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Abstract. We show that the symmetric difference distance measure for set systems, and more
specifically for delta-matroids, corresponds to the notion of nullity for symmetric and skew-symmetric
matrices. In particular, as graphs (i.e., symmetric matrices over GF(2)) may be seen as a special class
of delta-matroids, this distance measure generalizes the notion of nullity in this case. We characterize
delta-matroids in terms of equicardinality of minimal sets with respect to inclusion (in addition we
obtain similar characterizations for matroids). In this way, we find that, e.g., the delta-matroids
obtained after loop complementation and after pivot on a single element together with the original
delta-matroid fulfill the property that two of them have equal “null space” while the third has a
larger dimension.
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1. Introduction. A set system is a tuple M = (V,D) with V a finite set, called
the ground set, and D a family of subsets of V . Set system M is called proper if
D 6= ∅. Let X ⊆ V . The pivot (also called twist) of M on X , denoted by M ∗ X ,
as (V,D ∗ X), where D ∗ X = {Y ∆X | Y ∈ D} [4] (here ∆ denotes symmetric
difference). We denote by min(M) (and max(M), resp.) the set system with ground
set V consisting of the minimal (maximal, resp.) sets with respect to set inclusion of a
set system M . A delta-matroid is a proper set system M that satisfies the symmetric
exchange axiom: For all X,Y ∈ D and all u ∈ X∆Y , there is a v ∈ X∆Y (possibly
v = u) such that X∆{u, v} ∈ D [4].

The main results of this paper are described below. We characterize first the
notion of a delta-matroid.

Theorem 4.2. Let M be a proper set system. Then M is a delta-matroid iff
for each X ⊆ V , the sets in min(M ∗X) have equal cardinality.

We will almost exclusively work with this characterization rather than directly
using the symmetric exchange axiom. Related to Theorem 4.2, we obtain novel char-
acterizations of a matroid described by its bases and its independent sets. Below is
the characterization of a matroid described by its independent sets.

Corollary 4.5. Let M be a proper set system. Then M is a matroid described
by its independent sets iff both (1) for each Y ∈ M and Y ′ ⊆ Y , we have Y ′ ∈ M ,
and (2) for each X ⊆ V , the sets in min(M ∗X) have equal cardinality.

Given a set system M and a set X , the distance dM (X) = min({|X∆Y | | Y ∈
M}) is the minimal cardinality of the symmetric difference of X and the sets in M .
It turns out the distance behaves well under deletion of elements from the ground set
provided we consider delta-matroids, cf. Theorem 5.2.

For a set system M = (V,D) and v ∈ V , we define pseudo-deletion of M on v,

denoted by M \̂v, as (V,D′), where D′ = {X ∪ {v} | X ∈ D, v 6∈ X}. Moreover,
we define loop complementation of M on v, denoted by M + v, as (V,D′′), where
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D′′ = D∆D′ = D∆{X ∪ {v} | X ∈ D, v 6∈ X} [11]. Loop complementation is
well motivated: it generalizes the loop complementation for graphs (this is recalled
in Section 7). We derive the following property of delta-matroids in relation to pivot
and loop complementation.

Theorem 5.6. Let M be a delta-matroid, and v ∈ V such that M + v is a
delta-matroid. Then max(M), max(M ∗ v), and max(M + v) are matroids (described
by their bases) such that precisely two of the three are equal, to say M1. Moreover,

the rank of the third M2 is one smaller than the rank of M1 and M2\̂v = M1.

We also formulate a “min counterpart” of Theorem 5.6, cf. Theorem 5.5, which
involves the dual pivot operation instead of the loop complementation operation.

Given a V × V matrix A (the columns and rows of A are indexed by finite set
V ), we denote by A[X ] the principal submatrix of A induced by X and we define
the set system MA = (V,DA) with DA = {X ⊆ V | A[X ] is nonsingular}. If A is
skew-symmetric (i.e., AT = −A where AT denotes the transpose of A) or symmetric,
then MA is a delta-matroid [4]. We show that nullity of a principal submatrix A[X ]
corresponds to distance in the associated delta-matroid MA. This is the main mo-
tivation for considering distance, as it allows us to carry over results of distances in
delta-matroids to nullity values of symmetric or skew-symmetric matrices and graphs
in particular.

Theorem 6.2. Let A be a V × V symmetric or skew-symmetric matrix (over
some field). Then dMA

(X) = n(A[X ]) for each X ⊆ V .

It is known that MA ∗ X , for any V × V matrix A and any set X in MA, is
equal to MA∗X where A ∗X is the principal pivot transform of X on A (see [24, 23]
for the definition of this notion). Hence there is a close connection between the linear
algebra of principal pivot transform and the combinatorics of pivot on set systems.

The delta-matroid MA for a symmetric or skew-symmetric matrix A is especially
interesting over the binary field F2 (note that the notions of skew-symmetric and
symmetric coincide over F2), i.e., in the case where A is a graph (where loops are
allowed). In this caseMA retains all information of A—henceMA is a representation
of the graph A. It turns out that for a graph the null space (kernel) of its adjacency
matrix is determined by the set of maximal elements in the associated delta-matroid.
In this way we obtain the following result (we associate a graph G by its adjacency
matrix A(G)). For a graph and vertex v, G + v denotes loop complementation (the
existence of a loop on v is complemented), and if v is a looped vertex, then G ∗ v
denotes principal pivot transform on v, which over F2 is local complementation (the
subgraph of the neighbourhood of v is complemented). As usual, we identify vectors
indexed by V over F2 by subsets of V .

Theorem 7.1. Let G be a graph having a looped vertex v. Then ker(G),
ker(G∗v), and ker(G+v) are such that precisely two of the three are equal, to say K1,
and the third, K2, is such that dim(K2) = dim(K1)+1 and K1 = {X ∈ K2 | v 6∈ X}.

This result is related to [22, Lemma 23] (there a graph different from G ∗ v is
considered) and [3, Theorem (9.4)], and it can be seen as an extension of [1, Lemma 2].
In case G is a circle graph, Theorem 7.1 is applicable to the theory of closed walks in
4-regular graphs, see e.g. [21].

It is known from [11] that the family of delta-matroids is not closed under loop
complementation. We show in Section 8 that the family of binary delta-matroids is
closed under pivot, loop complementation and deletion of elements from the ground
set.

The results given in this paper are crucial in a subsequent paper on interlace
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polynomials of delta-matroids [9].

2. Pivot and Loop Complementation on Set Systems. First we fix basic
notions and terminology. We denote the field consisting of two elements by F2. In
this field addition and multiplication are equal to the logical exclusive-or and logical
conjunction, which are denoted by ⊕ and ∧ respectively. By carrying over ⊕ to sets,
we obtain the symmetric difference operator ∆. Hence for sets A,B ⊆ V and x ∈ V ,
x ∈ A∆B iff (x ∈ A)⊕ (x ∈ B).

