the road fatalities 

and the serious injuries is to use a priori knowledge on these two aspects, i.e., 

fatalities play in most cases a more important role in determining the road 

safety performance of a country than serious injuries. A representative virtual 

weight restriction can then be imposed to DMU0 as follows: 
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(4-8) 

It indicates that fatalities account for a higher percentage share in road safety 

evaluation than serious injuries, but the fatality share is also restricted to be less 

than twice the share of the serious injuries to avoid irrational allocation. This 

restriction can then be incorporated into the DEA-RS model as below: 



96 

 

0 0
1

0
1

1 1

2 20 1 10 2 20

max

. . 1,

0, 1, ,

2 ,

, 0, 1, , , 1, ,

m

i i
i

s

r r
r

m s

i ij r rj
i r

r i

E v x

s t u y

v x u y j n

u y u y u y

u v r s i m

=

=

= =

=

=

− ≤ =

< <

≥ = =

∑

∑

∑ ∑ �

� �

 
(4-9) 

4.4.3 Result comparisons 

Applying models (4-7) and (4-9), respectively, we obtain the overall road safety 

efficiency scores of the 17 European countries by taking into account both their 

road fatalities (F) and serious injuries (SI) as output in the benchmarking study. 

The scores are presented in Table 4.3, along with the ones derived from only 

considering the number of road fatalities using the DEA-RS model (4-1). 

Table 4.3 Road safety efficiency scores of the 17 European 

countries based on different models 

Country 
F & SI 

Country 
F & SI 

Country 
Only F 

Model (4-7) Model (4-9) Model (4-1) 

SE  1 SE  1 SE  1 

IE  1 IE  1 UK  1 

UK  0.983 UK  0.991 NL  1 

LU  0.936 NL  0.984 CH  1 

NL  0.899 CH  0.967 DE  0.808 

CH  0.877 LU  0.930 LU  0.789 

PT  0.789 EL  0.806 FR  0.705 

ES  0.784 ES  0.784 DK  0.654 

DK  0.734 PT  0.777 IE  0.640 

FR  0.725 DE  0.754 ES  0.553 

EL  0.695 DK  0.734 BE  0.487 

DE  0.657 FR  0.724 PT  0.484 

SK  0.640 CZ  0.630 CY  0.436 

CZ  0.639 SK  0.629 CZ  0.397 

BE  0.577 BE  0.574 SK  0.394 

LV  0.515 LV  0.531 EL  0.299 

CY  0.494 CY  0.492 LV  0.257 
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Comparing the results in the second and the fourth column of Table 4.3, which 

are obtained by considering both the road fatalities and the serious injuries as 

output for a more complete inter-national benchmarking of road safety, we find 

that no matter which weight restriction is applied, the country rankings are more 

or less consistent, especially for those best- and worst-performing countries. The 

high correlation coefficient between these two sets of efficiency scores (0.968) 

also implies the substantial equivalence of using either of these two restrictions. 

However, it should be noted that no feasible solution is found when these two 

weight restrictions are used simultaneously in this case, which means that some 

conflicts still exist between the two restrictions. One possibility is that the 

shadow price used in this study as estimation for the constants in the relative 

weight restriction may not be so precise. On the other hand, it is also possible 

that the knowledge on road fatalities and serious injuries used for setting the 

virtual weight restriction is not satisfiable for all countries. In other words, the 

price paid for the serious injuries in some countries may be higher than that for 

the fatalities, or the price paid for the fatalities may be two times higher than 

that for the serious injuries. In addition, the inaccuracy of the input and output 

data, especially the number of serious injuries, is also a possible reason for this 

infeasibility. All these in turn help in interpreting the differences of these 

countries in terms of their efficiency score and ranking based on the different 

models. 

Moreover, to illuminate the impact of including serious injuries as an additional 

indicator of road safety final outcome, we compare the results with the ones 

based on only road fatalities, which are presented in the last column of Table 4.3. 

It can be seen that Sweden is the only best-performing country no matter which 

model is utilized. It indicates the outstanding performance of Sweden regarding 

both road fatalities and serious injuries. However, countries such as United 

Kingdom, the Netherlands and Switzerland, which obtain the efficiency score of 

one when only considering the number of fatalities in the road safety 

benchmarking, are no longer efficient when the serious injuries are integrated. It 

implies that the situation of serious injuries in these countries is still serious. 

Including this aspect deteriorates to a certain extent the overall road safety 

performance of these countries. The same situation also applies to countries like 

Germany, France, Belgium, and Cyprus. On the contrary, Ireland, which ranks in 
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the middle among all the countries when only the number of road fatalities is 

considered, becomes one of the best-performing countries when integrating its 

number of serious injuries in the evaluation. It means that the situation of 

serious injuries in Ireland is much better than that of other countries, which 

enables this country to become one of the valuable benchmarks for other 

countries to learn from, especially concerning its best practice on reducing the 

number of serious injuries. Apart from Ireland, the ranking of countries such as 

Greece, Portugal, and Spain is also improved when the serious injuries are 

considered14. In general, no matter whether the country’s road safety ranking is 

improved or deteriorated, most of the underperforming countries achieve a 

higher efficiency score when the number of serious injuries is included, even the 

worst-performing country, i.e., Cyprus. In other words, the distance between 

those best-performing and underperforming countries becomes smaller when a 

larger picture of the impact of road crashes is taken into account. In a sense, it 

represents a more realistic relative situation of road safety between these 

countries15. 

4.5 Conclusion 

In this chapter, we investigated the possibility of including the number of serious 

injuries as an additional indicator of road safety final outcome to perform road 

safety product benchmarking and further illuminated its impact on the countries’ 

ranking. In doing so, the DEA-based road safety model was utilized, and 

additional weight restrictions were introduced to indicate the relationship 

between road fatalities and serious injuries. In this study, a relative weight 

restriction based on the information of their valuation ratios from literature and 

a virtual weight restriction using a priori knowledge on these two aspects were 

incorporated in the model respectively to compute the efficiency score of 17 

                                                 
14 It has to be noted that the improvement in ranking of these countries might be partly 

influenced by their different levels of underreporting with respect to the number of serious 

injuries. 

15 Better-performing countries are more likely to prevent fatalities from serious injuries. 

Therefore, a larger distance between best-performing and underperforming countries is 

expected when only the number of fatalities is considered. 
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European countries which have the same definition on both road fatalities and 

serious injuries. The results indicated the substantial equivalence of using these 

two different restrictions. Moreover, comparing the results with the ones from 

only considering the number of road fatalities, the impact of including the 

number of serious injuries as an additional indicator of road safety final outcome 

was discussed. In general, representing a larger picture of the impact of road 

crashes affected the ranking of the countries to some extent. Moreover, no 

matter whether the country’s ranking was improved or deteriorated, a higher 

efficiency score was achieved by most of the underperforming countries. Given 

the importance of considering the serious injuries in addition to the fatalities for 

inter-national benchmarking of road safety, the proposed model (i.e., the DEA-

RS model with weight restrictions) turned out to be effective in deriving 

reasonable results. We are thereby also inspired to apply this kind of model to a 

more complete road safety product benchmarking practice in the future when 

the data on for example the number of crashes, the degree of property damage, 

and the number of slight injuries are ready to use.  

Finally, although the methodology is well established to include more indicators 

for road safety product benchmarking, we should still keep in mind that the 

number of serious injuries is not yet a mature indicator due to large differences 

in reporting practices in different countries (see also [Organization for Economic 

Co-operation and Development/International Transport Forum, 2011]). 

International cooperation in terms of injury data collection and harmonization is 

therefore sorely required, and further efforts to link police reports to other data 

sources (e.g., hospital records) are also essential to improve data quality and 

consistency. They are the fundamental condition of making comparisons 

between countries, and also the key to designing more effective safety policies. 
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Introduction to Part II 

The first thematic part of this thesis concentrated on road safety product 

benchmarking, in which different road safety final outcomes were investigated 

and the corresponding risk indicators based on different measures of exposure 

as well as their evolution were compared between countries. Useful benchmarks 

were therefore identified and practical targets in terms of road fatalities were 

assigned for those underperforming countries. However, setting targets does not 

guarantee their achievement. Road safety policy makers and analysts aiming at 

a higher level of safety or a lower number of final outcomes need to take into 

account as many factors influencing safety as possible or, at least, those factors 

they are able to affect or control. To this end, a second type of benchmarking 

study, i.e., road safety programme benchmarking, which is used to compare 

human-vehicle-infrastructure performance between countries, has received 

considerable policy attention nowadays, and is the main focus of this thematic 

part as well. 

In doing so, safety performance indicators (SPIs) − which are causally related to 

the number of crashes or to the injury consequences of a crash − such as levels 

of mean traffic speeds, seat belt wearing, drink driving, vehicle and road safety 

ratings, etc., have to be developed firstly. Moreover, to measure the multi-

dimensional concept of road safety performance which cannot be captured by a 

single indicator, the exploration of a composite road safety performance index is 

vital for rational benchmarking of road safety. However, the task of constructing 

such a composite index raises a number of research issues, some of which have 

not yet been properly addressed in current road safety studies.  

First, since more and more SPIs are developed and increasingly used to 

comprehensively quantify the entire situation of possible risk factors, they are 

much likely to be grouped into different categories and further be linked to one 

another constituting a layered hierarchy. It provides a detailed insight into the 

structure of indicators and is worthwhile to be reflected in the index construction. 

However, it is prone to be ignored in the current index research partly due to 

the limitation of traditional weighting and aggregation techniques in reflecting 

this kind of hierarchical structures. 
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Coupled with the proliferation of SPIs, some practical issues related to data also 

inevitably emerge in the development of a road safety performance index, two 

of which are qualitative indicators and missing values. Specifically, obtainment 

of measurable and quantitative indicators is commonly the prerequisite of any 

index research. This, however, becomes more and more difficult to be 

guaranteed since the natural uncertainty of reality often leads up to imprecision 

and vagueness inherent in the information that can only be represented by 

means of qualitative indicators. Simply treating them as quantitative ones could 

thereby result in wrong conclusions.  

Moreover, an extension of the data set used for road safety index research 

raises the issue of missing values, which to a great extent restricts researchers 

from performing classical analyses as complete data matrices are usually 

required. Consequently, how to effectively tackle these data problems directly 

affects the result of the road safety index research and the success of the 

benchmarking as well. 

Taking into account the aforementioned research challenges which have not yet 

been systematically investigated in the current road safety index studies, the 

following four research questions are highlighted as the main focus of this part 

of the thesis: 

RQ5: Which are current available national safety performance indicators and 

how can they best be structured? 

RQ6: How to reflect a layered hierarchy of indicators in constructing a road 

safety performance index and what is the added value? 

RQ7: How to obtain a reliable index score for each country when missing data 

exist? 

RQ8: What is the possible way to incorporate qualitative indicators? 
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Chapter 5 Development of Safety 

Performance Indicators and Data 

Processing 

This chapter identifies the current available national safety performance 

indicators that are valuable to be used for inter-national programme 

benchmarking of road safety. Their hierarchical structure is established, 

corresponding data are collected, and necessary data processing is performed. 

This chapter thereby corresponds to the fifth research question of this 

dissertation. 

5.1 Introduction 

To obtain a composite road safety performance index for the sake of meaningful 

inter-national road safety programme benchmarking, a comprehensive set of 

indicators that corresponds to as many underlying risk factors influencing safety 

as possible has to be developed in the first place. In this respect, safety 

performance indicators (see the road safety target hierarchy in Figure 1.6), 

which are viewed as intermediate outcomes (such as the proportion of car 

occupants using seat belts) linking safety countermeasures (such as the 

installation of seat belt reminders in passenger cars) with final outcomes (such 

as casualties in road crashes), are widely investigated in current road safety 

studies. 

In contrast to crash data, which are frequently treated as the ‘worst case 

scenario’ in the unsafe operational conditions of the traffic system and are 

insufficient in explaining more detailed aspects of crash causation and injury 

prevention, SPIs are defined as any measurement that is causally related to the 

number of crashes or to the injury consequences of a crash, and are used in 

addition to the figures of crashes or injuries in order to indicate safety 

performance or understand the process that leads to crashes [European 

Transport Safety Council, 2001]. The purpose of SPIs is threefold: to reflect the 

current safety conditions of a road traffic system; to measure the influence of 
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various safety interventions; and to compare between different road traffic 

systems such as countries or regions [Vis, 2005]. 

Due to the high information density, SPIs allow quicker and more local analyses 

and monitoring than crash data do. As believed, SPIs can give a more complete 

picture of the level of road safety and can point to the emergence of developing 

problems at an early stage, before these problems show up in the form of 

crashes [European Transport Safety Council, 2001]. Moreover, by linking the 

casualties from road crashes and the measures to reduce them, SPIs provide a 

means for monitoring the effectiveness of safety actions applied and for further 

guiding policy decisions regarding existing and new countermeasures. 

Today, having recognized the complex character of the road safety phenomenon, 

a large number of factors involved in road safety development have been 

identified, more and more SPIs are thereby developed and increasingly used as 

a supportive instrument for inter-national comparisons of road safety 

performance, especially over the last decade (e.g., European Transport Safety 

Council, 2001; Vis, 2005; Al-Haji, 2007; Wegman et al., 2008; Hermans, 2009a; 

Gitelman et al., 2010).  

In this chapter, the current available national SPIs are discussed based on the 

identification of various risk factors in road transport. Their hierarchical structure 

is then established, and corresponding data are collected (Section 5.2). 

Moreover, some necessary data processing procedures are provided with a view 

to the following index construction (Section 5.3). The chapter closes with 

conclusions in Section 5.4. 

5.2 Indicator Development and Data 

Collection 

Road safety problems have traditionally been viewed as the result of 

malfunctions in the road transport system, which consists of three main 

components: the road user, the vehicle and the road [World Health Organization, 

2004]. Each crash is in most cases a direct consequence of failure in one or 

several of these three factors who influence each other (see Figure 5.1). As a 

result, the European Transport Safety Council (2001) recommended the 
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development of SPIs related to road user behavior, vehicle, and road. In 

addition, trauma management, or emergency medical services (EMS) in 

particular, which is concerned with the medical treatment of injuries resulting 

from road crashes, was also highlighted in the report due to its significant 

influence on post-crash injury outcomes, and it often constitutes the factor of 

infrastructure together with the road (see Section 5.2.3). On the basis of this 

report, the European SafetyNet project [Hakkert et al., 2007a, b] provided a 

methodological basis for indicator development, and Hermans (2009a) further 

summarized from literature eight criteria for indicator selection, which are: 

relevant, measurable, understandable, data available, reliable, comparable, 

specific, and sensitive. 

57%27%3%

3%

6%

1%

2%

Road 
Factors (34%)

Vehicle  
Factors (12%)

Human Factors (93%)

 

Figure 5.1 Venn diagram on crash factors 

Source: Rumar (1985) 

Specifically, SPIs that are developed for a certain safety component should 

reflect the factors contributing to road crashes/injuries and characterize the 

scope of the problem identified. The development of SPIs begins with a 

definition of the problem (i.e., the operational conditions of the road traffic 

system which are unsafe and result in crashes/injuries as the 'worst case') and 

continues with the conversion of this information into measurable variables. One 

example is ‘the proportion of car occupants using seat belts’. This SPI therefore 

represents a specific safety aspect (seat belt usage) as well as a comparable 

value (proportion of car occupants) of how this aspect has penetrated to the 
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traffic system. Implicitly, the SPI should have a proven and well-documented 

relation to the number of casualties, and could be seen as an intermediate 

measurement of the safety level for that specific aspect. For the majority of SPIs, 

there are several countermeasures that could contribute to their improvement. 

Taking the above indicator related to seat belt usage as an example, the 

improvement could for instance follow as a result from seat belt legislation and 

enforcement, a demerit point system, or intelligent seat belt reminders in 

isolation or in combination. 

In Europe, several initiatives and research studies have been implemented in 

order to assess the performance across the EU concerning particular road safety 

aspects, such as the SARTRE study (focuses on the road user behavior in the EU) 

[SARTRE 3 consortium, 2004], EuroNCAP study (focuses on safer vehicles in the 

EU) [Lie & Tingvall, 2000], and the EuroRAP study (focuses on safer roads in the 

EU) [Lynam et al., 2004]. Data are available in a number of European 

institutions and databases such as Eurostat, International Road Traffic and 

Accidents Database (IRTAD), European Transport Safety Council (ETSC), and 

European Road Federation (ERF). The inter-national best practice reviews 

indicate that despite some differences in levels of motorization, the road safety 

problems in most Member States have many similarities [European Transport 

Safety Council, 2001]. A number of common road safety risk factors are 

therefore designated as central to road safety activities in Europe and were 

selected for the development of SPIs as well [e.g., Hakkert et al., 2007a, b; 

Hermans, 2009a]. They are alcohol, speed, protective systems, vehicle, road, 

and emergency medical services. In the following sections, the importance of 

these risk factors in road safety is discussed, the best available SPIs for each 

risk factor are developed, and corresponding data are collected. 

5.2.1 Road user behavior 

Comprehensive studies on road safety (e.g., Treat et al., 1977; Rumar, 1982; 

Green & Senders, 2004) found that inappropriate road user behavior was the 

major contributory factor to road crashes. They indicated that human error was 

the sole cause in 57% of all crashes and was a contributing factor in over 90% 

(see also Figure 5.1). In Europe, the incidence of drinking and driving, speeding 

behavior, and the nonuse of various protective systems are recognized as the 
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three most important risk aspects in terms of road user behavior, and are 

therefore used as the basis for the development of SPIs in this study. 

5.2.1.1 Alcohol 

Driving under the influence of alcohol is believed to increase the risk and 

severity of road crashes more than most other traffic law violations [Hakkert et 

al., 2007a]. Hakkert & Braimaister (2002) provided a review of many studies 

and reported that the risk in traffic would increase rapidly with blood alcohol 

concentration (BAC). The relative crash risk starts increasing significantly at a 

BAC level of 0.4g/l [World Health Organization, 2004]. A study from the United 

States [Zador, 1991] showed that for single-vehicle crashes, each 0.02% 

increase in BAC level nearly doubles the risk of getting involved in a fatal crash. 

In Europe, driving with excess alcohol is responsible for at least 20% of the 

serious and fatal injuries [European Transport Safety Council, 2001]. Therefore, 

a reduction in drink driving above the legal limit would make a large contribution 

to the improvement of road safety. 

To compare the situation of drink driving between countries, the ideal SPI would 

be the prevalence and concentration of impairing substances among the general 

road user population in each country [Hakkert et al., 2007a]. However, several 

methodological problems exist associated with this SPI such that ensuring a 

national random sample of the road user population is difficult and costly. As a 

result, a less ideal but more practical SPI, i.e., the percentage of drivers above 

the legal BAC limit in roadside checks, is selected for substitution, which can be 

computed based on the total number of roadside alcohol breath tests and the 

number of positive alcohol (i.e., with BAC above the legal limit) among tests16. 

The indicator data (average value of 2006-2008) collected from the European 

Transport Safety Council (2010) are shown in the second column of Table 5.1. 

As can be seen, only around half of these 28 European countries have data on 

this SPI (some of them only have one or two years data), while the other half 

either have not yet established such a data collection system, or even prohibit 

the random testing of drivers by the constitution such as in Germany. 

                                                 
16 This indicator is less ideal also because not all the countries are currently using the 

same BAC limit. 
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Table 5.1 Alcohol related SPIs 

  
% of drivers above 
the legal BAC limit 
in roadside checks 

Remark 
% of fatalities 
attributed to 

alcohol 
Remark 

AT 7.40%   7.67%   

BE N/A   5.43%   

BG N/A   4.15%   

CY 6.29%   19.53%   

CZ N/A   5.26%   

DK N/A 
 

24.78%   

EE 1.00%   44.44%   

FI 1.45% mean of 07-08  26.01%   

FR 3.27%   28.86%   

DE N/A   11.62%   

EL 3.15%   8.22%   

HU 3.08%   12.55%   

IE 3.63% mean of 07-08 29.80% 2005 

IT N/A   3.58%   

LV N/A   20.24%   

LT 1.55%   11.07%   

LU N/A   14.29% 2004 

NL N/A   3.55%   

NO N/A   22.32% 2005 

PL 9.50% 2008 8.11%   

PT 6.29%   5.82%   

RO N/A   8.40%   

SK N/A   5.85%   

SI 7.04%   45.64%   

ES 2.16%   8.82%   

SE 0.86%   9.95%   

CH N/A   15.42%   

UK 16.89% mean of 06-07  15.55%   

Source: European Transport Safety Council (2010) 

Under this circumstance, a second indicator, i.e., the percentage of road 

fatalities attributed to alcohol, which represents the consequence of drink driving 

from the view of the final outcome level, is used as a substitutive SPI because 

most countries supposedly test a large part of the drivers involved in fatal 

crashes for alcohol. The average value of 2006-2008 for this indicator is 

presented in the fourth column of Table 5.1. As can be seen, most of the 

countries have available data which range from 3.55% in the Netherlands to 
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45.64% in Slovenia. There are three countries (i.e., Ireland, Luxembourg, and 

Norway), which have no data for these three years. The last observed value is 

therefore used for substitution, such as 2005 data for Ireland. The same 

treatment goes to all the following indicators. 

In addition to the above two SPIs, one more indicator related to policy output 

can also be used to supplement the alcohol performance of a country, which is 

the effectiveness of the overall enforcement against drinking and driving. Such a 

policy performance indicator, however, is qualitative in nature, and can only 

take the form of ordered classes rated on for instance a 0-10 scale rather than 

numerical values for the purpose of description, comparison and evaluation of 

this risk factor. How to deal with this kind of qualitative indicators will be 

elaborated in Chapter 8. 

5.2.1.2 Speed 

Apart from drink driving, speed is another main cause of road crashes and crash 

injuries, and hence, a major issue for road safety. Inappropriate or excessive 

speed has been recognized as one of the most important risk factors influencing 

both the number of road crashes and the severity of injuries [Elvik, 2005; 

Kweon et al., 2005]. Some speed-crash studies indicated that the probability 

that a crash will result in injury is proportional to the square of the speed; for 

serious injury proportional to the cube of the speed; and for fatal injury 

proportional to the fourth power of the speed [World Health Organization, 2004]. 

In around one third of the fatal crashes, speed is an essential contributory factor 

[Bowie & Walz, 1994; Transportation Research Board, 1998]. Therefore, 

reducing vehicle speeds appears to have a significant effect on road safety final 

outcomes. On average, a 1% reduction in the mean speed of traffic leads to a 

2% reduction in crashes resulting in injuries, a 3% reduction in crashes resulting 

in severe injuries and a 4% reduction in fatal crashes. Moreover, Taylor et al. 

(2000) showed that the road crash risk increases with the proportion of drivers 

over the speed limit. The crash risk grows by 10% if the proportion of offenders 

doubles. In European countries, the mean speed and the level of compliance of 

vehicles (or the proportion of vehicles exceeding the speed limit) in free-flowing 

traffic are therefore the two most commonly used speed SPIs. Furthermore, 

since the risk linked to speed varies across road types, differentiation among 
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motorways, rural roads and urban roads is considered when making 

comparisons between countries of their levels of speed and speed limit violations. 

The average indicator values of 2006-2008 are collected from the European 

Transport Safety Council (2010) and Vis & Eksler (2008) and are shown in Table 

5.2. 

