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Abstract 
Associative classification has aroused significant attention in recent years and proved to 
generate good results in previous research efforts. This paper aims to contribute to this line of 
research by the development of more effective associative classifiers. Our goal is to achieve 
this by the incorporation of two novel interesting measures, i.e. intensity of implication and 
dilated chi-square, into an existing associative classification algorithm, respectively. The 
former interesting measure was merely proposed with the purpose of mining meaningful 
association rules, while the latter was designed to reveal the interdependence between 
condition and class variables. Each of these two measures is applied as the primary sorting 
criterion within the context of the well-known CBA algorithm in an attempt to organize the 
composition of the rule sets in a more reasonable sequence. Benchmarking experiments on 16 
popular UCI datasets revealed that our algorithms could empirically generate accurate and 
significantly more compact decision lists. In addition to this, the algorithm was validated on a 
separate credit scoring dataset, which contained 7190 credit scoring samples.  

Keywords: Associative classification; Intensity of implication; Dilated chi-square; Credit 
scoring  
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1. Introduction 
Classification and association-rule discovery are two of the most important tasks addressed in 
the data mining literature. In recent years, extensive research has been carried out to integrate 
both approaches. By focusing on a limited subset of association rules, i.e. those rules where 
the consequent of the rule is restricted to the class variables, it is possible to build more 
accurate classifiers. Several publications have shown that associative classification is intuitive 
and effective in many cases (Dong et al., 1999, Liu et al., 1998, Liu et al., 2001, Wang and 
Zhou, 2000 and Yin and Han, 2003). Normally, association rules search globally for all rules 
that satisfy minimum support and minimum confidence thresholds. The richness of the rules 
gives this technique the potential of reflecting the true classification structure in the data.  

Associative classification is first proposed in CBA (Liu et al., 1998), in which the popular 
Apriori algorithm has been applied in order to extract a limited number of association rules 
with their consequents limited to class labels. These rules are then sorted by descending 
confidence and are pruned in order to get a minimal number of rules that are necessary to 
cover training data and achieve satisfying accuracy. Another associative classifier ADT 
(Wang & Zhou, 2000) organizes the rule sets in the tree structure according to its defined 
relations. The decision tree pruning techniques is then applied to remove rules that are too 
specific. CPAR, CMAR and CAEP are three of the latest associative classification algorithms 
(Dong et al., 1999, Liu et al., 2001 and Yin and Han, 2003). They, respectively, propose 
expected accuracy, weighted chi-square and growth rate as rule interestingness measures, and 
all perform classification based on multiple rules that the new sample fires. The aim of this 
paper is to improve the CBA algorithm in order to generate a more accurate and compact 
decision list, which is convenient for decision makers to understand and adopt. Two novel 
interestingness measures, intensity of implication and dilated chi-square, are applied as the 
primary sorting criteria instead of the currently adopted confidence measure. Intensity of 
implication and dilated chi-square statistically reveal the interdependence between the 
antecedence and consequence of rules and empirically allocate rules in a more reasonable 
order.  

The remainder of this paper is arranged as follows. Section 2 introduces the basic concepts of 
associative classification, along with the sorting mechanism applied by CBA. Section 3 
elaborates on the weakness of conditional probability (confidence), as well as on the design of 
intensity of implication and dilated chi-square to overcome it. The results of the empirical 
evaluation are shown in Section 4. Section 5 gives some concluding remarks.  

2. Associative classification 
A comprehensive overview of the original CBA algorithm is necessary before we propose 
improvements to it. First, we will give an introduction to class association rules. Hereafter, the 
ranking and pruning mechanisms in CBA are described.  