A set system (over V ) is a tuple M = (V,D) with V a finite set, called the ground
set, and D a family of subsets of V . Let X ⊆ V . We define M [X ] = (X,D′) where
D′ = {Y ∈ D | Y ⊆ X}, and define M \X = M [V \X ]. Set system M is called proper
if D 6= ∅. Let min(D) (max(D), resp.) be the family of minimal (maximal, resp.)
sets in D with respect to set inclusion, and let min(M) = (V,min(D)) (max(M) =
(V,max(D)), resp.) be the corresponding set systems. Also, we denote the family of
minimal sets with respect to cardinality by minc(D), i.e., X ∈ minc(D) iff X ∈ D
and |X | ≤ |Y | for all Y ∈ D. We let minc(M) = (V,minc(D)) be the corresponding
set system. Similarly, we define maxc(M) = (V,maxc(D)). Note: we will also use
min(E) and max(E) for a finite set E of integers, to denote the smallest and largest,
resp., integer in E. We simply write Y ∈ M to denote Y ∈ D, and for set system
M ′ = (V,D′), M ⊆ M ′ if D ⊆ D′. We also often write V to denote the ground set
of the set system under consideration. A set system M is called equicardinal if for all
X1, X2 ∈ M , |X1| = |X2|.

Let M = (V,D) be a set system. We define, for X ⊆ V , pivot of M on X , denoted
by M ∗ X , as (V,D ∗ X), where D ∗ X = {Y ∆X | Y ∈ D}. The pivot operation
(often called twist in the literature) is often denoted by M ∆X instead of M ∗X (see,
e.g., [4]). However, as D ∗ X is of course in general different from D∆X , to avoid
confusion, we use ∗ for pivot. We define, for X ⊆ V , loop complementation of M on
X (the motivation for this name is from graphs, see Section 7), denoted by M +X ,
as (V,D′), where Y ∈ D′ iff |{Z ∈ M | Y \X ⊆ Z ⊆ Y }| is odd [11]. In particular, if
X = {v} is a singleton, then D′ = D∆{Z ∪ {v} | Z ∈ D, v 6∈ Z}.

For notational convenience we often omit the “braces” for singletons {v}, and
write, e.g., M + v, M ∗ v, and M \ v. Loop complementation and pivot belong to
a class of operations called vertex flips, cf. [11]. Deletion M \ u is also a vertex flip
operation (modulo a, for this purpose irrelevant, difference in ground set). To simplify
notation, we assume left associativity of the vertex flips, and write, e.g., M ∗ u+ v to
denote (M ∗ u) + v. Vertex flips turn out commute on different elements. Therefore,
if u, v ∈ V and u 6= v, then, e.g., M + u \ v = M \ v + u, M ∗ u \ v = M \ v ∗ u,
M ∗ u + v = M + v ∗ u, and M + u + v = M + v + u. Moreover, it is easy to verify
that M + u \ u = M \ u.

It has been shown in [11] that pivot ∗ u and loop complementation + u on
a common element u ∈ V are involutions (i.e., of order 2) that generate a group
isomorphic to S3, the group of permutations on 3 elements. In particular +u∗u+u =
∗ u + u ∗ u is the third involution, called the dual pivot, and is denoted by ∗̄. We
have, e.g., + u ∗ u = ∗̄ u+ u = ∗ u ∗̄ u and ∗ u+ u = + u ∗̄ u = ∗̄ u ∗ u for u ∈ V
(these are the two operations of order 3). The six operations (including the identity
operation) are called invertible vertex flips.

It turns out that, for X ⊆ V , M ∗̄ X = M +X ∗X+X is equal to (V,D′), where
Y ∈ D′ iff |{Z ∈ M | Y ⊆ Z ⊆ Y ∪X}| is odd. In particular, if X = {v} is a singleton,
then D′ = D∆{Z \ {v} | Z ∈ D, v ∈ Z}. Equivalently, for Y ⊆ V , if v ∈ Y , then
Y ∈ M ∗̄ v iff Y ∈ M , and if v 6∈ Y , then Y ∈ M ∗̄ v iff (Y ∈ M)⊕ (Y ∆{v} ∈ M).
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Finally, it is observed in [11] that min(M) = min(M + X). Since min(M) =
max(M ∗ V ) ∗ V , we have similarly max(M) = max(M ∗̄ X).

We will often use the results of this section without explicit mention.

3. Distance in Set Systems. Let M be a proper set system. For X ⊆ V , we
define dM (X) = min({|X∆Y | | Y ∈ M}). Hence, dM (X) is the smallest distance
between X and the sets in M , where the distance between two sets is measured as
the number of elements in the symmetric difference. We will study some properties of
this natural notion, and in particular we investigate the relation between the values
dMρ(X) for different invertible vertex flips ρ on a fixed element v.

We set dM = dM (∅), the cardinality of a smallest set in M .

Lemma 3.1. Let M be a proper set system. Then dM∗Z(X) = dM (X∆Z) for
all X,Z ⊆ V .

Proof. dM∗Z(X) = min({|X∆Y | | Y ∈ M ∗ Z}) = min({|X∆(Y ∆Z)| | Y ∈
M}) = min({|(X ∆Z)∆Y | | Y ∈ M}) = dM (X∆Z).

This basic fact is mainly used to reduce (without loss of generality) results con-
cerning distance from X ⊆ V in set systems to distance from the empty set, i.e., the
cardinality of the smallest set in M : dM (X) = dM∗X(∅) = dM∗X .

As min(M) = min(M + v) we infer that the six different invertible vertex flips
on v result in at most three different values: dM = dM+v, dM∗v = dM∗v+v, and
dM ∗̄v = dM+v∗v. By Lemma 3.1 this can be extended to distance between an arbitrary
X ⊆ V (instead of ∅) and M . When v /∈ X then the three equalities above hold
essentially unchanged for distance from X since vertex flip ρ on v and pivot on X
commute: dMρ(X) = dMρ∗X(∅) = dM∗Xρ. However, when v ∈ X this commutation
no longer holds, and we have to reconsider the equalities. Writing X ′ = X∆{v} and
M ′ = M ∗X ′ we have then

• dM (X) = dM ′∗v = dM ′∗v+v = dM ∗̄v(X)
• dM∗v(X) = dM ′ = dM ′+v = dM+v∗v(X)
• dM+v(X) = dM ′+v∗v = dM ′ ∗̄v = dM∗v+v(X)

One easily argues that applying an invertible vertex flip changes dM by at most
one.

Lemma 3.2. Let M be a proper set system. If ρ is an invertible vertex flip
of M on v ∈ V , then (1) |dM − dMρ| ≤ 1 and (2) dMρ ∈ {m,m + 1} with m =
min({dM , dM∗v}).

