
The CoGenIVE Concept Revisited: A Toolkit for Prototyping
Multimodal Systems

Fredy Cuenca
Hasselt University – tUL – iMinds

Expertise Centre for Digital Media, Diepenbeek, Belgium
fredy.cuencalucero@uhasselt.be

ABSTRACT
Many specialized toolkits have been developed with the pur-
pose of facilitating the creation of multimodal systems. They
allow their users to specify certain tasks of their intended sys-
tems by means of a visual language instead of programming
code. One of these toolkits, CoGenIVE, was developed in our
research lab, and despite of its successful application in many
internal projects, it gradually fell into disuse. The rethinking
of CoGenIVE unveiled the existence of important gaps hin-
dering a fuller understanding of these toolkits for rapid pro-
totyping of multimodal systems. This paper aims to remedy
some of these gaps with the proposal of: (a) the architecture
of a toolkit for rapid prototyping of multimodal systems, (b) a
scale for measuring the support for implementation provided
by a toolkit, and (c) a classification of a representative set of
existing toolkits.

Author Keywords
User interface toolkits; Visual languages;

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
A multimodal system is a computer system capable of col-
lecting the information provided by the user through multi-
ple input modes, combining these inputs in order to interpret
the user’s intent, and responding to the user through multiple
output modes. Users can enter information into a multimodal
system through speech, touch, handwriting, hand gestures or
facial expressions; the system can respond the user with im-
ages, audio, synthesized voice or haptics. Its capability to
decode user commands whose information is carried by sev-
eral input signals is what distinguishes a multimodal system
from a traditional WIMP system.
The implementation of a multimodal system is time-
consuming and therefore expensive. Thus, several specialized

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’13, June 24–27, 2013, London, United Kingdom.
Copyright 2013 ACM 978-1-4503-2138-9/13/06...$15.00.

toolkits have been developed with the purpose of facilitating
the implementation of multimodal systems. These toolkits
enable their users to specify certain functionality of the in-
tended multimodal system by means of a visual language in-
stead of programming code.
These so-called toolkits for rapid prototyping of multimodal
systems started to be proposed since more than a decade ago,
e.g. ICon [4], MEngine [1], OpenInterface [7], Squidy [9],
HephaisTK [5]. During that period, we successfully devel-
oped a toolkit specifically designed to facilitate the devel-
opment of multimodal virtual environments. Indeed, Co-
GenIVE [3] was internally used by many PhD students to
create the interactive virtual worlds needed for their research
projects. However, the lack of proper maintenance and its
narrow scope made it fall into disuse, as did other toolk-
its. The analysis of this situation revealed that there are still
gaps that hinder a fuller understanding of different toolkits for
rapid prototyping multimodal systems. Some of these gaps
include: (a) the lack of a broad description covering the struc-
ture and behavior of all the existing toolkits, which may be
caused by the many differences among them, (b) the absence
of a scale for measuring the support for implementation pro-
vided by a toolkit, which is pivotal to determine whether the
proposal of a new toolkit advances the state-of-the-art or not,
and (c) the shortage of cross-evaluations, which are always
useful to classify apparently distinct elements, thus allowing
their organized study.
The overarching goal of the research under discussion is
the implementation of a visual language for modeling mul-
timodal interaction, and of its supporting toolkit. This new
language must rectify the shortcomings experienced with Co-
GenIVE’s visual language: excessive notation, complex se-
mantics, inability to model concurrency, and lack of underly-
ing formalism. The first stage of this research is devoted to
providing the theoretical background that fills the aforemen-
tioned gaps, this being the theme of the present paper.

TOOLKIT FOR RAPID PROTOTYPING OF MULTIMODAL
SYSTEMS
A toolkit for rapid prototyping of multimodal systems con-
sists of a framework and a graphical editor. The framework
can be approached as a server offering some functionality
to a client application. This application has to be devel-
oped without support from a toolkit. It has to implement the
application-specific functionality of the intended multimodal
system.

159

Figure 1. Architecture of a toolkit for rapid prototyping of multimodal
systems.