2.1. Class association rules 

Let I={i1, i2,…ik} be a set of literals, called items. Let D be a set of transactions, where each 
transaction T is a set of items such that T I. We say that a transaction T contains X, a set of 
items in I, if X T. An association rule is an implication of the form X Y, where X I, Y I 
and X∩Y= . The rule X Y holds in the transaction set D with confidence c if c% of 
transactions in D that contain X also contain Y. The rule X Y has support s in the transaction 
set D if s% of transactions in D contain X Y. Given a set of transactions D, the problem of 
mining association rules is to generate all association rules that have support and confidence 
greater than a user-specified minimum support (minsup) and minimum confidence (minconf) 
(Agrawal et al., 1993 and Agrawal and Srikant, 1994).  

To make association rules suitable for the classification task, the associative classification 
method focuses on a special subset of association rules, i.e. those rules with a consequent 
limited to class variables only, the so-called class association rules (CARs). Thus, only rules 
of the form A ci, where ci is a possible class, are generated.  

2.2. Ranking and pruning of CARs in CBA 

Building a classifier in CBA is largely based on a database coverage pruning method, which 
is applied after all the CARs have been generated. At the first step of the pruning, the 
algorithm ranks all the CARs and sorts them in the descending sequence. As we will show in 
the next section, this rank will be subject to one of the modifications that were implemented. 
The ranking is as follows: given two rules ri and rj, ri>rj (or ri is said having higher rank than 
rj), if (1) conf (ri)>conf (rj); or (2) conf (ri)=conf (rj), but sup (ri)>sup (rj); or (3) conf 
(ri)=conf (rj) and sup (ri)=sup (rj), but ri is generated before rj. Each training sample is 
classified by the rule that covers it and has the highest ranking. The pruning algorithm tries to 
select a minimal number of rule sets, each of which correctly classifies at least one training 
sample, to cover the training dataset and to achieve the lowest error rate. The default class is 
set as the majority class among the remaining samples that are not covered by any rule in the 
final classifier.  

3. Novel interestingness measures 

3.1. Limits of confidence 

A profound examination of the algorithm identified a potential weakness in the way the rules 
are sorted. Since rules are inserted in the classifier primarily according to its confidence, this 
will determine to a large extent the accuracy of the final classifier. Confidence is a good 
measure for the quality of (class) association rules but it also suffers from certain weaknesses 
(Guillaume et al., 1998 and Janssens et al., 2005).  

Firstly, the conditional probability of a rule X Y is invariable when the s(Y) or |D| varies, 
where s(Y) denotes the subset of samples that contain Y and D is the whole database. Let 
A=s(X), B=s(Y), n=|D|, na=|A|, nb=|B|, and nab=|A∩B|. The confidence of rule X Y is 
calculated as nab/na. Keeping the numerator and denominator fixed, the confidence is stable 
when the size of s(Y) or D changes. Nevertheless, as shown in Fig. 1, the rule X Y is more 
likely to happen when the size of s(Y) increases or when the size of D decreases. It is not 
surprising that, when s(Y) is close to the size of D, the observations which are covered by the 



antecedent X of the rule, are also included in s(Y). Furthermore, the implication will be more 
meaningful when the size of all the sets grows in the same proportion.  

 

(6K)  

Fig. 1. Tree cases with constant confidence.  

 

The second drawback for the use of conditional probability is that when for a particular class, 
the minsup parameter is set to 1% or even lower, it might very well happen that some rules 
have a high confidence parameter but meanwhile they might be confirmed by a very limited 
number of instances. As a result, those rules may stem from noise only. This is why it is 
always dangerous to look for implications with small support even though these rules might 
look very ‘interesting’. As a result, choosing the most confident rules may not always be the 
best selection criterion.  

Therefore, two novel interestingness measures that take both drawbacks into account, i.e. 
intensity of implication and dilated chi-square, were designed to adjust the ranking 
mechanism in CBA algorithm. The next sections elaborate on this.  