Table 5.2 Speed related SPIs    
 

Mean speed* % of speed limit violations 

on 
motorways 

on rural 
roads 

on urban 
roads 

on 
motorways 

on rural 
roads 

on urban 
roads 

06-08 06-08 06-08 06-08 06-08 06-08 

AT 0.9103 0.8960 1.0307 21.33% 19.43% 53.87% 

BE 1.0092 0.9426 1.0767 N/A 34.10% 61.53% 

BG 0.9315 N/A N/A N/A N/A N/A 

CY 1.0500 1.1000 0.9600 52.50% 55.00% N/A 

CZ 0.8346 0.7593 0.8800 75.00% 15.10% 24.30% 

DK 0.9359 1.0558 1.0387 31.50% 69.77% 60.00% 

EE N/A 1.0544 N/A N/A 24.90% N/A 

FI 0.8861 0.9600 N/A 39.90% 43.92% N/A 

FR 0.9154 0.8900 0.9867 32.33% 27.27% 42.97% 

DE N/A N/A N/A N/A N/A N/A 

EL N/A N/A N/A N/A N/A N/A 

HU 0.8582 0.8830 1.0120 45.07% 30.07% 59.40% 

IE 0.9028 0.9185 1.1420 16.33% 31.33% 61.33% 

IT N/A N/A N/A N/A N/A N/A 

LV N/A 1.0174 N/A N/A 50.90% N/A 

LT 0.8538 0.9815 1.1580 20.70% 39.35% 43.00% 

LU 0.8846 N/A N/A 5.00% N/A N/A 

NL 0.9500 N/A N/A 36.00% N/A N/A 

NO 1.0000 0.9875 1.0453 51.50% 44.80% N/A 

PL N/A 1.0044 1.2780 N/A 65.83% 82.63% 

PT 1.0083 1.1333 0.9000 54.00% 74.00% 38.00% 

RO N/A N/A N/A N/A N/A N/A 

SK N/A N/A N/A N/A N/A N/A 

SI 0.8846 0.7000 1.1600 34.00% 1.00% 84.00% 

ES 0.9528 N/A N/A 37.93% N/A N/A 

SE 0.9664 0.9767 0.9500 67.80% 52.60% 52.80% 

CH 0.9056 0.9250 0.8267 23.00% 23.33% 13.67% 

UK 0.9941 0.7969 1.0063 51.67% 10.00% 49.33% 

* To make data comparable between countries, the mean speed on each road type 

is normalized by the corresponding speed limit on that road type. 

Source: European Transport Safety Council (2010) and Vis & Eksler (2008) 
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There are still a large number of missing values in the data set. Some countries 

even don't collect (or have) any of these six indicator values, such as Germany, 

Greece, Italy, Romania, and Slovakia. Based on the data available, we can see 

that countries are more likely to have a mean speed above the speed limit on 

their urban roads (with the mean speed value higher than one), which 

corresponds to the fact that most of the countries have a relatively higher 

percentage of speed limit violations on this road type. However, it should be 

noted that although the European countries are supposed to collect data in a 

uniform manner, data collection procedures still vary substantially. Countries 

observe speeds for different vehicle types (all traffic together, cars and vans 

only) and different criteria are used to identify the measurement locations and 

appropriate (uncongested) traffic conditions [European Transport Safety Council, 

2010]. 

5.2.1.3 Protective systems 

Different from the above two behavioral characteristics which influence both the 

occurrence and severity of crashes, protective systems take effect especially 

when crashes happen. In case of a crash, the use of various protective systems 

by road users has been believed to play a vital role in protecting the most 

vulnerable parts of the human body against injury and considerably increasing 

the likelihood of surviving in serious crashes. Availability and appropriate use of 

protective systems (such as seat belts, child restraints, and helmets) are 

therefore fundamental items in developing related SPIs. First of all, it is 

estimated that seat belts have saved more than one million people that would 

have died in a road crash if not belted, thus being the biggest life saver on the 

roads [European Transport Safety Council, 2010]. In Europe, the use of seat 

belts is mandatory and it has been proven to provide a strong protection against 

fatalities in road crashes according to various studies. Elvik & Vaa (2004), for 

instance, indicated that the use of seat belts reduces the probability of being 

killed by 40-50% for drivers and front-seat passengers and by 25% for 

passengers in the rear seats. Moreover, regarding the use of safety seats for 

children and infants, studies (e.g., World Health Organization, 2004) have 

shown that infant deaths in cars are reduced by 70% and for small children by 

50%. In addition, motorcycle helmets have been shown to have a clear impact 
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on reducing fatal and serious head injuries by between 20% and 45% [World 

Health Organization, 2004]. The same study has also shown that bicycle helmets 

diminish the risk of head and brain injuries by 63% to 88%. Wearing helmets 

reduces the probability of being injured by around 25% [Elvik & Vaa, 2004]. 

Some European countries have legislated mandatory helmet use, which has 

been effective in preventing, or reducing injury severity of two-wheeler riders 

(motorcyclists, moped riders, and cyclists). Consequently, seat belt wearing 

rates in front seats and in rear seats, the proportion of child restraints use, and 

the usage rates of helmets by two-wheelers are the ideal SPIs related to the risk 

factor of the protective systems. However, due to data unavailability, three less 

ideal SPIs, i.e., the daytime seat belt wearing rate in front and rear seats of light 

vehicles (<3.5 tons), respectively, and the daytime usage rate of child restraints, 

are selected for this study, and the indicator data (average value of 2006-2008) 

for the 28 European countries are presented in Table 5.3. 

Table 5.3 Protective systems related SPIs 

 
Seat belts Child restraint 

 

Daytime seat 
belt wearing rate 
in front seats of 
light vehicles 

Daytime seat 
belt wearing rate 
in rear seats of 
light vehicles 

Daytime usage 
rate of child 
restraints 

06-08 06-08 06-08 

AT 88.33% 57.33% 82.00% 

BE 78.00% 40.00% N/A 

BG 85.00% 3.00% 30.00% 

CY 80.00% 15.00% N/A 

CZ 88.67% 56.00% 42.00% 

DK 91.00% 73.33% N/A 

EE 85.93% 55.20% 83.00% 

FI 89.00% 81.33% N/A 

FR 97.67% 82.00% 89.00% 

DE 96.33% 90.00% 84.00% 

EL 68.50% 23.00% N/A 

HU 71.00% 41.00% N/A 

IE 88.00% 75.00% N/A 

IT 68.00% 30.00% N/A 

LV 79.00% 26.50% N/A 

LT 59.50% 30.00% N/A 
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LU 80.00% 60.00% 57.00% 

NL 93.67% 73.00% 72.00% 

NO 91.50% 85.00% 94.00% 

PL 78.00% 48.33% 86.00% 

PT 86.00% 47.00% N/A 

RO 65.00% 5.00% N/A 

SK 68.00% 39.00% N/A 

SI 85.33% 45.17% N/A 

ES 86.33% 71.33% N/A 

SE 95.00% 76.00% 95.00% 

CH 86.67% 66.00% 85.00% 

UK 92.00% 85.67% 93.00% 

Source: European Transport Safety Council (2010) and Vis & 

Eksler (2008) 

We can see from Table 5.3 that all the 28 European countries collect data on the 

seat belt wearing rate, both in front seats and rear seats, and the rate for front 

seats is always higher than that for rear seats. However, still more than half of 

these countries have no available data on the usage rate of child restraints. 

5.2.2 Vehicle 

Vehicles, designed and used to transport people or cargo, are another important 

risk factor to road crashes. To some extent, a vehicle is inevitably involved in 

any road crash, but safer vehicles own more potential to prevent the occurrence 

of crashes as well as injuries in the event of a crash. Over the past decade, both 

vehicle active and passive safety have improved considerably in Europe due to 

increased minimum standards laid down by EU type approval regulations and 

vehicle manufacturers’ efforts to meet consumer demands for safer vehicles 

[European Transport Safety Council, 2009]. Active safety features, such as anti-

lock braking systems, traction control, driving aid systems and audible warning 

devices, help the driver in avoiding a road crash, while passive safety features 

better protect persons involved in the event of a crash, like frontal and side 

impact protection, airbags, load restraint and crush zones [Land Transport 

Safety Authority, 2000]. As the vehicle fleet is continuously being renewed to 

higher safety standards, the age of the vehicle fleet, or passenger cars in 
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particular17 , represents a proxy for improvements in automotive engineering 

designed to resist the effect of crashes. That is, new cars tend to have more 

safety and protection features, and as the car ages, vehicular damage will 

increase. One study (in World Health Organization, 2004) showed that 

occupants in cars produced before 1984 run approximately three times the 

injury risk of new cars. In the current study, three SPIs related to the age of the 

passenger cars are developed to assess the performance of the vehicle fleet in 

different European countries. They are the percentage of new passenger cars 

(less than 6 years), the percentage of old passenger cars (more than 10 years), 

and the annual renewal rate of passenger cars. 

Moreover, the crashworthiness of a vehicle has been used in many developed 

countries to assess the passive safety performance, i.e., how the vehicle 

performs in a crash situation. Many countries in the EU have set out legislation 

for safety standards in motor vehicles, such as the European New Car 

Assessment Programme, i.e., EuroNCAP, where vehicle crash performance is 

evaluated by rating the vehicle models according to their safety level for 

occupant protection, child protection, and pedestrian protection, respectively. 

Research by Lie & Tingvall (2000) concluded that vehicles gaining a higher 

ranking during EuroNCAP tests produce approximately 30% less fatal and 

serious injuries than low ranked vehicles. In this respect, six SPIs are selected in 

this study indicating some technical scores of new passenger cars from 

EuroNCAP tests. They are the percentage of new passenger cars awarded 5 stars 

for occupant protection, the average percentage occupant protection score for 

new cars, the percentage of new passenger cars awarded 3 stars for pedestrian 

protection, the average percentage pedestrian protection score for new cars, the 

percentage of new passenger cars awarded 4 stars for child protection, and the 

percentage of new passenger cars with seat belt reminder (SBR). 

                                                 
17 The availability of a wide range of information about passenger cars (e.g., age, weight, 

and size), and the fact that they make up the biggest proportion of the fleet in Europe 

makes passenger cars the most logical starting point in an assessment of the overall 

performance of the fleet in Europe. 



1
1
7
  

 T
a
b
le
 5
.4
 V
eh

ic
le
 r
el
at
ed

 S
PI
s 

    

A
g
e
 d
is
tr
ib
u
ti
o
n
 o
f 
th
e
 v
e
h
ic
le
 f
le
e
t 

C
o
m
p
o
si
ti
o
n
 o
f 
th
e
 

ve
h
ic
le
 f
le
e
t 

T
e
ch
n
ic
a
l 
sc
o
re
s 

O
cc
u
p
a
n
t 
p
ro
te
ct
io
n
 

P
e
d
e
st
ri
a
n
 p
ro
te
ct
io
n
 

C
h
ild
 

p
ro
te
ct
io
n
 

S
e
a
t 
b
e
lt
 

re
m
in
d
e
r 

%
 o
f 
n
e
w
 

p
a
ss
e
n
g
e
r 

ca
rs
: 
Le
ss
 

th
a
n
 6
 

ye
a
rs
 

%
 o
f 
o
ld
 

p
a
ss
e
n
g
e
r 

ca
rs
: 
M
o
re
 

th
a
n
 1
0
 

ye
a
rs
 

A
n
n
u
a
l 

re
n
e
w
a
l 

ra
te
 o
f 

p
a
ss
e
n
g
e
r 

ca
rs
 

%
 o
f 
g
o
o
d
s 

ve
h
ic
le
s 
in
 

th
e
 v
e
h
ic
le
 

fl
e
e
t 

%
 o
f 

p
o
w
e
re
d
 

tw
o
-

w
h
e
e
le
rs
 i
n
 

th
e
 v
e
h
ic
le
 

fl
e
e
t 

%
 o
f 
n
e
w
 

p
a
ss
e
n
g
e
r 

ca
rs
 

a
w
a
rd
e
d
 5
 

st
a
rs
 f
o
r 

o
cc
u
p
a
n
t 

p
ro
te
ct
io
n
 

A
ve

ra
g
e
 

p
e
rc
e
n
ta
g
e
 

o
cc
u
p
a
n
t 

p
ro
te
ct
io
n
 

sc
o
re
 f
o
r 

n
e
w
 c
a
rs
 

%
 o
f 
n
e
w
 

p
a
ss
e
n
g
e
r 

ca
rs
 

a
w
a
rd
e
d
 3
 

st
a
rs
 f
o
r 

p
e
d
e
st
ri
a
n
 

p
ro
te
ct
io
n
 

A
ve

ra
g
e
 

p
e
rc
e
n
ta
g
e
 

p
e
d
e
st
ri
a
n
 

p
ro
te
ct
io
n
 

sc
o
re
 f
o
r 

n
e
w
 c
a
rs
 

%
 o
f 
n
e
w
 

p
a
ss
e
n
g
e
r 

ca
rs
 

a
w
a
rd
e
d
 4
 

st
a
rs
 f
o
r 

ch
ild
 

p
ro
te
ct
io
n
 

%
 o
f 
n
e
w
 

p
a
ss
e
n
g
e
r 

ca
rs
 w

it
h
 

se
a
t 
b
e
lt
 

re
m
in
d
e
r 

0
6
-0
8
 

0
6
-0
8
 

0
6
-0
8
 

0
6
-0
8
 

0
6
-0
8
 

2
0
0
8
 

2
0
0
8
 

2
0
0
8
 

2
0
0
8
 

2
0
0
8
 

2
0
0
8
 

A
T
 

3
9
.8
0
%
 

2
9
.5
2
%
 

7
.0
7
%
 

7
.0
4
%
 

1
2
.6
1
%
 

5
2
%
 

8
9
.3
%
 

2
1
%
 

3
6
.1
%
 

4
7
%
 

7
0
%
 

B
E
 

3
9
.5
1
%
 

2
8
.5
8
%
 

1
0
.4
7
%
 

1
1
.2
7
%
 

6
.1
0
%
 

5
7
%
 

8
9
.9
%
 

1
8
%
 

3
4
.2
%
 

4
6
%
 

7
3
%
 

B
G
 

N
/A
 

N
/A
 

1
.8
9
%
 

1
0
.7
1
%
 

3
.7
1
%
 

3
4
%
 

8
3
.8
%
 

1
6
%
 

3
4
.7
%
 

3
5
%
 

5
3
%
 

C
Y
 

2
7
.9
6
%
 

4
4
.4
7
%
 

5
.6
7
%
 

2
0
.7
2
%
 

7
.2
8
%
 

2
4
%
 

9
3
.7
%
 

1
5
%
 

4
2
.8
%
 

2
0
%
 

3
3
%
 

C
Z
 

1
7
.0
6
%
 

5
7
.4
6
%
 

4
.0
1
%
 

9
.6
5
%
 

1
5
.0
6
%
 

2
9
%
 

8
5
.9
%
 

1
4
%
 

3
9
.2
%
 

3
7
%
 

5
6
%
 

D
K
 

3
9
.9
%
 

3
1
.4
2
%
 

7
.5
%
 

1
8
.7
8
%
 

6
.9
8
%
 

4
6
%
 

8
7
.2
%
 

2
1
%
 

3
7
.8
%
 

4
1
%
 

7
4
%
 

E
E
 

2
1
.1
2
%
 

6
1
.1
6
%
 

4
.9
8
%
 

1
3
.1
8
%
 

2
.3
2
%
 

4
3
%
 

9
0
.0
%
 

2
5
%
 

3
7
.5
%
 

5
3
%
 

7
1
%
 

FI
 

2
8
.6
7
%
 

4
4
.7
7
%
 

5
.2
9
%
 

1
1
.7
8
%
 

1
1
.1
8
%
 

6
0
%
 

9
2
.3
%
 

2
2
%
 

3
8
.9
%
 

6
0
%
 

7
6
%
 

FR
 

3
3
.8
4
%
 

3
3
.5
9
%
 

6
.5
4
%
 

1
3
.6
2
%
 

6
.7
%
 

5
9
%
 

8
9
.6
%
 

2
3
%
 

3
6
.1
%
 

4
5
%
 

7
6
%
 

D
E
 

3
4
.5
7
%
 

3
3
.6
5
%
 

7
.8
6
%
 

5
.0
6
%
 

1
1
.3
5
%
 

5
5
%
 

9
0
.4
%
 

1
9
%
 

3
4
.2
%
 

4
7
%
 

7
2
%
 

E
L 

N
/A
 

N
/A
 

5
.6
8
%
 

1
7
.0
5
%
 

1
7
.6
%
 

3
9
%
 

8
6
.3
%
 

2
6
%
 

3
7
.8
%
 

4
0
%
 

6
4
%
 

H
U
 

3
1
.8
3
%
 

4
4
.4
2
%
 

5
.6
9
%
 

1
2
.6
6
%
 

3
.7
5
%
 

3
8
%
 

8
6
.8
%
 

3
2
%
 

4
0
.3
%
 

3
9
%
 

6
2
%
 

IE
 

4
2
.3
8
%
 

1
6
.5
7
%
 

9
.1
4
%
 

1
4
.9
%
 

1
.6
3
%
 

6
2
%
 

9
2
.5
%
 

2
3
%
 

3
8
.6
%
 

5
6
%
 

7
7
%
 

IT
 

5
2
.5
%
 

2
2
.9
7
%
 

6
.5
2
%
 

8
.9
6
%
 

1
8
.7
3
%
 

4
7
%
 

8
3
.3
%
 

1
9
%
 

3
5
.3
%
 

2
9
%
 

6
3
%
 

LV
 

1
1
.3
8
%
 

7
6
%
 

2
.9
5
%
 

1
1
.8
9
%
 

4
.1
2
%
 

4
0
%
 

8
9
.7
%
 

1
9
%
 

3
6
.7
%
 

4
8
%
 

6
4
%
 

LT
 

5
.1
3
%
 

8
5
.9
%
 

1
.1
9
%
 

7
.9
7
%
 

1
.9
5
%
 

4
3
%
 

8
8
.9
%
 

2
0
%
 

3
6
.7
%
 

5
2
%
 

6
5
%
 

LU
 

5
8
.3
9
%
 

1
6
.1
9
%
 

1
6
.0
1
%
 

8
.2
3
%
 

9
.9
9
%
 

5
9
%
 

9
1
.3
%
 

1
8
%
 

3
3
.3
%
 

4
8
%
 

7
3
%
 

N
L 

3
1
.8
9
%
 

3
3
.7
7
%
 

6
.7
2
%
 

1
0
.3
3
%
 

1
4
.0
6
%
 

5
2
%
 

8
8
.2
%
 

2
3
%
 

3
7
.2
%
 

4
5
%
 

7
5
%
 

N
O
 

2
7
.7
5
%
 

4
4
.1
9
%
 

5
.4
2
%
 

1
7
.1
7
%
 

9
.5
3
%
 

6
2
%
 

9
3
.6
%
 

2
3
%
 

3
9
.4
%
 

6
1
%
 

8
1
%
 

P
L 

1
1
.7
1
%
 

6
5
.8
3
%
 

1
.9
3
%
 

1
3
.9
1
%
 

7
.3
4
%
 

4
8
%
 

8
8
.4
%
 

2
3
%
 

3
8
.3
%
 

4
5
%
 

6
9
%
 

P
T
 

N
/A
 

N
/A
 

4
.6
6
%
 

2
1
.3
3
%
 

8
.7
7
%
 

5
9
%
 

9
0
.8
%
 

2
8
%
 

3
6
.7
%
 

5
1
%
 

7
7
%
 

R
O
 

3
8
.2
7
%
 

4
1
.8
4
%
 

7
.5
9
%
 

1
2
.6
9
%
 

2
.4
3
%
 

2
5
%
 

7
5
.1
%
 

1
3
%
 

2
9
.4
%
 

3
0
%
 

3
6
%
 

S
K
 

N
/A
 

N
/A
 

4
.3
8
%
 

1
2
.5
6
%
 

3
.7
%
 

3
2
%
 

8
5
.4
%
 

2
3
%
 

4
0
.3
%
 

3
5
%
 

5
6
%
 

S
I 

3
0
.3
3
%
 

3
4
.1
7
%
 

6
.5
7
%
 

6
.6
4
%
 

5
.9
%
 

5
2
%
 

8
9
.2
%
 

2
4
%
 

3
6
.1
%
 

4
5
%
 

6
8
%
 

E
S
 

4
2
.1
4
%
 

2
8
.7
4
%
 

6
.8
3
%
 

1
6
.6
9
%
 

1
4
.8
4
%
 

5
8
%
 

9
0
.7
%
 

2
7
%
 

3
7
.8
%
 

5
1
%
 

7
1
%
 

S
E
 

3
5
.9
7
%
 

3
2
.7
3
%
 

6
.6
2
%
 

9
.4
2
%
 

9
.9
6
%
 

6
4
%
 

9
2
.0
%
 

1
4
%
 

3
6
.9
%
 

5
6
%
 

7
8
%
 

C
H
 

3
3
.3
5
%
 

3
2
.8
3
%
 

7
.1
1
%
 

6
.5
1
%
 

1
2
.5
8
%
 

4
9
%
 

8
9
.3
%
 

1
9
%
 

3
5
.6
%
 

4
2
%
 

6
9
%
 

U
K
 

4
9
.9
5
%
 

1
7
.9
8
%
 

7
.9
1
%
 

1
1
.1
1
%
 

3
.7
7
%
 

5
4
%
 

8
9
.0
%
 

2
2
%
 

3
5
.3
%
 

4
6
%
 

7
2
%
 

S
o
u
rc

e
: 

U
N

E
C
E
, 
2
0
1
1
; 

E
u
ro

p
e
a
n
 C

o
m

m
is

s
io

n
, 
2
0
1
1
a
; 

a
n
d
 E

u
ro

p
e
a
n
 T

ra
n
s
p
o
rt

 S
a
fe

ty
 C

o
u
n
c
il
, 
2
0
0
9
 



118 

 

Another factor which influences the safety of the fleet is the proportions of 

vehicles of different types and weights that make up the total fleet, i.e., the 

vehicle composition [Vis, 2005]. The composition of the vehicle fleet also gives a 

rough indication of risk exposure on the road. It could be said that the relative 

share of motorcycles in use in the fleet is an indicator of the proportion of ‘weak’ 

motorized road users since motorcyclists are on average at greater risk of 

serious crashes, while the share of heavy goods vehicles, light goods vehicles, or 

other sport utility vehicles could be an aggressiveness indicator towards other 

road users [Hakkert et al., 2007a]. In this study, the percentages of goods 

vehicles and powered two-wheelers in the vehicle fleet are the two SPIs selected 

so as to reflect the composition of the vehicle fleet in each country. 

Totally, 11 vehicle related SPIs are developed for the aforementioned three 

aspects, i.e., the age distribution of the vehicle fleet, the composition of the 

vehicle fleet, and some technical scores from EuroNCAP tests. They are 

presented in Table 5.4, along with the indicator data for the 28 European 

countries collected from the United Nations Economic Commission for Europe 

(2011), the European Commission (2011a), and the European Transport Safety 

Council (2009).  

As can be seen, most of the countries have data on all these 11 vehicle 

indicators. However, for the indicators related to the technical scores from 

EuroNCAP tests, only the data for 2008 are available. 

5.2.3 Infrastructure 

The infrastructure of the road transport system, generally defined as the basic 

physical and organizational structures, or the facilities and services essential to 

enable, sustain, and enhance the daily road transport activities, is believed to 

have a strong impact on road safety as well. In this respect, road design and 

layout provide technical structures that make road transport possible, and 

influence crash risk as they determine how road users perceive the environment 

and offer instructions by means of signals [World Health Organization, 2004]. 

On the other hand, the level of available medical facilities and effective and 

timely emergency medical services are also a necessary infrastructure for 
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sustainable road transport, which avoid preventable death and disability, and 

reduce the severity and suffering caused by the injury. 

5.2.3.1 Road 

The safety performance of the road transport system is the result of the 

combination of the functionality of the road network, homogeneity, and 

predictability of the road environment and the traffic involved [Hakkert et al., 

2007a]. Four influencing factors are safety awareness in the planning of new 

road networks, dealing with safety features in the design of new roads, safety 

ameliorations to existing roads and healing actions on locations with a high 

accident risk. However, knowledge about the quantitative relations between road 

network, road design elements and road safety is still growing and by far not 

complete. 

The road network consists of several road types. Motorways are despite their 

high speed limit considered to be the most safe type of roads. Fewer crashes 

resulting in fewer injuries happen on motorways than on other types of roads 

because of the separation between vehicle movements according to their speed. 

