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Evaluating the performance of Cost-based Discretization versus 

Entropy- and Error-based Discretization 

 
 

Statement of Scope and Purpose 

Given its importance, many researchers have already contributed to the issue of discretization in 

the past. However, to the best of our knowledge, no efforts have been made yet to include the 

concept of misclassification costs to find an optimal multi-split for discretization purposes.  For 

this reason, this new concept is introduced and explored in this article by means of operations 

research techniques.  

 

Abstract 

Discretization is defined as the process that divides continuous numeric values into intervals of 

discrete categorical values. In this article, the concept of cost-based discretization as a 

preprocessing step to the induction of a classifier is introduced in order to obtain an optimal multi-

interval splitting for each numeric attribute.  Cost-based discretization is particularly useful in the 

case where the cost of making errors is not equal. A transparent description of the method and the 

steps involved in cost-based discretization are given.  Furthermore,  its performance against two 

other well-known methods, i.e. entropy-based discretization and pure error-based discretization is 

examined.  To this end, experiments on several datasets, taken from the UCI Repository on 

Machine Learning were carried out.  In order to compare the different methods, the area under the 

Receiver Operating Characteristic (ROC) graph was used and tested on its level of significance. 

For most datasets the results show that cost-based discretization outperforms entropy- and error-

based discretization.   

Keywords: Discretization, ROC-curve, cost-sensitive learning 
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1.  Introduction 

Discretization is defined as the process that divides continuous numeric values into intervals of discrete 

categorical values [1].  Given its importance, many researchers have already contributed to the issue of 

discretization in the past [2-4]. However also in more recent publications, the topic still remains an 

intriguing research domain [5-7]. Many algorithms which focus on learning decision trees from data, 

such as C4.5 [8] and CART [9], originally have not been designed to handle continuous numeric 

attributes very well.  These methods are designed to construct decision trees by recursively selecting an 

attribute to split the instance space in smaller subgroups where, in the case of C4.5, the number of splits 

per attribute is dependent on the number of distinct attribute values, which for a continuous attribute 

would result in too many splits.  This may lead to overfitting, with less accurate performance of the 

classifier on unseen data as a result. Therefore, during the construction of the decision tree, continuous 

attributes are divided into discrete categorical values by grouping some continuous values together.  

The number of intervals subsequently determines the number of splits per attribute.  However, instead 

of discretizing continuous valued attributes on-the-fly (i.e. during decision tree construction), 

discretization can also be carried out as a pre-processing step before the induction of the tree. In this 

case, discretization itself may be considered as a form of knowledge discovery in that critical values in 

a continuous domain may be revealed [10].  Furthermore, according to Catlett [11], for very large 

datasets, discretization as a pre-processing step significantly reduces the time to induce a classifier. 

To the best of our knowledge, no efforts have been made yet to include the concept of misclassification 

costs to find an optimal multi-split.  This is however very important in the case where the cost of 

making errors is not equal.  Therefore, the objective of this paper is to introduce the concept of cost-

based discretization and to evaluate its performance against two other well-known discretization 

methods, i.e. entropy- and error-based discretization.  This paper is organized as follows. In section 2 a 

brief overview of the existing literature on discretization is provided. From a conceptual point of view, 

the effectiveness of cost-based discretization in finding the critical cutpoints that minimize an overall 

cost function is explained in section 3 and the methodology behind cost-based discretization is shown 

by means of an example. In section 4 an empirical evaluation of these methods is carried out on several 

datasets, taken from the UCI Repository on Machine Learning [12].  Finally, some conclusions and 

recommendations for further research are presented in section 5.  
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2.  Discretization Methods 

In essence, the process of discretization involves the grouping of continuous values into a number of 

discrete intervals.  However, the decision which continuous values to group together, how many 

intervals to generate, and thus where to position the interval cutpoints on the continuous scale of 

attribute values is not always identical for the different discretization methods. Therefore, a brief 

literature overview of previous research on discretization is presented. This overview can be 

characterized along five different axes: the type of evaluation function being used, global versus local, 

static versus dynamic, supervised versus unsupervised and top-down versus bottom-up discretization. 