3.2. Intensity of implication 

Intensity of implication, introduced by Gras and Lahrer (1993) measures the distance to 
random choices of small, even non-statistically significant, subsets. In other words, it 
measures the statistical surprise of having so few negative examples on a rule as compared 
with a random draw. Now, let U and V be two sets randomly chosen from D with the same 
cardinality as s(X) and s(Y), respectively, i.e. |U|=na and |V|=nb. The comparison is illustrated 
in Fig. 2.  
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Fig. 2. Comparison with random case.  

 

Let be the random variable that measures the expected number of random 
negative examples under the assumption that U and V are independent, and the number of 
negative samples observed on the rule. Now, if is unusually small compared with , the 
one we would expect at random, then we say that the rule X Y has a strong statistical 
implication. In other words, the intensity of implication for a rule X Y is stronger, if the 
quantity is smaller. Intensity of implication is then defined as . 
The random variable follows the hypergeometric law, which means 

examples selected at random, exactly k are not in V]. Let nu=|U|, 
nv=|V|, . It equals 



 

 

Taking into account that nv=na and nv=nb, the intensity of implication can be written as: 

 

 

This formula for intensity of implication is suitable as long as the number of samples in the 
database, i.e. |D|, is reasonably small. Otherwise, the combination numbers in the above 
formula explode very quickly. Therefore, Suzuki and Kodratoff (1998) came up with an 
approximation of this formula for big datasets. They argue that if is small, which is often 
the case in rule discovery, then Poisson approximations can be applied. In that case, the above 
formula for intensity of implication reduces to a much simpler version that is easier to 
compute: 

 

 
With 
 

 

Keeping the confidence of rule X Y constant, the intensity of implication varies with the size 
of s(Y), with the size of D, and by dilation of n when na/n, nb/n and nab/n stay constant, as Fig. 
3 shows.  
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Fig. 3. Sensitivity analysis of intensity of implication.  

 

3.3. Dilated chi-square 

Traditional chi-square test statistics (χ2) is a widely used method for testing independence 
and/or correlation (Mills, 1955). Essentially, it is based on the comparison of observed 
frequency with the corresponding expected frequencies. Let f0 be an observed frequency, and f 
be an expected frequency. The χ2 value is defined as 



 

 
to test the significance of the deviation from the expected values. For each rule X Y and the 
training dataset D, a 2*2 contingency table can be derived as Fig. 4:  
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Fig. 4. A 2*2 contingency table for rule X Y and dataset D.  

 

The χ2 value for rule X Y can be calculated as 

 

 

However, simply using the traditional χ2 value will be favourable to the situation where the 
distribution of row total is close to that of column total distribution. We, therefore, proposed 
dilated chi-square to conquer this shortcoming. The definitions of local maximum χ2 and 
global maximum χ2 are given first, along with their related properties. An example is then 
demonstrated to validate our opinion.  

Definition 1  

Given a dataset D and class label Y, the local maximum χ2, denoted as l max(χ2), is the 
maximum χ2 value for a fixed support count of X.  

Definition 2  

Given a dataset D and class label Y, the global maximum χ2, denoted as g max(χ2), is the 
maximum χ2 value for any possible support count of X.  

Considering Fig. 4, |D| and the support count of Y are settled when given a dataset D and class 
label Y. g max(χ2) is the maximum χ2 value that one rule X Y may obtain, while l max(χ2) is 
the maximum χ2 value under the condition that the support count of X is fixed.  

Property 1  

: 

 

 
where 
 

n1=min(min(m11+m12,m21+m22),min(m11+m21,m12+m22)) 



 
n2=min(max(m11+m12,m21+m22),max(m11+m21,m12+m22)) 

That is to say, the local max χ2 value is arrived at the most deviation from the expected 
frequency when the support count of X is given.  

Property 2  

: 

 
 

Proof: Without lose of generality, We suppose m11+m21≥m12+m22 and m11+m12≥m21+m22, then 

 
 

 
 

Therefore 

 
 

The equation is arrived when m21+m22=m12+m22 and m11+m12=m11+m21, i.e. the distribution of 
row total equals that of column total.  