Elvik & Vaa (2004) showed that the rate of injury crashes per million vehicle 

kilometres of travel on motorways is about 25% of the average for all the public 

roads. However, they generally represent only a few percentages of the total 

road network. Rural roads account for a considerable share of all road fatalities. 

The risk of being killed (per kilometre driven) is generally higher on rural roads 

than on urban roads and is 4 to 6 times higher than on motorways [Organization 

for Economic Co-operation and Development, 2002].  

In addition, poor road surface conditions as well as defects in road design and 

maintenance contribute to an increase in crash risk [European Transport Safety 

Council, 2001]. Objects along the road provide a risk in case the road user gets 

involved in a (run-of-the-road) crash. Bester (2001) reported that paved roads 

lead to lower fatality rates. Besides, some studies have assessed the safety 

performance of similar roads between countries by producing some sort of map 

or star rating for roads, such as the European Road Assessment Programme, i.e., 

EuroRAP, which aims at understanding the degree to which roads protect against 

severe injury in case of a crash [Lynam et al., 2004].  
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Table 5.5 Road related SPIs 

 

Motorway 
density 

(km/1000km2) 

Share of 
motorways 
and national 
roads in total 
road length 

06-08 06-08 

AT 20.15 11.22% 

BE 57.75 9.38% 

BG 3.69 3.33% 

CY 27.78 30.48% 

CZ 8.37 5.28% 

DK 25.30 4.28% 

EE 2.20 5.51% 

FI 2.11 17.03% 

FR 20.13 2.04% 

DE 35.26 8.23% 

EL 8.24 9.58% 

HU 10.45 4.04% 

IE 4.56 5.63% 

IT 21.87 5.41% 

LV 0.00 2.35% 

LT 4.73 6.37% 

LU 56.84 34.15% 

NL 62.80 3.76% 

NO 0.79 28.77% 

PL 2.14 7.06% 

PT 28.16 11.05% 

RO 1.10 20.08% 

SK 7.32 8.56% 

SI 30.48 4.06% 

ES 25.43 3.85% 

SE 4.00 4.78% 

CH 33.32 2.47% 

UK 14.90 12.5% 

Source: European Commission, 2011a and 

European Union Road Federation, 2010 

In this study, due to data unavailability, two SPIs related to motorways are used 

to represent the road performance of a country, which are motorway density, 
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and the share of motorways and national roads in total road length. Indicator 

data (the average value of 2006-2008) for the 28 European countries are 

collected from the European Commission (2011a) and the European Union Road 

Federation (2010), as shown in Table 5.5. 

Although all the countries have data on these two indicators, we should still keep 

in mind that they do not fully reflect the road performance of each country. More 

indicators related to road network, road design and maintenance, which are 

suitable for comparison among a large set of countries, have to be developed 

and refined in the future. 

5.2.3.2 Emergency medical services 

To make progress in road safety, apart from reducing risk before crashes (e.g., 

speed limit abidance) and during crashes (e.g., use of seat belts), improving the 

trauma management of people after crashes is also essential. In this respect, 

emergency medical services (EMS), concerned with the pre-hospital medical 

treatment of injuries resulting from road crashes, is recognized as a key 

component in avoiding preventable death and disability, and reducing the 

severity and suffering caused by the injury. A review of European case studies 

[European Transport Safety Council, 1999] concluded that about 50% of road 

traffic deaths occurred within a few minutes either at the scene of the crash or 

on the way to a hospital, 15% at the hospital within four hours of the crash and 

35% after four hours. It means that many of these deaths might have been 

prevented if more immediate and better medical care would have been available. 

Studies worldwide [Hussain & Redmond, 1994; Mock et al., 1997] have shown 

that within the time period reaching a hospital, deaths and complications 

resulting in disability could be prevented in many cases. The European 

Commission (2003) has stated that several thousands of lives could be saved in 

the EU by improving the response times of the emergency services and other 

elements of post-impact care in the event of road traffic crashes. A review of 

1970-1996 data in several OECD countries suggested that between 5% and 

25% of the reductions in road crash deaths may have been due to 

improvements in medical care and technologies [Noland, 2004].  
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In this study, eight SPIs related to available medical facilities, professionally 

trained medical staff, suitable medical equipment, and timely emergency 

services are selected from the European SafetyNet project [Gitelman et al., 

2008] characterizing the EMS performance of a country. They are the number of 

EMS stations per 1000 km2, the percentage of EMS stations with at least one 

physician, the number of EMS medical staff per 10.000 citizens, the percentage 

of physicians and paramedics, the number of EMS transportation units per 100 

km of road length, the percentage of high-equipped transportation units, the 

average response time, and the percentage of EMS response meeting the 

demand. Indicator data, which were collected by means of a series of 

questionnaires distributed to the countries [Gitelman et al., 2008], are 

presented in Table 5.6. 

Table 5.6 EMS related SPIs 

 
EMS stations EMS staff 

EMS transportation 
units 

EMS response time 

 

EMS 
stations 
per 1000 

km2  

% of 
EMS 

stations 
with at 
least one 
physician     

EMS 
medical 
staff per 
10.000 
citizens  

% of 
physi-
cians 
and 
para-
medics  

EMS 
transpor-
tation 

units per 
100 km 
of road 
length  

% of 
high-

equipped 
transpor-
tation 
units*  

average 
response 
time 
(min)  

% of 
EMS 

response 
meeting 

the 
demand  

2006 2006 2006 2006 2006 2006 2006 2006 

AT 5.0549 29% 51.316 29.4% 2.3010 100% N/A 95% 

BE 4.9463 26.5% 8.895 15% 0.3015 100% 6 100% 

BG 1.9819 10% 9.553 22.4% 0.5450 86.6% 15 N/A 

CY 1.9459 10% 4.185 19% 1.0391 100% N/A 100% 

CZ 2.4218 N/A 3.595 15.1% 0.4879 100% 7.83 89.2% 

DK 3.2484 N/A 3.600 5.6% 0.6481 100% 8 100% 

EE 1.1719 54.7% 9.935 18.4% 0.1599 100% 23 64% 

FI 0.7387 2.4% 1.049 28.1% 0.5193 100% N/A N/A 

FR N/A N/A N/A N/A N/A N/A N/A N/A 

DE 5.1302 39.4% 6.429 73.6% 1.1789 85.2% 8.10 91.5% 

EL 0.0909 N/A 1.928 N/A 0.6499 99.1% 15 N/A 

HU 2.3218 N/A 0.961 13.1% 0.5152 100% 16 72% 

IE N/A N/A N/A N/A N/A N/A N/A N/A 

IT N/A N/A N/A N/A N/A N/A N/A N/A 

LV 0.6506 10% 7.342 17.2% 0.3459 10% 17 88% 

LT 0.9342 10% 4.746 18.8% 0.5293 10% N/A N/A 

LU N/A N/A N/A N/A N/A N/A N/A N/A 



123  

 

NL 1.2281 N/A 1.620 N/A 0.4846 100% N/A N/A 

NO 0.6177 N/A N/A N/A 0.7232 92.7% N/A 90% 

PL 0.6748 10% 2.104 N/A 0.6946 100% N/A 90% 

PT 5.2123 N/A N/A N/A N/A N/A N/A N/A 

RO N/A N/A N/A N/A N/A N/A N/A N/A 

SK 6.9542 10% 7.089 21.4% 0.8590 53.2% N/A N/A 

SI N/A N/A N/A N/A N/A N/A N/A N/A 

ES N/A N/A N/A N/A N/A N/A N/A N/A 

SE 0.6107 N/A 4.407 0.2% 0.1200 100% 12.55 90% 

CH N/A N/A N/A N/A N/A N/A N/A N/A 

UK 4.0153 N/A 4.650 64.2% 0.1512 21.4% N/A 100% 

*The high-equipped transportation units include Basic Life Support Units, Mobile 

Intensive Care Units and helicopters/planes. 

Source: Gitelman et al. (2008) 

Since only 21 European countries were considered in Gitelman et al. (2008), 

indicator data for the remaining seven countries (i.e., France, Ireland, Italy, 

Luxembourg, Romania, Slovenia, and Switzerland) are totally unavailable. Even 

for these 21 countries, only four countries (i.e., Belgium, Estonia, Germany, and 

Latvia) have provided complete data on these eight EMS indicators (only for the 

year 2006). With respect to the other countries, various levels of missing data 

exist, and the highest level is observed for Portugal, for which only one indicator 

value was provided. In addition, it should be noted that data collected from 

questionnaire surveys may produce considerable response bias due to for 

instance different definitions about some concepts in different countries. Data 

examination is therefore essential to determining their rationality and usefulness.  

5.2.4 Summary 

To develop a comprehensive set of safety performance indicators for inter-

national road safety programme benchmarking, three main components of the 

road transport system, i.e., road user behavior, vehicle and infrastructure, are 

considered, and six risk factors on the basis of these three components are 

identified, which are alcohol, speed, protective systems, vehicle, road, and 

emergency medical services. Several SPIs are then developed representing the 

characteristics of each of these six risk factors. Totally, 32 quantitative 

indicators are specified and they constitute a multilayer hierarchical structure as 
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presented in Figure 5.2. In addition to the formulation of SPIs, available 

indicator data are collected (or calculated) for 28 European countries from a 

wide range of international data sources. In the following sections, some 

necessary data processing procedures are conducted before the road safety 

performance index can be constructed.  

5.3 Data Processing 

Given the high number of risk factors and corresponding SPIs, a large data set 

has to be collected, and a number of data errors are to be expected in spite of 

careful study design, conduct, and error-prevention strategies. In this study, two 

data processing procedures, i.e., statistical outlier detection and missing data 

treatment, are performed with the intention to identify and correct these errors 

or at least minimize their impact on the result of the road safety index research. 

After a full investigation, all instances with outliers (i.e., values or attributes that 

are far different from the expected values) are removed from the analysis, and 

missing values in the data set are imputed by using multiple imputation. 

5.3.1 Outlier detection 

In any data analysis, one of the first steps is the detection of outlaying 

observations, or outliers. Hawkins (1980) defines an outlier as an observation 

that deviates so much from other observations as to arouse suspicion that it was 

generated by a different mechanism. Often, detected outliers are candidates for 

aberrant data that may otherwise adversely lead to model misspecification, 

biased parameter estimation and incorrect results. It is therefore important to 

identify them prior to modeling and analysis [Williams et al., 2002; Liu et al., 

2004]. Over the last decades, a large number of outlier detection methods have 

been proposed [Hawkins, 1980; Rousseeuw & Leory, 1987; Caussinus & Roiz, 

1990; Hadi, 1992; Barnett & Lewis, 1994]. One fundamental taxonomy is 

between univariate methods and multivariate methods [Ben-Gal, 2005]. Both of 

them are briefly introduced in the following sections, along with the applications 

for this study. 
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Figure 5.2 Hierarchical framework of safety performance indicators 
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5.3.1.1 Univariate methods 

Most univariate analyses for outlier detection rely on the assumption of an 

underlying known distribution of the data, which is assumed to be identically and 

independently distributed. A central assumption in statistical-based univariate 

methods for outlier detection is a generating model that allows a small number 

of observations to be randomly sampled from distributions  1, , kG G� , differing 

from the target distribution F, which is often taken to be a normal distribution 

2( , )N µ σ  [Barnett & Lewis, 1994]. The outlier detection problem is then 

translated to the problem of identifying those observations that lie in a so-called 

outlier region. This leads to the following definition [Davies & Gather, 1993]: For 

any confidence coefficient , 0 1α α< < , the α -outlier region of the 2( , )N µ σ  

distribution is defined by  

{ }2
1 /2( , , ) : αoutlier α µ σ x x µ z σ−= − >  (5-1) 

where zq is the q quintile of the N(0,1). A number x is an α -outlier with respect 

to F if 2( , , )x outlier α µ σ∈ . 

Based on this principle, one simple way to identify univariate outliers in practice 

is to convert all of the values for a variable i to standard scores (or z-scores) as 

follows: 

i
i

x x
z

sd

−
=  (5-2) 

where x  denotes the sample mean, and sd the sample standard deviation. A 

case is generally considered as an outlier if its z-score exceeds 3.0 in absolute 

value [Schiffler, 1988]. 

To detect univariate outliers for this study, each of the 32 SPIs is standardized 

using Eq. (5-2). We thus obtain the z-scores of each country’s indicator values. 

Five univariate outliers related to vehicle and EMS indicators are detected for 

four different countries with an absolute z-score higher than 3.0 (see Table 5.7). 
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Table 5.7 Five univariate outliers 

Country Indicator z-score 

AT EMS medical staff per 10,000 citizens 3.88 

AT EMS transportation units per 100 km of road length 3.39 

LU Annual renewal rate of passenger cars 3.41 

RO Average percentage occupant protection score for new cars -3.61 

UK % of high-equipped transportation units -3.45 

 

By checking the raw data set in Table 5-4 and Table 5-7, these indicator values 

are either extremely higher or greatly lower than others. Taking the EMS 

medical staff per 10,000 citizens in Austria as an example, a relatively high 

indicator value (51.316) was responded by Austria in the questionnaire survey 

conducted within the European SafetyNet project, while the average value of 

this indicator responded by all the other countries was only 4.829. It could 

probably happen due to a different definition of EMS medical staff in Austria. 

Consequently, all these five indicator values are omitted and treated as missing 

values in the following analysis.  

5.3.1.2 Multivariate methods 

In many cases multivariable observations cannot be detected as outliers when 

each variable is considered independently. Specifically, for a number of variables,  

the value for any of the individual variables may not be a univariate outlier, but, 

in combination with other variables, is a case that occurs very rarely. It is 

therefore called a multivariate outlier. Detection of such kind of outliers is only 

possible when multivariate analysis is performed, and the interactions among 

different variables are compared within the class of data. 

As traditional multivariate outlier detection procedures, statistical methods often 

indicate those observations that are located relatively far from the center of the 

data distribution. Several distance measures can be implemented for such a task. 

The Mahalanobis distance is a well-known criterion which indicates the distance 

between a set of scores for an individual observation and the sample means for 

all variables. It is used as a diagnostic to assess for multivariate nonnormality 
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[Ben-Gal, 2005]. Given n observations from a p-dimensional data set, denote 

the sample mean vector by xn  and the sample covariance matrix by Vn, where 

1

1
( )( )

1

n
T

n i n i n
i

x x x x
n =

= − −
−
∑V  (5-3) 

The squared Mahalanobis distance for each multivariate data point i, i=1, …, n, 

denoted by 2
iD , is given as below: 

2 1

1

( ) ( )
n

T

i i n n i n
i

D x x x x−

=

= − −∑ V  (5-4) 

Since 2
iD  follows a chi-square distribution with degrees of freedom equal to the 

number of variables included in the calculation, a case would likely be a 

multivariate outlier if a significant 2
iD  score is obtained (at the p<0.001 level) 

[Peat & Bartion, 2005]. 

In this study, multivariate analysis is also performed to the 32 SPIs. Rather than 

examining each individual indicator, here, the SPIs in each category, such as the 

two alcohol indicators, the three indicators related to the mean speed, and so on, 

are considered simultaneously, and the probability for the Mahalanobis 2
iD  of 

these grouped indicators for each country is calculated in SPSS 17.0. We find 

that Cyprus has an unusual combination of its six indicator values corresponding 

to the technical scores of new passenger cars (with a probability of 0.0006), 

resulting in its designation as multivariate outlier. By checking the data source 

we used for these six indicators, i.e., the European Transport Safety Council 

(2009), Cyprus is the only country with a proportion of non-tested cars 

representing more than 50% of the new cars sold in 2008. As a result, these six 

indicator values for Cyprus are also excluded from our following data analysis. 

5.3.2 Missing data treatment 

To take as many of the available indicator information into account for road 

safety index research, a certain risk in the form of missing values is always 

present as no data collection system grants perfect data sets. Moreover, 

detecting and removing univariate and multivariate outliers from the original 
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data set leads up to more missing values. The overall situation of missing data 

for this study is summarized in Figure 5.3. 

 
                    Variables                           Cases                             Values 

Figure 5.3 Overall summary of missing values 

As can be seen, there are only 7 out of 32 SPIs for which all 28 countries have 

data, and no single country has values for the whole set of SPIs. Totally, around 

23% of the indicator values are missing in the data set. Therefore, prior to the 

analysis, we have to decide whether to leave cases with missing data out of the 

analysis, or to replace the blank information by imputed values, as complete 

data matrices are in most cases the prerequisite of performing classical analyses.  

During the last decades, various methods have been developed for handling 

missingness. The literature on the treatment of missing data is extensive and 

still in rapid development. Generally, three different strategies for dealing with 

missing data can be classified, which are using as it is, deletion, and imputation 

[Rodríguez et al., 2010; Kabak & Ruan, 2011]. 

More specifically, using the data as it is without any treatment is the most ideal 

strategy for missing data. In this way, original data sets with missing values are 

not preprocessed, i.e., data sets are not preliminarily converted into complete 

data sets. Thus, the models to apply on the data should be capable of using 

incomplete data, which however, is by no means easy and requires certain 

particular conditions. Since it is a premature approach for handling the general 

missing data issue, this strategy is still rare in literature and has been used only 

in limited application areas until now [Li, 2006; Grzymala-Busse, 2008; Kabak & 

Ruan, 2011]. 
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On the contrary, a simple and common strategy for handling missingness is to 

delete cases containing any missing observations listwise or pairwise, and the 

analysis is then carried out on the data that remain [Little & Rubin, 1987; 

Schafer & Graham 2002; Howell, 2008; Oltman & Yahia, 2008]. These ad hoc 

methods, although simple to implement and being the default in the major 

statistical packages, have serious drawbacks in terms of elimination of useful 

information in the data and resulting in serious biases if the subjects who 

provide complete data are unrepresentative of the entire sample (i.e., the 

missing data are not missing completely at random [Rubin, 1976]). 

Consequently, as a rule of thumb, if a variable has more than 5% missing values, 

cases cannot be deleted [Little & Rubin, 1987]; many researchers are much 

more stringent than this. In such a case, rather than removing variables or 

observations with missing data, another strategy is to perform data imputation, 

defined as the process by which missing values in a data set are estimated by 

appropriately computed values, thereby producing a complete data set [Rubin, 

1987]. Currently, most of the models dealing with missing data use this strategy. 

See also Chen & Shao (2000); Schafer & Graham (2002); Farhangfar et al. 

(2004); Molnar et al. (2008); Howell (2008); Jiang & Gruenwald (2008); 

Pospiech-Kurkowska (2008); Wang & Wang (2009); Silva-Ramírez et al. (2011), 

and their references.  

Imputation has several desirable features. It is potentially more efficient than 

case deletion, because it uses ‘expensive to collect’ data that would otherwise be 

discarded, which helps to prevent loss of power resulting from a diminished 

sample size. Moreover, if the observed data contain useful information for 

predicting the missing values, an imputation procedure can make use of this 

information and maintain a high level of precision. Imputation also produces an 

apparently complete data set that may be analyzed by standard methods and 

software. To a data user, the practical value of being able to apply a favorite 

technique or software product can be immense. Finally, when data are to be 

analyzed by multiple persons or entities, imputing once, prior to all analyses, 

helps to ensure that the same set of units is being considered by each entity, 

facilitating the comparison of results. On the negative side, imputation can be 

difficult to implement well, particularly in multivariate settings. Some ad hoc 

imputation methods can distort data distributions and relationships. In the words 
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of Dempster & Rubin (1983): “The idea of imputation is both seductive and 

dangerous. It is seductive because it can lull the user into the pleasurable state 

of believing that the data are complete after all, and it is dangerous because it 

lumps together situations where the problem is sufficiently minor that it can be 

legitimately handled in this way and situations where standard estimators 

applied to real and imputed data have substantial bias.” 

Over the past decades, a variety of imputation approaches have been proposed 

ranging from extremely simple to rather complex, such as unconditional mean 

imputation, regression imputation, hot deck imputation, decision trees 

imputation, clustering imputation, and neural networks imputation. All of them 

are known as single imputation, i.e., each missing value in a data set is replaced 

with one imputed value. If the simplicity is its main appeal, an important 

limitation of these methods is that subsequent analyses would fail to account for 

missing data uncertainty. Specifically, regardless of the single imputation 

method, imputed values are only estimates of the unknown true values. Any 

analysis that ignores the uncertainty of missing data prediction will lead to 

standard errors that are too small, p-values that are artificially low, and rates of 

Type I error that are higher than nominal levels [Schafer & Olsen, 1998]. To 

solve this problem, Rubin (1987) has developed the paradigm of multiple 

imputation. Instead of filling in a single value for each missing value, a multiple 

imputation procedure replaces each missing value with a list of simulated values 

that represent the uncertainty about the right value to impute (see Figure 5.4).  

 

Figure 5.4 Schematic representation of multiple imputation 

Source: Schafer & Olsen (1998) 



132 

 

Substituting the jth element of each list for the corresponding missing value, 

, , ,1 2j N= � , produces N plausible alternative versions of the complete data. 

Each of the N data sets is then analyzed by using standard procedures for 

complete data and the results from these analyses are then combined. Multiple 

imputation retains much of the attractiveness of single imputation. However, it 

does not attempt to estimate each missing value through simulated values but 

rather to represent a random sample of the missing values. This process results 

in valid statistical inferences that properly reflect the uncertainty due to missing 

values, such as the valid confidence intervals for the parameters. Accordingly, 

multiple imputation is now becoming the dominant approach for the treatment 

of missing data. A further discussion of this method can be found in Rubin 

(1996), Schafer & Olsen (1998), Allison (2001), and Howell (2008). 

In this study, we use the multiple imputation procedure in SPSS 17.0 [SPSS Inc., 

2007] to impute all the missing values. Due to the relatively small number of 

countries with respect to the number of SPIs, the imputations are not 

straightforward but done separately for the indicators belonging to each of the 

three components of the road transport system, i.e., road user behavior, vehicle 

and infrastructure. The final data set that comprises both observed data and 

mean imputed values of the SPIs is presented in Table 5.8. 

5.4 Conclusion 

In this chapter, based on the identification of six leading road safety risk factors 

within the three road transport components, a comprehensive set of 

hierarchically structured safety performance indicators has been developed for 

capturing entire road safety risk in a country, and various international data 

sources providing indicator values for a large set of countries were consulted. 

Totally, 32 quantitative indicators were specified and available data collected (or 

calculated) for 28 European countries. Furthermore, outliers in the data set were 

examined by means of univariate and multivariate analyses, and missing values 

were imputed by using multiple imputation. The complete data set (see Table 

5.8) provides us with the basis for the road safety index research discussed in 

the next chapters.  
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To conclude, it is important to note that the selection of appropriate safety 

performance indicators requires periodic revisions, and the search for additional 

and better indicator data is an ongoing process as well. At this moment, 

indicators developed for most of the risk factors (except road) are extensive and 

comprehensive based on our current knowledge. However, reliable and 

comparable indicator data, especially concerning alcohol, speed, and emergency 

medical services, are still lacking to some extent. With respect to the factor of 

road, only limited and proxy indicators and data are currently available for 

benchmarking purposes. Knowledge on the quantitative relations between the 

road network, road design elements and road safety therefore needs further 

exploration, and a variety of appropriate indicators corresponding to this aspect 

call for different kinds of development efforts relating to concepts, 

methodologies, and data collection procedures. In addition, other risk factors 

that have a strong relationship with road safety or a large contribution to road 

crashes or casualties, such as inattentive driving as a result of mobile 

technology, could also be incorporated in the future and corresponding 

indicators developed and refined.  
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Chapter 6 Construction of a Composite 

Index (I): Hierarchical Structure 

Assessment18 

This chapter elaborates on the use of a DEA model for composite index 

construction, especially when the hierarchical structure of the indicators is taken 

into account. It therefore answers the sixth research question of this dissertation. 

The proposed multiple layer DEA model is applied to combine the hierarchical 

SPIs developed in the previous chapter into a composite road safety 

performance index. Useful insights are gained from benchmarking analyses, and 

valuable recommendations are given enabling policymakers to prioritize their 

actions to enhance the level of road safety. 

