
Timisto: A Technique to Extract Usage Sequences from
Storyboards

Joël Vogt1,2 Kris Luyten2 Mieke Haesen2 Karin Coninx2 Andreas Meier1

1Department of Informatics
University of Fribourg, 1700 Fribourg,

Switzerland
{joel.vogt, andreas.meier}@unifr.ch

2Hasselt University - transnationale Universiteit
Limburg - IBBT Expertise Centre for Digital Media

Wetenschapspark 2, 3590 Diepenbeek, Belgium
{kris.luyten, mieke.haesen, karin.coninx}@uhaselt.be

ABSTRACT
Storyboarding is a technique that is often used for the
conception of new interactive systems. A storyboard il-
lustrates graphically how a system is used by its users
and what a typical context of usage is. Although the
informal notation of a storyboard stimulates creativity,
and makes them easy to understand for everyone, it is
more difficult to integrate in further steps in the engi-
neering process. We present an approach, “Time In Sto-
ryboards” (Timisto), to extract valuable information on
how various interactions with the system are positioned
in time with respect to each other. Timisto does not
interfere with the creative process of storyboarding, but
maximizes the structured information about time that
can be deduced from a storyboard.

Author Keywords
Design Methods;Analysis Methods;

ACM Classification Keywords
H.5.2 User Interfaces (D.2.2, H.1.2, I.3.6): User-centered
design; I.2.4 Knowledge Representation Formalisms and
Methods (F.4.1): Temporal logic

INTRODUCTION
Engineering an interactive software system is essentially
a creative activity that needs input from both technical
and non-technical people. Current notations and tools
often follow a strict separation of concern strategy in
which members of such a team use the notations and
tools they are accustomed with [3]. Given the wide di-
versity of notations and tools, synchronizing the various
efforts is cumbersome [7]. Informal design artifacts are
very accessible to non-technical people and often only
require pen and paper [4, 13]. Storyboarding is such an
informal technique that is frequently used for the design
of interactive systems [14] and that will be the basic no-
tation for the contributions described in this paper. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’13, June 24–27, 2013, London, United Kingdom.
Copyright 2013 ACM 978-1-4503-2138-9/13/06...$15.00.

focus in this paper is on the extraction of both a com-
prehensible and formal specification of time based on
informal storyboard drawings. With this piece of work
we strengthen the link between the valuable informal ar-
tifacts that help us to understand the requirements and
the users point of view and the engineering artifacts that
are used to construct the interactive software system. As
such this piece of work contributes to the engineering
process to create interactive systems, more specifically
helps to connect informal and formal artifacts.

We use McCloud’s works on comics [9, 10] as a refer-
ence framework for analyzing storyboards. Like comics,
storyboards are a visual form of storytelling. Images of
imaginary or real things such as places, people or ideas
are used to illustrate and convey ideas. Furthermore,
drawing comics or storyboards is inherently spatial. The
physical space that is used by sequences of drawings of-
ten visualizes the progression of the story in time. The
sequence of images, their size, and the distance between
images help the reader to move through time by mov-
ing through space. Panels have a special role in comics.
They are snapshots that explicitly show moments of the
story. The story evolves between the panels and is de-
veloped further in the reader’s imagination. Figure 1
presents a storyboard that describes an interactive setup
for an exhibition.

Unlike textual descriptions of scenarios or engineering
models, understanding storyboards comes naturally to
people because images do not require specific knowledge
to decode [9]. A limitation of storyboards for further
usage in an engineering process is that they are informal
and subjective and often are still a subject to discussion.
There is no explicit model that is agreed upon, and the
information in storyboards is therefore not accessible to
computers. Further comments or graphical annotations
may be added to improve understanding among mem-
bers of the design team [4, 16]. Without formal seman-
tics, the content remains difficult if not impossible to
process by a computer [12]. Providing tool support that
would allow to automatically infer new information from
the knowledge base or transform model to other model-
ing languages is therefore complex and not possible [4,
8, 12, 13]. There is already a lot of temporal information
available in storyboards that can be extracted. Although
this information is often incomplete or even subject to

113

story
11:40 12:11

scene 1
11:40 12:00

scene 2
12:00 12:11

panel 1
11:40 11:55

panel 2
11:41 11:46

panel 3
11:47 12:00

panel 4
12:00 12:11

panel 5
12:00 12:05

panel 6
12:06 12:10

subpanel 1

subpanel 2

subpanel 1

subpanel 2

Figure 1: A storyboard presenting an interactive multi-
touch system for exhibitions or fairs in seven panels.

change, most of the expected behavior of the software
can be deduced from a storyboard. Notice we make the
assumption a storyboard is sufficiently detailed to get a
detailed overview of how a system works.