Proof. Proof of (1). By the above, we need only to verify the cases ρ = ∗ v and
ρ = ∗̄ v. By the definitions of pivot and dual pivot, for any pair of sets Z,Z∆{v} ⊆ V ,
at least one of this pair is in M iff at least one of this pair is in Mρ. Hence the smallest
cardinality of a set in M cannot differ by more than one from the smallest cardinality
of a set in Mρ.

Proof of (2). By (1), the result is valid for dM and dM∗v, and it suffices to show
that dM ∗̄v ≥ m. The argument we use works for any invertible vertex flip ρ. Let
Z ∈ minc(Mρ), i.e., Z ∈ Mρ such that |Z| = dMρ. We have Z ∈ M or Z∆{v} ∈ M
(or both). If Z ∈ M , then dMρ = |Z| ≥ dM ≥ m. If Z∆{v} ∈ M , then Z ∈ M ∗ {v}
and dMρ = |Z| ≥ dM∗v ≥ m. Hence in both cases we have dMρ ≥ m.

By Lemma 3.2 the three values dM , dM∗v , and dM ∗̄v cannot be all different. As
dM (X∆{v}) = dM∗{v}(X) we also have, for v ∈ V , |dM (X)− dM (X ∆{v})| ≤ 1.

We obtain now a result for M ∗̄ v assuming dM 6= dM∗v.

4



Theorem 3.3. Let M be a proper set system, and v ∈ V . We have

minc(M ∗̄ v) =

{
minc(M) dM < dM∗v

minc(M ∗ v) dM∗v < dM
.

In either case, the elements of minc(M ∗̄ v) do not contain v. In particular, if
dM 6= dM∗v, then dM ∗̄v = m with m = min({dM , dM∗v}).

Proof. We may assume without loss of generality that dM < dM∗v . Indeed, if
dM > dM∗v, then consider M ′ = M ∗ v. We have minc(M ∗̄ v) = minc(M ′ ∗ v ∗̄ v) =
minc(M ′ ∗̄ v + v) = minc(M ′ ∗̄ v) and dM ′ < dM ′∗v.

Assume therefore that dM < dM∗v. Let Z ∈ minc(M). Note that v /∈ Z as
otherwise Z∆{v} would be a smaller set in M ∗ v. Moreover Z /∈ M ∗ v, as otherwise
dM∗v ≤ dM . By the definition of dual pivot, v /∈ Z implies that Z ∈ M ∗̄ v iff exactly
one of Z and Z ∪ {v} is in M . Hence Z ∈ M ∗̄ v. By Lemma 3.2, dM ∗̄v ≥ dM and so
dM ∗̄v = dM and Z ∈ minc(M ∗̄ v).

Consider now M ′′ = M ∗̄ v. We have seen that dM ∗̄v = dM , and so dM ′′ = dM <
dM∗v = dM∗v+v = dM ∗̄v∗v = dM ′′∗v. By the first part of this proof we have that
Z ∈ minc(M ′′) = minc(M ∗̄ v) implies Z ∈ minc(M ′′ ∗̄ v) = minc(M). Consequently,
we obtain minc(M ∗̄ v) = minc(M).

From this result we see that the values of dM , dM∗v, and dM ∗̄v are either (1) all
equal or (2) of the form m, m, m+ 1 (in some order). We show in Section 5 that for
delta-matroids only the latter case occurs.

Example 3.1. Let V = {a, b, c}, and let M be the set system (V, {{a}, {b, c}}).
We have M ∗ b = (V, {{a, b}, {c}}) and M ∗̄ b = (V, {{a}, {c}, {b, c}}). Hence dM =
dM∗b = dM ∗̄b = 1.

4. A Characterization of Delta-Matroids. By Lemma 3.1, dM (X) = dM∗X

is the minimal cardinality of the sets in M ∗X . As a consequence, each set in M ∗X of
cardinality dM (X) belongs to min(M ∗X), but the converse does not necessarily hold,
i.e., the inclusion minc(M∗X) ⊆ min(M∗X) may not be an equality. We consider now
set systems with the property that the converse does hold: for each X ⊆ V , the sets in
min(M ∗X) are all of equal cardinality (or equivalently, minc(M ∗X) = min(M ∗X)).

Definition 4.1. A proper set system M over V is called isodistant if, for each
X ⊆ V , min(M ∗X) is equicardinal.

Thus for isodistant M , the common cardinality of the sets in min(M ∗X) is equal
to dM (X). As we have noted this also holds the other way around, and so the minimal
sets in M ∗X are characterized by their cardinality.

Clearly, the isodistant property of set systems is invariant under pivot: if set
system M is isodistant, then M ∗X is isodistant for each X ⊆ V . Due to the duality
min(M)∗V = max(M ∗V ), one easily verifies that M is isodistant iff for each X ⊆ V ,
max(M ∗X) is equicardinal. In that case the sets in max(M ∗X) are all of cardinality
equal to |V | − dM (V \X).

A delta-matroid is a proper set system M that satisfies the symmetric exchange
axiom: For all X,Y ∈ M and all u ∈ X∆Y , either X ∆{u} ∈ M or there is a
v ∈ X∆Y with v 6= u such that X∆{u, v} ∈ M [4]. The notion of delta-matroid is
equivalent to the notion of Lagrangian matroid [2, Section 6]. If we assume a matroid
M is described by a tuple (V,B) where B is the set of bases of M , then it is shown
in [6, Proposition 3] that a matroid M is precisely a equicardinal delta-matroid (the
result essentially follows from [12, Theorem 1]). It is stated in [7, Property 4.1] that a
set system M is a delta-matroid iff max(M ∗X) is a matroid (described by its bases)
for every X ⊆ V . Consequently, every delta-matroid is isodistant.

5



We now show that, surprisingly, the converse holds. Hence, the notions of delta-
matroid and isodistance are equivalent, i.e., without assuming the matroid structure
of the maximal or minimal elements.

Theorem 4.2. Let M be a proper set system. Then M is a delta-matroid iff M
is isodistant.

Proof. Assume first that M is isodistant. Let X,Y ∈ M and u ∈ X∆Y . We
need to show that either X ∆{u} ∈ M or there is a v ∈ X∆Y with v 6= u such that
X∆{u, v} ∈ M . Consider M ′ = M ∗ (X ∆{u}). If ∅ ∈ M ′, then X∆{u} ∈ M and
we are done. Assume ∅ 6∈ M ′. We have {u} ∈ M ′ and Z = Y ∆(X∆{u}) ∈ M ′.
As M is isodistant, so is M ′ and thus {v} ∈ M ′ for some v ∈ Z. As u 6∈ Z, u 6= v.
Therefore, X ∆{u, v} ∈ M and we are done.