6.1 Introduction 

In Chapter 5, a comprehensive set of current available national safety 

performance indicators was developed based on the identification of various 

underlying risk factors in road safety. Knowledge on these indicators is valuable 

in understanding the processes that lead to crashes and injuries, identifying 

corresponding interventions, and monitoring the effectiveness of the safety 

actions that are taken. However, since a number of indicators are considered for 

a particular risk factor in this study, simple comparisons per indicator only show 

a small piece of the road safety picture, which can be misleading since different 

countries may operate in different circumstances with different focal points. 

Consequently, a composite road safety indicator (or index), which combines 

individual indicator values into one single score, is valuable to be computed for 

the sake of meaningful benchmarking [Al-Haji, 2007; Wegman et al., 2008; 

Hermans, 2009a; Gitelman et al., 2010]. 

                                                 
18 Related research has been published in: Shen, Y., Hermans, E., Ruan, D., Wets, G., Brijs, 

T. & Vanhoof, K., (2011). A generalized multiple layer data envelopment analysis model 

for hierarchical structure assessment: A case study in road safety performance evaluation, 

Expert systems with applications, Vol. 38, No. 12, pp. 15262-15272. 
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During the last decades, a large number of composite indexes (CIs) have been 

developed by various national and international organizations including United 

Nations (UN), Organization for Economic Cooperation and Development (OECD), 

World Health Organization (WHO), World Bank, and European Commission (EC), 

and been applied in wide ranging fields such as economy, society, governance, 

security, environment, sustainable development, globalization and innovation 

[Saisana & Tarantola, 2002; Freudenberg, 2003; Munda, 2005; Organization for 

Economic Co-operation and Development, 2008; Singh et al., 2009]. The 

proliferation of this kind of indexes is a clear symptom of their political 

importance and operational relevance in performance evaluation, benchmarking, 

and decision making. However, creating a CI, technically, is a mathematical 

aggregation of a set of individual indicators that measure multi-dimensional 

concepts but usually have no common units of measurement [Organization for 

Economic Co-operation and Development, 2008]. Therefore, the underlying 

construction scheme of a CI plays an important role and to a great extent 

determines the usefulness and credibility of the created CI.  

The progress of recent studies on the development of a composite road safety 

index includes both objective methods (e.g., principal component analysis, 

factor analysis, neural networks and rough set theory) and subjective methods 

(e.g., analytical hierarchy process, budget allocation, and the technique for 

order preference by similarity to ideal solution) (see also Al-Haji (2007), 

Hermans et al. (2008), Gitelman et al. (2010), Shen et al. (2010), and Bao et al. 

(2012)). A point in common among these methods is that they all assign the 

same indicator weights for all the countries under study. It indeed enables the 

comparison among countries on a common base. However, in such a way, we 

make no full use of country-specific characteristics. In other words, the 

importance level of each indicator in each country is ignored, which makes the 

examination of root causes of poor performance in each country difficult.  

In this respect, data envelopment analysis, which is based on self appraisal, has 

lately received considerable attention in the construction of CIs. The attractive 

features of DEA, relative to the other methods in developing CIs are: First, it 

provides a new way of combining multiple indicators without resorting to a priori 

knowledge on their tradeoffs, i.e., weights. Moreover, each country obtains its 

own best possible indicator weights, and DEA assesses the relative performance 
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of a particular DMU by taking the performance of all other countries into 

account, which is known as the ‘benefit of the doubt’ (BOD) approach [Cherchye 

et al., 2007a]. In this way, key problems on road safety can be identified for 

each country separately, and policy-makers could not complain about unfair 

weighting, because each country is put in its most favorable light, and any other 

weighting scheme would generate a lower composite score. In other words, if a 

country turns out to be underperforming based on the most favorable set of 

weights, its poor performance cannot be traced back to an inappropriate 

evaluation process. Due to the aforementioned strengths, the applicability of 

DEA in CI construction has been widely explored in a number of recent studies 

such as the environmental performance index [Färe et al., 2004], the human 

development index [Despotis, 2005], the macro-economic performance index 

[Ramanathan, 2006], the sustainable energy index [Zhou et al., 2007], the 

internal market index [Cherchye et al., 2007b], the technology achievement 

index [Cherchye et al., 2008], and also a road safety performance index 

[Hermans, 2009a]. 

However, as today’s performance management becomes more and more 

complex, a structural weakness of the basic DEA model has also arisen in its 

applications to CI construction. Specifically, due to the ever increasing 

complexity of numerous performance evaluation problems, more and more 

potential indicators might be used to represent an evaluation activity in a more 

comprehensive way. These indicators might also belong to different categories 

and further be linked to one another constituting a multilayer hierarchical 

structure. Under these circumstances, simply treating all the indicators to be in 

the same layer as is the case in the basic DEA model obviously ignores the 

information on their hierarchical structure, and further leads up to weak 

discriminating power and unrealistic weight allocations. To this end, Meng et al. 

(2008) introduced a layered hierarchy in the DEA model, in which the weights 

among categories were determined using the DEA method while the weights 

within categories (or internal weights) were determined by the weighted sum 

approach. However, this is a nonlinear model if all the weights are deduced from 

the mathematical model. Thereafter, Kao (2008) developed its linear 

transformation by introducing some variable substitutions. Nevertheless, the 

literature mentioned above was only limited to situations with a two-layer 
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hierarchy, which might not entirely satisfy the need of increasingly complex 

evaluation problems. Shen et al. (2011) thereby further proposed a generalized 

multiple layer DEA (MLDEA) model to completely reflect the layered hierarchy 

within the DEA framework by incorporating different types of possible weight 

restrictions for each category of each layer.  

In this chapter, starting from a brief introduction of the basic DEA-based CI 

model in Section 6.2, we elaborate the extension of the model for hierarchical 

structure assessment in Section 6.3. In Section 6.4, we demonstrate the 

application of this multilayer model to combine the hierarchical SPIs into a 

composite road safety performance index. Model outputs and corresponding 

road safety enhancing recommendations are subsequently presented in Section 

6.5. The chapter ends with conclusions in Section 6.6. 

6.2 DEA-based CI model 

As introduced in Section 1.5, basic DEA models apply linear programming 

techniques to measure the relative efficiency of a set of DMUs on the basis of 

multiple inputs and multiple outputs. Therefore, to use DEA for CI construction, 

i.e., combining a set of individual indicators into one overall index, it means that 

only inputs or outputs of the DMUs will be taken into account in the model. As 

noted by Adolphson et al. (1991), it is possible to adopt a broader perspective, 

in which DEA is also appropriate for comparing any set of homogeneous units on 

multiple dimensions. Based on this perspective, Melyn & Moesen (1991) firstly 

introduced DEA to the field of CIs and the technique was applied to evaluate 

macroeconomic performance. Mathematically, the DEA-based CI model can be 

realized by converting the primal DEA model (1-4) into the following constrained 

optimization problem, which is known as the CCR model with constant inputs. 

1

1

max

. . 1, 1, ,

0, 1, ,

s

c r rc
r

s

r rj
r

r

CI u y

s t u y j n

u r s

=

=

=

≤ =

≥ =

∑

∑ �

�

 (6-1) 

The n DMUs (or countries) are now to be evaluated by combining s different 

outputs (or indicators), with higher values indicating better performance, while 



141  

 

the inputs of each DMU in model (1-4) are all assigned with a value of unity. 

This linear model is run n times to identify the optimal index score for all 

countries by selecting their best possible indicator weights separately, and the 

best-performing ones are those with an index score of one, while the others are 

underperforming. 

Correspondingly, using the duality in linear programming, the envelopment form 

of the DEA-based CI model can be deduced as follows19.  

1

1

min

. . , 1, ,

0, 1, ,

n

j
j

n

rj j rc
j

j

λ

s t y λ y r s

λ j n

=

=

≥ =

≥ =

∑

∑ �

�

 (6-2) 

6.3 Multiple Layer DEA-based CI model 

As a powerful performance measurement technique, the basic DEA-based CI 

model has received significant attention in recent years due to its prominent 

advantages over other traditional methods as presented in Section 6.1. 

However, in this model, all the indicators are equally treated as they belong to 

the same layer. It is acceptable when a low number of indicators is considered. 

As the amount grows, especially when a layered hierarchy is established, the 

hierarchical information on the indicators cannot be ignored arbitrarily, whereas 

the basic DEA-based CI model seems out of its capability to take this 

information into account. Consequently, the development of a multiple layer 

DEA-based CI model (MLDEA-CI) is desirable, which will be elaborated in the 

following sections. 

6.3.1 The primal MLDEA-CI model 

Suppose that a set of n DMUs is to be evaluated in terms of s indicators with a K 

layered hierarchy, which is shown in Figure 6.1.  

                                                 
19 It can also be realized by assigning all the inputs with a value of unity in model (1-5). 
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Figure 6.1 A hierarchical structure of indicators 

where s(k) is the number of categories in the kth layer (k=1, 2, …, K), and s(1)=s. 

The idea of the primal MLDEA-CI model is to first aggregate the values of the 

indicators within a particular category of a particular layer by the weighted sum 

approach in which the sum of the internal weights equals to one20. With respect 

to the final layer, the weights (or the multipliers) are determined using the basic 

DEA-based CI approach described in the previous section. Specifically, let ( )

k

k

fA  

denote the set of indicators of the fth category in the kth layer. The DMU0’s 

aggregated performance up to the Kth layer can then be expressed as:  

1 2 1 1
( ) ( 1) (3) (2)
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∑ ∑ ∑ ∑
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� �
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 (6-3) 

                                                 
20 The sum-up-to-one requirement for the internal weights is necessary for the following 

linear transformation. In doing so, normalized data should be used before aggregation so 

as to remove scale differences. 
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where ( )

k

k

fp  denotes the internal weights associated with the indicators of the fth 

category in the kth layer, which are non-negative21 and sum up to one within a 

particular category, so that each weight can be interpreted as the importance 

level of the corresponding indicator in the combined score.  

Now, by substituting ( )

K

K

f cy  from (6-3) to model (6-1), we obtain the following 

objective function: 

( )

1 2 1 1
( ) ( 1) (3) (2)

1 2 11 3 2

( 1) ( ) (2) (1)

1

max ( ( ( ( ))))
K

K K k
K k

K K kf f f fK k

s
K k

c f f f f f f c
f f A f A f A f A

CI u p p p p y
−

+
− +

−

= ∈ ∈ ∈ ∈

= ∑ ∑ ∑ ∑ ∑� �  (6-4) 

where 
Kf

u  is the weight given to the fth category in the Kth layer (i.e., the final 

layer), ( )1, , k

kf s= � . 

To clearly illustrate the deduction process, we show in Figure 6.2 a simple 

example which contains eight indicators over three layers. Thus, K=3, s(1)=8, 

s(2)=4, and s(3)=2.  
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Figure 6.2 A DMU with three layers of indicators 

We first calculate the aggregated values of the indicators in the last layer using 

(6-3) as: (3) (2) (2) (2) (2) (2) (1) (1) (1) (1) (2) (1) (1) (1) (1)
1 1 1 2 2 1 1 1 2 2 2 3 3 4 4( ) ( )y p y p y p p y p y p p y p y= + = + + + , and 

                                                 
21 This condition can be replaced by using a small number 0ζ >  for restricting the model 

to assign a weight of zero to unfavorable indicators. 
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(3) (2) (2) (2) (2) (2) (1) (1) (1) (1) (2) (1) (1) (1) (1)
2 3 3 4 4 3 5 5 6 6 4 7 7 8 8( ) ( )y p y p y p p y p y p p y p y= + = + + + , where 

(1) (1)
1 2 1p p+ = , (1) (1)

3 4 1p p+ = , (1) (1)
5 6 1p p+ = , (1) (1)

7 8 1p p+ = , (2) (2)
1 2 1p p+ = , and 

(2) (2)
3 4 1p p+ = .  

Afterwards, the final index score of the DMU can be computed based on (6-4), 

which in this example is (3) (3)
1 1 2 2u y u y+ , and it can be further expanded as: 

(2) (1) (1) (2) (1) (1) (2) (1) (1) (2) (1) (1) (2) (1) (1) (2) (1) (1)
1 1 1 1 1 1 2 2 1 2 3 3 1 2 4 4 2 3 5 5 2 3 6 6u p p y u p p y u p p y u p p y u p p y u p p y+ + + + + +  

(2) (1) (1) (2) (1) (1)
2 4 7 7 2 4 8 8u p p y u p p y+ . 

However, since all the weights mentioned above are not given directly, their 

multiplication will lead up to a nonlinear model, and the more indicators to 

consider, the longer the iteration times and the harder to derive an optimal 

solution. To handle this problem, we introduce the following variable 

substitutions to linearize the model: 

1
( 1)

1

1
( )

1
ˆ

k K
k

k fk

K
k

f f f
k

f A

u p u
+

+

−

=
∈

= ∏ ⋅  (6-5) 

Summing up the weights of the indicators in each category of each layer (i.e., 

( )

k

k

fp ), whose sum is equal to one, we obtain: 

1
(2) ( 1)

1 2 1

1 1
( 1) ( )

1 11

1
( )

1

1
( )

2

( 1)

ˆ

ˆ

ˆ

k K
k

kf fk

K K
K K

Kf fK K

K
K

fK

K
k

f f f
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f A f A

K

f f f

f A f A

f f

f A

u p u

u p u

u u

+

+

−
−

−−

−

=
∈ ∈

−

∈ ∈

∈

= ∏ ⋅

=

=

∑

∑

∑

�

 (6-6) 

Therefore, the weights of the indicators in each category of each output layer 

can be deduced as follows: 

1
( )

1

( 1)
11 ( 1)

1 1

( ) ( )

ˆ

, 1, , , 1, , 1
ˆ

k
fk

k
k

k fk k
fk

f

f Ak k

f k

ff A

f A

u

p f s k K
u+

+ +

+

∈

∈

∈

= = = −

∑

∑
� �  (6-7) 
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To illustrate the above formulas, we still use the same example. According to (6-

5), eight variable substitutions are needed in this case. They are: (2) (1)
1 1 1 1û u p p= , 

(2) (1)
2 1 1 2û u p p= , (2) (1)

3 1 2 3û u p p= , (2) (1)
4 1 2 4û u p p= , (2) (1)

5 2 3 5û u p p= , (2) (1)
6 2 3 6û u p p= , 

(2) (1)
7 2 4 7û u p p= , (2) (1)

8 2 4 8û u p p=  . The index score of the DMU thus becomes 
8

(1)

1
î i

i

u y
=

∑ . 

Moreover, since the sum of the internal weights in each category of each layer 

equals to one, i.e., (1) (1)
1 2 1p p+ = , (1) (1)

3 4 1p p+ = , (1) (1)
5 6 1p p+ = , (1) (1)

7 8 1p p+ = , 

(2) (2)
1 2 1p p+ = , and (2) (2)

3 4 1p p+ = , we can deduce that (2)
1 2 1 1ˆ ˆu u u p+ = , 

(2)
3 4 1 2ˆ ˆu u u p+ = , (2)

5 6 2 3ˆ ˆu u u p+ = , (2)
7 8 2 4ˆ ˆu u u p+ = , 1 2 3 4 1ˆ ˆ ˆ ˆu u u u u+ + + = , and 

5 6 7 8 2ˆ ˆ ˆ ˆu u u u u+ + + =  (see also (6-6)). Also,  all the internal weights in each layer 

can now be computed by using (6-7). For instance, 

(2)
1 1 2 1 1 2 1 2 3 4ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )p u u u u u u u u u= + = + + + + , and (1) (2)

1 1 1 1 1 1 2ˆ ˆ ˆ ˆ( ) ( )p u u p u u u= = + . 

As indicated before, each weight assigned in a particular category of a layer can 

be interpreted as the importance level of the corresponding indicator. Therefore, 

the value judgment from decision makers or experts can be incorporated by 

restricting the weight flexibility in a particular category. In Section 4.3, some 

commonly used weight restriction techniques have been outlined, such as: 

(i) Absolute weight restrictions, i.e., ( ) ( ) ( )

k k k

k k k

f f fL p U≤ ≤ , where 
1

( 1)

k

k

k ff A
+

+∈ , 

k=1, 2, …, K-1, L and U denote the lower respectively upper bounds of the 

weights; 

(ii) Relative weight restrictions, i.e., ( ) ( ) ( ) ( )/
k k

k k k k

f α β fL p p U≤ ≤ , where 

1

( 1), ,
k

k

k fα β f A α β
+

+∈ ∈ ≠ , k=1, 2, …, K-1, L and U are the lower and upper bounds, 

respectively; and  

(iii) Ordinal weight restrictions, i.e., ( ) ( )k k

α βp p≤ ≤� , where, 

1

( 1), ,
k

k

k fα β f A α β
+

+∈ ∈ ≠ , k=1, 2, …, K-1. 

Now, by incorporating the deduced internal weights and appropriate weight 

restrictions into model (6-1), we obtain the primal MLDEA-CI model as follows: 
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 (6-8) 

This model reflects the layered hierarchy of the indicators by specifying the 

weights in each category of each layer. Meanwhile, by restricting the flexibility of 

these weights, denoted as Θ , consistency with prior knowledge and the 

obtainment of realistic and acceptable layer-specific weights are guaranteed, 

which cannot be realized in the one layer model. The model can be solved with a 

software package such as Lingo [Lindo Systems Inc., 2007]. 

In addition, based on (6-7), we can further prove that the three weight 

restriction formulas mentioned above will maintain the model to be linear. 

Specifically, the substitution of ( )

k

k

fp  from (6-7) into constraint (i) results in the 

linear restriction below: 

1 1 1
( 1) ( ) ( 1)

1 1 11 1

( ) ( )ˆ ˆ ˆ
k k

k k k
f f fk k k

k k

f f f f f

f A f A f A

L u u U u
+ +

+ +
∈ ∈ ∈

⋅ ≤ ≤ ⋅∑ ∑ ∑  
(6-9) 

where 
1

( 1)

k

k

k ff A
+

+∈ , k=1, 2, …, K-1. 

Suppose the following absolute weight restriction in the previous example: 

(2)
10.2 0.4p≤ ≤ . It can then be substituted by: 

1 2 1 2 3 4ˆ ˆ ˆ ˆ ˆ ˆ0.2 ( ) ( ) 0.4u u u u u u≤ + + + + ≤ , which can be further converted into the 

following two linear restrictions: 1 2 3 4ˆ ˆ ˆ ˆ0.8 0.8 0.2 0.2 0u u u u− − + + ≤ , and 

1 2 3 4ˆ ˆ ˆ ˆ0.6 0.6 0.4 0.4 0u u u u+ − − ≤ . 

Likewise, substituting ( )

k

k

fp  from (6-7) into constraint (ii) leads to: 

1 1
( ) ( 1)

1 1 1

1 1
( ) ( 1)

1 1 1

( ) ( )

ˆ ˆ/

ˆ ˆ/

k k
α fk

k k

k k
β fk

f f

f A f Ak k

f f

f f

f A f A

u u

L U
u u

+

+

+

+

∈ ∈

∈ ∈

≤ ≤

∑ ∑

∑ ∑
 (6-10) 
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where 
1

( 1), ,
k

k

k fα β f A α β
+

+∈ ∈ ≠ , k=1, 2, …, K-1. It can be noted that the 

denominators of ( )k

αp  and ( )k

βp  are the same since they belong to the same 

category22. As a result, constraint (ii) can be written as:  

1 1 1
( ) ( ) ( )

11 1

( ) ( )ˆ ˆ ˆ
k k

k k k
αβ β

k k

f f f f f

f Af A f A

L u u U u
∈∈ ∈

⋅ ≤ ≤ ⋅∑ ∑ ∑  
(6-11) 

where 
1

( 1), ,
k

k

k fα β f A α β
+

+∈ ∈ ≠ , k=1, 2, …, K-1.   

Assume the following relative weight restriction for the same example: 

(1) (1)
2 11 2p p≤ ≤ . It equals to 2 1 2

2 1
1 1 2

ˆ ˆ ˆ( ) ˆ ˆ1 2ˆ ˆ ˆ( )
u u u

u u
u u u

+
≤ = ≤

+
, and can be 

transformed into the linear constraint: 1 2 1ˆ ˆ ˆ2u u u≤ ≤ , which reflects the situation 

of the ordinal constraint (iii) as well: 

1 1
( ) ( )

1 1

ˆ ˆ
k k

α β

f f

f A f A

u u
∈ ∈

≤ ≤∑ ∑�  
(6-12) 

where 
1

( 1), ,
k

k

k fα β f A α β
+

+∈ ∈ ≠ , k=1, 2, …, K-1. 

6.3.2 The dual MLDEA-CI model 

Having developed the primal MLDEA-CI model, we now further deduce its 

equivalent dual or envelopment form. In doing so, we firstly generalize the 

vector form of the primal model (6-8) as follows: 

ˆmax

ˆ 1

ˆ 0

ˆ 0

c cCI

s.t.

=

≤

≤

≥

uy

uY

uQ

u

 (6-13) 

where Q is a s m×  weight restriction matrix corresponding to the second 

constraint in model (6-8), in which m denotes the total number of weight 

restrictions. In the aforementioned example,  

                                                 
22 The weights of the factors are only comparable when they are in the same category. 
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Q . 

Consequently, the dual MLDEA-CI model can be expressed as follows:  

min

0, 0
cs.t. + ≥

≥ ≥

n
e λ

Yλ Qτ y

λ τ

 (6-14) 

where ne  is a row vector ( 1 n× ) with all elements equal to one, 

1 2( , )Tnλ λ λ= �λ  is the dual weight vector with the same definition as in model 

(6-2), and 1 2( , , )Tmτ τ τ= �τ  is an extra vector due to the incorporation of weight 

restrictions in model (6-13).  

6.4 Application 

In this study, we apply the proposed MLDEA-CI model to combine the 32 

hierarchical SPIs developed in the previous chapter into a composite road safety 

performance index so that the overall road safety performance of the 28 

European countries can be evaluated. In doing so, data normalization and 

weight restrictions are two necessary steps that need to be specified before the 

model can be applied. 

6.4.1 Data normalization 

Prior to the application of the MLDEA-CI model, the raw data should be first 

normalized so as to eliminate the scale differences of the indicators and the 

effects of the measurement unit, and moreover, to ensure that all the indicators 

are expressed in the same direction with respect to their expected road safety 

impact, i.e., a high performance indicator value should always correspond to a 

low crash/injury risk.  
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A large number of normalization methods have been proposed in literature such 

as rescaling, standardization, and ranking [Freudenberg, 2003]. In this study, 

the distance to a reference approach [Organization for Economic Co-operation 

and Development, 2008] is adopted because the ratio of two numbers is best 

kept by this approach:  

*/ , ,

/ , , cos

rj j j j

rj

j rj j j

y y y is a benefit indicator
y

y y y is a t indicator−

 ∀
= 

∀

�  (6-15) 

where rjy�  are normalized indicator values. *
jy  and jy −  are the maximum and 

minimum values of each indicator in the data set, which are selected as the 

reference (or benchmark) for normalization when a benefit respectively a cost 

indicator is taken into account. Based on (6-15), the original data set presented 

in Table 5.8 can be normalized, in which all the eight indicators related to 

alcohol and speed, as well as three vehicle indicators (i.e., the proportion of old 

passenger cars, the proportion of goods vehicles, and the proportion of powered 

two-wheelers) and one EMS indicator (i.e., the average response time) are 

identified as cost indicators for this study, while the others are benefit indicators. 

As a result, the country with the highest safety performance receives a 

normalized value of one whereas the others are expressed as percentage share 

of that country’s value. Taking the percentage of road fatalities attributed to 

alcohol as an example, the Netherlands performs best (1.000) while Slovenia 

worst (0.078), and all other countries’ values lie within this interval. 