Storyboarding is a technique that is used in various do-
mains to provide initial ideas and requirements. For ex-
ample storyboards are a common tool in media produc-
tion [6] and animations [15]. However, the applications
form these domains are not designed to be integrated
within an engineering process. We found the essential
bit to connect storyboards with other software engineer-
ing artifacts, is the ability to extract temporal informa-
tion from storyboards in a machine-understandable way.
Haesen et al explored the technique of storyboarding as
part of the engineering process [4, 8], but to our knowl-
edge there is no well-defined way to translate system
behavior as described in a storyboard in such a way it
can be adopted by other software engineering artifacts
such as a process model. We argue that the behavior of
interactive software equals the set of ordering that can
be found in a storyboard.

We present Timisto, an approach to extract useful tem-
poral information from a storyboard. Our approach does
not restrict designers’ creativity since we do not interfere
with the storyboarding activity itself, but rather helps
designers to make precise statements about the time in a
storyboard. After the storyboard has been created, our
tool asks to annotate it with absolute time stamps. We
use absolute time stamps for two reasons: first it fits with
the storyboarding concept in drawing a concrete exam-
ple so we handle the annotations accordingly. Second,
using relative timings requires translating this informa-
tion to more precise timing information which can be
cumbersome. Third, using absolute timings avoids dis-
agreement and misunderstandings, since relative timing
annotations might be interpreted differently by the team

Image

TimeSpaceImage

Story Scene Panel Subpanel

PhysicalImage

Annotation

hasPart
1.n

hasPart
1..n

hasPart
1..n

hasPart

0..n

annotates
1

Figure 2: A storyboard contains images to visualize time
and physical items. The passage of time is visualized by
the structure of the storyboard and the size of images

members. Notice that our approach translates these tim-
ings to relative timings afterward and encodes them us-
ing Allen’s temporal interval algebra [1]. The temporal
information is used to map the content of the storyboard
onto a timeline that visualizes the passage of time in sto-
ryboard. This visual depiction of the timeline helps de-
signers and users to analyze how an interactive system
behaves over time according to the storyboard.

STORYBOARD LANGUAGE
Our interpretation of storyboards is strongly inspired
by McCloud’s work on comics [9, 10]. McCloud de-
fines comics as a “sequential art” or more verbosely as
“juxtaposed pictorial and other images in deliberate se-
quence” [9]. By defining a storyboard language we want
to clarify the way a storyboard provides information by
means of images and structure. This combination of im-
ages and structure is very powerful to specify temporal
information in storyboards.

A storyboard can be compared to a comic and basically
presents images that are shown in a sequential order.
These images are called panels. The meaning of the term
panel will be explained below, but first we will give an
example of a storyboard and its panels. The storyboard
in Figure 1 presents an interactive multi-touch system for
exhibitions or fairs in seven panels. On the one hand, the
system presented by the storyboard provides information
to visitors of the booth at the exhibition. On the other
hand, it allows visitors to enter their personal data in or-
der to be contacted by the exhibitor afterwards. Panel
1 zooms in to the multi-touch system and its users, pan-
els 2, 3 and 6 provide an overview of the booth at the
exhibition and panels 4 and 5 visualize the representa-
tive of the booth behind a desk, collecting information
of the visitors that was entered into the multi-touch sys-
tem. Besides the aforementioned structure that is clearly
visualized by the panels in a storyboard, other informa-
tion can also be inferred from a storyboard. To make
use of this inferred information for specifying tempo-
ral information in tool support, we propose to annotate
basic elements of a storyboard. These annotations con-
cern scenes (a group of related panels), panels (images in
a storyboard) and subpanels. The relationship between
them is shown in the storyboard model depicted in Fig-
ure 2. The characteristics of the storyboard’s structural
elements can be summarized as follows:

Scene : A storyboard is drawn as one or more scenes

114

by physically grouping panels of a storyboard that are
related to each other in time or in space. In some
comics, the author tries to fit all panels of one scene to
a page in order to improve the readability of a comic.
However, authors of comics can also present two dif-
ferent scenes in successive panels, just to emphasize
significant distances between time or space [11].