EVALUATION FUNCTION 

Since discretization involves grouping continuous values into discrete intervals, all discretization 

methods differ with respect to how they measure the quality of the partitioning.  Error-based methods, 

such as for example Maass [13], evaluate candidate cutpoints against an error function and explore a 

search space of boundary points to minimize the sum of false positive (FP) and false negative (FN) 

errors on the training set. In other words, given a fixed number of intervals, error-based discretization 

aims at finding the best discretization that minimizes the total number of errors (FP and FN) made by 

grouping together particular continuous values into an interval. Entropy-based methods, such as for 

example Fayyad and Irani [2], are among the most commonly used discretization measures in the 

literature. These methods use entropy measures to evaluate candidate cutpoints.  This means that an 

entropy-based method will use the class information entropy of candidate partitions to select 

boundaries for discretization. Class information entropy is a measure of purity and it measures the 

amount of information which would be needed to specify to which class an instance belongs. It 

considers one big interval containing all known values of a feature and then recursively partitions this 

interval into smaller subintervals until some stopping criterion, for example MDLP (Minimum 

Description Length Principle) [14] or an optimal number of intervals is achieved.  Other evaluation 

measures include Gini, dissimilarity and the Hellinger measure. A detailed description of the method 

can be found in Fayyad and Irani [2].  

 

GLOBAL VERSUS LOCAL DISCRETIZATION 

The distinction between global [15] and local [8] discretization methods is dependent on when 

discretization is performed.  Global discretization handles discretization of each numeric attribute as a 
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pre-processing step, i.e. before induction of a classifier whereas local methods, like C4.5 carry out 

discretization on-the-fly (during induction).  Empirical results have indicated that global discretization 

methods often produced superior results compared to local methods since the former use the entire 

value domain of a numeric attribute for discretization, whereas local methods produce intervals that are 

applied to subpartitions of the instance space [16]. 

 

STATIC VERSUS DYNAMIC DISCRETIZATION 

The distinction between static [11,2,3,17] and dynamic [4,5] methods depends on whether the method 

takes feature interactions into account.  Static methods, such as binning, entropy-based partitioning and 

the 1R algorithm, determine the number of partitions for each attribute independent of the other 

features.  In contrast, dynamic methods conduct a search through the space of possible k partitions for 

all features simultaneously, thereby capturing interdependencies in feature discretization. 

 

SUPERVISED VERSUS UNSUPERVISED DISCRETIZATION 

Another distinction can be made dependent on whether the method takes class information into account 

to find proper intervals or not.  Several discretization methods, such as equal width interval binning or 

equal frequency binning, do not make use of class membership information during the discretization 

process.  These methods are referred to as unsupervised methods [18].  In contrast, discretization 

methods that use class labels for carrying out discretization are referred to as supervised methods 

[17,2]. Previous research has indicated that supervised methods are better than unsupervised methods 

[16]. 

 

TOP-DOWN VERSUS BOTTOM-UP DISCRETIZATION 

Finally, the distinction between top-down [2] and bottom-up [19] discretization methods can be made. 

Top-down methods consider one big interval containing all known values of a feature and then 

partition this interval into smaller and smaller subintervals until a certain stopping criterion, for 

example Minimum Description Length (MDLP), or optimal number of intervals is achieved.  In 

contrast, bottom-up methods initially consider a number of intervals, determined by the set of boundary 

points, to combine these intervals during execution until a certain stopping criterion, such as a χ² 

threshold, or optimal number of intervals is achieved. 



 6

 

Later on in the text, we will position our own developed cost-based discretization method within this 

existing framework. For now, we continue with a conceptual overview of our method. 