Based on the study of several toolkits, the services usually
provided by their frameworks include the recognition of user
inputs, the identification of the user’s intent, the identification
of the system’s state, and/or the dissociation of the system’s
response through multiple outputs. These services aim at ex-
tending the functionality of a client application so that it can
handle multimodal input/output. The visual models depicted
with the graphical editor of a toolkit are intended to specify
how to intermix the services incorporated in the framework
of a toolkit with the subroutines of a client application. These
specifications are depicted by the user of a toolkit (who can
also be the programmer of the client application), and are to
be interpreted by its framework.
Once the framework and the client application are up and run-
ning, the end user is able to issue multimodal commands to an
enhanced client application, which may not be originally ca-
pable of supporting multimodal interaction (Figure 1). There-
fore, the client application is not the final system but a proto-
type: a partial implementation that needs to be supplemented
by a toolkit so that its prospective users can have a means for
experimenting, evaluating and/or redefining the intended sys-
tem.
For illustrative purposes, consider a multimodal system
whose users are allowed to utter a voice command ‘zoom
here’ while touching a specific point on the screen to indi-
cate the region to zoom in (left side of Figure 2). Prototyping
such a system with the support of a toolkit entails the im-
plementation of the GUI that the end user will interact with,
and the subroutine(s) required to scale a specific region of this
GUI. The particular behavior of the GUI and the specific scal-
ing algorithms must be implemented (probably with a textual
programming language) as part of a client application. This
client application does not need to detect voice commands or
touchscreen events. It neither has to verify the temporal co-
occurrence of the speech input ‘here’ and the touch on the
screen –required to zoom in on a region of the GUI. Both
functionalities can be delegated to the framework through a
visual model like the one shown on the right side of Figure 2.

Figure 2. Left. End user interacting with a multimodal system. Right.
Visual model used for specifying human-machine interaction.

This model specifies that the detection of the speech input
‘zoom’ followed by the simultaneous detection of the speech
input ‘here’ and a touch on the screen will cause the execution
of the subroutine ZoomAt, implemented in the client applica-
tion. The use of visual models is due to the fact that their
creation and maintenance is faster and easier than the edition
of programming code.

A SCALE FOR MEASURING THE GAINS OFFERED BY A
TOOLKIT
The more services a toolkit offers to its users, the less pro-
gramming workload they will experience. Thus, the support
for implementation provided by a toolkit depends on the func-
tionalities that are pre-programmed in its framework. The
study and testing of several toolkits revealed that the services
commonly incorporated in their frameworks are:

Recognition of user inputs The framework incorporates
software for recognizing a wide assortment of triggering
events issued from several hardware devices.

Identification of the user’s intent The framework can de-
tect the occurrence of a multimodal command. Since the
services offered by a system are requested through the is-
suing of multimodal commands, their detection reveal the
user’s intent. This process entails the recognition of pat-
terns of events, i.e. sets of user events occurring in a par-
ticular order.

Identification of the system’s state The framework can ac-
curately determine the current state of the system after any
arbitrary sequence of events. This permits prototyping sys-
tems that issue context-dependent responses.

Dissociation of the system’s response The framework can
concurrently launch several subroutines of the client ap-
plication, and synchronize their execution.

The aforementioned functionalities are the ones used to de-
scribe the architecture of a multimodal system. Indeed, these
match with the functions in charge of the recognizers, fusion

160

engine, dialog manager and fission component of a multi-
modal system respectively [2] [6].
We propose to express the support provided by a toolkit as a
set of the aforementioned functionalitites. For instance, the
support of CoGenIVE is {recognition of inputs, identifica-
tion of the user’s intent, identification of the system’s state},
meaning that CoGenIVE releases its users from programming
these functionalities. Then, the set containing all the possi-
ble combinations of the aforementioned functionalities is the
scale of measurement we are proposing.