We modified the example in (Liu et al., 2001) to illustrate the problem when simply choosing 
χ2 value as the interestingness measure for associative classification, which is our motivation 
to design the novel measure, i.e. dilated χ2.  

Example 1: In a credit card application approval case, three rules are generated:  

r1 

job=no rejected (support count of rule=30, confidence=60%) 

r2 

education=university approved (support count of rule=199, confidence=99.5%) 

r3 

number of children >4 rejected (support count of rule=2, confidence=100%). 

The contingency tables for these three rules are displayed in Fig. 5:  
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Fig. 5. Contingency tables for rules.  

 

The χ2 values of the three rules are, respectively, 88.7, 33.4 and 18.1, and the local maximum 
χ2 values 287.2, 37.0 and 18.1. It is evident that the χ2 values are favourable to the situation 
where the distribution of row total is close to that of column total. For a customer having no 
job and with university education, her application will be rejected according to r1, if the 
choice of rules is based on only χ2 values. However, r2 is intuitively much better than r1 since 
r2 has much higher support and confidence. Moreover, although the support of r3 is very low, 
r3 has a 100% confidence. The interestingness of r3 seems a bit underestimated by its χ2 value.  

Since the χ2 value has a bias to different row total distributions, we adjust it to a more uniform 
and fare situation and get a novel interestingness measure called dilated χ2 value, denoted as 
dia(χ2) (Yu, Chen, Janssens, & Wets, 2004). More concretely, we heuristically dilate the χ2 
value according to the relationship between the local and global maximum χ2 values for 
current rule and database. The dilation procedure is nonlinear and empirically achieved 
excellent results, as demonstrated in next section. 

 

 

Therefore 

 

 

The parameter α is used to control the impact of global and local maximum χ2 values and 
tuned for different classification problems. Although α can be any positive real number, it is 
restricted empirically between 0 and 1. The dilated χ2 values for the three rules are, 
respectively, 117.0, 136.1 and 95.1 if α=0.5, which is much more reasonable to our intuition. 
For a given training dataset, the size of D is fixed and irrelevant to the ranking of 
interestingness of rules.  

It can be seen that the dilated χ2 value is sensitive when the size of s(Y) or D varies. 
Furthermore, for these rules with high confidence and very low support, dilate χ2 values 
estimate their interestingness in a more cautious way.  

The sensitivity analysis in Section 3.2 is also applied to dilated chi-square when α is set at 0.3 
and 0.8. As shown in Fig. 6, in the first case where nb increases while na, nab and n remain 



stable, the dilated χ2 first gradually declines to zero, when nb equals 75. This is the situation 
when the confidence of the rule is equal to the proportion of class Y in the whole dataset D, 
i.e. 0.75. Dilated χ2 then climbs up sharply if nb continues to increase, which indicates the 
negative relationship between X and Y. Therefore, those rules whose confidence is less than 
their corresponding class proportion are not expected to exist. The similar mechanism occurs 
in the second case and dilate χ2 is close to zero when size of D equals 113. The third case 
show that dilated χ2 increases linearly if all subsets are cardinally dilated.  
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Fig. 6. Sensitivity analysis of dilated chi-square.  

 

We now adapted CBA by taking intensity of implication and dilated χ2, respectively, as the 
primary criteria to sort the rule set. Rule ri has a higher rank than rule rj if it has a larger value 
of intensity of implication (or dilated χ2). When two rules have the same values of intensity of 
implication (or dilated χ2), they are ranked according to the ranking mechanism of the original 
CBA, which is mentioned in Section 2.2.  

4. Empirical section 
Before the adapted CBA algorithms are validated on our 16 benchmarking datasets from UCI, 
we first introduce the adaptations by means of a toy example to observe the behaviour of the 
new algorithms.  