3.  Cost-based Discretization 

The objective of our cost-based discretization approach is to take into account the cost of making errors 

instead of just minimizing the total sum of errors, such as in error-based discretization.  By means of 

the introduction of a misclassification cost matrix, candidate cutpoints are then evaluated against a cost 

function (instead of an error function) to minimize the overall misclassification cost of false positive 

and false negative errors.  The specification of this cost function is dependent on the costs assigned to 

the different error types (FP and FN). 

 

In order to understand our contribution of cost-based discretization, it is shown in the next section that 

the intervals produced by error-based discretization cannot be optimal in a situation where the costs of 

FP and FN errors are unequal. 

 

3.1  Finding Optimal Cutpoints for Cost-Based Discretization 

 

Suppose we have an attribute A and a binary target variable with class values ‘X’ and ‘Y’. ‘X’ and ‘Y’ 

have equally sized frequency distributions but the second distribution is shifted in a way that they have 

a nonempty intersection (see figure 1). Finding the optimal discretization in this case would then 

involve the identification of all boundary points. 

 

<INSERT FIGURE 1 HERE> 

 

Intuitively, a boundary point is a value V in between two sorted attribute values U and W such that all 

examples having attribute value U have a different class label compared to the examples having 

attribute value W, or U and W have a different class frequency distribution.  
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Formally, the concept of a boundary point is defined as: “A value T in the range of the attribute A is a 

boundary point if in the sequence of examples sorted by the value of A, there exist two examples s1,  

s2 ∈ S, having different classes, such that valA(s1) < T < valA(s2); and there exists no other example  

s’ ∈ S such that valA(s1) < valA(s’) < valA(s2).” [20] 

 

Among all identified boundary points (which are not all shown on figure 1 for clarity), C1..C5 are 

important candidate cutpoints for error-based discretization.  In this example, when the attribute A has 

a value in the interval [C1, C2] or [C2, C3] ‘X’ is the predicted class label, otherwise ‘Y’.  Therefore, the 

error-based discretization method, aiming at minimizing the total sum of errors, will merge [C1, C2] and 

[C2, C3] into [C1, C3] with label ‘X’, and [C3, C4] and [C4, C5] into [C3, C5] with label ‘Y’ respectively. 

However, in the cost-based discretizer, the goal is to minimize the total cost of misclassifications 

instead of the total sum of errors.  In order to calculate this cost, a misclassification cost is assigned to 

every error type (FP and FN).  For instance, assume that misclassifying ‘X’ is twice as costly as 

misclassifying ‘Y’.  In that case, given the candidate cutpoints for error-based discretization, the cost-

based discretizer will merge [C1, C2], [C2, C3] and [C3, C4] into [C1, C4] due to the fact that the total 

number of X cases in [C3, C4] multiplied by 2 is larger than the number of Y cases in the same interval.  

The remaining two intervals [C1, C4] and [C4, C5] will minimize the total misclassification cost, given 

the positions of the cutpoints.  

 

However, it is clear that the optimal solution for cost-based discretization has not yet been reached.  

The optimal solution is given by [C1, a] and [a, C5] where ‘a’ is the intersection point where it holds 

that |ak|=|kl|.  In other words, the cost-based discretization technique will select a different boundary 

point to serve as the cutpoint for the two intervals, namely that particular attribute value after which the 

misclassification cost of ‘X’ by predicting the remaining attribute values to belong to class ‘Y’ is less 

than the misclassification cost of ‘Y’. 

 

3.2  Methodology 

In order to illustrate the methodology behind cost-based discretization, in this section a hypothetical 

example of a continuous numeric attribute with 15 values is considered. The distribution of the 

different attribute values together with their class values is given in table 1. 
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<INSERT TABLE 1 HERE> 

 

In a first step, the method will sort the attribute values and will try to identify all boundary points. 

For the example cited above, 7 boundary points were determined. The position of the different 

boundary points is illustrated in figure 2. 

 

<INSERT FIGURE 2 HERE> 

 

These boundary points will serve as potential cutpoints for our final discretization. In previous work 

[20] it has been proven that it is sufficient to consider boundary points as potential cutpoints, because 

optimal splits always fall on boundary points.   