Panel : A panel is a window into a moment of the story,
that shows what is happening during that time. The
size of a panel often refers to the time the panel takes.
Inside a panel, an actor performs an action during that
moment that implies the advancement of time. An
action is visually depicted as “motion” or “sounds”.
Although it is difficult to visually present motions or
sounds in still images, there are several techniques to
realize this [9]. Panels also steer the reader’s inter-
pretation of the story with the angle through which
the reader views the story, the level of detail and the
placement of objects within the panel.

Subpanel : According to McCloud, a panel with more
than one action implies more than one moment. A
subpanel captures a specific action inside a panel, thus
mostly shows one or more users performing an action.
For each action that occurs in a panel a separate sub-
panel is used.

TIME AND SPACE IN STORYBOARDS
The way time is visualized in a storyboard is not precise
enough when concrete information about the passage of
time is needed. Truong et al. [16] found that explicit
depictions of time can affect a reader’s understanding
of a story. They argue that “time passing was a sig-
nificant element needed to understand particular story-
boards” [16].

The Timisto Approach
The Time In Storyboards (Timisto) approach builds on
the findings of Truong et al. to add an additional layer
of precise temporal information on existing storyboards:
(1) we extract temporal relations from a storyboard
based on structure and content in combination with an-
notations for more precision and (2) when these temporal
relations are incorrect we provide feedback to the user.

For example, panel 1 in Figure 1 can be annotated with
specific timestamps that show it lasts from 11:40AM
to 11:55AM. During that time the exhibitor checks the
multi-touch system and observes the newly arrived visi-
tors. Panel 2 starts at 11:41AM, when the group of vis-
itors arrives at the exhibition, and ends at 11:46AM. In
panel 3, booth visitors interact with the multi-touch ta-
ble: one group from 11:47AM to 11:55AM and a second
group from 11:53AM until 12:00PM. These interactions
represent two sub panels of panel 3. Panel 3 therefore
lasts from 11:47AM to 12:00PM. Timestamps are pro-
vided by users and designers to discuss the progression
of the story. These values are estimates and the precise
timing is not important. What is important however are

the temporal relationships between elements in the sto-
ryboard that users implicitly describe through the pre-
cise time stamps. For example, in panel 1 the exhibitor
observes a group of visitors, who just arrived in panel 2.
After having arrived, visitors gather around the multi-
touch table in panel 3. This means that the action of
observing visitors occurs when new visitors arrive. Fur-
thermore, visitors must first arrive before they can ac-
cess the multi-touch table. With the precise timestamps,
such temporal relationships between different parts of
the storyboard can be automatically inferred.

Allen’s Temporal Interval Algebra
We make use of Allen’s temporal interval algebra [1] to
describe temporal relationships in storyboards. This al-
gebra has thirteen disjoint relationships.The five basic
relationships are before, equals, overlaps, meets and
during. The relationships starts and finishes are two
special cases of during. Each relationship has an inverse
relationship (except for equals). The temporal relation-
ships between the first three panels of Figure 1 that were
informally introduced for the example in the pervious
section, are as follows: “Exhibitor observes” (Panel 1)
overlaps “Visitors arriving” (Panel 2). “Visitors arrive”
(Panel 2) before “Gathering around the multi-touch ta-
ble” (Panel 3). Allen’s temporal relationships are tran-
sitive: “Exhibitor observes visitors” before “They gather
around the multi-touch table”. Allen’s temporal inter-
val algebra is suitable for specifying time in storyboards,
because it is a generic algebra and usuable within most
application domains. Furhtermore, Allen’s temporal al-
gebra works with relative time.

Temporal Domain Ontology for Storyboards
We developed our ontology specifically to accommodate
the extra information we encode with respect to the
Web Ontology Language (OWL)-Time ontology, being
the storyboard structure. Since both use Allen’s tem-
poral interval algebra as the foundation for time speci-
fication, full equivalence is guaranteed with OWL-Time
ontology. Before explaining how the actual extraction
of temporal information is done, we define five interval
types that need to be considered for storyboards:

• Temporal interval: A temporal interval defines the
time span of each interval with from and to, i.e. the
time beginning and the end of the interval i, where
from(i) ≤ to(i). If an interval contains other inter-
vals, its from value is set to that of its first ances-
tor and the to value to that of its last ancestor. The
hasPart relationships, respectively partOf refer to the
the physical nesting of their annotations on the sto-
ryboard. The relationships hasPart and partOf are
strictly between intervals of lower, respectively higher
granularity on the storyboard. Furthermore, each in-
terval is unique and it is assumed that all intervals are
known.