The forward implication, i.e., the fact that the maximal elements of a delta-
matroid are of equal cardinality, follows from [7, Property 4.1] (stated above) or [13,
Lemma 6].

By restricting to equicardinal set systems we obtain the following corollary.

Corollary 4.3. Let M be a proper set system. Then M is a matroid described
by its bases iff both (1) M is equicardinal, and (2) for each X ⊆ V , min(M ∗X) is
equicardinal.

Although the characterization of a matroid in Corollary 4.3 is novel, we can link it
to a well-known characterization of matroids M given below, where M is described by
its independent sets. This characterization can be found, e.g., in [20, Exercise 1.1.3]
and in [25, Section 1.5].

Proposition 4.4. Let M be a proper set system. Then M is a matroid described
by its independent sets iff both (1) for each Y ∈ M and Y ′ ⊆ Y , we have Y ′ ∈ M ,
and (2) for each X ⊆ V , max(M [X ]) is equicardinal.

The second property of Proposition 4.4 is known as the cardinality property.

Inspired by Proposition 4.4 and Corollary 4.3 we obtain the following result,
which from appearance may be thought of as the “analog” of Corollary 4.3 where
the matroid is described by its independent sets (it appears that there is no obvious
“analog” of Proposition 4.4 for matroids described by its bases).

Corollary 4.5. Let M be a proper set system. Then M is a matroid described
by its independent sets iff both (1) for each Y ∈ M and Y ′ ⊆ Y , we have Y ′ ∈ M ,
and (2) for each X ⊆ V , min(M ∗X) is equicardinal.

Proof. Let M be a proper set system such that condition (1) holds. Let X ⊆ V ,
and let Z ∈ min(M ∗X). Then Z∆X ∈ M . If v ∈ Z\X , then (Z\{v})∆X ⊂ Z∆X
and (Z\{v})∆X ∈ M by condition (1), contradicting the minimality of Z. Therefore
Z ⊆ X . Consequently, Z∆X ⊆ X . Hence min(M ∗X) = min(M [X ] ∗X).

As X is the ground set of M [X ], we have min(M [X ] ∗ X) = max(M [X ]) ∗ X .
Again, as X is the ground set of M [X ], max(M [X ])∗X is equicardinal iff max(M [X ])
is equicardinal. The result follows now by Proposition 4.4.

Note that, again, min(M ∗ X) in Corollary 4.5 may equivalently be replaced
by max(M ∗ X). Also note that while the second condition of Corollary 4.3 and
of Corollary 4.5 are identical, they concern (in general) very different set systems.
Indeed, if M is a matroid described by its independent sets, then max(M) is the
corresponding matroid described by its bases.

From now on, we prefer the term delta-matroid instead of the equivalent notion
of isodistant set system, as the former is well known. However, the results in this
paper do not (directly) use the definition of delta-matroid; we use only the property
of isodistance.
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5. Distance in Delta-Matroids. We reconsider the distance function dM , but
now restricted to delta-matroids M rather than set systems in general.

We may now characterize delta-matroids through distance and deletion.

Theorem 5.1. Let M be a proper set system. Then M is a delta-matroid iff
dM∗Y = dM∗Y [X] for all X,Y ⊆ V with M ∗ Y [X ] proper.

Proof. We first show the forward implication. It is easy to see that min(M [X ]) ⊆
min(M) for any set system M and X ⊆ V with M [X ] proper. Hence if M is a delta-
matroid, then dM = dM [X], and similarly for M ∗Y for all Y ⊆ V . To show the reverse
implication, assume M is not a delta-matroid, and let Z1, Z2 ∈ min(M ∗ Y ) with
|Z1| < |Z2|. We have that M ∗Y [Z2] consists only of Z2 and therefore dM∗Y [Z2] = |Z2|.
However, dM∗Y ≤ |Z1| — a contradiction.

It follows from Theorem 5.1 that the distance function dM behaves well under
removal of elements from the ground set V .

Theorem 5.2. Let M be a delta-matroid, and X ⊆ V . If M [X ] is proper, then
dM [X](Y ) = dM (Y ) for all Y ⊆ X.

Proof. We have dM (Y ) = dM∗Y and dM [X](Y ) = dM [X]∗Y = dM∗Y [X] where in
the last equality we use Y ⊆ X and the commutation of vertex flips. The result holds
by Theorem 5.1.

In particular, by Theorem 5.2, dM (X) = dM [X](X) for all X ⊆ V where M [X ] is
proper, hence dM (X) = min({|X \ Y | | Y ∈ M,Y ⊆ X}).

The property of delta-matroids shown in Theorem 5.2 is important in a subsequent
study of interlace polynomials on delta-matroids [9]. Of course, Theorem 5.2 does
not hold for set systems in general. Indeed, it is easy to verify that set system
M = (V, {∅, V }) is not a delta-matroid for |V | ≥ 3. Take |V | = 3. We have, for
u ∈ V , M \ u = (V \ {u}, {∅}) and therefore 2 = dM\u(V \ {u}) 6= dM (V \ {u}) = 1.
It is also easy to verify that the property of Theorem 5.2 does not characterize delta-
matroids like in Theorem 5.1 (take, e.g., M = ({a, b, c}, {∅, {a}, {b, c}})).

By Theorem 3.3, for arbitrary set systems the value of dM ∗̄v is the minimum of
dM and dM∗v when these two values differ. However, the value of dM ∗̄v could not be
fixed when dM equals dM∗v. This changes when M is a delta-matroid.

Lemma 5.3. Let M be a delta-matroid, and v ∈ V such that dM = dM∗v . Then
(1) no set in min(M) contains v, (2) min(M) = min(M ∗v), and (3) dM ∗̄v = dM +1.

Proof. Let m = dM = dM∗v. (1) Let Y ∈ min(M). Then Y ∆{v} ∈ M ∗ v. As
|Y | ≤ |Y ∆{v}|, we have v /∈ Y .

(2) Let Y ∈ min(M). As Y ∪ {v} ∈ M ∗ v, there must be a Y ′ ∈ min(M ∗ v)
of cardinality m with Y ′ ⊆ Y . If Y ′ = Y ∪ {v} \ {w} with v 6= w, then Y ′ \ {w} ∈
min(M) while this set is smaller than m — a contradiction. Hence v = w, and
Y = Y ′ ∈ min(M ∗ v). Therefore, min(M) ⊆ min(M ∗ v). By symmetry we obtain
the other inclusion.

(3) By Lemma 3.2, dM ∗̄v ∈ {m,m+ 1}, so it suffices to prove that there are no
sets in M ∗̄ v that have cardinality m. Thus assume Z ∈ M ∗̄ v and |Z| = m. By the
definition of dual pivot, either Z ∈ M (case v ∈ Z) or Z in exactly one of M and M ∗v
(case v /∈ Z). In the former case we have Z ∈ min(M) while v ∈ Z, contradicting (1).
The latter case contradicts with (2).