 

As stated before, in order to calculate this cost a misclassification cost to every error type (FP and FN) 

is assigned.  For instance, assume that misclassifying ‘X’ is twice as costly as misclassifying ‘Y’. The 

minimal cost can then be calculated by multiplying the false positive cost (respectively, false negative) 

by the false positive (respectively, false negative) errors made as a result of assigning one of both 

classes to the interval and by picking the minimal cost of both assignments. For instance, suppose we 

want to calculate the minimum cost in the interval 1-6. Assigning the class value ‘X’ to the interval 1-6 

results in 3 errors. The assumption was made that misclassifying ‘X’ is twice as costly as 

misclassifying ‘Y’, so the total cost will be: 3 * 2 = 6. Assigning the class value ‘Y’ to the interval 1-6 

results in 5 errors, so the total cost will be: 5 * 1 = 5. This means that for this interval the minimum cost 

is 5. The procedure for finding the minimum costs for the other intervals is similar and is shown in 

table 2. Important to notice however is that for a real-world dataset, it might be difficult to determine 

exact cost parameters. Therefore, cost values of FP and FN only reflect their relative importance 

against each other and also may depend on the user’s domain knowledge about the problem. 

 

<INSERT TABLE 2 HERE> 
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The next step will be to set a maximum number of intervals (n) and to put the minimum costs of table 2 

in a network, whose size depends on the value of n. This value is a maximum value and as our method 

chooses the total minimal cost of the network, the algorithm will still be able to choose less intervals 

than the number specified by the user.  

Suppose that in our example the value of n is set to 3, it is then possible to construct a network like the 

one  shown in figure 3 (not all costs are included for the sake of visibility).  

 

<INSERT FIGURE 3 HERE> 

 

The optimisation problem can then be formulated as follows: 

This is a typical formulation for the shortest path network, which is a well-known problem in 

operations research [21]. The values xij, yjk and zkl are Boolean and represent whether the path is chosen 

or not chosen. The values aij, bjk and ckl represent the different costs to take a particular path. The 

position of cutpoints can be determined by solving this shortest path problem by means of integer 

programming. The actual size of the network for a particular dataset and its corresponding optimisation 

problem depends on the number of intervals (n) and the number of boundary points for the attribute to 

be discretized.   

 

A full understanding of this methodology enables us now to position our discretization method along 

the five axes, as they were presented in section 2. The cost-based discretization method presented in 

this paper, is an error-based, global, static, supervised method combining a top-down and bottom-up 

approach. However, it is not just an error-based method. As said before, by means of the introduction 
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j

ijij xa * + ∑
≥ jkj

jkjk yb
,

* + ∑
k

klkl zc *  

Subject to  ∑ =
j

ijx 1   and  { }1,0;; ∈kljkij zyx  

  ∑ =
k

klz 1       

 :j∀ ∑
≥

=
jk

ijjk xy      

 :k∀ ∑
≤

=
kj

kljk zy        

i ∈ { }1  

j ∈ { }7,..,1  

k ∈ { }7,..,1  

l ∈ { }7  



 10

of a misclassification cost matrix, boundary points are evaluated against a cost function (instead of an 

error function) to minimize the overall misclassification cost of false positive and false negative errors 

instead of just the total sum of errors. It is a global method, since discretization is carried out as a pre-

processing step to induction. Furthermore, cost-based discretization is static, since we discretize each 

attribute separately. It is supervised, since we use class information to find an optimal interval 

partitioning. Finally, it combines a top-down with a bottom-up approach since all the boundary points 

are evaluated simultaneously by an integer programming approach.  

 

By increasing the error-cost of a particular class (e.g. class ‘X’ in the example), the frequency of this 

class is leveraged so that this can result in different minimum costs and in another positioning of the 

final cutpoints. Our method should therefore perform better than error-based discretization because this 

method suffers from a weakness which was identified by Kohavi and Sahami [10], where they showed 

that the error-based discretization method will never generate two adjacent intervals when in both 

intervals a particular class prevails, even when the class frequency distributions differ in both intervals. 