• Story Interval: A story interval represents the time
of the entire story. It consists of the sequence of scenes

115

that lead up to one or more actor achieving their goal
and ending the story. A story interval states how long
a story took.

• Scene Interval: A scene interval represents the time
of a scene. In the storyboard, a scene is most likely
a group of panels on a page or a very large panel.
Figure 1 contains two scenes. The first scene informs
the reader that the main setting is an exhibition and
the actors are an exhibitor and visitors. It shows a
newly arrived group of visitors who gather around a
multi-touch table. The second scene shows the ex-
hibitor using a remote monitoring tool to analyze how
the multi-touch table is used.

• Task Interval: A task interval is the time during
which one or more subjects perform one or more ac-
tions to reach a goal. A task interval is associated
with one or more panels. A task interval describes
during what time someone did something at a loca-
tion. Where is described by a location ontology. In
the first panel of Figure 1, the main task of the ex-
hibitor is to watch newly arrived visitors. His goal is
provide information to visitors if they have questions.

• Action Interval: An action describes the time of an
image that visualizes motion or sound that advance
the story in time. An action states when a subject
does a task. The type of action is described by another
ontology. Who is described for example in a persona.
Again in the first panel of Figure 1, the action of the
exhibitor is watching newly arrived visitors to be able
to assist if needed.

VISUALIZING TIME IN A STORYBOARD
In this section, we discuss the Timisto application that
was developed to provide tool support for the Timisto
approach and explain how the precise time information
can be used to visualize the passage of time in the sto-
ryboard as a timeline.

Specifying the Time with the Timisto Application
Our tool allows users to draw annotations on digital im-
ages of storyboards and specify time of the annotation.
The annotations delimit the structure and layout of the
storyboard and specify the kind of structural element,
i.e. scene, panel or subpanel, of each annotation, as
shown in Figure 2.

The time of an annotation specifies the duration of that
image, which is stored as a temporal interval. The
Timisto application keeps a list that associates struc-
tural elements of the storyboard language to interval
types. The storyboard is represented as a story inter-
val. An annotation of a scene is represented as a scene
interval, an annotation of a panel as a task interval and
an annotation of a subpanel as an action interval. This
assignment can be made automatically, since the struc-
ture of the storyboard represents the structure of time.

Function createTimeLine(interval,addLane)

1 levels ← {{}, {}, {}, {}}, level ← 0;
2 begin
3 if addLane then
4 lane ← {};
5 add(levels [level],lane) // Add propagated lane;
6 else
7 lane ← last(levels [level]) // Use existing lane;
8 end
9 descendants ← {};

10 cType ← descendantTypeConstraint (interval);
11 if cType 6= null then
12 descendants ← ∀i ∈ cType: hasPart(interval,i);
13 end
14 sort(descendants);
15 foreach descendant ∈ descendants do
16 level ++;
17 createTimeLine(descendant,addLane);
18 add(lane,descendant);
19 conflict← ∀i ∈ descendants : overlaps(descendant

, i) ∨ contains(descendant , i) ∨ equals(descendant
, i);

20 if |conflict| > 0 then
21 lane ← {};
22 add(levels [level− 1],lane);
23 addLane ← True // Propagate new lane;
24 else
25 addLane ← False // Set existing lane;
26 end
27 level- -;
28 end
29 end

Time Extraction and Visualization Algorithm
In this section we present the algorithm we designed for
extracting temporal relations from a storyboard and, si-
multaneously, creating a graphical overview of these tem-
poral relationships. For the sake of reproducibility, we
provide an in depth description of the algorithm along-
side an example of execution of the algorithm. In the
spirit of RepliCHI1 and Executable Papers2, we will pro-
vide a publicly accessible executable demo of this tool
through the SHARE environment [2].

Based on the precise time information, the Timisto ap-
plication can render a timeline of the storyboard to visu-
alize the passage of time. It will split the storyboard in
subparts according to the temporal interval types linked
to annotations and present a graphical timeline with
these subparts of the storyboard ordered on top of the
timeline. We believe this is an important feature of our
approach, since during storyboarding a visual and de-
tailed representation of the temporal relationships within
a storyboard also informs the creators of the storyboard.
It allows for additional adjustments and to detect am-
biguities with respect to time during the storyboarding
phase.