6.4.2 Weight restrictions 

In addition to the data normalization, weight restrictions for each layer of the 

indicators should be specified before applying the MLDEA-CI model so that the 

obtainment of realistic and acceptable indicator weights is guaranteed. In this 

study, the SPIs belonging to the same category of each layer (except the last 

layer) are considered to be of similar importance, such as the two indicators 

with respect to alcohol (i.e., the percentage of drivers above the legal BAC limit 

in roadside checks and the percentage of road fatalities attributed to alcohol), 

the two aspects related to speed (i.e., the mean speed and the speed limit 

violations), as well as the three risk factors of road user behavior (i.e., alcohol, 
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speed, and protective systems). Thus, the absolute weight restrictions (i) 

introduced in Section 6.3.1 are applied, in which we obligate the weights to vary 

within a range from 0.8 to 1.2 of their average weights. Taking the mean speed 

as an example, the weights of its three indicators (the average weight is 0.333) 

are thereby required to lie between 0.267 and 0.4. With regard to the last layer, 

i.e., the three main components of the road transport system − road user 

behavior (R), vehicle (V), and infrastructure (I) − a combination of the relative 

weight restrictions (ii), the ordinal weight restrictions (iii) and the virtual weight 

(or share) restrictions introduced in Section 4.3.4 is assigned, i.e., 

2 4 20%R I VShare Share Share> > > , indicating the importance ordering of these 

three components in the contribution of road crashes (see also Figure 5.1). 

6.5 Results 

By now, the proposed MLDEA-CI model (both the primal and dual form) can be 

applied to determine the most optimal road safety performance index score for 

each of the 28 European countries by taking all the 32 hierarchical SPIs into 

account. Best-performing countries are subsequently distinguished from 

underperforming ones and countries ranked. Moreover, useful benchmarks for 

the underperforming countries can be identified by using the dual model (6-14), 

and the indicator weights allocated in each layer of the hierarchy can be 

deduced for each country based on the primal model (6-8). All the model 

outputs are illustrated in the following sections, and further translated into road 

safety enhancing recommendations. 

6.5.1 Index scores and country ranking 

With the developed MLDEA-CI model, the 32 normalized indicator values are 

now combined into a composite index score for each country by selecting the 

best possible indicator weights under the imposed restrictions. The results are 

shown in Table 6.1, along with the ones from the basic DEA-CI model (6-1)23. 

                                                 
23  In this model, the same weight restrictions on three main components of the road 

transport system are imposed. 
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Table 6.1 Road safety performance index score of the 28 

European countries based on the basic DEA-CI model and the 

MLDEA-CI model 

 
Index score based on 
the basic DEA-CI model 

Index score based on 
the MLDEA-CI model 

AT 1.000 0.965 

BE 1.000 0.958 

BG 1.000 0.869 

CY 1.000 0.834 

CZ 1.000 0.912 

DK 1.000 0.884 

EE 1.000 0.928 

FI 1.000 0.906 

FR 1.000 0.944 

DE 1.000 1.000 

EL 0.999 0.749 

HU 1.000 0.751 

IE 1.000 0.905 

IT 1.000 0.967 

LV 1.000 0.746 

LT 1.000 0.805 

LU 1.000 1.000 

NL 1.000 1.000 

NO 1.000 0.941 

PL 1.000 0.845 

PT 1.000 0.903 

RO 0.986 0.766 

SK 1.000 0.877 

SI 1.000 0.913 

ES 1.000 0.961 

SE 1.000 1.000 

CH 1.000 1.000 

UK 1.000 0.971 

 

Since a large number of indicators relative to the number of countries is 

considered in this study, most of the countries (except for Greece and Romania) 

obtain the index score of one based on the basic DEA-CI model, which implies its 

weak capability of discriminating between countries in terms of their road safety 

performance. By applying the MLDEA-CI model, however, due to the 
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consideration of hierarchical information on these indicators and the 

incorporation of corresponding weight restrictions, the discriminating power of 

the model is obviously improved and the optimal index score of one is obtained 

by only five best-performing countries. They are Germany, Luxembourg, the 

Netherlands, Sweden, and Switzerland. 

Having identified the best-performing and underperforming countries, we further 

rank all these countries by applying the cross efficiency matrix with the 

aggressive formulation introduced in Section 2.4.2. The cross-index scores of 

these 28 European countries are therefore computed to reflect their all round 

road safety performance by taking the best possible weights for each country in 

the data set into account, which are shown in the second column of Table 6.2 in 

decreasing order. Sweden obtains the highest score (0.996), and is thereby 

ranked at the top, while Latvia the worst (0.7). Although they both belong to 

Northern Europe based on the United Nations Statistics Division 

(http://unstats.un.org/unsd/methods/m49/m49regin.htm#europe), generally 

speaking, the Western European countries (e.g., the Netherlands and Germany) 

have a relatively higher index score than the Eastern European countries (e.g., 

Romania and Hungary), and the Northern European countries, especially those 

Nordic countries (e.g., Sweden and Norway) are better performing than the 

Southern European countries (e.g., Greece and Slovenia). 

Table 6.2 Cross-index score and cross-efficiency score of the 

28 European countries 

 
Cross-index score Cross-efficiency score 

SE 0.996 0.940 

NL 0.984 0.985 

LU 0.983 0.675 

CH 0.973 0.950 

DE 0.960 0.773 

ES 0.931 0.503 

AT 0.924 0.514 

UK 0.911 0.930 

BE 0.908 0.463 

IT 0.904 0.577 

FR 0.902 0.644 

EE 0.885 0.897 
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NO 0.884 0.298 

PT 0.864 0.455 

IE 0.862 0.588 

FI 0.858 0.704 

CZ 0.851 0.357 

DK 0.840 0.609 

SI 0.836 0.372 

SK 0.822 0.301 

PL 0.791 0.262 

CY 0.779 0.373 

BG 0.776 0.249 

LT 0.757 0.234 

RO 0.709 0.218 

HU 0.707 0.281 

EL 0.702 0.286 

LV 0.700 0.227 

 

As a relevant point of reference, the overall road safety efficiency score 

proposed in Chapter 2, which considers the road safety final outcomes (e.g., the 

number of road fatalities) on the one hand, and the three common measures of 

exposure to risk, i.e., the number of inhabitants, passenger-kilometres travelled 

and passenger cars on the other hand, is recomputed here based on the average 

values of 2006-2008, and the cross-efficiency score of these 28 European 

countries is presented in the last column of Table 6.2. The high degree of 

consistency between these two sets of scores is verified by their significant 

correlation coefficient (0.806), which further implies that the created road safety 

performance index has a clear link with road safety output, and can be used as a 

valuable predictor based on which efficient policy measures can be put forward. 

6.5.2 Relevant benchmarks 

To better understand the computational process leading to the index scores 

presented in the last column of Table 6.1, especially the reasons why the 23 

underperforming countries are unable to obtain a value of one, we further 

explore the mechanism of the MLDEA-CI model. Theoretically, the primal 

MLDEA-CI model (6-8) is used to determine the best possible indicator weights 

under the imposed restrictions that maximize the index score of a certain 
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country. In doing so, the performance of all other countries is taken into account. 

Therefore, if the optimal weights of a country A under study do not result in a 

value of one for this country but cause the weighted score of another country B 

in the data set to become one, then the model stops. This implies that country B 

is characterized by higher road safety performance than country A with respect 

to at least one risk aspect since the index score of B is relatively higher with the 

same set of weights. Therefore, country B can be viewed as a realistic and 

valuable benchmark for country A, and a series of benchmark countries like B 

constitute a reference set for country A to learn from. Moreover, based on the 

dual weights (i.e., λ ) calculated from the dual MLDEA-CI model (6-14), the 

relative importance of a benchmark country within the reference set can be 

identified. Taking Austria as an example, the best possible indicator weights 

assigned for this country only result in its optimal index score of 0.965 because 

a weighted score of one is achieved by four other countries, which are 

Luxembourg, the Netherlands, Sweden, and Switzerland. Therefore, Austria is 

underperforming, and it could take a hypothetical composite country which 

consists of the above four best-performing countries as an example. Among 

others, Sweden appears to be the most important benchmark as it obtains the 

greatest dual weight, which is 0.547. In other words, Austria should learn the 

most from Sweden to improve its road safety performance. Table 6.3 indicates 

the reference set for each of the 23 underperforming countries, and the 

benchmark country with the greatest dual weight is highlighted. 

Table 6.3 Benchmarks for the underperforming countries 

 
DE LU NL SE CH 

AT 
 

0.280 0.009 0.547 0.129 

BE 
 

0.123 0.711 0.110 0.014 

BG 
  

0.777 0.092 
 

CY 
 

0.067 0.043 0.723 
 

CZ 
  

0.711 0.200 
 

DK 
 

0.064 0.236 0.584 
 

EE 
   

0.928 
 

FI 
 

0.068 0.027 0.810 
 

FR 0.159 0.089 0.146 0.551 
 

EL 
  

0.400 0.349 
 

HU 
 

0.237 0.185 0.329 
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IE 0.044 0.207 
 

0.654 
 

IT 
  

0.942 0.025 
 

LV 
 

0.167 
 

0.579 
 

LT 
  

0.151 0.654 
 

NO 
   

0.941 
 

PL 
  

0.032 0.813 
 

PT 
 

0.275 0.483 0.085 0.060 

RO 
 

0.139 0.428 0.127 0.072 

SK 
 

0.178 0.307 0.365 0.027 

SI 
 

0.373 
 

0.221 0.319 

ES 
 

0.072 0.330 0.508 0.051 

UK 0.253 
  

0.718 
 

 

6.5.3 Weight allocation and road safety priorities  

In addition to the identification of specific benchmarks for all the 

underperforming countries, we further explore the indicator weights allocated in 

each layer of the hierarchy per country from the view of the primal MLDEA-CI 

model (6-8). That way, areas of underperformance (also for those best-

performing countries) can be detected, and road safety priorities for policy 

action can be formulated. More specifically, in the basic DEA-CI model (6-1), all 

indicators are simply treated to be in the same layer and no layer related weight 

restrictions can be imposed. Therefore, weights will be allocated with the only 

purpose of maximizing the index score regardless of the position of the 

indicators in the hierarchical structure. On the contrary, the MLDEA-CI model 

not only pursues the optimal index scores, but also guarantees its consistency 

with prior knowledge and the obtainment of realistic and acceptable weights by 

restricting the weight flexibility in each category of each layer. More importantly, 

based on the principle of the MLDEA-CI model, an indicator is assigned a high 

weight if the country performs relatively well on that aspect. On the contrary, 

low weights provide policymakers with valuable information about the aspects 

requiring most action for improvement. In Figure 6.3, the assigned weights (the 

values in brackets are shares) based on the primal MLDEA-CI model are 

presented for the case of Austria, which obtains the optimal index score of one 

in the basic DEA-CI model, while a lower value (0.965) in the multilayer model. 
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Figure 6.3 shows the accordance of the weights (and shares) with the imposed 

restrictions described in Section 6.4.2. For instance, the indicators belonging to 

a particular category of each layer are of similar importance (with a 20% 

variability of their average weights), such as the three mean speed indicators 

(I3-I5). Also, the share of road user behavior (72%) is more than twice as large 

than that of infrastructure (21%), which is also more than two times greater 

than that of vehicle (6%). Moreover, since each weight allocated in a particular 

category of a layer in the MLDEA-CI model can be interpreted as the importance 

share of the corresponding indicator, more detailed insight can be gained based 

on these weights. Still taking the indicators I3-I5 as an example, the assigned 

weights imply that I5, i.e., the mean speed on urban roads should be given 

priority over the other two indicators in terms of Austrian road safety policy 

action since the lowest weight (0.267) is allocated to this indicator. Considering 

all the 11 SPIs related to road user behavior by the same principle, we find that 

Austria is doing relatively well in the speed aspect (with the highest weight of 

0.4), especially the mean speed on rural roads (I4). Whereas more policy 

attention should be paid to the risk aspect on alcohol (with the lowest weight of 

0.267), followed by the protective systems (with a weight of 0.333), in which 

improving rear seat belt wearing rate (I10) is most urgently needed. Based on 

the same principle, road safety priorities with respect to the other two 

components (i.e., vehicle and infrastructure) in Austria can be identified as well. 

They are to reduce the proportion of old passenger cars in the vehicle fleet (I13) 

and to raise the motorway density (I23), respectively. To conclude, although a 

relatively lower index score is achieved by using the MLDEA-CI model, the 

multilayer model is to be preferred since it produces more valuable results by 

means of taking all the indicators and their hierarchical structure into account. 

In Table 6.4, the layer-specific road safety priorities for all the 28 European 

countries are summarized, in which 1-1 represents the most urgent road safety 

performance aspect with respect to the most important risk factor, 2-1 

represents the most urgent road safety performance aspect with respect to the 

second most important risk factor, and so on. 
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Based on Table 6.4, not only the risk aspects that need urgent policy action for 

each country can be identified, but some specific road safety enhancing 

recommendations for all the 28 European countries as a whole can be 

formulated as well. They are: 

• Driving under the influence of alcohol is for most countries the road user 

behavior risk factor with the highest priority. Although all countries have 

national policies on drink driving, enforcement remains a critical issue 

requiring more efforts, especially through increased random breath-testing. 

• Speeding is also a major issue for road safety in Europe. Development of 

effective speed management so as to control the mean speed and the 

frequency of speed limit violations, especially on urban and rural roads, is of 

primary importance for the majority of countries. 

• With respect to protective systems, more attention should be paid to raise 

the rear seat belt wearing rates and to improve the monitoring of child 

restraint system use. 

• To improve vehicle active and passive safety performance, countries are 

first and foremost encouraged to either raise the proportion of new vehicles 

or reduce the amount of old vehicles in their fleet. 

• Relative to vehicle occupant protection and pedestrian protection, improving 

the safety level on child protection should be an important concern of the 

vehicle manufacturers. Meanwhile, the installation of seat belt reminders in 

a vehicle should be greatly advocated in most of the countries. 

• In addition, reducing the proportion of powered two-wheelers in the whole 

vehicle fleet in view of road safety seems to be a more challenging task in 

Europe compared with the situation of goods vehicles. 

• As the most safe type of roads, motorway density is still low in most of the 

European countries.  

• To improve the quality of post-crash medical treatment, the number of EMS 

transportation units, such as basic life support units, mobile intensive care 

units and helicopters, as well as the EMS staff, especially the proportion of 
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physicians and paramedics, have to be focused on in the first place for most 

countries. 

6.6 Conclusion 

In this chapter, we investigated the use of data envelopment analysis to develop 

a composite road safety performance index for cross-country comparison. 

Starting from the basic DEA-based composite index model, we further explored 

the incorporation of a layered hierarchy in the DEA framework, and proposed a 

multiple layer DEA-based composite index model (both the primal and dual 

form). In general, the model has a similar structure as that of the one layer 

model except for the additional sets of constraints on layer-specific weights. 

Thus, the information on the hierarchical structure of the indicators is reflected, 

and the obtainment of realistic and acceptable indicator weights guaranteed. 

Moreover, value judgment from decision makers or experts can be easily 

incorporated by restricting the weight flexibility in a particular category of a 

layer, which is impossible to be realized in the one layer model. In addition, the 

extra programming effort is limited and the results can be obtained within a few 

seconds. However, applying the MLDEA-CI model implies that raw data cannot 

be used directly. In other words, data must be normalized first in order to 

remove scale and measurement unit differences.  

In the application, the proposed MLDEA-CI model has proven valuable for the 

road safety context. Above all, the most optimal road safety performance index 

score was determined for each of the 28 European countries by combining the 

32 hierarchical SPIs developed in the previous chapter. Countries were thereby 

classified into two groups, i.e., best-performing and underperforming. Moreover, 

the ranking of these countries was deduced by computing their cross-index 

score, and a clear link with the overall road safety risk from the view of the final 

outcome level was verified, which in turn justified the use of the proposed 

multilayer model for composite index construction. Furthermore, rather than 

postulating the same set of benchmarks (such as the SUN countries) and the 

same measures for each country, the methodology took the characteristics of 

each country in the data set into account, and the country-specific benchmarks 

for those underperforming countries were identified. More importantly, by 
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analyzing the indicator weights allocated in each layer of the hierarchy, useful 

insight in the areas of underperformance in each country was gained enabling 

policymakers to prioritize their actions to improve the level of road safety. 

Learning about best practices applied in benchmarks is therefore a first next 

step to take based on these results. 

However, like any technique, DEA is also characterized by some limitations that 

need to be kept in mind when interpreting the results. First, the model only 

measures the performance of one country with respect to the other countries 

within the sample and a change in the set of countries may lead to other 

outcomes. Moreover, the results obtained from the DEA model (or the MLDEA-CI 

model in particular) are also sensitive to indicator specification, hierarchical 

structure, data quality and chosen weight restrictions. Therefore, as many 

comparable countries as possible should be considered, appropriate indicators 

and their structure used, reliable data collected and accepted views from experts 

adopted to ensure the robustness of the results to an utmost extent. In addition, 

country comparison over time should be conducted in future research so as to 

evaluate the results of policy interventions and to monitor the progress in road 

safety performance. 
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Chapter 7 Construction of a Composite 

Index (II): Taking Interval Data into 

Account 

This chapter reconsiders the treatment of missing data in the composite index 

construction, thereby corresponding to the seventh research question of this 

dissertation. Instead of using the mean imputed values from multiple imputation, 

here, missing data are replaced by approximations in the form of intervals in 

which the true values are believed to lie. An interval MLDEA-based CI model is 

thereafter used to provide for each country a lower and an upper bound of its 

performance index score. 

7.1 Introduction 

In Chapter 6, the hierarchical structure of the safety performance indicators has 

been considered in the construction of a composite index. This is mainly due to 

the fact that a large number of SPIs have been developed and further been 

grouped into categories so as to comprehensively measure the different road 

safety risk factors in a country. Coupled with the proliferation of SPIs, however, 

a certain risk in the form of missing values is inevitably present as no data 

collection system grants perfect data sets. As indicated in Chapter 5, around 

23% of the indicator values are missing in this study (see also Figure 5.3). On 

the other hand, as a ‘data-oriented’ technique, the applicability of DEA, or the 

MLDEA-based CI model in particular, relies firstly on the availability of data. In 

other words, a complete data set with crisp positive values is commonly the 

prerequisite of the evaluation. To this end, we imputed the missing data by 

using multiple imputation (MI) in Chapter 5, and all the missing indicator values 

in the data set were replaced by their mean imputed values (see also Table 5.8). 

In doing so, we implicitly impose an assumption that the average imputations 

are most likely to correspond with the true values, which however, is not always 

convincing and can generate a certain degree of bias in the final results. In fact, 

the application of the MI technique also provides us with an alternative solution 
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for missing values, which is to use imputed data intervals [Cherchye et al., 

2011]. That is, the missing values are replaced by approximations in the form of 

intervals estimated from MI in which the true values are believed to lie. As a 

result, we obtain a complete but imprecise data set that comprises both 

observed data and imputed data intervals.  

In fact, interval data are sometimes also a more logical way to describe the road 

safety performance of a country with respect to certain aspects, such as the 

mean speed and the average EMS response time. However, based on such a 

data set, the MLDEA-based CI model proposed in Chapter 6 cannot be applied 

directly to compute the composite road safety performance index score for each 

country. In this chapter, we therefore introduce an interval MLDEA-based CI 

model building on the contributions of Despotis & Smirlis (2002), Smirlis et al. 

(2006), and Cherchye et al. (2011). The model is able to provide for each 

country an upper and a lower bound of its index score corresponding to its most 

favorable and unfavorable imputation option, respectively. Based on the interval 

index scores, countries can further be classified, as defined by Cherchye et al. 

(2011), into ‘benchmark countries’, ‘potential benchmark countries’, and 

‘countries open to improvement’. 

The remaining of this chapter is structured as follows. In Section 7.2, we 

introduce the mechanism of using MI to estimate interval bounds for missing 

values. In Section 7.3, we formulate the interval MLDEA-based CI model and 

define upper and lower bound index scores for each country. The application of 

this model in the construction of a composite road safety performance index is 

provided in Section 7.4, and the results are given subsequently. The chapter is 

summarized in Section 7.5. 

7.2 Interval Data Generation 

As introduced in Section 5.3.2, an important limitation of all the single 

imputation methods for dealing with missing data problems is that they 

systematically underestimate the variance of the estimates. One solution is to 

repeat the imputation several times, generating multiple sets of new data whose 

coefficients vary from set to set. We then capture this variability and add it back 

into the estimates. This technique is known as multiple imputation [Rubin, 1987]. 
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There are a number of ways to perform MI, and the process of MI using a 

multivariate normal model is relatively straightforward. According to Howell 

(2008), the first step involves the imputation of a complete set of data from 

parameter estimates derived from the incomplete data set. Under the 

multivariate normal model, the imputation of an observation is based on 

regressing a variable with missing data on the other variables in the data set. 

Assume, for simplicity, that Y is regressed on only one other variable X. Denote 

the standard error of the regression as sYX. In standard regression imputation, 

the imputed value of Y, i.e., Ŷ , is obtained by: Y β β X0 1
ˆ = + . Moreover, for data 

augmentation a random error will be added to the prediction by setting 

YXY β β X µs0 1
ˆ = + + , where µ  is a random draw from a standard normal 

distribution. This way, the necessary level of uncertainty is introduced into the 

imputed value each time. 

Since the parameter estimates such as the regression coefficients and the 

standard error of regression are all derived from the incomplete data set, and 

each having its own distribution, the second step is to make a random draw of 

these estimates from their posterior distribution, i.e., the distribution of the 

estimates given the data at hand. 

Having obtained the initial imputed values and their parameter estimates, the 

third step is to iterate the process, i.e., imputing values, deriving revised 

parameter estimates, imputing new values, and so on until convergence is 

reached. At that point we obtain the final imputed data set. 

However, the MI process does not stop yet because only one complete data set 

is generated. The procedure will therefore start again and generate several more 

data sets24. Because of the randomness inherent in the algorithm, these data 

sets will differ slightly from one another. Accordingly, when some standard data 

analysis procedure (e.g., ANOVA) is applied to each data set, the results will be 

different as well. Once the analyses have been completed for each imputed data 

set, all that remains is to combine the results to obtain one overall set of 

estimates following a set of rules provided by Rubin (1987). 

                                                 
24 Rubin (1987) has shown that in many cases three to five data sets are sufficient. 
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Specifically, with N imputations, the mean imputed value for Y can be computed 

as follows: 

N

i
i

Y Y
N 1

1 ˆ
=

= ∑  (7-1) 

With respect to the variance of Y , two different components can be 

distinguished. They are the average within-imputation variance V  and the 

between-imputation variance B. The first component measures the natural 

variability in the data, which is analogous to the variance we would produce if 

we do not need to account for missing data. It can be computed by averaging 

the variance estimates from each imputed data set ( iV̂ ) as follows: 

N

i
i

V V
N 1

1 ˆ
=

= ∑  (7-2) 

The second component is to capture the extra inferential uncertainty introduced 

by the existence of missing data. In other words, it measures how the point 

estimates vary from data set to data set. We can compute this variance by using 

the following formula: 

N

i
i

B Y Y
N

2

1

1 ˆ( )
1 =

= −
−
∑  (7-3) 

The total variance (T) associated with Y  is then a weighted sum of the above 

two variance components: 

T V B
N

1
(1 )= + +  (7-4) 

According to Rubin (1987), the statistic Y Y T 1 / 2( ) −−  is approximately distributed 

as a Student’s t-distribution with degrees of freedom: 

df N
r

21
( 1)(1 )= − +  (7-5) 

where r is the between-to-within ratio: 

B
r

N V

1
(1 )= +  (7-6) 
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Therefore, confidence intervals can be calculated by taking the overall estimate 

plus or minus a multiple of the standard error (i.e., the square root of the 

variance). 

Based on the above introduction, at least two types of complete data set can be 

generated from MI. One is the way applied in Chapter 5, in which all the missing 

values were replaced by the mean imputed values (after five imputations) 

calculated from (7-1). In doing so, we implicitly impose the assumption that the 

average imputations are most likely to correspond with the true values. Its 

correctness, however, is difficult to judge. Alternatively, by taking one step more, 

a range of values that constitutes for example a 90% confidence interval around 

the imputed mean can be derived, and the missing values can then be replaced 

by an interval within which the true values are believed to lie. That way, the 

complete data set is composed of both observed data and imputed data intervals. 