4.1. Toy example 

The toy example, as shown in Fig. 7, has eight attributes and 20 examples. Attribute h is set as 
the class attribute. Each of these attributes has two possible values. Original CBA was run on 
this toy example using its default parameter sets. It generated 34 class association rules in 
total. These rules were then sorted and pruned to build the classifier.  
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Fig. 7. Toy example and three classifiers.  

 

The details of the final classifiers are listed in Fig. 7. Classifier 1, which is generated by 
original CBA, consists of four rules and has an error rate of 5% on the training dataset. But 
the original CBA will get a 40% error rate using 10-fold cross validation. Classifier 2 and 3 
are generated by adapted CBA that incorporates intensity of implication and dilate χ2 as the 



primary sorting criteria, respectively. Although their error rates on training dataset are both 
10%, which is a bit higher than classifier 1, these two algorithms achieve 20 and 25% error 
rate in average using 10-fold cross validation, which gives an initial indication about the 
better generalization abilities of the adapted algorithms on this toy example. In addition, 
Classifier 2 and 3 are more compact (less rules) than classifier 1 that is generated by original 
CBA, which favours Occam's Razor theory.  

4.2. Benchmarking on real life datasets 

In order to get a more comprehensive evaluation, 16 UCI datasets (Blake & Merz, 1998) are 
classified by original CBA, the classical decision tree technique C4.5 (Quinlan, 1993) and 
Naïve Bayes. All of these selected classifiers are white-box techniques. C4.5 and Naïve Bayes 
are implemented by the software package of WEKA (Witten & Frank, 2000). The continuous 
attributes are discretized based on entropy (Fayyad & Irani, 1993) if needed. 10-fold cross 
validation is used to test the performance of these classifiers in an attempt to reduce the 
fluctuation that stems from random sampling.  

As shown in Table 1, adapted CBA1 and CBA2, which, respectively, correspond to the new 
algorithms that incorporate intensity of implication and dilated χ2, perform better than any of 
the other classifiers in comparison to the average error rate. The average error rate of adapted 
CBA1 on these 16 datasets is 13.21%, and that of adapted CBA2 is only 12.81% if the best 
parameter α is selected for each dataset. Furthermore, adapted CBA1 generates 17.925 rules in 
average, which is almost one third of those rules generated by original CBA. The classifiers 
built by adapted CBA2 are more compact and averagely contain 11.82 rules. The original 
CBA also has a better performance than C4.5 and Naïve Bayes. Although Naïve Bayes 
performs excellent on several datasets such as breast, heart and labor, its behaviour is unstable 
since it assumes attributes are independent, which is a very fragile assumption in real life 
datasets. The performance of C4.5 on discretized datasets is better than on original datasets, 
so only the former result is presented.  

Table 1.  

Benchmark experiments  

Dataset  Original CBA Adapted CBA1 Adapted CBA2 C45 NB 

  Error 
rate (%) 

No. of 
rules 

Error 
rate (%) 

Num. of 
rules 

Error 
rate (%) 

No. of 
rules 

Error 
rate (%) 

Error 
rate (%) 

1 Austra 14.35 130.5 13.48 26.4 13.04 12.4 13.48 18.70 

2 Breast 3.86 42.2 4.72 28.4 3.58 28.3 4.43 2.58 

3 Cleve 17.16 63.8 15.47 16.9 16.13 9.6 20.79 16.17 

4 Crx 14.93 138.2 12.90 34.2 13.04 12.4 12.75 18.99 

5 Diabetes 22.26 38.5 24.21 10.4 21.74 10.7 22.92 24.22 

6 German 26.70 134 25.60 56.5 26.80 19.7 27.60 25.30 

7 Heart 17.78 37.6 16.30 13.6 16.67 7.4 18.89 14.81 



Dataset  Original CBA Adapted CBA1 Adapted CBA2 C45 NB 

  Error 
rate (%) 

No. of 
rules 

Error 
rate (%) 

Num. of 
rules 

Error 
rate (%) 