The createTimeLine function receives an temporal inter-
val, interval and a boolean value, addLane, that states if a

1http://replichi.org/
2http://www.executablepapers.com/

116

eExhibition

eScene2

eTask1

eBrowse Items

h
as
P
ar
t

eSelect Item

h
asP

art

ha
sP

art

eTask2

eObserve

h
a
sP

a
rt

h
a
sP

a
rt

eTask3

eView Stats

h
a
sP

a
rt

hasPart

h
a
sP

a
rt

S
t
e
p

1

Step 2

St
ep

3

Figure 3: Interval hierarchy for scene 2 in Figure 1. The
dashed line shows how createTimeLine places intervals
on the timeline. The square left of an interval shows
the value of addLane. Full square: a new lane is added.
Empty square: existing lane is used

new lane for its direct descendants has to be created or an
existing lane can be used. A lane is one horizontal layer
that can be seen in Figure 4c, so it is a graphical division
that represents a timeline for a specific level of detail. To
create a timeline, the first argument is the topmost tem-
poral, i.e. the story interval, and addLane is set to true
to add a new lane to each level. createTimeLine first pre-
pares a lane in the timeline on which direct descendants
of interval will be placed. Next, it processes the direct
descendants of interval in chronological order. For each
direct descendant, createTimeLine is called, with addLane
as argument. descendant is then added to the previously
prepared lane. The algorithm then verifies if the descen-
dant right of interval, which will be processed in the next
iteration, overlaps with the current descendant. If there
is no overlap, that interval can be placed on the same
lane as descendant and addLane is set to false. However
if the next direct descendent overlaps with descendant,
subsequent direct descendants will be placed on a new
lane below. Because the time of an interval depends on
its first, respectively last descendent, a new lane is also
propagated to lower levels by setting addLane to true.
The recursive implementation of createTimeLine means
that a temporal interval is only added to the timeline af-
ter all of its descendants are added. The first temporal
interval to be added is therefore the first action inter-
val that starts the storyboard. The timeline is finally
rendered by substituting temporal intervals with their
annotations. Consider timeline in Figure 4c. It was ren-
dered by annotating the structure of the second scene
in Figure 1 and specifying the time in each image. This
information is stored as a temporal interval hierarchy,
shown in Figure 3. createTimeLine was called with the
values interval = iExhibition and addLane = true as ar-
guments. The dashed line with arrow in Figure 3 shows
the order in which createTimeLine traverses the interval
hierarchy to place each interval in the right order and
level on the timeline.

i
[11:40,12:11]
Exhibition

i
[12:00,12:11]
Scene2

i
[12:00,12:11]
Task1

i
[12:00,12:06]
Browse Items

ha
sP
ar
t

i
[12:05,12:11]
Select Item

hasPart

hasP
art

i
[12:00,12:05]
Task2

i
[12:00,12:05]
Observe

h
a
sP

a
rt

h
a
sP

a
rt

i
[12:06,12:10]
Task3

i
[12:06,12:10]
View Stats

h
a
sP

a
rt

hasPart

h
a
sP

a
rt

o

s b

d

d

b

m

f

s
e

de

s

f

e

s

(a) Temporal relationships between intervals

Story Interval (Story)

Scene Intervals (Scenes)

iScene2

Task Intervals (Panels)

iTask1

iTask2 iTask3

Action Intervals (Subpanels)

iBrowse Items

iSelect Item

iObserve iView Stats

(b) Timeline visualizes temporal relationships

(c) Replacing intervals with images

Figure 4: Visualizing the time of scene 2 as a timeline

• Step 1 createTimeLine is called with interval =
iExhibition, and addLane = true, causing a new lane
to be added to each level except for the story level.
iExhibition will not be placed on the timeline, because
it is not called iExhibition. createTimeLine first sorts
the direct descendants of interval, before increasing
level by one and calling itself recursively for each de-
scendant. For iScene2, it adds a lane to the task level,
and for iTask1 to the action level.

• Step 2 An interval is added by the createTimeLine
for its parent interval. iBrowseItems is added first,

117

then iSelectItem. Because createTimeLine for iTask1 de-
tects an overlap between its two descendants, it adds
iSelectItem onto a new lane. createTimeLine for iTask1

exits and is added to the task level.

• Step 3 However, it overlaps with its sibling iTask2.
A new lane is therefore added to the task level. Fur-
thermore, addLane is set to true, to add a lane for the
descendant of iTask2, iObserve. iObserve is added to the
new lane of the action level, and then iTask2 is added
to the new lane of the task level. Because iTask3 does
not intersect with iTask2, it will also added to the same
level. addLane is set to false, causing the first descen-
dant of iTask3 to be added to the same lane as iObserve.

Once the timeline contains all intervals (Figure 4), they
are replaced with their corresponding annotated image,
as shown in Figure 4c.