In this study, we use the multiple imputation procedure in SPSS 17.0 [SPSS Inc., 

2007] to generate five complete data sets. Afterwards, the imputed mean and 

its 90% confidence interval are calculated for each missing value based on 

formulas (7-1)-(7-6). Taking the mean speed on motorways as an example, the 

original indicator data and the imputed data derived from the above two 

methods are illustrated in Table 7.1. 

Table 7.1 Original and imputed data for the indicator of 

mean speed on motorways for the 28 European countries 

 
Mean speed on motorways 

 
Original value Imputed mean Imputed interval 

AT 0.910 0.910 0.910 

BE 1.009 1.009 1.009 

BG 0.932 0.932 0.932 

CY 1.050 1.050 1.050 

CZ 0.835 0.835 0.835 

DK 0.936 0.936 0.936 

EE N/A 0.983 [0.946, 1.020] 

FI 0.886 0.886 0.886 

FR 0.915 0.915 0.915 

DE N/A 0.943 [0.918, 0.969] 

EL N/A 0.916 [0.843, 0.990] 

HU 0.858 0.858 0.858 
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IE 0.903 0.903 0.903 

IT N/A 1.012 [0.910, 1.115] 

LV N/A 0.951 [0.939, 0.963] 

LT 0.854 0.854 0.854 

LU 0.885 0.885 0.885 

NL 0.950 0.950 0.950 

NO 1.000 1.000 1.000 

PL N/A 1.059 [1.029, 1.089] 

PT 1.008 1.008 1.008 

RO N/A 0.941 [0.817, 1.064] 

SK N/A 0.977 [0.940, 1.015] 

SI 0.885 0.885 0.885 

ES 0.953 0.953 0.953 

SE 0.966 0.966 0.966 

CH 0.906 0.906 0.906 

UK 0.994 0.994 0.994 

 

As can be seen, eight countries have no available data for this indicator. They 

are Estonia, Germany, Greece, Italy, Latvia, Poland, Romania, and Slovakia. 

Among the observed data, Cyprus has the highest indicator value (1.05), or the 

worst performance, while Czech Republic has the best (0.835). Now, by taking 

all the indicators belonging to the road user behavior into account for missing 

data imputation, Poland obtains the highest imputed mean (1.059), indicating 

that it has even worse performance than Cyprus with regard to this risk aspect. 

However, no country has an imputed indicator value lower than that of Czech 

Republic, indicating that none of them can overtake Czech Republic in this 

respect. Nevertheless, if we use interval data for replacement, such a crisp 

judgment is somewhat nuanced. For instance, Poland is no longer the worst 

country in all the cases. Although the performance of Poland is still poor 

compared to most of the countries even when its best possible value (1.029) is 

considered, countries like Italy and Romania could perform even worse if they 

catch the upper bound of their intervals. On the other hand, if the lower bound 

of the interval is reached, Romania can also become the best-performer in this 

aspect. Although ambiguity, using the interval data is more in accordance with 

our intuition on missing data, and more acceptable to countries and policy 

makers. Moreover, the relative big interval ranges derived for countries such as 
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Romania and Italy can be further interpreted by the fact that they owns the  

greatest number of missing values in the data set (17 and 16, respectively), 

which renders their five imputed values to vary considerably from one data set 

to another. In other words, uncertainty due to the imputation is relatively high 

for these two countries. This information, however, cannot be reflected by using 

the mean imputed values.  

7.3 Interval MLDEA-based CI model 

Due to the mixture of observed data and interval data, the MLDEA-based CI 

model (re-presented in (7-7)) is no longer linear as, apart from the original 

variables 
11̂ ˆ ˆ, , ,f su u u… …  (i.e., the indicator weights), the indicators themselves, 

i.e., 
1f jy , are also variables whose exact values are not known, but lying within 

bounded intervals 
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 (7-7) 

Despotis & Smirlis (2002) suggested the following transformation to convert the 

non-linear model (7-7) into a linear one: 

1 1 1 1 1 1

L U L
1( ), 1, , , 1, , , 0 1f j f j f j f j f j f jy y t y y f s j n t= + − = = ≤ ≤� �  (7-8) 

By using this expression, the term 
1 1f̂ f ju y  is replaced by 

1 1 1 1 1 1

L U Lˆ ˆ ( )f f j f f j f j f ju y u t y y+ − . 

We then introduce a new variable 
1 1 1

ˆ
f j f f jq u t=  which meets the condition 

1 1 1ˆ0 , ,f j fq u f j≤ ≤ ∀ .  

Applying the above transformations to model (7-7), we obtain the following 

linear programming problem: 
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In fact, model (7-7) is a special case of model (7-9) in which all the lower and 

upper bounds coincide for all the indicators. In this case, exact rather than 

interval data are actually used for the calculation. The variable 
1f jq  is then 

eliminated and model (7-9) is reduced to model (7-7). When interval data exist, 

i.e., the lower and upper bounds are not identical for all the indicators, the 

optimal index score of country c is obtained by adjusting not only the weights 

but also the levels of indicators within their ranges that are in favor of it. In 

other words, the index score attained by country c in model (7-9) is not worse 

than any other index score that the country might attain, by adjusting the 

indicator values in a different way within the limits of the bounded intervals. 

Smirlis et al. (2006) further proved that such an optimal index score can be 

obtained from the following model with exact data: 
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In model (7-10), the country under evaluation is set in its best possible position 

(i.e., the indicator values are all adjusted to their upper bound) while all the 

other countries in the data set are set in their least favorable position (i.e., the 

indicator values are contrarily adjusted to their lower bound). Cherchye et al. 

(2011) defined it as a ‘strong country in a weak environment’ scenario. We thus 
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obtain the upper bound of the possible index score that country c might attain in 

an interval data setting (referred to as upper

cCI ). 

Likewise, a lower bound of the index score for country c can be obtained from 

model (7-11) below. 
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Model (7-11) is also a MLDEA-based CI model with exact data. In contrast to 

model (7-10), the levels of indicators are now adjusted unfavorably for the 

evaluated country c (i.e., the indicator values are set to their lower bound) and 

in favor of the other countries in the data set (i.e., the indicator values are set 

to their upper bound). Cherchye et al. (2011) defined this as a ‘weak country in 

a strong environment’ scenario, and the model results in a lower bound of the 

possible index score for country c (i.e., lower

cCI ). 

Models (7-10) and (7-11) constitute the interval MLDEA-based CI model, which 

therefore provides for each country a bounded interval of its index score 

[ , ]lower upper

c cCI CI , within which the exact one is believed to lie. Moreover, the 

length of the obtained interval reflects the overall uncertainty due to the 

underlying imperfect nature of the indicator data.  

7.4 Application and Results 

Using the interval indicator data generated in Section 7.2, we now apply the 

interval MLDEA-based CI model to combine all the SPIs into a composite road 

safety performance index for the 28 European countries. Given the same data 

normalization procedure and weight restrictions as in Chapter 6, the results 
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based on models (7-10) and (7-11) are presented in Table 7.2, together with 

the ones obtained in Chapter 6 (referred to as *
cCI ).  

Table 7.2 Composite index scores derived from exact 

and interval data 

 
lower

cCI  upper

cCI  *
cCI  

AT 0.883 1.000 0.965 

BE 0.847 1.000 0.958 

BG 0.730 1.000 0.869 

CY 0.680 0.928 0.834 

CZ 0.845 0.960 0.912 

DK 0.760 1.000 0.884 

EE 0.857 1.000 0.928 

FI 0.816 0.966 0.906 

FR 0.866 1.000 0.944 

DE 0.909 1.000 1.000 

EL 0.601 0.885 0.749 

HU 0.657 0.794 0.751 

IE 0.773 0.987 0.905 

IT 0.809 1.000 0.967 

LV 0.647 0.863 0.746 

LT 0.687 0.844 0.805 

LU 1.000 1.000 1.000 

NL 0.978 1.000 1.000 

NO 0.874 0.981 0.941 

PL 0.805 0.858 0.845 

PT 0.766 1.000 0.903 

RO 0.547 0.988 0.766 

SK 0.692 1.000 0.877 

SI 0.761 1.000 0.913 

ES 0.857 1.000 0.961 

SE 1.000 1.000 1.000 

CH 0.902 1.000 1.000 

UK 0.906 0.986 0.971 

 

By taking the missing data uncertainty into account, an imprecise index score in 

the form of a bounded interval [ , ]lower upper

c cCI CI  is obtained for each country 

based on the interval MLDEA-based CI model, within which the precise index 
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score *
cCI  calculated in Chapter 6 is always situated (see also Figure 7.1). In 

other words, *
cCI  only shows one possibility of a country’s overall road safety 

performance in the context of missing data, and theoretically, it can be switched 

into any value within the interval range. Consequently, the interval index score 

provides us with a more credible representation of a country’s overall road 

safety performance as it highlights rather than conceals the underlying imperfect 

nature of the indicator data. Under this circumstance, however, countries can no 

longer be fully ranked as was the case based on the precise index scores. The 

most we can judge from Table 7.2 is that the overall road safety performance of 

Hungary ([0.657, 0.794]) is worse than that of countries like Poland ([0.805, 

0.858]), which performs in turn worse than countries like Norway ([0.874, 

0.981]), and so on. Moreover, Luxembourg and Sweden are the only two 

countries with their index score always equal to one, no matter which scenario is 

taken into account. In other words, the influence of the existence of missing 

data in the data set on the final index score of these two countries can be 

ignored, given the pre-specified confidence level. Therefore, other countries 

cannot dispute that they are the best-performers among these countries, and 

they can be unambiguously designated as ‘benchmark countries’.  

 

Figure 7.1 Country classification based on the interval MLDEA-based CI model 

With regard to the remaining countries, based on their best possible index score, 

i.e., upper

cCI , countries can be further classified, as defined by Cherchye et al. 
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(2011), into ‘potential benchmark countries’ and ‘countries open to 

improvement’. The latter are those countries who can only obtain an optimal 

index score less than one even when the extreme ‘strong country in weak 

environment’ scenario is taken into account. Therefore, countries belonging to 

this classification are definitely underperforming, and they cannot complain 

about data problems. Some ambiguity, however, is associated with those 

‘potential benchmark countries’, for which the actual classification as a best 

performer or not is contingent on the actual imputation of specific indicator 

values. Nevertheless, as indicated before, the length of the obtained interval for 

each country reflects the overall uncertainty about its index score due to missing 

data. The Netherlands, for instance, obtains relatively high index scores in both 

scenarios with a small difference between them (1-0.978=0.022), indicating that 

the influence of missing data in the data set on its index score is limited, and it 

is more tending to be assigned as a best performer (with the real index score of 

one), and this is verified by its *
cCI . On the contrary, countries like Slovakia and 

Bulgaria obtain large interval ranges of their index score, implying that much 

ambiguity remains about their index score, and they are more likely to be the 

‘countries open to improvement’. The overall classification of the 28 European 

countries is illustrated in Figure 7.1. Countries in each classification are ranked 

by *
cCI  (pointed out with the crosses). 

7.5 Conclusion 

In this chapter, we investigated the influence of the existence of missing data in 

the data set on the final index score of 28 European countries. In doing so, 

missing data were firstly replaced by approximations in the form of intervals 

deduced from multiple imputation in which the true values are believed to lie. 

Thus, the complete data set consisted of both observed data and imputed data 

intervals. The MLDEA-based CI model was accordingly extended in order to take 

interval data into account. Its application resulted in an upper and a lower bound 

of the index score for each country corresponding to the most favorable and 

unfavorable option, respectively. The index interval instead of the precise index 

score for each country highlights the underlying imperfect nature of the indicator 

data, and provides us with a more credible representation of a country’s overall 



177  

 

road safety performance. Based on the interval index scores, countries were 

further classified into ‘benchmark countries’, ‘potential benchmark countries’, 

and ‘countries open to improvement’. With respect to those benchmark countries, 

such as Luxembourg and Sweden in this study, the influence of missing data in 

the data set on their index score can be ignored, for the pre-specified confidence 

level. While for the third class of countries requiring further improvement in their 

road safety performance, missing indicator values play a certain role in 

determining their optimal index score, but have no implication in classifying 

them as underperforming countries. Finally, concerning those ‘potential 

benchmark countries’, the actual classification as a best performer or not is to a 

great extent determined by the actual imputation of specific indicator values. 

However, a large interval range around the index score is generally derived for 

those countries whose missing data uncertainty is relatively high, and such 

countries are much more likely to be the best performer only by coincidence. 
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Chapter 8 Construction of a Composite 

Index (III): Modeling Qualitative Data25 

This chapter focuses on the last research question of this dissertation, which is 

to model qualitative data in the context of composite index construction. Two 

strategies, i.e., the imprecise DEA-based CI model and the fuzzy DEA-based CI 

model are thereby investigated in this chapter. The models are demonstrated by 

taking the qualitative alcohol indicator developed in Chapter 5 into account. The 

fuzzy MLDEA-based CI model is further applied to create a composite road 

safety performance index. 

8.1 Introduction 

In the previous chapters, the construction of a composite index (CI), using 

either a multilayer model or an interval model, has generally been assumed to 

be based upon a set of quantitative indicators. Under many conditions, however, 

quantitative data are inadequate or inappropriate to model real world situations 

due to the complexity and uncertainty of the reality. Therefore, it is essential to 

also take the presence of qualitative indicators into account when making a 

decision on the performance of a country. Very often it is the case that an 

indicator can, at most, be specified with either ordinal measures, from best to 

worst, or with the help of experts’ subjective judgments, such as ‘high’, 

‘medium’ and ‘low’. In the development of alcohol indicators in Chapter 5, apart 

from the safety performance indicator, i.e., the percentage of drivers above the 

legal BAC limit in roadside checks, and the indicator representing the 

consequence of drink driving from the view of the final outcome level, i.e., the 

percentage of road fatalities attributed to alcohol, an additional indicator related 

to policy output, i.e., the effectiveness of the overall enforcement against 

drinking and driving, was also suggested to supplement the alcohol performance 

                                                 
25 Related research has been published in: Shen, Y., Ruan, D., Hermans, E., Brijs, T., Wets, 

G. & Vanhoof, K., (2011). Modeling qualitative data in data envelopment analysis for 

composite indicators, International Journal of Systems Assurance Engineering and 

Management, Vol. 2, No. 1, pp. 21-30. 
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of a country. Such a policy performance indicator, however, is qualitative in 

nature, and only takes the form of ordered classes rated on a 0-10 scale rather 

than numerical values for the purpose of describing, comparing and evaluating 

this risk factor among various countries. To include such kind of indicators in the 

construction of a composite road safety performance index, the DEA-related 

models developed so far in the previous chapters are not capable of deriving a 

satisfactory solution.  

Generally, two strategies have appeared in the literature for the treatment of 

qualitative data within the DEA framework. One is to reflect the rank position of 

each DMU with respect to each ordinal indicator by setting corresponding 

constraints, which is collectively referred to as imprecise DEA (IDEA). Cook et al. 

(1993, 1996) first presented this kind of DEA structure and applied it to the 

problem of prioritizing a set of research and development projects. Cooper et al. 

(1999, 2002) proposed an alternative approach also using this strategy, with an 

illustrative application to a Korean mobile telecommunication company. These 

two approaches to the treatment of ordinal data in DEA were further discussed 

and compared in Cook & Zhu (2006, 2007).  

The other strategy is to deal with the natural uncertainty inherent to some 

production processes by means of fuzzy mathematical programming, which 

leads up to the so-called fuzzy DEA (FDEA). We can find several fuzzy 

approaches for evaluating DMUs in the DEA literature. The tolerance approach 

was one of the first FDEA models that was developed by Sengupta (1992) and 

further improved by Kahraman & Talgo (1998). The main idea of this approach 

was to incorporate uncertainty into the DEA models by defining tolerance levels 

on constraint violations. Lertworasirikul (2001) developed a defuzzification 

approach, in which the fuzzy inputs and outputs are first defuzzified into crisp 

values, and then the conventional DEA model was applied. Meada et al. (1998) 

introduced an α -level based approach, which was further developed by Saati et 

al. (2002). In this method, a FDEA model was solved by parametric 

programming using α -cuts. At a given level of α -cut, it produced the interval 

efficiency for the DMU under assessment. Kao & Liu (2000) proposed a method 

to find the membership functions of the fuzzy efficiency scores when some 

observations were fuzzy numbers. The idea was based on the α -cuts and Zadeh 
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(1965)’s extension principle. Lertworasirikul et al. (2003) proposed a possibility 

approach in which constraints are treated as fuzzy events. The approach 

transforms FDEA models into possibility DEA models by using possibility 

measures of fuzzy constraints. Entani et al. (2002) and Wang et al. (2005) used 

the concept of interval efficiency assessment in DEA. Saati & Memariani (2005) 

employed the case of reducing weight flexibility in FDEA. Hougaard (2005) 

introduced a simple approximation of productivity scores of a fuzzy production 

plan, which allowed the decision makers to use scores of technical efficiency in 

combination with other sources of information such as expert opinions. Guo & 

Tanaka (2001) proposed a fuzzy ranking approach, in which both fuzzy 

inequalities and fuzzy equalities were defined by ranking methods and the 

resulting model was based on a bi-level linear programming and provided fuzzy 

efficiency for an evaluated DMU at a specified α -cut. The approach was applied 

to a restaurant location problem in Guo (2009). Based on a similar manner, 

León et al. (2003) extended the models from the primal multiplier formulation to 

the dual envelopment one, and Tlig & Rebai (2009) further transformed the 

models into crisp linear programming problems, which produced crisp efficiency, 

rather than fuzzy efficiency. 

In the remaining sections of this chapter, we investigate both strategies for 

modeling qualitative data in the construction of CIs. More specifically, based on 

the imprecise DEA introduced in Cook & Zhu (2007) and the fuzzy ranking 

approach proposed in Guo (2009), we develop two new models for composite 

index construction in Section 8.2 and Section 8.3, respectively. We illustrate 

these two models with the application of constructing a composite alcohol 

performance index in Section 8.4. In Section 8.5, a fuzzy multiple layer DEA-

based CI model is further developed to combine all the 33 hierarchical indicators 

(with both quantitative and qualitative data) into a composite road safety 

performance index. The chapter ends with conclusions in Section 8.6. 

8.2 Imprecise DEA for CIs 

In the basic DEA-based CI model (re-presented in (8-1)), obtainment of 

measurable and quantitative indicators is commonly the prerequisite of the 

evaluation.  
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In situations where some indicators might better be represented as rank 

positions in an ordinal, rather than numerical sense, this model cannot be used 

directly, because ordinal data cannot be simply treated as numerical ones for 

which a score of 2 is twice as large as a score of 1. The most that can be judged 

is that the former one is preferred to or more important than the latter in a 

maximization context. Therefore, in combining all the indicators into one index 

score, the numerical and ordinal ones need to be treated differently. In this 

section, we introduce imprecise DEA for modeling ordinal data in the 

construction of CIs. 

Consider a set of n DMUs that is to be evaluated in terms of s1 numerical 

indicators (yn) and s2 ordinal indicators (y
o). The modified DEA-based CI model 

can then be formulated as follows: 

1 2

2

1 1

1 1

1 2
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, , 1, , , 1, ,

s s
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c r rc i ic
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ss
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u v ε r s i s
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(8-2) 

Since precise values for indicators o

ijy  ( 21, ,i s= � ) are not available, but the 

ordinal data with a K-point scale, we first convert the ranking value of each DMU 

into its position value. Taking K=4 as an example, the conversion of the four 

ordinal numbers is illustrated in Table 8.1. 

Table 8.1 Conversion of 4-point scale ordinal data 

Ordinal data ( o

ijy )  Position values (pki) 

1 

� 

0 0 0 1 

2 0 0 1 0 

3 0 1 0 0 

4 1 0 0 0 
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Each position vector pki ( 1, ,k K= � ) is then multiplied by a vector 

1 2[ , , ]Ti i iKy y y�  to obtain the virtual value of each ordinal indicator, i.e., 

1 2[ , , ]v T

i ki i i iKy p y y y= � , which should satisfy the minimal requirement that 

1 2 0i i iKy y y ε> > > ≥ >� . Thus, the aggregation of all the s2 ordinal indicators 

for a particular country c can be expressed as: 
2

1

s
v

i ic
i

v y
=

∑ , which can be further 

linearized as 
2

1 1

s K

ikc
i k

µ
= =

∑∑ . Moreover, to realize the above ordinal restrictions on iky  

( 1, ,k K= � ), we set 1ik iky y ε
+

− ≥ 26 ( 1, 1)k K= −� , and iKy ε≥ . In this way, 

1ik ikµ µ
+

−  which equals to 1i ik i ikv y v y
+

−  should at least satisfy the minimum 

constraint that 2
1ik ikµ µ ε

+
− ≥ , and 2

rKµ ε≥ . We thus obtain the IDEA-based CI 

model as follows: 
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1 1 1
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(8-3) 

In model (8-3), both numerical and ordinal indicators are taken into account, 

and due to the incorporation of ordinal indicators, two additional inequality 

constraints are added as shown above. 

8.3 Fuzzy DEA for CIs 

To treat imprecision and vagueness in a DEA model, apart from IDEA, fuzzy set 

theory can also be integrated as an alternative solution. By interpreting the 

                                                 
26 ε  is a small number used to reflect the minimum allowable gap between the values 

associated with yik and yik+1, which can have a certain impact on the final index scores. In 

real situations, different ε  values can be used for different ordinal indicators, or other 

discrimination intensity functions can be employed. See also Cook & Kress (1990). 
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qualitative (or ordinal) data as fuzzy numerical values which can be represented 

by means of fuzzy numbers or fuzzy intervals, the basic DEA-based CI model (8-

1) can be naturally extended to the following fuzzy one: 

1
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 (8-4) 

where rjy�  denotes the rth fuzzy indicator value of the jth country. 

The resulted FDEA-based CI model (8-4) takes the form of a fuzzy linear 

programming problem with fuzzy coefficients in the objective function and also 

the constraints. Therefore, some fuzzy operations including ‘maximizing a fuzzy 

variable’ and ‘fuzzy inequality’ are required. In what follows, we simply recall 

how to perform the basic operations of arithmetics and the comparison of fuzzy 

intervals for ranking purposes. To be more precise, we deal with LR-fuzzy 

numbers whose definition is as follows. 

Definition 1 [León et al., 2003]. A fuzzy number M�  is an LR-fuzzy number, 

,( , , , )L R L R

L RM m m α α=� , if its membership function has the following form: 

,

( ) 1,

,

L
L

L

L R

M

R
R

R

m r
L r m

α

µ r m r m

r m
R r m

α

  −
≤  

 


= ≤ ≤


 − ≥   

�  (8-5) 

where the subset [ , ]L Rm m  consists of the real numbers with the highest chance 

of realization, Lα  is the left spread, Rα  is the right spread, and L and R are 

reference functions defining the left and the right shapes of the fuzzy number, 

respectively, which should satisfy the following conditions: 

), : 0, 0,1L R +∞ →     , 

( ) ( ), ( ) ( )L x L x R x R x= − = − , 

(0) 1, (0) 1L R= = , and  
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( )L x and ( )R x  are strictly decreasing and upper semi-continuous on 

supp(M� ) = { }: ( ) 0
M

r µ r >� . 

In addition, an LR fuzzy number becomes an LL fuzzy number when ( ) ( )L x R x= , 

an LL fuzzy number with ( )( ) max 0,1L x x= −  is known as a triangular fuzzy 

number, and a symmetrical LL fuzzy number is for the case of L Rα α= .  

Let us now recall the definition of the maximum of two fuzzy numbers. 