Kohavi and Sahami [10] state that the reason is that two adjacent intervals can always be collapsed into 

one interval with no degradation in the error.   

In the next section, it will be validated whether this theoretical assumption can be verified and whether 

our method performs better than entropy- and error-based discretization. 

4.  Empirical Evaluation 

4.1  Approach 

 

In our experimental study, we have chosen 7 datasets, taken from the UCI Repository on Machine 

Learning [12].  Each dataset has several continuous features and the target attribute is always a 2-class 

nominal attribute. Per dataset, all numeric attributes were discretized separately for different 

misclassification costs ranging from false positive cost parameter 1 (pure error-based) to 8 (false 

positive errors are severely punished relative to false negative errors).  For the sake of simplicity, this 

cost parameter is called the discretization cost.  For the maximum number of intervals (parameter n) we 

have followed the recommendations made by Elomaa & Rousu [22] to keep the value of n relatively 

low. For our experiments we have arbitrarily set the value of n to 8. When n is not allowed to be too 
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high, this will have a positive impact on the interpretability of the classification tree after induction, as 

the tree is prevented from growing too wide. Furthermore, small and narrow trees are less vulnerable to 

overfitting. In addition, as cost-based discretization  finds the total minimum cost of the network, the 

method is able to choose less intervals than the maximum number specified.  

 

In order to compare the performance of the different methods, we used repeated 10-fold cross 

validation and induced a C4.5 classifier on the discretized data. C4.5 [8] constructs classification trees 

by recursively splitting the instance space in smaller subgroups until the subgroup contains only 

instances from the same class (a pure node), or the subgroup contains instances from different classes 

(unpure) but the number of instances in that node is too small to be split further. Typically, the tree is 

allowed to grow its full size after which it is pruned back upwards in order to increase its generalisation 

power and to reduce overfitting. In contrast to CART [9], which produces binary splits on the 

attributes, C4.5 creates multiple branches per split, i.e. one for each interval after discretization of that 

attribute.  

 

Per method, 8 models were built, by increasing the FP cost, as well from 1 to 8. This parameter is 

called the misclassification cost. It should be clear for the reader that a higher discretization cost results 

in a different position of the final cutpoints, while a higher FP misclassification cost will result in a 

lower FP error rate (equivalent with a higher TN rate) and in a higher FN error rate (equivalent with a 

lower TP rate). The FP error rate and the TP rate will be used to evaluate the different methods. 

However, as explained before, both (discretization and misclassification cost) are introduced to cope 

with situations where the cost of making errors is not equal.  

 

Varying the class misclassification cost in the cost matrix, will allow us to define for each inducer a  

Receiver Operating Characteristic (ROC) curve [23]. ROC analysis uses what is called a ROC space to 

give a graphical representation of the classifiers performance independently of class distributions or 

error costs. This ROC space is a coordinate system where the rate of true positives is plotted on the Y-

axis and the rate of false positives is plotted on the X-axis. The true positive rate is defined as the 

fraction of positive cases classified correctly relative to the total number of positive examples. The 
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false positive rate is defined as the fraction of negative cases classified erroneously relative to the 

number of all negative examples.  

 

Our ROC curves, were averaged over the ten train and test partitions. From a visual perspective, one 

point in the ROC curve (representing one classifier with given parameters) is better than another if it is 

located more to the north-west (TP is higher, FP is lower or both) on the ROC graph [23].  For our 

cost-based method, we have chosen, for the sake of visibility, to represent the classifier, with its 

corresponding discretization cost, which performs best. Furthermore, statistical hypothesis testing was 

applied to compare the relative performance of the different models. A detailed procedure about how 

this was done, is described in the next section.  