No. of 
rules 

Error 
rate (%) 

Error 
rate (%) 

8 Hepati 16.21 25.2 18.67 18.4 16.83 11.3 16.77 15.48 

9 Horse 19.03 87.9 14.12 1 14.12 1 15.22 20.92 

10 Hypo 1.64 30 1.23 24.4 0.85 10.9 0.85 1.90 

11 Iono 8.25 44.8 9.10 21.7 6.55 18.5 9.69 8.26 

12 Labor 10.00 12.5 11.67 4.2 8.33 4.4 15.79 8.77 

13 Pima 23.43 38.3 23.17 11 22.00 10.7 22.66 25 

14 Sick 2.64 47.4 2.43 10.7 3.25 1 2.07 4.32 

15 Sonar 22.60 41 18.31 27.4 18.74 21.8 18.75 25.48 

16 Ti-tac 0.00 8 0.00 8 3.34 9 14.20 29.65 

Average  13.80 49.34 13.21 17.925 12.81 11.82 14.80 16.28 

 

A deeper insight into the comparisons between original CBA, adapted CBA1 and CBA2 
reveals that the adapted algorithms are more suitable for the application of credit scoring. 
Tests on three related datasets, austral, crx and german, show that adapted CBA1 and CBA2 
have satisfactory accuracy improvements and achieve much more compact classifiers at the 
same time. Another interesting test can be seen on the horse dataset: While original CBA gets 
a 19.03% 10-fold cross validation error rate with an average of 87.9 rules, the adapted CBA1 
and CBA2 both get only one rule and suffer from a 14.12% error rate. More concretely, all 
ten-fold classification loops implemented by these two adapted algorithms result in the same 
rule: if surgery=2 & outcome=1 then surgical lesion=2 (default class=1). This simple decision 
rule achieved excellent performance.  

Although it is difficult to compare two classifiers based on datasets from different domains, 
wilcoxon signed-rank test is applied to give a rough statistical comparison.  

As shown in Table 2, significant improvement is achieved by adapted CBA2 at a 5% 
confidence interval. Although the performance of adapted CBA1 could not generate the same 
good result as CBA2, it performs best in several cases and requires no parameter selection. 
We, therefore, conclude that intensity of implication and dilated χ2 are both appropriate 
measures for associative classification. Benchmarking tests of classification algorithms on 
UCI datasets are sometimes criticised for their incapability of representing the often more 
complex relationships which are present in larger real-world datasets. For this reason, an 
additional benchmarking test (in the context of credit scoring) is discussed in the next section.  

Table 2.  

Performance comparison  



p-values for one tail test Original CBA C4.5 Naïve Bayes

Adapted CBA1 0.1652 0.0844 0.1057 

Adapted CBA2 0.0107 0.0035 0.0125 

 

4.3. Tests on a credit scoring dataset 

Credit scoring is a qualified assessment and formal evaluation procedure of a particular 
company's credit history. In addition to this, it offers a capability of repaying obligations by 
credit bureaus. It measures the default probability of the borrower, and its ability to repay 
fully and timely its financial debt obligations (Guo, 2003). However, it is not possible to score 
all companies (or individuals) due to its enormous cost. It cannot be performed frequently 
either. As a result, statistical models and artificial intelligent technologies have been applied 
to help banks to identify these high-risk companies effectively and efficiently during past 
years. As mentioned above, the adapted CBA algorithms revealed their potential in generating 
accurate and compact decision lists on credit scoring datasets. We carried out them on an 
additional dataset, which is adopted from one major financial institution in the Benelux 
(Belgium, The Netherlands and Luxembourg) and contains 7190 credit scoring samples. 2/3 
of its samples were taken as a training set and 1/3 of them were presented as a test set for the 
learning algorithms. Given other numerous empirical findings that were achieved in this 
domain (Altman, 1968, Kim, 1993, Moody and Utans, 1995 and Pinches and Mingo, 1973) by 
means of applied traditional statistical methods (such as discriminant analysis), neural 
networks and inductive learning algorithms (such as decision trees), the adapted CBA 
algorithms were also benchmarked against these learning algorithms on this dataset. Back-
propagation algorithm and three-layer architecture were employed for neural network. The 
number of neurons in hidden layer was selected in order to achieve lowest error rate. The 
experiment results are summarized in Table 3.  