Definition 2 [Inuiguchi et al., 1990]. Let M�  and N�  be two fuzzy numbers and 

h a real number, 0,1h ∈    . Then 
hM N>� �

�
 if and only if, ,1k h∀ ∈    , the following 

two statements hold: 

{ } { }

{ } { }

: ( ) : ( )

: ( ) : ( )

M N

M N

inf s µ s k inf t µ t k

sup s µ s k sup t µ t k

≥ ≥ ≥

≥ ≥ ≥

� �

� �

 (8-6) 

where inf stands for infimum (lower bound or minimum), and sup stands for 

supremum (upper bound or maximum). 

Hence, for LR-fuzzy numbers with bounded support, and using this ranking 

method, at a given possibility level h, expression (8-6) becomes 

* '*

* '*

( ) ( ) ,1

( ) ( ) ,1

L L L L

R R R R

m L k α n L k β k h

m R k α n R k β k h

− ≥ − ∀ ∈   

+ ≥ + ∀ ∈   
 (8-7) 

Therefore, using LR fuzzy numbers in the FDEA-based CI model (8-4), i.e., 

( , , , )
rj lrj urj rj rj

y y y a b=� , the constraint 
1

1
s

r rj
r

u y
=

<∑ �
�

 can then be considered as 

inequalities between an LR fuzzy number and a real number, and the use of an 

ordering relation in (8-7) allows us to convert this fuzzy constraint into a crisp 

inequality as: ( )*

1

( ) 1
s

r urj rj
r

u y b R h
=

+ ≤∑ 27. 

                                                 

27 ( )*

1

( ) 1
s

r lrj rj
r

u y a L h
=

− ≤∑  is always satisfied when ( )*

1

( ) 1
s

r urj rj
r

u y b R h
=

+ ≤∑ . 
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Concerning ‘maximizing a fuzzy variable’, i.e., 
1

max
s

r rc
r

u y
=

∑ � , still using the 

ordering relation in (8-7), this objective function can then be decomposed into 

two crisp relations as: ( )*

1

max ( )
s

r lrc rc rc
r

u y a L h
=

−∑  and ( )*

1

max ( )
s

r urc rc rc
r

u y b R h
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+∑ , 

0,1h ∈    , which should be maximized simultaneously. To this end, a weighted 

function ( ) ( )
s s

r lrc rc rc r urc rc rc
r r

λ u y a L h λ u y b R h* *
1 2

1 1

( ) ( )
= =

− + +∑ ∑  with 1 0λ ≥ , 2 0λ ≥ , and 

1 2 1λ λ+ =  is used to obtain the compromise solution. Three situations are 

usually considered, which are optimistic if 2 1λ = , pessimistic if 1 1λ = , and 

indifferent if 1 2λ λ= . 

Thus, the FDEA-based CI model (8-4) can now be transformed in the following 

crisp linear programming problem: 
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 (8-8) 

Definition 3. Country c is called fuzzy best performing if and only if it obtains a 

fuzzy index score of one at least at one possibility level h. Otherwise, it is fuzzy 

underperforming. 

Definition 4. Country c is called fuzzy non-dominated best performing if and 

only if it obtains a fuzzy index score of one at all possibility levels h. 

In particular, if indicators 
rj

y�  are assumed to be symmetrical triangular fuzzy 

numbers, which are often used to represent the uncertainty of information for 

simplification, they can then be denoted by the pairs consisting of the 

corresponding centers and spreads, ( , )
rj rj rj

y y α=� , 1, ,r s= � , 1, ,j n= � , and 

the model (8-8) can be substantially simplified as follows: 
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Note that for triangular fuzzy numbers, * *( ) ( ) 1 , 0 1, 1,
rj rj

L h R h h h r s= = − ≤ ≤ = � . 

The fuzzy index score of country c can then be defined as { ( )
s

r rc rc
r

u y h α*

1

(1 )
=

− −∑ , 

s

r rc
r

u y*

1=

∑ , ( )
s

r rc rc
r

u y h α*

1

(1 )
=

+ −∑ }, which represents the pessimistic, indifferent, 

and optimistic situation, respectively. 

8.4 Application to a Composite Alcohol 

Performance Index 

To illustrate the use of these two models developed in the above two sections, 

we apply them for constructing a composite alcohol performance index based on 

both quantitative and qualitative indicators. More specifically, in the 

development of alcohol indicators in Chapter 5, apart from one safety 

performance indicator, i.e., the percentage of drivers above the legal BAC limit 

in roadside checks, and one indicator representing the consequence of drink 

driving from the view of the final outcome level, i.e., the percentage of road 

fatalities attributed to alcohol, a third indicator related to policy output, i.e., the 

effectiveness of overall enforcement against drinking and driving, was also 

suggested to supplement the alcohol performance of a country. Such a policy 

performance indicator, derived from the Global Status Report on Road Safety 

prepared by the World Health Organization (2009), in which the respondents 

were asked to reach a consensus on their assessment of the enforcement in the 

country, is qualitative in nature, and can only take the form of ordered classes 

rated on a 0-10 scale (with 0 represents the worst drink driving enforcement 

while 10 the best) rather than numerical values for the purpose of description, 

comparison and evaluation of this risk factor for various countries. Data on this 
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qualitative indicator for the 28 European countries28 are presented in Table 8.2, 

together with the normalized data on the first two quantitative indicators. 

Table 8.2 Normalized numerical data and ordinal data 

on three alcohol indicators for 28 European countries 

 
Alcohol 

 
% of drivers 
above legal 

alcohol limit in 
roadside 
checks 

% of alcohol-
related 
fatalities 

Effectiveness 
of overall 

enforcement 
on drinking 
and driving 

 

 

AT 0.116 0.463 9 

BE 0.068 0.654 3 

BG 0.123 0.855 7 

CY 0.137 0.182 4 

CZ 0.145 0.675 9 

DK 0.301 0.143 8 

EE 0.860 0.080 8 

FI 0.593 0.136 8 

FR 0.263 0.123 4 

DE 0.093 0.306 4 

EL 0.273 0.432 7 

HU 0.279 0.283 5 

IE 0.237 0.119 5 

IT 0.098 0.992 7 

LV 0.218 0.175 7 

LT 0.555 0.321 6 

LU 0.102 0.248 5 

NL 0.081 1.000 9 

NO 0.142 0.159 4 

PL 0.091 0.438 7 

PT 0.137 0.610 8 

RO 0.070 0.423 8 

SK 0.067 0.607 9 

SI 0.122 0.078 6 

ES 0.398 0.402 7 

SE 1.000 0.357 6 

CH 0.141 0.230 6 

UK 0.051 0.228 5 

 

                                                 
28 Data for Ireland, the Netherlands, and United Kingdom are imputed values derived from 

the multiple imputation procedure in SPSS 17.0.   
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To combine these three alcohol indicators into one index score, the IDEA-based 

CI model (8-3) can be applied directly, with the ε  value chosen as 0.0001. 

Whereas for the FDEA-based CI model (8-9), symmetrical triangular fuzzy 

numbers are used for the ordinal data in this study, which are defined as in 

Table 8.3. 

Table 8.3 Representation of symmetrical triangular fuzzy numbers for the 

ordinal indicator values 

Ordinal data 
( rjy� ) 

Symmetrical triangular 
fuzzy numbers ( , )rj rjy α  

Ordinal data 
( rjy� ) 

Symmetrical triangular 
fuzzy numbers ( , )rj rjy α  

0 
1

0,
10

 
 
 

 1 
1 1
,

10 10
 
 
 

 

2 
2 1
,

10 10
 
 
 

 3 
3 1
,

10 10
 
 
 

 

4 
4 1
,

10 10
 
 
 

 5 
5 1
,

10 10
 
 
 

 

6 
6 1
,

10 10
 
 
 

 7 
7 1
,

10 10
 
 
 

 

8 
8 1
,

10 10
 
 
 

 9 
9 1
,

10 10
 
 
 

 

10 
1

1,
10

 
 
 

   

 

In addition, to guarantee that all the three indicators will be used to some extent 

by the models, the share of each of these three indicators in the final index 

score is restricted to lie within the interval [0.1, 0.5], yet is rather broad to allow 

a high level of flexibility.  

The composite alcohol performance index score of the 28 European countries 

can now be computed based on the two models, respectively. The results are 

shown in Table 8.4.  
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Table 8.4 Composite alcohol performance index scores of 28 European 

countries based on the IDEA-based CI model and the FDEA-based CI model 

IDEA-CI 
  

FDEA-CI 

    
h=0 h=0.5 h=1 

SE 1.000 
 
SE {.872, .947, 1.000} {.940, .973, 1.000} {1.000, 1.000, 1.000} 

CZ .880 
 
CZ {.768, .792, .812} {.795, .806, .816} {.820, .820, .820} 

ES .847 
 
ES {.684, .733, .775} {.729, .752, .774} {.773, .773, .773} 

FI .833 
 
LT {.670, .727, .778} {.721, .750, .776} {.774, .774, .774} 

PT .826 
 
PT {.694, .727, .749} {.726, .740, .752} {.755, .755, .755} 

LT .803 
 

FI {.686, .720, .750} {.719, .735, .751} {.752, .752, .752} 

EL .780 
 
BG {.672, .703, .729} {.703, .717, .730} {.732, .732, .732} 

BG .776 
 
EL {.634, .679, .717} {.674, .696, .715} {.713, .713, .713} 

AT .711 
 
AT {.624, .642, .658} {.645, .654, .662} {.666, .666, .666} 

IT .679 
 

IT {.598, .623, .643} {.623, .634, .644} {.646, .646, .646} 

NL .678 
 
NL {.566, .579, .590} {.581, .587, .592} {.594, .594, .594} 

DK .626 
 
EE {.535, .556, .574} {.554, .564, .573} {.572, .572, .572} 

HU .623 
 
HU {.468, .518, .558} {.509, .532, .553} {.547, .547, .547} 

EE .589 
 
PL {.505, .523, .537} {.523, .531, .538} {.539, .539, .539} 

PL .567 
 
DK {.496, .513, .526} {.513, .521, .528} {.530, .530, .530} 

SK .563 
 
SK {.467, .475, .482} {.476, .480, .484} {.486, .486, .486} 

RO .562 
 
LV {.440, .459, .474} {.458, .466, .474} {.474, .474, .474} 

LV .500 
 
RO {.446, .456, .466} {.457, .462, .467} {.469, .469, .469} 

DE .488 
 
CH {.402, .427, .448} {.424, .435, .446} {.443, .443, .443} 

CH .474 
 
LU {.357, .389, .414} {.382, .397, .410} {.405, .405, .405} 

BE .466 
 
DE {.339, .384, .423} {.371, .394, .414} {.404, .404, .404} 

LU .464 
 

IE {.360, .386, .405} {.382, .393, .403} {.401, .401, .401} 

FR .450 
 
FR {.340, .380, .408} {.371, .389, .404} {.399, .399, .399} 

IE .425 
 
BE {.318, .373, .409} {.359, .382, .401} {.392, .392, .392} 

CY .415 
 
CY {.300, .336, .362} {.327, .343, .357} {.351, .351, .351} 

NO .393 
 
NO {.291, .324, .347} {.316, .330, .343} {.337, .337, .337} 

UK .324 
 
UK {.290, .304, .315} {.302, .309, .314} {.314, .314, .314} 

SI .268 
 
SI {.250, .258, .264} {.257, .261, .264} {.264, .264, .264} 

 

As we can see, a crisp index score is achieved when using the IDEA-based CI 

model, which is easy for communication. In the FDEA-based CI model, fuzzy 

index scores are obtained based on different possibility levels of h. In practice, 

the given possibility degree by decision makers reflects their attitude on 

uncertainty. When h=1, the ordinal data are actually treated as numerical ones 

and the same index scores are obtained for each country, no matter whether the 

decision makers are in a pessimistic, indifferent, or optimistic consideration. 
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When the given value of h becomes lower, it means the decision makers are 

more cautious. As a consequence, a wider range of index scores will be derived. 

In such a way, the uncertainties associated with human thinking are effectively 

interpreted. Taking Belgium as an example, which was assigned the lowest value 

of 3 for this ordinal indicator among all the 28 European countries, it obtains an 

index score of 0.392 when h=1. That is, decision makers have no doubt about 

this value in representing the true performance of Belgium with respect to this 

indicator, which is half of the value of 6 and one third of 9. When h decreases to 

0.5, this implies that decision makers are no longer fully sure about the relation 

between 3 and 6, and the other numbers. In other words, the value of 6 could 

be more (or less) than twice as large as the value of 3, and the most that can be 

judged is that the former one is preferred to or more important than the latter. 

As a result, an interval index score is obtained for Belgium, which is between 

0.359 (pessimistic) and 0.401 (optimistic), with a medium value of 0.382 

(indifferent). The widest interval is derived when h=0, which is {0.318, 0.373, 

0.409}. Among all the 28 European countries, Sweden is the only non-

dominated best performing country since it obtains the fuzzy index score of one 

at all possibility levels h. 

Moreover, by comparing the alcohol performance index scores of the 28 

European countries derived from these two models, we find that the IDEA-CI 

score is greater than the one from the FDEA-based CI model, even in the 

optimistic situation with the lowest possibility level of h. This can be partly 

explained by the fact that a relatively small value of ε  is used in the IDEA-

based CI model to reflect the minimum allowable gap between the two ranking 

positions in terms of the indicator value, which results in an extreme index score 

for each country. In other words, based on the same ε  value, the index score 

from the FDEA-based CI model would not exceed the one from the IDEA-based 

CI model. Nevertheless, a high correlation coefficient (0.989) is deduced 

between the IDEA-CI score and the FDEA-CI score (taking h=0.5 and the 

indifferent situation as an example). This not only demonstrates the robustness 

of their ranking results, but also implies the reliability of using these two 

approaches for modeling qualitative data. 
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8.5 A Composite Road Safety Performance 

Index based on the Fuzzy MLDEA-based 

CI Model 

To construct a composite road safety performance index, in addition to the three 

alcohol indicators considered in the above section, all the other indicators 

developed in Chapter 5 have to be modeled simultaneously. In doing so, we not 

only need to make a difference between quantitative and qualitative indicators, 

but the hierarchical structure of the indicators should also be taken into account. 

To this end, the models developed in this chapter have to be integrated into the 

MLDEA-based CI model proposed in Chapter 6. In this respect, a fuzzy MLDEA-

based CI model seems to be the only option because the weights of the 

qualitative indicators in the IDEA-based CI model are not attainable, which 

however, are indispensable information for the multilayer model. Based on the 

FDEA-based CI model (8-9) and the MLDEA-based CI model (6-8), we obtain the 

fuzzy MLDEA-based CI model as follows:  
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Using the same data normalization procedure and weight restrictions as in 

Chapter 6, we now apply the model (8-10) to combine all the 33 indicators into 

a composite road safety performance index for the 28 European countries. Given 

the possibility level of h=0.5, the results are obtained in Table 8.5, together with 

the ones from Chapter 6, in which 32 quantitative indicators were combined 

based on the MLDEA-based CI model. 
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Table 8.5 Composite road safety performance index scores of 

28 European countries based on the fuzzy MLDEA-based CI 

model and the MLDEA-based CI model 

 FMLDEA-CI (h=0.5) MLDEA-CI 

NL {0.99245, 0.99622, 1.00000} 1.00000 

LU {0.99238, 0.99619, 1.00000} 1.00000 

CH {0.99233, 0.99616, 1.00000} 1.00000 

SE {0.99228, 0.99614, 1.00000} 1.00000 

DE {0.99224, 0.99612, 1.00000} 1.00000 

AT {0.99114, 0.99557, 1.00000} 0.96509 

UK {0.98161, 0.98767, 0.99372} 0.97092 

ES {0.96400, 0.97081, 0.97762} 0.96139 

EE {0.95583, 0.96429, 0.97276} 0.92779 

NO {0.95056, 0.95664, 0.96273} 0.94099 

FI {0.94447, 0.95072, 0.95697} 0.90558 

FR {0.94336, 0.94740, 0.95144} 0.94450 

CZ {0.93308, 0.94072, 0.94835} 0.91156 

IT {0.93163, 0.93701, 0.94240} 0.96693 

DK {0.92669, 0.93263, 0.93857} 0.88404 

SI {0.92253, 0.93008, 0.93763} 0.91269 

BE {0.92102, 0.92504, 0.92905} 0.95820 

IE {0.91423, 0.92028, 0.92633} 0.90484 

PT {0.90986, 0.91819, 0.92652} 0.90347 

SK {0.90424, 0.91271, 0.92117} 0.87693 

PL {0.86891, 0.87491, 0.88090} 0.84510 

BG {0.85018, 0.85555, 0.86092} 0.86898 

CY {0.83444, 0.83910, 0.84377} 0.83373 

LT {0.81126, 0.81872, 0.82618} 0.80520 

RO {0.80449, 0.81277, 0.82105} 0.76630 

LV {0.78196, 0.78942, 0.79689} 0.74608 

EL {0.77192, 0.77943, 0.78694} 0.74900 

HU {0.75244, 0.75990, 0.76737} 0.75146 

 

Due to the inclusion of one more, ordinal, indicator in the composite index 

construction, a fuzzy rather than crisp index score is obtained for each country 

based on the fuzzy MLDEA-based CI model. In general, the two sets of index 

scores are highly correlated with a correlation coefficient of 0.966 when the 

FMLDEA-CI score under the indifferent situation is considered. This is mainly 

attributed to the use of the multilayer model, which reduces the sensitivity of 

the final index score when adding new indicators into the model (or deleting 
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existing indicators from the model). However, differences can still be found. For 

instance, Austria becomes another (fuzzy) best-performing country apart from 

the Netherlands, Luxembourg, Switzerland, Sweden, and Germany, since a 

relatively high alcohol enforcement indicator value (9) is assigned to it. At the 

same time, the ranking of Belgium has a considerable decline due to the fact 

that it has the lowest score (3) with respect to its drink driving enforcement. In 

addition, Hungary becomes the worst-performing country even under the most 

optimistic consideration, because it obtained a relatively lower indicator value (5) 

compared with countries such as Greece and Latvia, which were both assigned a 

score of 7 for this indicator. 

8.6 Conclusion 

In this chapter, we investigated two approaches within the DEA framework for 

modeling qualitative (or ordinal) data in the context of composite index 

construction. They are imprecise DEA and fuzzy DEA, respectively. Taking their 

principle for reference, we proposed two new models − the IDEA-based CI model 

and the FDEA-based CI model − for road safety performance evaluation. Based 

on three alcohol indicators (two quantitative and one qualitative), we 

successfully obtained the composite alcohol performance index scores for the 28 

European countries. The analysis of the results showed that the crisp index score 

achieved by the IDEA-based CI model is easy for interpretation and use, while in 

the FDEA-based CI model, fuzzy index scores obtained based on different 

possibility levels are powerful in capturing the uncertainties associated with 

human thinking. The high similarity of the ranking result based on these two 

models verifies its robustness and implies the reliability of using these two 

approaches for modeling qualitative data. Furthermore, by integrating fuzzy 

logic into the MLDEA-based CI model proposed in Chapter 6, we obtained the 

fuzzy MLDEA-based CI model, which can not only reflect the hierarchical 

structure of the indicators, but also make the differentiation between 

quantitative and qualitative indicators possible. The model was therefore capable 

of combining all the 33 hierarchical indicators (with both quantitative and 

qualitative data) into a composite road safety performance index.  
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Chapter 9 Final Conclusions and Future 

Research 

This chapter summarizes the main contributions and findings from this 

dissertation research. Furthermore, directions for future research in relation to 

this topic are provided. 

9.1 General Conclusions 

Inter-national benchmarking of road safety performance and development is 

considered as a promising step to improve a country’s road safety level and has 

currently been widely advocated by most countries and international bodies. 

Having recognized the complex character of the road safety phenomenon, 

different aspects of the road safety management and improvement process have 

been identified, and a large number of road safety indicators have been 

developed within each aspect and increasingly used as a supportive instrument 

for inter-national comparisons and monitoring of road safety progress. In this 

dissertation research, we aimed to implement meaningful benchmarking on the 

road safety product (using risk indicators) and the road safety programme 

(using safety performance indicators) for 28 European countries, with the 

purpose of better understanding each country’s relative road safety situation, 

identifying the areas of underperformance per country, and moreover, enabling 

policymakers to learn from those better-performing countries as a basis for 

developing their own road safety policy. To achieve these objectives, the 

technique of data envelopment analysis (DEA) − one of the powerful 

benchmarking tools currently receiving considerable attention in the operations 

research and economics field − was introduced to the road safety domain, and 

its various extensions were comprehensively investigated to handle some of the 

model limitations and to answer the specific research questions that have not 

yet been properly addressed in current road safety benchmarking studies. The 

main contributions and findings from this dissertation research are summarized 

as follows: 
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i) Development of a DEA-based road safety model and its 

extensions for road safety risk evaluation 

Road safety researchers have traditionally evaluated the road safety performance 

of a country by comparing its road safety risk indicators with those of other 

countries. However, in computing the level of risk for a country, which is 

commonly defined as the ratio of road safety outcomes such as the number of 

road fatalities and some measure of exposure, different exposure information 

can be used (e.g., the population size, the number of registered vehicles, and 

the distance travelled), and different evaluation results or ranking positions are 

normally obtained based on different risk indicators. So far, there is no 

consensus about which one is the most appropriate indication, and research on 

their combination is also quasi non-existing. 

In this research, using the principle of DEA for reference, which is to measure the 

relative efficiency of a set of decision making units (DMUs) on the basis of 

multiple inputs and multiple outputs, we developed a DEA-based road safety 

model (DEA-RS) to evaluate the overall road safety performance of 28 European 

countries by considering the three main risk indicators (i.e., the number of 

fatalities per million inhabitants, the number of fatalities per 10 billion passenger-

kilometres travelled, and the number of fatalities per million passenger cars) 

simultaneously. Using the model linking input (three measures of exposure to 

risk) and output (the number of fatalities), an overall road safety efficiency score 

was obtained for each country indicating its level of efficient transformation of 

input or exposure into output or road safety fatalities, and the ranking of these 

countries was deduced by computing their cross-efficiency. The result gave us a 

global view on the country’s road safety performance by taking all three aspects 

of exposure into account, and yet it was not the simple average of those three 

rankings. 

Moreover, after performing clustering analysis to group countries with inherent 

similarity in their practices, we applied a categorical DEA-RS model to identify 

best-performing and underperforming countries in each group, and to indicate 

appropriate reference sets or benchmarks for those underperforming ones. More 

importantly, the extent to which each reference set could be learned from was 

specified, and several practical targets on the number of road fatalities were 
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given for each underperforming country. All these enable policymakers to 

recognize the gap with those best-performing countries within each group and to 

further develop their own road safety policy. 

One additional advantage of using the DEA-RS model for road safety risk 

evaluation is that the model can be easily extended when other inputs and/or 

outputs are taken into account. In Chapter 4, we explored the impact of 

including serious injuries in addition to the fatalities as another road safety 

outcome for road safety risk evaluation. The DEA-RS model was successfully 

applied by imposing additional weight restrictions to indicate the relationship 

between road fatalities and serious injuries. We are therefore inspired to apply 

this model to a more complete road safety product benchmarking practice in the 

future when the data on for example the number of crashes, the degree of 

property damage, and the number of slight injuries are ready to use. 

ii) Adoption of the Malmquist productivity index to evaluate 

road safety performance change over time 

Apart from comparing the road safety risk indicators at one specific point of time, 

the analysis of the performance change of countries over time has also been 

conducted in the road safety product benchmarking. Traditionally, the 

percentage change in the number of people killed on the road is the main 

indicator used to compare the development of road safety between countries with 

a higher reduction in road fatalities indicating a better rank. However, simply 

considering the reduction in the final outcome may not correctly reflect the real 

improvement in road safety because the transport circumstances of a country 

underlying the final outcome also change every year.  

In this research, we presented a new way to assess the road safety performance 

change of countries over time, which was by applying the Malmquist productivity 

index. The index has the capability to capture the dynamic road safety 

development in each country by not only focusing on the evolution of road safety 

final outcomes within a given period, but also taking the changes in exposure in 

the same period into account.  