 

4.2  Comparing ROC Curves 

 

The difficulty of comparing several ROC curves is that, generally speaking, one ROC curve does not 

completely dominate another (the first curve does not lie entirely above the second one), but intersects 

at one or more points.  

This is shown in figure 4 for the Bupa liver disorders dataset by means of example. ROC curves for the 

error, entropy and cost-based discretization methods were represented in the figure, since these are the 

methods under evaluation, along with the alternative of not discretizing prior to induction. In the latter 

case, discretization is of course carried out while inducing the C4.5 classifier.  

<INSERT FIGURE 4 HERE> 

 

To be able to compare the performance of different classifiers with ROC curves measured on the same 

data, a single number measure which reflects the performance of the classifiers is needed. The area 

under the ROC curve (AUC) is generally accepted as the preferred single number measure. Because 

random guessing produces the diagonal line between (0,0) and (1,1), which has an area of 0.5, no 

realistic classifier should have an AUC less than 0.5. Trapezoidal integration was used to calculate the 

AUC, according to the formula [24]: 
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For the example shown above, the AUC was respectively 0.6661, 0.6199, 0.6974 and 0.7207 for the 

not discretized, entropy-, error- and cost-based discretization options.  

 

In order to compare classifiers, it is necessary to estimate the standard error of the area under the curve, 

SE(AUC). The method for doing this, which is applicable to an empirically derived curve, is to use the 

standard error of the Wilcoxon statistic, SE(W) [24]: 
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The SE (AUC) for the bupa liver disorders dataset was respectively 0.0299, 0.0308, 0.0291 and 0.0283 

for the different discretization alternatives.  

To assess whether the differences between the AUCs computed from the same data set are statistically 

significant, hypothesis testing can be employed. Hanley & McNeil [25] define the following test 

statistic: 

Z=
21

2
2

2
1

21

2 sesersese

AUCAUC

⋅−+

−
, where (2) 

se1 and se2 are the standard errors (Equation 1) for AUC1 and AUC2 respectively, and r is a value 

which represents the correlation between the two areas.  

 

One should take into account this correlation coefficient because when computed from the same data, 

AUC1 and AUC2 are very likely to be correlated. The value r is a function of the average value of two 

intermediate correlation coefficients and of the average areas. The intermediate coefficients are the 

correlations between the two classifiers’ certainty values for objects with negative decision and positive 
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decision, respectively. These coefficients can be computed using Kendall’s (τ) measure of correlation 

[26]. For a tabulation of r, we refer to Hanley & McNeil [25].  

 

Z is standard normally distributed under the hypothesis that the two areas are equal, and can be used to 

test -under a certain level of significance- whether the two areas are statistically likely to be different. 

Therefore, one should calculate the critical value of Z and depending on the selected significance level 

α, reject or not reject the hypothesis that both areas are equal. The Z-values for the bupa liver disorders 

dataset were respectively 2.5505, 4.6161 and 1.107 for the comparison of the cost-based discretization 

method with the not discretized, entropy- and error-based discretization options. In our discussion of 

the results (see section 4.3), p-values were used to determine whether different areas are statistically 

significant. The p-values for the example shown above were respectively 0.011, 3.98E-06 and 0.268 for 

the different comparisons. The null hypothesis that both areas are equal was rejected when the 

statistical test showed a p-value below 0.05. 

 

4.3  Discussion of the results 

 

According to the logic presented above, the empirical results for all the datasets are summarized in 

table 3. In order to validate whether the differences between the different areas under the ROC-graph 

for the classifiers are statistically significant, pairwise comparisons were conducted. When the 

difference between AUC1 en AUC2 shows a positive sign, this means that the area under the ROC 

curve for the first method is larger than the area under the ROC curve for the second method under 

consideration. The opposite is true for negative signs. One method can only said to be better than 

another if the level of significance (<0.05) is reached. In these cases, the p-values were indicated in 

bold.  