CONCLUSION
In this paper we introduced Timisto, an essential part to
enable correct and consistent integration of storyboards
with other engineering artifacts. A storyboard contains
a lot of important time-related information on the usage
of an interactive system, which was not accessible up un-
til now. Timisto extracts temporal information from a
storyboard as a set of temporal relationships that reflect
the temporal behavior that should also be represented by
the other software models leading to an interactive sys-
tem, such as process models. Our algorithm uses simple
straight-forward annotations on top of a storyboard and
generates temporal relations that adhere Allen’s tempo-
ral interval algebra, a widely accepted algebra for speci-
fying relative time. Our approach has several benefits: it
provides an accessible way for non-engineers to describe
the time-related aspects of an interactive system. It pro-
vides a visual overview of the temporal information in a
storyboard. Figure 4 presents such a timeline and shows
both the hierarchy (containment in time), overlaps and
sequences are easy to read from this visualization. Tem-
poral relationships meets and before that correspond
to sequential events are placed in chronological order.
Events that occur in parallel, related by overlaps, equal
and during (with the special cases starts and finishes),
are placed on separate lanes. Especially encompassing
user interface description languages such as UsiXML [5]
can take advantage of our work to connect with the early,
informal stages in the engineering cycle. We are cur-
rently planning an integration with UsiXML by integra-
tion our algorithm with the StoryBoardML language de-
vised by Luyten et al. [8].
The focus in this paper is on the extraction of both a
comprehensible and formal specification of time based on
informal storyboard drawings. With this piece of work
we strengthen the link between the valuable informal ar-
tifacts that help us to understand the requirements and
the users point of view and the engineering artifacts that
are used to construct the interactive software system.

REFERENCES
1. Allen, J. F. Maintaining knowledge about temporal

intervals. Communications of the ACM 26, 11
(1983), 832–843.

2. Gorp, P. V., and Mazanek, S. Share: a web portal
for creating and sharing executable research papers.
Procedia CS 4 (2011), 589–597.

3. Haesen, M., Coninx, K., Van den Bergh, J., and
Luyten, K. Muicser: A process framework for
multi-disciplinary user-centred software engineering
processes. In EICS, Springer (2008), 150–165.

4. Haesen, M., Van den Bergh, J., Meskens, J.,
Luyten, K., Degrandsart, S., Demeyer, S., and
Coninx, K. Using storyboards to integrate models
and informal design knowledge. MDDAUI (2011),
87–106.

5. Jean Vanderdonckt, J., Beuvens, F., Melchior, J.,
and Tesoriero, R., Eds. UsiXML. W3C Working
Group Submission, 2010.
http://www.lilab.be/W3C/.

6. Jones, M. Getting started with celtx: Scriptwriting
and pre-production. Screen Education, 46 (2007),
196.

7. Lindland, O. I., Sindre, G., and Solvberg, A.
Understanding quality in conceptual modeling.
Software, IEEE 11, 2 (1994), 42–49.

8. Luyten, K., Haesen, M., Ostrowski, D., Coninx, K.,
Degrandsart, S., and Demeyer, S. D. On stories,
models and notations: Storyboard creation as an
entry point for model-based interface development
with usixml. In USIXML, ACM (2010).

9. McCloud, S. Understanding comics : the invisible
art. HarperPerennial, New York, 1994.

10. McCloud, S. Reinventing comics: How imagination
and technology are revolutionizing an art form.
Perennial, New York (2000), 118–122.

11. McCloud, S. Making comics : storytelling secrets of
comics, manga and graphic novels. Harper, New
York, 2006.

12. Meyer, B. On formalism in specifications. Software,
IEEE 2, 1 (1 1985), 6–26.

13. Ozenc, F. K., Kim, M., Zimmerman, J., Oney, S.,
and Myers, B. How to support designers in getting
hold of the immaterial material of software. In CHI
’10, ACM (2010), 2513–2522.

14. Rogers, Y., Sharp, H., and Preece, J. Interaction
Design: Beyond Human-Computer Interaction.
John Wiley and Sons Ltd, 2011.

15. Smith, J., Osborn, J., and Team, A. C. Adobe
creative suite 5 design premium digital classroom.
Beograd: Mikro knjiga (2010).

16. Truong, K. N., Hayes, G. R., and Abowd, G. D.
Storyboarding: an empirical determination of best
practices and effective guidelines. In DIS ’06, ACM
(New York, NY, USA, 2006), 12–21.

118