In the application, using the information on the three measures of exposure, i.e., 

the number of inhabitants, passenger-kilometres travelled and passenger cars on 
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the one hand, and the number of fatalities in road transport on the other hand, 

the Malmquist productivity index based on the DEA-RS model has proven 

valuable in measuring the extent to which the 28 European countries have 

improved their ‘productivity’ on road safety over the period 2000-2009. It is 

believed to have provided more objective results than the ones based on the 

traditional indicator that only measures the percentage change in road fatalities. 

Moreover, the decomposition of the index into efficiency change and technical 

change further provides policymakers with valuable information to gain a clear 

understanding on whether the improvement in road safety of each country was 

attained through country-specific progress relative to the others, or just through 

an overall improvement in the technological environment. 

iii) Realization of a multiple layer DEA-based composite index 

model for hierarchical structure assessment 

With the continuously growing awareness of the complex character of the road 

safety phenomenon, it has been widely acknowledged that the traditional way in 

assessing a country’s road safety situation that only concentrates on the road 

safety final outcomes is insufficient in explaining more detailed aspects of crash 

causation and injury prevention. Over the last decade, more and more policy 

attention has been paid to the underlying risk factors influencing safety or, at 

least, those factors policymakers are able to affect or control. In this research, a 

comprehensive set of safety performance indicators (SPIs), which are viewed as 

intermediate outcomes linking safety countermeasures with final outcomes, was 

developed based on the identification of six leading road safety risk factors (i.e., 

alcohol, speed, protective systems, vehicle, road, and emergency medical 

services) within the three main road transport components (i.e., road user, 

vehicle and infrastructure), which provides the basis for the second type of 

benchmarking practice, i.e., road safety programme benchmarking. 

Since a number of SPIs are considered for a particular risk factor in this research, 

and they are further linked to one another constituting a layered hierarchy, a 

simple comparison per indicator may only show a small piece of the road safety 

picture, and it can be misleading since different countries may operate in 

different circumstances with different focal points. Consequently, a composite 

road safety performance index, which combines individual indicator values into 
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one single score, is valuable to be computed for the sake of meaningful 

benchmarking. In doing so, the hierarchical structure of the SPIs is also 

worthwhile to be reflected. However, it is prone to be ignored in the current 

index research due in part to the limitation of traditional weighting and 

aggregation techniques in reflecting this kind of hierarchical structures. 

In this dissertation research, we investigated the use of DEA to develop a 

composite road safety performance index for cross-country comparison due to 

its prominent advantages over other traditional methods. Moreover, we further 

explored the incorporation of a layered hierarchy in the DEA framework, and 

proposed a multiple layer DEA-based composite index model (MLDEA-CI) for 

hierarchical structure assessment. 

In the application, we used the proposed MLDEA-CI model to determine the 

most optimal road safety performance index score for each of the 28 European 

countries by combining all the 32 hierarchical SPIs. Countries were then 

classified into two groups: best-performing and underperforming, and the 

ranking of the countries was deduced by computing their cross-index score. A 

clear link with the overall road safety risk from the view of the final outcome 

level was verified, which in turn justified the use of the proposed multilayer 

model for composite index construction. Furthermore, by taking the 

characteristics of each country in the data set into account, country-specific 

benchmarks were identified for the underperforming countries. More importantly, 

by analyzing the indicator weights allocated in each layer of the hierarchy, useful 

insight in the areas of underperformance in each country was gained enabling 

policymakers to prioritize their actions to improve the level of road safety. 

iv) Consideration of data issues in the composite road safety 

performance index construction 

Coupled with the proliferation of SPIs, some practical issues related to data also 

inevitably emerge in the development of a composite road safety performance 

index, two of which are qualitative indicators and missing values. Specifically, 

obtainment of measurable and quantitative indicators is commonly a 

prerequisite of any index research. This, however, becomes more and more 

difficult to be guaranteed since the natural uncertainty of reality often leads up 
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to imprecision and vagueness inherent in the information that can only be 

represented by means of qualitative indicators. Simply treating them as 

quantitative ones could thereby result in wrong conclusions. Moreover, an 

extension of the data set used for road safety index research raises the issue of 

missing values, which to a great extent restricts researchers from performing 

classical analyses as complete data matrices are usually required. Consequently, 

how to effectively handle these data problems directly affects the result of the 

road safety index research and the success of benchmarking practices as well. 

In Chapter 7, we explored the influence of the existence of missing data in the 

data set on the final index score of the 28 European countries. In doing so, 

missing data were firstly replaced by approximations in the form of intervals 

deduced from multiple imputation in which the true values are believed to lie. 

Thus, the complete data set consisted of both observed data and imputed data 

intervals. Subsequently, an interval MLDEA-based CI model was applied and 

resulted for each country in an upper and a lower bound of its index score 

corresponding to its most favorable and unfavorable option, respectively. The 

interval instead of the precise index score for each country highlights the 

underlying imperfect nature of the indicator data, and provides us with a more 

credible representation of a country’s overall road safety performance. Based on 

the interval index scores, countries could be further classified into ‘benchmark 

countries’, ‘potential benchmark countries’, and ‘countries open to improvement’. 

In Chapter 8, we investigated two approaches within the DEA framework for 

modeling qualitative (or ordinal) data in the context of composite index 

construction, being the imprecise DEA-based CI model and the fuzzy DEA-based 

CI model. The analysis of the results shows that the crisp index score achieved 

by the IDEA-based CI model is easy for interpretation and use, while in the 

FDEA-based CI model, fuzzy index scores obtained based on different possibility 

level are powerful in capturing the uncertainties associated with human thinking. 

The high similarity of the ranking result based on these two models verifies its 

robustness and implies the reliability of using these two approaches for modeling 

qualitative data. Furthermore, a fuzzy MLDEA-based CI model was realized to 

construct a composite road safety performance index based on both quantitative 

and qualitative indicators. 
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To conclude, we have identified in this dissertation the main research issues with 

respect to the road safety product and programme benchmarking, respectively, 

and have developed corresponding approaches to deal with these issues. This 

research has contributed to the literature on using the technique of DEA and its 

various extensions to perform meaningful inter-national benchmarking of road 

safety performance and development based on different types of road safety 

indicators. Although it is mathematical in nature, we should say that the theory 

behind this technique is straightforward and it is currently ready for 

implementation at the practical level. In addition, the added value for road 

safety policymakers lies in the development of a composite road safety 

performance index as a facility for each country to assess its own overall road 

safety performance, and moreover, in the formulation of policy 

recommendations with respect to both target setting and action prioritizing to 

improve the level of road safety in their country. All this, in turn, forms a strong 

foundation for future research, which will be elaborated in the next section. 

9.2 Topics for future research 

Road safety is an important policy area that can benefit from the implementation 

of various inter-national benchmarking practices. In this respect, an appropriate 

selection of road safety indicators, a harmonized data collection procedure, and 

a scientifically sound methodology are the fundamental conditions of making 

meaningful comparisons between countries, and also the key to designing more 

effective safety policies. However, given the fact that road safety research 

towards a thorough understanding of this complex problem is still an ongoing 

process, the degree of maturity of the developed road safety indicators and the 

availability and quality of indicator data are still open for discussion, and a 

number of methodological challenges remain for future research. 

Currently, most of the road safety product benchmarking practices focus entirely 

on fatalities, which however, represent only the ‘tip of the iceberg’ of the road 

crash problem and could lead up to an overestimation of this aspect. Therefore, 

a first extension of the research in this respect is to take a larger picture of the 

impact of road crashes into account, such as the number of crashes and the 

range of injury severities. In Chapter 4, an initial attempt of including the 
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number of serious injuries as an additional indicator for road safety product 

benchmarking was carried out. However, it is not yet a mature indicator due to 

large differences in reporting practices in different countries. Consequently, 

international cooperation in terms of crash/injury data collection and 

harmonization is sorely required, which will be beneficial to all bodies that are 

concerned with road safety management. Second, from the view of exposure 

selection, the total number of motor vehicles and the number of motor vehicle 

kilometres travelled rather than the number of passenger cars and the 

passenger-kilometres travelled are much more preferred to use as a true 

representation of the level of a country’s motorization, as soon as the data on 

these measures are available. Moreover, there are still some other variables that 

can be used as measures of exposure under specific circumstances, such as road 

length, fuel consumption, the number of driving license holders, and so on. They 

are all potential candidates to be applied for road safety risk evaluation in the 

future. In addition, analysis at the disaggregated level of both road safety 

outcomes and exposure (such as based on age group, gender, person class, 

transport mode, and area) is also valuable as disaggregated data allow the 

examination of unique interactions in a way that aggregated data cannot. 

With respect to the road safety programme benchmarking, indicators developed 

for most of the risk factors in this research are extensive and comprehensive 

based on our current knowledge. However, reliable and comparable indicator 

data, especially concerning alcohol, speed, and emergency medical services, are 

still lacking to some extent. Regarding the factor of road, only limited and proxy 

indicators and data are currently available for benchmarking purposes. 

Knowledge on the quantitative relations between the road network, road design 

elements and road safety therefore needs further exploration, and a variety of 

appropriate indicators corresponding to this aspect call for different kinds of 

development efforts relating to concepts, methodologies, and data collection 

procedures. Moreover, other risk factors that have a strong relationship with 

road safety or a large contribution to road crashes or casualties, such as 

inattentive driving as a result of mobile technology, could also be incorporated in 

the future and corresponding indicators developed and refined. Furthermore, by 

collecting the safety performance data at regular intervals, systematic country 
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comparison over time could be conducted so as to evaluate the results of policy 

interventions and to monitor the progress in road safety performance. 

In addition to the road safety product and programme benchmarking 

investigated in this research, other aspects of the road safety management and 

improvement process, such as road safety strategic and organizational 

benchmarking, which are used to compare national road safety strategies, 

resources, management and the organizational framework, are also desirable to 

be implemented in the future, and the interrelation between different 

benchmarking practices can be studied in detail. 

From the view of the methodology used in this research, the technique of DEA 

has proven to be a powerful benchmarking tool for providing interesting insights 

and valuable recommendations in both road safety product and programme 

benchmarking studies, and its various extensions, including the DEA-based road 

safety model (DEA-RS), the categorical DEA-RS model, the multiple layer DEA-

based composite index model (MLDEA-CI), the interval MLDEA-CI model, the 

imprecise DEA-CI model, and the fuzzy (ML)DEA-CI model, have been 

successfully developed and applied to handle the specific research issues 

associated with the indicators and the data. In the future, due to the continuous 

development and update of appropriate indicators for different benchmarking 

purposes, some new methodological challenges will probably appear (such as 

the treatment of negative indicator values, undesirable factors, and non-

discretionary (or environmental) variables), which have to be tackled 

accordingly and the solutions should be able to be correctly integrated with the 

existing models. Moreover, as indicated in the beginning of this thesis, DEA is 

regarded as a body of concepts and methodologies that has evolved since the 

seminal work of Charnes, Cooper & Rhodes (1978). Therefore, apart from the 

CCR model introduced and applied in this research, the added value of using a 

large number of other DEA models (such as the BCC model, the additive model, 

the slacks-based measure of efficiency, and the multiplicative model) can also 

be investigated in road safety benchmarking studies in the future. Furthermore, 

since the results obtained from DEA are sensitive to country selection, indicator 

specification, data quality and chosen weight restrictions, more research 

attention should be paid to the sensitivity and stability analysis of DEA [Simar & 

Wilson, 2000]. In this respect, statistical tests for DEA [Jenkins & Anderson, 
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2003], bootstrapping in DEA [Tortosa-Ausina et al., 2008], and stochastic DEA 

[Huang & Li, 2001] are all worthwhile to be explored. Moreover, it would be 

interesting to perform in the future an empirical investigation on whether 

underperforming countries would choose the specific benchmarks indicated in 

this research as it will help in determining the validity of the methodology.  

Inter-national benchmarking of road safety performance and development has 

and will continue to play an important role in improving a country’s road safety 

level. Nevertheless, from the road safety policy point of view, we should always 

keep in mind that benchmarking does not represent the end of the process, but 

is an ongoing diagnostic management tool requiring effective strategies, 

sufficient allocation of resources, successful implementation, and persistent 

monitoring and evaluation in order to achieve continuous improvement over 

time. 
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Appendix I. The dendrograms of hierarchical 

clustering analysis 

The dendrograms from three clustering techniques, i.e., the Ward’s method, the 

Centroid Linkage method, and the Average Linkage (between and within groups) 

method in SPSS 17.0, are shown as follows:  

 

Figure AI-1 Dendrogram using the Ward’s method 
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Figure AI-2 Dendrogram using the Centroid Linkage method 
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Figure AI-3 Dendrogram using the Average Linkage (between groups) method 
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Figure AI-4 Dendrogram using the Average Linkage (within groups) method 
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Appendix II. The evolution in EFFCH, TECHCH, 

and MI of each of the 28 European countries, 

2000-2009 

Based on the DEA-RS-MI model, the evolution in MI of each of the 28 European 

countries and its decomposition into technical and efficiency changes in 2000-

2009 are shown as follows: 
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Appendix III. The evolution of the number of 

serious injuries and fatalities of the 15 

European countries, 2001-2008 
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Samenvatting 

Verkeersslachtoffers en verkeersdoden worden tegenwoordig beschouwd als één 

van de belangrijkste volksgezondheidsaangelegenheden waarvoor inspanningen 

met het oog op een efficiënte en duurzame preventie vereist zijn. Omdat steeds 

meer landen maatregelen nemen om hun verkeersveiligheidssituatie te 

verbeteren, is er een groeiende behoefte voor landen om hun eigen 

verkeersveiligheidsprestaties te evalueren, om deze te vergelijken met die van 

andere landen, en om bovendien te leren van “goede landen” bij de ontwikkeling 

van hun eigen verkeersveiligheidsbeleid. Dit doctoraatsonderzoek richt zich op 

het benchmarken van het verkeersveiligheidsproduct enerzijds en het 

verkeersveiligheidsprogramma anderzijds op basis van indicatoren gerelateerd 

aan het verkeersveiligheidsrisico en de verkeersveiligheidsprestatie voor 28 

Europese landen. De data envelopment analyse (DEA) techniek, die 

oorspronkelijk ontwikkeld werd om de relatieve efficiëntie te beoordelen van een 

homogene set van eenheden op basis van meerdere inputs en outputs, werd 

bestudeerd en toegepast doorheen dit proefschrift. Meerdere uitbreidingen van 

de methodologie werden onderzocht en voorgesteld om te beantwoorden aan de 

specifieke onderzoeksvragen. Deze benchmark studie op vlak van 

verkeersveiligheid verschafte ons nuttige inzichten waardoor waardevolle 

aanbevelingen met betrekking tot verkeersveiligheid aan beleidsmakers gegeven 

konden worden, bijvoorbeeld door te wijzen op haalbare doelstellingen en het 

formuleren van aandachtspunten om het verkeersveiligheidsniveau te 

verbeteren.  

Bij het benchmarken van het verkeersveiligheidsproduct lag de nadruk op 

verscheidene finale verkeersveiligheidsuitkomsten (zoals dodelijke slachtoffers). 

Hierbij werden landen vergeleken wat betreft hun verkeersveiligheidsrisico 

gedefinieerd op basis van verschillende blootstellingsmaten, evenals de evolutie 

hierin over de tijd. Meer specifiek ontwikkelden we een DEA-gebaseerd 

verkeersveiligheidsmodel (DEA-RS) om de globale verkeersveiligheid van de 28 

Europese landen te evalueren door tezelfdertijd drie belangrijke risico-

indicatoren in rekening te brengen (zijnde het aantal doden per miljoen 

inwoners, het aantal doden per 10 miljard afgelegde personenkilometers, en het 

aantal doden per miljoen personenwagens). Op deze manier konden we de 
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‘efficiëntie’ van elk land identificeren. Na een clusteranalyse om landen die 

inherente gelijkenissen vertonen te groeperen, pasten we verder een 

categorisch DEA-RS model toe om de best presterende en ondermaats 

presterende landen in elke groep te identificeren. Zo konden we nuttige 

voorbeeldlanden identificeren, alsook een reeks praktische doelstellingen met 

betrekking tot verkeersdoden bepalen voor de landen die ondermaats presteren.  

Om bovendien de dynamische verkeersveiligheidsontwikkeling in elk land te 

vatten, pasten we de Malmquist productiviteitsindex toe om veranderingen in de 

verkeersveiligheidsprestaties van landen doorheen de tijd te beoordelen. Hierbij 

keken we niet enkel naar de evolutie van de finale uitkomsten op vlak van 

verkeersveiligheid binnen een bepaalde periode, maar ook naar de veranderingen 

in blootstelling tijdens dezelfde periode. Bijgevolg leverde dit objectievere 

resultaten op dan de resultaten die gebaseerd zijn op de traditionele indicator, 

waar enkel procentuele veranderingen in het aantal verkeersdoden gemeten 

worden. De opdeling van de index in efficiëntie verandering (of “catch-up” effect) 

en technische verandering (of “frontier-shift” effect) verstrekte bovendien 

waardevolle informatie over het feit of de verkeersveiligheidsverbetering in elk 

land werd bereikt door een land-specifieke vooruitgang ten opzichte van de 

andere landen die werden beoordeeld of enkel door een algemene verbetering op 

technologisch vlak.  

Bovendien onderzochten we in het kader van verkeersveiligheidsproduct 

benchmarking de mogelijkheid om ook het aantal zwaargewonden op te nemen 

als extra indicator van de finale uitkomsten van verkeersveiligheid en 

analyseerden we de impact hiervan op de rangschikking van de landen. In het 

DEA-RS model werden verschillende types gewichtsbeperkingen geformuleerd om 

de verhouding tussen verkeersdoden en zwaargewonden aan te geven. Dit 

leverde interessante resultaten op die ons inspireerden om dit model in de 

toekomst toe te passen op een zo uitgebreid mogelijke set van finale 

verkeersveiligheidsuitkomsten.  

Met betrekking tot het benchmarken van het verkeersveiligheidsprogramma, dat 

gericht is op het vergelijken van de mens-voertuig-infrastructuurprestaties 

tussen landen en zo meer gedetailleerde aspecten van het ongevals- en 

verwondingsproces verklaren, werden verkeersveiligheidsindicatoren op het 
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niveau van tussenliggende verkeersveiligheidsuitkomsten bestudeerd. De focus 

van dit onderzoek lag hierbij op de combinatie van individuele indicatoren in een 

samengestelde verkeersveiligheidsprestatie-index. Meer bepaald ontwikkelden we 

voor zes belangrijke verkeersveiligheidsfactoren (alcohol, snelheid, 

beschermende uitrusting, voertuig, weg, en medische hulpverlening) een 

uitgebreide set van hiërarchisch gestructureerde indicatoren om de 

verkeersveiligheidsprestatie van een land weer te geven. Hierbij werden diverse 

internationale gegevensbronnen geraadpleegd die indicatorwaarden verstrekken 

voor een grote reeks landen. In totaal werden 32 kwantitatieve prestatie-

indicatoren gespecificeerd waarvoor gegevens verzameld (of berekend) werden 

voor 28 Europese landen, en de noodzakelijke gegevensverwerkingsprocedures 

(inclusief het detecteren van uitschieters en de imputatie van ontbrekende 

gegevens) werden uitgevoerd.  

Om het multidimensionele concept van verkeersveiligheidsprestatie te vatten 

(hetgeen niet vastgelegd kan worden in één enkele indicator), onderzochten we 

of de DEA techniek gebruikt kan worden om een samengestelde 

verkeersveiligheidsprestatie-index te verkrijgen op basis waarvan landen met 

elkaar vergeleken kunnen worden. Hiervoor werd een meerlagig DEA-gebaseerd 

indexmodel (MLDEA-CI) opgesteld. Gebruikmakend van dit model werd de meest 

optimale verkeersveiligheidsprestatie-indexscore (berekend als combinatie van 

32 hiërarchische prestatie-indicatoren) voor elk van de 28 Europese landen 

bepaald. De best presterende landen werden onderscheiden van de ondermaats 

presterende en landen werden gerangschikt. Een duidelijke link met het globale 

verkeersveiligheidsrisico (uit de benchmarking van het 

verkeersveiligheidsproduct) werd gevonden. Voorts werden land-specifieke 

voorbeeldlanden geïdentificeerd voor de ondermaats presterende landen en werd 

voor een land een goed inzicht verkregen in de domeinen waarin ondermaats 

gepresteerd werd door de indicatorgewichten te analyseren die in elke laag van 

de hiërarchie waren toegewezen. De resultaten geven zo een richting aan voor 

het verhogen van de verkeersveiligheidsprestatie in een land.  

Bij de ontwikkeling van een samengestelde verkeersveiligheidsprestatie-index 

werd met het oog op een zinvolle en betrouwbare benchmarking bovendien 

onderzoek gedaan naar twee praktische uitdagingen op het gebied van gegevens 

(inclusief ontbrekende waarden en kwalitatieve indicatoren). Wat betreft de 
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invloed van ontbrekende data in de dataset op de definitieve indexscore van de 

28 Europese landen, werd gebruik gemaakt van intervallen, bepaald uit 

meervoudige imputatie, waarin de werkelijke waarden worden verondersteld te 

liggen. Een interval MLDEA-gebaseerd CI model werd later toegepast om voor 

ieder land een maximum en minimum indexscore te verkrijgen die 

respectievelijk overeenkomen met de meest gunstige en meest ongunstige optie. 

Het gebruik van een interval in plaats van de exacte indexscore voor elk land 

benadrukte de onderliggende imperfectie van de indicatorgegevens, en was een 

geloofwaardigere weergave van de globale verkeersveiligheidsprestatie van een 

land. Verder onderzochten we twee benaderingen binnen het DEA-domein om 

kwalitatieve (of ordinale) gegevens te modelleren in de context van een 

samengestelde index, met name het “imprecise DEA-based CI model” en het 

“fuzzy DEA-based CI model”. Een enkele indexscore voor elk land werd 

verkregen door gebruik te maken van het op IDEA-gebaseerde CI model, 

hetgeen gemakkelijk te interpreteren en gebruiken is, terwijl in het op FDEA-

gebaseerde CI model fuzzy indexscores verkregen werden die geschikt zijn om 

onzekerheden, eigen aan het menselijk denken, te vatten. De hoge mate van 

overeenstemming van het resultaat (de rangschikking) van deze twee modellen 

bewees hun robuustheid en impliceerde de mogelijkheid om één van beide 

benaderingen te gebruiken voor het modelleren van kwalitatieve gegevens.  

Om te besluiten, is het internationale benchmarken van 

verkeersveiligheidsprestaties en de ontwikkeling hierin een veelbelovende stap 

om het verkeersveiligheidsniveau van een land te verbeteren. In dit proefschrift 

identificeerden we de belangrijkste onderzoeksuitdagingen met betrekking tot 

het benchmarken van het verkeersveiligheidsproduct en -programma, gebaseerd 

op verschillende types van verkeersveiligheidsindicatoren en ontwikkelden we de 

gepaste methodologie om deze uitdagingen te benaderen. Dit onderzoek droeg 

hoofdzakelijk bij tot de literatuur met betrekking tot het gebruik van de DEA-

techniek en haar diverse uitbreidingen in het kader van zinvolle 

verkeersveiligheid benchmarkpraktijken. Hoewel het wiskundig van aard is, is de 

achterliggende theorie bevattelijk en kan het momenteel praktisch 

geïmplementeerd worden. Vanuit het standpunt van het 

verkeersveiligheidsbeleid en gebaseerd op de aanbevelingen uit de benchmark 

studies die betrekking hebben op het bepalen van doelstellingen en prioriteiten 
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stellen aan acties, vormen het leren over goede praktijken die toegepast worden 

in voorbeeldlanden en het (opnieuw) formuleren van concrete 

veiligheidsstrategieën en -programma's bovendien de eerstvolgende te nemen 

stap voor elk land. Dit zal op haar beurt nieuwe uitdagingen en kansen creëren 

voor toekomstig onderzoek.  
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