 

<INSERT TABLE 3 HERE> 

GLOBAL RESULTS 

Since we are especially interested in evaluating the performance of cost-based discretization against the 

other discretization methods, our main focus should be on the right-hand side of table 3 (last three 

columns). At first glance, the results appear to reveal some interesting insights.  As we can see, for 
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cost-based discretization, 8 times (out of 10) cost-based discretization has proven to be significantly 

better than the other discretization methods.  This is a very good result, all the more because the other 

discretization methods were not able to achieve a similar number. Error-based discretization 

outperformed only in 2 times (out of 6), and entropy-based discretization and not discretizing prior to 

induction did only slightly better by dominating in 4 times (out of 10). Furthermore, only in 2 times out 

of 21 observations (i.e. the Pima and Euthyroid dataset), cost-based discretization is dominated by 

another discretization method. 

 

RESULTS PER DATASET 

Another possibility is to have a look at the results per dataset. For the Australian (Australian Credit 

Screening) dataset, cost-based discretization dominates the entropy and the error-based methods, but 

cost-based discretization was not able to show a significant difference (neither better, nor worse) with 

respect to the option of not discretizing. For the Bupa (Bupa liver disorders) dataset, cost-based 

discretization performs remarkably better than Entropy-based discretization (extremely low p-value). 

The reason is that the latter only discretized one of the six attributes and for all the other attributes 

collapsed their attribute values into a single interval. This proved not to be a good approach, because a 

lot of valuable classification information incorporated in the other variables is therefore lost. 

Unfortunately, we were unable to prove that for this dataset cost-based discretization does significantly 

better than Error-based discretization. However, there is still a significant difference with the option of 

not discretizing prior to induction. From the Breast (Breast Cancer Wisconsin) dataset, we can learn 

that cost-based discretization performs significantly better in relation to all tree methods under 

evaluation. The Cleve (Cleveland Heart Disease) dataset does not yield any statistical significant 

differences between the different classifiers. Therefore, none of the methods really prevails for this 

dataset. For the Ionosphere dataset all three discretization methods have proven to be extremely 

significant compared to the option of not discretizing prior to induction. This is of course because the 

latter yield very poor results since FP- versus TP-combinations are located very much to the north-east. 

Quite a remarkable result from our research is that the Pima dataset (Pima Indian Diabetes) is the only 

dataset in which Entropy-based discretization clearly dominates the other methods. Finally, there is 

only one dataset (Euthyroid dataset) in which local discretization generates better results than 
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discretization prior to induction. This confirms our statement that dealing with discretization as a pre-

processing step can significantly improve a classifier’s performance.  

 

As cost-based discretization only just missed the minimum level of significance for the Pima dataset 

(p-value=0.051, versus error-based discretization), also in this dataset our method shows to be a 

legitimate second best alternative. 

 

DISCRETIZATION COSTS DETERMINE CLASSIFIERS PERFORMANCE 

It was already shown in figure 4 that the classifier with a low discretization cost performs best for the 

Bupa liver disorders dataset. A similar pattern can be found for the other datasets as well. This is 

shown in table 4. This table shows the discretization cost which achieves the largest AUC for the cost-

based discretization method.  

<INSERT TABLE 4 HERE> 

 

Important to notice is that there is never a discretization cost higher than 4 which leads to the best 

results for the cost-based discretization method. This can be explained by the fact that applying a high 

error cost to a particular class, actually leverages the frequency of that class excessively, as this class is 

considered to be more important (due to the high cost assigned to it). When a particular class is 

excessively leveraged, this will of course lead to a less appropriate position of the actual cutpoints, and 

finally also to a poorer performance of the C4.5 classifier. 