Table 3.  

Experiment results on credit scoring dataset  

 Logit Adapted 
CBA2 LDA Original 

CBA NN Adapted 
CBA1 C45 QDA 

Error rate 25.04% 26.49% 26.90% 27.08% 27.37% 27.70% 29.79% 62.09%

No. of rules – 51 – 393 – 186 – – 

 

McNemar test (Dietterich, 1998) is applied to examine whether the predictive performance of 
these algorithms are significantly different. The McNemar test results (p values) are listed in 
Table 4.  

Table 4.  

McNemar test on credit scoring dataset  



 Adapted CBA2 LDA Original CBA NN Adapted CBA1 C45 QDA 

Adapted CBA2 1 0.7184 0.5541 0.3771 0.2207 0.0009** 0.000**

LDA – 1 0.8415 0.5485 0.3375 0.0034** 0.000**

Original CBA – – 1 0.7518 0.3929 0.0051** 0.000**

NN – – – 1 0.7184 0.0193* 0.000**

Adapted CBA1 – – – – 1 0.0383* 0.000**

C45 – – – – – 1 0.000**

QDA – – – – – – 1 

*Significant at 5%, **significant at 1%. 

 

For traditional statistical methods LDA (linear discriminant analysis) and QDA (quadratic 
discriminant analysis), specific structures are imposed and parameters are estimated in order 
to fit the training dataset. Although QDA shows terrible prediction ability, LDA performs 
well on our dataset. These rest algorithms are free from structural assumptions that underlie 
statistical methods, and can extract knowledge from data automatically. The p-values in Table 
4 reveals that there are no significant differences among original CBA, adapted CBA and 
Neural Networks at a 5% confidence level, while they are all significantly better than C4.5 
decision tree. Taking the interpretability of the classification model into account, our two 
adapted CBA algorithm seem to be appropriate choices for credit scoring because they 
generated much more compact decision lists (less number of rules) than original CBA. A 
deeper insight into the structure of the rules shows that original CBA and adapted CBA1 both 
focus on choosing classification rules that predict good clients (with bad clients as the default 
class). But according to the use of intensity of implication, numerous rules that have high 
confidence and low support have a lower rank than in original CBA. These rules are finally 
discarded since they are not fired by any training samples, which are matched by these rules 
with higher intensity of implications, thus making the decision lists generated by adapted 
CBA1 more compact. Taking dilated chi-square as the primary criteria for ranking, adapted 
CBA2 pays much more attention to those classification rules for bad clients (with good clients 
as the default class) and as a result creates significantly more compact rule sets as well. In 
addition, decision makers in financial institutions probably prefer rules that predict bad 
clients, which will be extraordinary costly if they are regarded as good ones.  

5. Conclusion 
In this paper, intensity of implication is adopted as an interestingness measure for class 
association rules. Another novel interestingness measure, called dilated chi-square is designed 
to reveal the statistical interdependence between the antecedents and consequents of 
association rules.  

In a next stage the CBA algorithm was adapted, by coupling it with intensity of implication 
and dilated chi-square, respectively. More concretely, intensity of implication (or dilated chi-
square) was adopted as the primary criterion to rank class association rules at the first step of 



the database coverage pruning procedure in the original CBA algorithm. Benchmarking 
experiments on wide-range datasets, especially in credit scoring domains, proved that these 
two adapted algorithms could build accurate decision lists and generate classifiers that are 
significantly more compact than CBA.  
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