It is observed in [11] that both loop complementation and dual pivot do not
(in general) retain the property of being a delta-matroid. For example, for delta-
matroid M = (V, 2V \ {V }) with V = {1, 2, 3}, M ∗̄ 1 is not a delta-matroid. In fact,
min(M ∗̄ 1) = (V, {{1}, {2, 3}}) is not even equicardinal. The next result shows that
min(M ∗̄ v) is equicardinal for a delta-matroid M when dM 6= dM∗v.
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Lemma 5.4. Let M be a delta-matroid, and v ∈ V . If dM 6= dM∗v, then min(M ∗̄
v) is equicardinal.

Proof. Assume first that dM < dM∗v. By Theorem 3.3, dM = dM ∗̄v, and
min(M) = minc(M ∗̄ v) ⊆ min(M ∗̄ v). Let Z ∈ min(M ∗̄ v). By definition of
dual pivot, Z ∈ M or Z∆{v} ∈ M (or both). Hence, as no set in min(M) con-
tains v, there is a Y ∈ min(M) with Y ⊆ Z \ {v}. Again, Y ∈ min(M) implies
Y ∈ min(M ∗̄ v) and so Y = Z.

The other case, dM > dM∗v, follows by symmetry (consider the delta-matroid
M ′ = M ∗ v similar as in the proof of Theorem 3.3).

Let M = (V,D) be a set system and v ∈ V . We define pseudo-deletion of M on v,

denoted by M \̂v, as M \̂v = (V,D \ v ∗ v). Similarly, we define pseudo-contraction of

M on v, denoted by M/̂v, as (V,D∗v\v). Note that the ground sets for both pseudo-

deletion and pseudo-contraction remain unchanged. Also note thatM ∗v\̂v = M/̂v∗v.

The definitions of pseudo-deletion and pseudo-contraction are motivated by ma-
troids as follows. Recall that for a matroid M described by its bases and v ∈ V ,
M \ v and M ∗ v \ v are the matroid operations of deletion (if v is not a coloop) and
contraction (if v is not a loop), denoted by M \ v and M/v, respectively. It is easy to
see that then pseudo-deletion is adding v as a coloop to M \v and pseudo-contraction
is adding v as a loop to M/v [3]. In this way, we regard pseudo-deletion and pseudo-
contraction as matroid operations as well. Pseudo-deletion and pseudo-contraction
take the following form if a matroid is described by its circuits. If M ′ = (V, C) is the

circuit description of M , then M ′\̂v = (V, C \ v) and M ′/̂v = (V, (C/v) ∪ {{v}}).

We are now ready to formulate the announced m,m,m + 1 result for delta-
matroids.

Theorem 5.5. Let M be a delta-matroid, and v ∈ V . Then the equicardinal set
systems min(M), min(M ∗ v), and minc(M ∗̄ v) are such that precisely two of the
three are equal, to say M1. Moreover, the third M2 is such that dM2 = dM1 + 1 and

M2/̂v = M1.

In particular, the values of dM , dM∗v, and dM ∗̄v are such that precisely two of
the three are equal, to say m, and the third is equal to m+ 1.

Proof. (i) The case dM = dM∗v follows from Lemma 5.3 except for the equality

M2/̂v = M1. Let Z ∈ M1 = min(M ∗v). By Lemma 5.3, v 6∈ Z. We have Z∆{v} ∈ M
and v ∈ Z∆{v}, and therefore Z∆{v} ∈ M ∗̄ v and |Z∆{v}| = dM ∗̄v. Hence,
Z∆{v} ∈ minc(M ∗̄ v) = M2. Conversely, let Z ∈ minc(M ∗̄ v) = M2 with v ∈ Z.
Then Z ∈ M . Hence Z\{v} ∈ M ∗v. Since dM2 = dM1+1, Z\{v} ∈ min(M ∗v) = M1.
(ii) Consider dM < dM∗v, hence dM + 1 = dM∗v. By Theorem 3.3 we know that
minc(M ∗̄ v) = min(M). If Z ∈ min(M), then Z∆ v ∈ M ∗v is minimal by cardinality
and so min(M) ∗ v ⊆ min(M ∗ v). Conversely, if Z ∈ min(M ∗ v) and v ∈ Z, then
Z \ {v} ∈ min(M) as dM2 = dM1 +1. (iii) The case dM∗v < dM holds by symmetry.

Theorem 5.5 is related to Theorem (9.4) of [3], which deals fundamentally with bi-
nary matroids. In fact, Theorem 5.5 may be seen as a generalisation of Theorem (9.4)
of [3], cf. Theorem 7.1.

Note that the cardinality of the sets inM2 is exactly one larger than the cardinality
of the sets in M1. Also note that min(M) and min(M ∗v) are matroids and with ranks
dM and dM∗v , respectively. Lemma 5.4 shows that if dM 6= dM∗v, then minc(M ∗̄ v) =
min(M ∗̄ v) is also a matroid with rank dM ∗̄v. Of course, if M ∗̄ v is a delta-matroid,
then minc(M ∗̄ v) = min(M ∗̄ v) also holds.

Let X ⊆ V . By Theorem 5.5, if v 6∈ X , then the values of dM (X), dM∗v(X), and
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dM ∗̄v(X) are such that precisely two of the three are equal, to say m, and the third is
equal to m+ 1. Also, if v ∈ X , then the same statement holds for dM (X), dM∗v(X),
and dM+v(X).

We may state the max analog of Theorem 5.5, using the duality max(M) ∗ V =
min(M ∗ V ) — note again the change from M ∗̄ v to M + v.

Theorem 5.6. Let M be a delta-matroid, and v ∈ V . Then the equicardinal set
systems max(M), max(M ∗ v), and maxc(M + v) are such that precisely two of the
three are equal, to say M1. Moreover, the third M2 is such that dM1 = dM2 + 1 and

M2\̂v = M1.
Proof. We have max(M) = min(M ∗V ) ∗V , max(M ∗ v) = min((M ∗V ) ∗ v) ∗V ,

and max(M+v) = min(M+v∗V )∗V = min((M ∗V ) ∗̄ v)∗V . Now apply Theorem 5.5
to delta-matroid M ∗ V . Finally, let M1 = M ′

1 ∗ V and M2 = M ′
2 ∗ V , where M ′

1 and
M ′

2 are the two set systems of Theorem 5.5 belonging to delta-matroid M ∗ V . We

have M2\̂v = M ′
2 ∗ V \̂v = M ′

2/̂v ∗ V = M ′
1 ∗ V = M1.

Of course, max(M) and max(M ∗ v) are matroids. If M + v is a delta-matroid,
then max(M + v) = maxc(M + v) is also a matroid. The matroid formulation of
Theorem 5.6 for the case where M + v is a delta-matroid is given in the Introduction.