5.  Conclusion 

In this article, the concept of cost-based discretization was introduced. The method was empirically 

evaluated against two other important discretization methods, i.e. entropy and error-based 

discretization. Validation of the cost-based discretization approach was carried out on several UCI 

repository datasets. After the datasets were discretized, ROC analysis was used to evaluate the 

performance of the different classification trees.  To be able to make a valid assessment which method 

performs best, the area under the ROC curve and p-values were used as criteria to reflect the 

performance of the classifier.  
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Although cost-based discretization did not dominate other discretization methods all along the line, the 

empirical results showed that for most datasets cost-based discretization outperformed entropy and 

error-based discretization.  Furthermore, it was shown and explained why the best results for the cost-

based discretization method are usually obtained with relatively low discretization costs. Finally, we 

were able to confirm the statement that global discretization produces better results than local 

discretization.  

 

Further research is still needed to better understand why it is not always the same discretization cost 

that performs best over the datasets. The fact that class distributions differ significantly for the different 

datasets and that different patterns may be incorporated in the datasets are plausible explanations but 

further research should still validate this. 
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Figure 1: Cutpoints and class distribution for a continuous attribute A 

 

a
C1
 

C2 C3
 

C4

 
C5
 

A
 

k
 

l
Y 
 

Frequency 
  

X 



 22

 
 
 
 
 
 
 
 
 
 

2 3 4 5 6 7 

 3       7       11       24       30       32       34      37      41     43      45      49     51     56       60 

X      X       X        Y         X        Y       Y        X        Y      Y       Y       Y      Y       Y       Y 

1 

Figure 2: Sorted attribute values and distribution of class values with possible boundary points  
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Figure 3: Shortest route network 
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Figure 4: ROC-curve for the Bupa liver disorders dataset 
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Table 1: Example of cost-based discretization 

Attribute values Class values Attribute values Class values Attribute values Class values 

49 Y 51 Y 60 Y 

37 X 3 X 32 Y 

41 Y 7 X 34 Y 

11 X 43 Y 30 X 

24 Y 56 Y 45 Y 
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  Table 2: Intervals with the corresponding minimum costs 

Interval Min.Cost Interval Min. Cost Interval Min. Cost 

1-2 0 2-4 1 3-7 2 

1-3 2 2-5 1 4-5 0 

1-4 2 2-6 2 4-6 1 

1-5 4 2-7 2 4-7 1 

1-6 5 3-4 0 5-6 0 

1-7 5 3-5 1 

 
5-7 

 
1 

2-3 0 3-6 2 

 
6-7 

 
0 
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Table 3: Overview of the pairwise comparisons for all datasets 

 
Entropy vs Not 

discretized 
Error vs Not 
discretized 

Entropy vs 
Error 

Cost vs Not 
discretized 

Cost vs Entropy Cost vs Error 

 
AUC1-
AUC2 

p-value AUC1-
AUC2 

p-value AUC1-
AUC2 

p-value AUC1-
AUC2 

p-value AUC1-
AUC2 

p-value AUC1-
AUC2 

p-value 

Australian -0.01 0.25 -0.0063 0.46 -0.0037 0.68 0.01 0.20 0.02 0.02 0.02 0.045 

Bupa -0.05 0.04 0.03 0.15 -0.08 4.48E-04 0.05 0.01 0.10 3.98E-06 0.02 0.27 

Breast -0.0033 0.54 0.002 0.70 -0.005 0.32 0.01 0.02 0.02 0.003 0.009 0.044 

Cleve -0.0055 0.82 0.0033 0.89 -0.009 0.71 -0.007 0.75 -0.002 0.93 -0.01 0.64 

Ionosphere 0.17 2.14E-08 0.19 1.14E-10 -0.02 0.35 0.18 4.51E-09 0.007 0.78 -0.01 0.52 

Pima 0.03 0.006 -0.02 0.22 0.05 7.65E-05 0.009 0.47 -0.02 0.04 0.03 0.051 

Euthyroid -0.03 0.01 -0.03 0.01 0.0006 0.96 -0.05 2.06E-05 -0.02 0.06 -0.02 0.071 
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 Table 4: The discretization cost for the cost-based discretization method  which performs best per 
 dataset 

Dataset Breast Credit Euthyroid Ionosphere Cleve Pima Bupa 
Discretization 

cost 4 3 4 4 3 4 2 