Note that dM1 = dM2 + 1 means that the cardinality of the sets in M2 is exactly
one smaller than the cardinality of the sets in M1.

Note also that the definition of loop complementation may be formulated through
the distance measure since dM+v(X) = 0 iff X ∈ M + v. We have therefore, for
X ⊆ V , by definition of loop complementation, dM+v(X) = 0 iff dM (X) = 0 when
v 6∈ X , and dM+v(X) = 0 iff (dM (X) = 0) ⊕ (dM∗v(X) = 0) when v ∈ X . Recall
that dM+v(X) = dM (X), hence the case v 6∈ X is extended to arbitrary values of
dM+v(X). Moreover, by Theorem 5.6, the case v ∈ X is extended for delta-matroids
to arbitrary values of dM+v(X) through the m, m, m + 1 property (by extending ⊕
in a suitable way from Booleans to integers).

One may wonder whether or not the property of Theorem 5.5 characterizes delta-
matroids. The next example illustrates that this is not the case.

Example 5.1. Let M = (V, {∅, V }). Recall that M is not a delta-matroid for
|V | ≥ 3. Assume now that |V | ≥ 3 is even. Let X ⊆ V and v ∈ X. As the (two) sets
in M are of equal parity, the distances dM (X) and dM∗v(X) = dM (X∆{v}) are of
different parity (as |X | and |X∆{v}| are of different parity). Now, by Lemma 3.2,
dM+v(X) = min{dM (X), dM∗v(X)}, and we have that dM (X), dM∗v(X), and dM+v(X)
are, in this order, either of the form m, m+ 1, and m, or of the form m+ 1, m, and
m.

6. Representable Delta-Matroids. In this section we consider the case where
a delta-matroid M is represented by a matrix A. We show that in that case the notion
of distance to X in the represented delta-matroid closely matches that of nullity of
the principal submatrix A[X ].

For a V × V matrix A (the columns and rows of A are indexed by finite set
V ) and X ⊆ V , A[X ] denotes the principal submatrix of A with respect to X , i.e.,
the X × X matrix obtained from A by restricting to rows and columns in X . We
also define A \ X = A[V \ X ]. For V × V matrix A we consider the associated set
system MA = (V,DA) with DA = {X ⊆ V | A[X ] is nonsingular}. Observe that
MA[X] = MA[X ], and MA\X = MA \X .

It is shown in [4] that MA is a delta-matroid when A is symmetric or skew-
symmetric (over some field F). Note that ∅ ∈ MA. We say that delta-matroid M is
representable over F if M = MA ∗X for some skew-symmetric matrix A and X ⊆ V ;

9



A is called a representation ofM . A delta-matroid is called binary if it is representable
over F2.

Recall that for a W ×V matrix A, the column matroid N = (V,B) of A described
by its bases is such that, for X ⊆ V , X ∈ B iff the columns of A belonging to X form
a basis of the column space of A. Matrix A is said to represent N . For matroids,
this usual sense of representability coincides with representability in the delta-matroid
sense, see 4.4 of [4]. Hence, every binary matroid is a binary delta-matroid.

We now formulate the matroid version of the strong principal minor theorem [18]
(the original result is more general, as it considers quasi-symmetric matrices over a
division ring), see also [10, Lemma 10].

Proposition 6.1 (Strong Principal Minor Theorem [18]). Let A be a V × V
symmetric or skew-symmetric matrix (over some field). Then max(MA) equals the
column matroid of A (described by its bases).

As a consequence of the strong principal minor theorem, the sets in max(MA)
are all of cardinality equal to the rank r(A) of A — this fact is known as the principal
minor theorem. We now use the principal minor theorem to obtain that the distance
X ⊆ V toMA corresponds to the nullity of A[X ]. We will also use the strong principal
minor theorem to prove Theorem 7.1.

Theorem 6.2. Let A be a V × V symmetric or skew-symmetric matrix (over
some field). Then dMA

(X) = n(A[X ]) for every X ⊆ V .

Proof. By Theorem 5.2, dMA
(X) = dMA[X](X) (note that MA[X ] is proper

as ∅ ∈ MA). Now, dMA[X](X) = |X | − |Z| with Z ∈ max(MA[X ]). Moreover,
MA[X ] = MA[X]. By the principal minor theorem, |Z| = r(MA[X]) = r(A[X ]), and
so dMA[X]

(X) = n(A[X ]).

To extend the notion of nullity to delta-matroids (or proper set systems in gen-
eral), we regard dM (X) as the nullity of X in M . We may now also define the rank
rM (X) ofX in M by rM (X) = |X |−dM (X). In this way we have rMA

(X) = r(A[X ]),
where r(A[X ]) denotes the rank of matrix A[X ].

Remark 6.1. There have been a number of rank functions introduced for delta-
matroids. In [8] the rank of X ⊆ V is defined as r′M (X) = max{|X ∩ Y | + |(V \
X) ∩ (V \ Y )| | Y ∈ M}. It is easy to verify that r′M (X) = max{|V \ (X∆Y )| |
Y ∈ M} = |V | − min{|X∆Y | | Y ∈ M}. Therefore, r′M (X) = |V | − dM (X)
and hence the notion is slightly different from the rank function rM (X) defined in
this paper. Also, in [5] the birank of X,Y ⊆ V with X ∩ Y = ∅ is defined as
r′′M (X,Y ) = max{|Z∩X |+ |(V \Z)∩Y | | Z ∈ M}. We have r′′M (X,V \X) = r′M (X).
Finally, in [17] the birank of X,Y ⊆ V with X ∩ Y = ∅ is defined as r′′′M (X,Y ) =
max{|Z ∩ X | − |Z ∩ Y | | Z ∈ M}. Function r′′′M (X,Y ) does correspond to the rank
rM (X) as defined in this paper, as r′′′M (X,V \X) = rM (X). However none of these
papers on delta-matroids (explicitly) considers nullity as a distance measure.

A delta-matroid M is called even if the cardinality of the sets in M all have equal
parity. Let A be a skew-symmetric matrix over some field F. It easily follows from [4,
Thm 4.3.3] that delta-matroid MA is even when A is zero-diagonal (note that this
condition is only relevant when F is of characteristic 2). We now obtain the following
corollary to Theorem 6.2.

Corollary 6.3. Let A be a V × V zero-diagonal skew-symmetric matrix, and
v ∈ V . Then n(A) and n(A \ v) differ by precisely 1.

Proof. Since the cardinality of the sets in MA have a common parity, for all X ⊆
V , dMA

(X) is odd iff dMA
(X ∆{v}) is even. As |dMA

(X)− dMA
(X ∆{v})| ≤ 1, we

have |dMA
(X)−dMA

(X ∆{v})| = 1. Let now X = V and we obtain by Theorem 6.2,
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|n(A)− n(A \ v)| = 1.

7. Application: Graphs. In this section we translate the above results to the
realm of graphs, where, e.g., the operations + v and ∗ v have their own specific
interpretation. We consider undirected graphs without parallel edges, but we do
allow loops. For a graph G = (V,E) and x ∈ V , we have {x} ∈ E iff x has a loop.
With a graph G one associates its adjacency matrix A(G), which is a V × V matrix
(au,v) over F2 with au,v = 1 iff {u, v} ∈ E (with possibly u = v). In this way, the
family of graphs with vertex set V corresponds precisely to the family of symmetric
V × V matrices over F2. Therefore we often make no distinction between a graph
and its matrix, so, e.g., by the null space (or kernel) and nullity (i.e., dimension of
the null space) of graph G, denoted by ker(G) and n(G) respectively, we mean the
null space and nullity of its adjacency matrix A(G) (computed over F2). Also, for
X ⊆ V , G[X ] = A(G)[X ] is the subgraph of G induced by X . By convention, the
empty graph/matrix is nonsingular. Similar as for set systems, we often write V to
denote the vertex set of the graph under consideration.

For a graph G and a set X ⊆ V , the graph obtained after loop complementation
for X on G, denoted by G+X , is obtained from G by adding loops to vertices v ∈ X
when v does not have a loop in G, and by removing loops from vertices v ∈ X when v
has a loop in G. Hence, if one considers a graph as a matrix, then G+X is obtained
from G by adding the V ×V matrix with elements xi,j such that xi,j = 1 if i = j ∈ X
and 0 otherwise. Note that (G+X) + Y = G+ (X ∆Y ).

Given the set system MG = MA(G) = (V,DG) for some graph G = (V,E), one
can (re)construct the graph G, see [7, Property 3.1]. Hence the function M(·) which
assigns to each graph G its set system MG is injective. In this way, the family of
graphs (with set V of vertices) can be considered as a subset of the family of set
systems (over set V ). Note that M(·) is not injective for matrices over F2 in general:

e.g., for fixed V with |V | = 2, the 2 × 2 zero matrix and the matrix

(
0 1
0 0

)

correspond to the same set system.

It is shown in [11] that MG+X = MG+X for any graph G and X ⊆ V . Therefore
the operation +X on set systems M is a generalization of loop complementation on
graphs G — which explains its name.

If G is a graph and u a vertex1 of G, then the result of local complementation of
u on G, denoted by locu(G), is the graph obtained from G by “toggling” the edges
in the neighbourhood NG(u) = {v ∈ V | {u, v} ∈ E(G), u 6= v} of u in G: for each
v, w ∈ NG(u), {v, w} ∈ E(G) iff {v, w} 6∈ E(locu(G)) (again, v = w is possible). The
other edges are left unchanged.

If u is a looped vertex of G, then it is shown in [14] that MG ∗ u = Mlocu(G).
Moreover, if u is a unlooped vertex of G, then MG ∗̄ u = Mlocu(G) (see [11]). In this
way, local complementation is defined for delta-matroids. For convenience, we define
the pivot of a looped vertex u on G, denoted as G ∗ u, by locu(G) (it is not defined
on unlooped vertices). Similarly, we define the dual pivot of an unlooped vertex u on
G, denoted as G ∗̄ u, by locu(G) (it is not defined on looped vertices). Thus, if u
is looped, then MG ∗ u = MG∗u, and if u is unlooped, then MG ∗̄ u = MG∗̄u. In
general, for a set X ∈ MG, MG ∗ X = MG∗X where G ∗ X is a graph called the

1Local complementation is often defined on simple graphs; here we consider the obvious extension
to graphs where loops are allowed. Note that local complementation may be applied here to a non-
looped vertex u, which is different from, e.g., [11].
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pivot (or principal pivot transform) [23] of G on X [4] — clearly, MG ∗X does not
correspond to a graph if X 6∈ MG.

As usual, a vector v indexed by V over F2 may be identified by a subset X ⊆ V ,
where v at position x ∈ V is 1 iff x ∈ X . In this way, we regard ker(G) for a graph G
as a subset of 2V . By the strong principal minor theorem we have that the cycle space
of the matroid max(MG) is precisely ker(G). Of course, the nullity of the matroid
max(MG) is the dimension dim(ker(G)) of ker(G).

If we restrict now Theorem 5.6 for the case where the delta-matroid M is equal
to MG, then we obtain the following result.

Theorem 7.1. Let G be a graph having a looped vertex v. Then ker(G), ker(G∗v),
and ker(G + v) are such that precisely two of the three are equal, to say K1, and the
third, K2, is such that dim(K2) = dim(K1) + 1 and K1 = {X ∈ K2 | v 6∈ X}.

Proof. From Theorem 6.2 we know that for any graph G′ the dimension of the
kernel equals n(G′) = dMG′

(V ), i.e., the cardinality of sets in min(MG′ ∗ V ) which
are complements of sets in max(MG′).

By Theorem 5.6, max(MG), max(MG∗v), and max(MG+v) are such that pre-
cisely two of the three are equal, to say M1, and the nullity of the third, M2, is one
larger than the nullity of M1. Moreover, the family of circuits of M1 is obtained from
the family of circuits of M2 by removing the sets containing v.

Hence (by discussion above), ker(G), ker(G ∗ v), and ker(G + v) are such that
precisely two of the three are equal, to say K1. The third, K2, is such that dim(K2) =
dim(K1) + 1 and K1 = {X ∈ K2 | v 6∈ X}.

Theorem 7.1 is similar to a result of Traldi [22, Lemma 23], where graph G′,
obtained from G by removing all edges incident to v except for the loop on v, is
considered instead of G ∗ v. Moreover, Theorem 7.1 is essentially [3, Theorem (9.4)]
for the case where G is a fundamental graph of an isotropic system.

Let G be a graph with looped vertex v. By Theorem 7.1, the values of n(G),
n(G ∗ v), and n(G + v) are such that precisely two of the three are equal, to say m,
and the third is equal to m + 1. It is shown in [10] that the adjacency matrix of
G ∗ v \ v is the Schur complement of v on the adjacency matrix of G, and moreover
it is well known, see e.g. [26], that the Schur complement retains the nullity, i.e.,
n(G ∗ v \ v) = n(G). Hence, we have n(G ∗ v) = n(G \ v) and we obtain as a
consequence of Theorem 7.1 the following result of [1].

Proposition 7.2 (Lemma 2 of [1]). Let G be a graph and v ∈ V . Then the
values of n(G), n(G \ v), and n(G + v) are such that precisely two of the three are
equal, to say m, and the third is equal to m+ 1.

Corollary 6.3 for the case where the field is F2 may be stated as follows.

Corollary 7.3. Let G be a graph, and v ∈ V a vertex of G. If G has no loops,
then n(G) and n(G \ v) differ by precisely 1.

8. Vertex-Flip-Safe Delta-Matroids. Recall from Section 5 that the result
of applying dual pivot or loop complementation on a delta-matroid is not necessarily
a delta-matroid. In this section we consider families of delta-matroids that are closed
under invertible vertex flips in general. In particular, we show that the binary delta-
matroids form one such family. As a consequence, for binary delta-matroid M the set
systems M ∗ v and M ∗̄ v in Theorem 5.5 are binary delta-matroids.

Definition 8.1. Let M be a delta-matroid. We say that M is a vertex-flip-safe
(or vf-safe for short) if for any sequence ϕ of invertible vertex flips (equivalently,
pivots and loop complementations) over V we have that Mϕ is a delta-matroid.
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Hence, M is a vf-safe delta-matroid iff each set system in the orbit of M under
pivot and loop complementation is a delta-matroid.

We say that a family of delta-matroids is vf-closed if the family is closed under
invertible vertex flips. We now show that the family of binary delta-matroids is vf-
closed. First we remark that this is not trivial. While we know that for a graph G and
X ⊆ V , (1)MG∗X is a binary delta-matroid by definition, and (2)MG+X = MG+X

corresponds to a graph, it is not immediately clear that, e.g., MG ∗X + Y is a delta-
matroid for all Y ⊆ V (recall that MG ∗ X does not correspond to a graph when
X 6∈ MG).

Theorem 8.2. The family of binary delta-matroids is vf-closed. In particular,
every binary delta-matroid is vf-safe.

Proof. Let M be a binary delta-matroid. Hence M is of the form MG ∗ X for
some graph G and X ⊆ V . Let ϕ be a sequence of invertible vertex flips over V . Let
W ∈ MG ∗Xϕ, and consider now ϕ′ = ∗Xϕ∗W . By [11, Corollary 15], ϕ′ can be put
in the following normal form: MGϕ

′ = MG+Z1∗Z2+Z3 for some Z1, Z2, Z3 ⊆ V with
Z1 ⊆ Z2. We have MG+Z1 = MG+Z1 . Thus MG+Z1∗Z2+Z3 = MG+Z1 ∗Z2+Z3.
By construction∅ ∈ MGϕ

′. Hence we have∅ ∈ MG+Z1∗Z2. Therefore Z2 ∈ MG+Z1

and so G + Z1 ∗ Z2 is defined. Consequently, G′ = G + Z1 ∗ Z2 + Z3 is defined and
MGϕ

′ = MG′ . Hence Mϕ = MG ∗ Xϕ = MG′ ∗ W and thus G′ represents Mϕ.
Consequently, Mϕ is a binary delta-matroid.

We consider some specific matroids to illustrate the scope of this notion. By
Theorem 8.2, every binary matroid is vf-safe. Not every matroid is a vf-safe matroid.
The 6-point line, i.e., U2,6 = (V, {{u, v} | u, v ∈ V, u 6= v}) with |V | = 6, is not vf-safe.
Recall that X ∈ M +V iff the number of sets in M [X ] is odd. We have V ∈ U2,6+V
as the number of sets in U2,6 is

(
6
2

)
= 15 (odd), while the sets of cardinality 4 and 5

are not in U2,6 + V as
(
5
2

)
= 10 and

(
4
2

)
= 6 are even. Consequently, the symmetric

exchange axiom does not hold for V ∈ U2,6 + V (as neither V \ {u} ∈ U2,6 + V nor
V \ {u, v} ∈ U2,6 + V for any u, v ∈ V ).

Based on Theorem 4.2 one easily verifies (by computer) that several small (non-
binary) matroids are vf-safe. Such examples include the matroids U2,4, U2,5, U3,6, Q6,
W3, P8, P

=
8 , and Pappus. For information on these matroids, see the Appendix on

interesting matroids in [20].

We turn to minors. A minor of a delta-matroidM is a proper set system obtained
from M by any sequence of \ v (deletion) and ∗ v \ v (contraction) operations. A
minor of M is thus a proper set system of the form M ∗ X \ Y with X ⊆ Y ⊆ V .
Consequently, a minor of a delta-matroid is again a delta-matroid. Also note that
this notion of minor restricted to matroids coincides with the usual notion of minor
for matroids.

Theorem 8.3. The family of vf-safe delta-matroids is minor-closed. In particu-
lar, the family of vf-safe matroids is minor-closed.

Proof. It suffices to considerM \u for a vf-safe delta-matroid and some u ∈ V . Let
ϕ be a sequence of invertible vertex flips on V \{u}. Then M ′ = (M \u)ϕ = (Mϕ)\u.
Moreover,Mϕ is a delta-matroid asM is a delta-matroid. Also, M ′ is proper, asM \u
is proper. Consequently, M ′ = (Mϕ) \ u is a delta-matroid.

Theorem 8.3 suggests looking for an excluded-minor characterization for the class
of vf-safe matroids. By computer we found that the matroids U2,6, U4,6, P6, F

−
7 ,

and (F−
7 )∗ (see again [20] for a description of these matroids) are excluded minors

for the family of vf-safe matroids. Moreover, using the database of D. Mayhew and
G.F. Royle [19], we confirmed that these are the only excluded minors with 9 or less
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elements. We notice similarity with the excluded-minor characterization of quaternary
matroids (i.e., the matroids representable over GF (4)) [15], where it is shown that
a matroid M is quaternary iff no minor of M is isomorphic to U2,6, U4,6, P6, F

−
7 ,

(F−
7 )∗, P8, or P

=
8 . Hence, we conjecture the following (which consequently has been

verified for matroids with 9 or less elements).
Conjecture 8.1. Every quaternary matroid is vf-safe.

Let N be the family of matroids that have no minors isomorphic to U2,6, U4,6,
P6, F

−
7 , or (F−

7 )∗. It is shown in [16, Corollary 1.2] that N can be constructed by
taking direct sums and 2-sums of copies of P=

8 , minors of S(5, 6, 12), and quaternary
matroids (see again [20] for a description of S(5, 6, 12)). In this light, we have verified
(by computer and using internal symmetries of the matroid) and found that S(5, 6, 12)
is vf-safe as well. Hence we conjecture that the above list of excluded minors for the
class of vf-safe matroids is complete.

We finally note that not every quaternary delta-matroid is vf-safe. For example,
the non-vf-safe delta-matroid (V, 2V \ {{u}}) with V = {u, v, w} (this delta-matroid
differs from the non-vf-safe delta-matroid of Section 5 by a pivot) is represented by
the following skew-symmetric matrix over GF (4):




u v w

u 0 a b
v a 1 0
w b 0 1




where a and b are the two elements distinct from 0 and 1 in GF (4).
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