Heuristics to uncover framework’s capabilities
The study and testing of several toolkits show that they all
incorporate software for detecting the inputs coming from
a myriad of hardware devices. This implies that their users
do not have to implement algorithms for event recognition
in their client applications. Rather, they can delegate the
recognition of user inputs to the framework of a toolkit, as
seen in Figure 1.
Regarding the identification of the user’s intent, the detection
of the system’s state, and the dissociation of a response, these
functionalities are not always pre-programmed in all the
studied toolkits. Fortunately, it is possible to infer whether
these services are provided by a toolkit or not, by examining
its visual language.
The toolkits capable of detecting multimodal commands
allow their users to specify composite events in their
visual models. For instance, Figure 2 shows a com-
posite event made up of two elements, Voice.Here and
Screen.TouchDown, linked by a relation of simultaneity. The
way a composite event is depicted, and the relations allowed
among its constituent events, vary from toolkit to toolkit. In
any case, the presence of composite events in a visual model
is necessary to indicate the framework those sets of events
whose perception (in a particular order) reveals that the user
is requesting some service from the system.
The toolkits that can assume the responsibility of handling
context-dependent human-machine dialogs always allow the
depiction of the system’s state in their visual models. This
possibility enables users to specify multimodal systems that
respond differently to the same command, depending on
the state of the multimodal system. The model depicted in
Figure 2 shows that both the perceptibility and response of
the system to a multimodal command depends on its current
state, e.g. once in state 2, the system will only respond to the
designation of a target area, and will ignore other commands.
The dissociation of the system’s response involves the
concurrent activation of several synthesizers, and the co-
ordination of their outputs. We found that toolkits whose
visual models are variations of state diagrams (e.g. Figure 2)
cannot be used to specify concurrency and synchronization.
This limitation stems from the fact that state diagrams
only experience one transition at a time, and thus only one
subroutine can be executed in a given moment. However,
toolkits capable of interpreting visual models based on Petri
nets (e.g. PetShop [8]) allow for modeling both concurrent
execution of subroutines and synchronization of events.

Figure 3. Checkmarks are used to indicate the services offered by differ-
ent toolkits to their users. Under this criterion, toolkits can be clustered
into three groups.

EVALUATION AND COMPARISON OF TOOLKITS
Cross-evaluations of toolkits for rapid prototyping of mul-
timodal systems are few and difficult to conduct. This may
be caused by the abundant differences among these toolkits:
they offer different features, target different domains, op-
erate with different programming paradigms and/or expect
different skills from their users. However, despite of these
numerous differences, some similarities can be observed
when identifying the functionalities of their frameworks.
The evaluation of several toolkits uncovered the existence of
three classes of toolkits (Figure 3).
Toolkits in the first class are called flow-based toolkits. They
incorporate software for event recognition, thus releasing
their users from implementing this functionality. The visual
models depicted with the editors of these toolkits resemble
block diagrams. They specify the transformations experi-
enced by the data flowing from the input devices to a client
application. ICon [4], OpenInterface [7], and Squidy [9] are
some examples of flow-based toolkits.
In addition, a second group of toolkits allow the specifica-
tion of composite events and the depiction of the system
state. Therefore, their users can delegate the detection
of multimodal commands, and the execution of pertinent
context-dependent responses to their frameworks. These
toolkits are called state-based toolkits because of the resem-
blance of their visual models with state diagrams. Examples
of this type of toolkits include MEngine [1], CoGenIVE [3]
and HephaisTK [5].
Finally, the third class of toolkits also facilitates the disso-
ciation of the system’s response through multiple outputs.
These toolkits use Petri nets as visual models. The tokens
allow modeling concurrent activities, and the transition rule
serves as a synchronization mechanism. These toolkits are
called token-based, Petshop being [8] its most prominent
example.
The clustering observed in Figure 3 suggests that the services
a toolkit can offer to its users are restricted by the formalism
(block diagrams, state diagrams or Petri nets) on which its
visual language is based. This observation must be taken into
account by those developing a toolkit for rapid prototyping,
in order to avoid unwanted limitations of their intended
toolkits after the implementation of its visual language.

161

CONCLUSIONS
In this paper, we propose novel theoretical tools intended
for improving the understanding of toolkits for prototyping
of multimodal systems, and allowing their precise evaluation
and objective comparison. Our proposal includes: (a) the ar-
chitecture of a toolkit for rapid prototyping of multimodal
systems, (b) a scale for measuring the support for implemen-
tation provided by a toolkit, and (c) a classification of a set of
toolkits based on the support they offer.
In the proposed architecture, a toolkit for rapid prototyping of
multimodal systems can be approached as a server intended
to extend a client application with multimodal features.
Regarding the measurement scale, we proposed to measure
the support for implementation provided by a toolkit in terms
of the services it provides. The services used to evaluate the
capabilities of a toolkit, are the ones that describe the archi-
tecture of a multimodal system, namely, the recognition of
user inputs, the identification of the user’s intent, the iden-
tification of the system’s state, and the dissociation of a re-
sponse through multiple output modes [2] [6]. A reference
scale where the gains provided by a toolkit can be measured
on is necessary to determine whether the use of a particu-
lar toolkit can lead to a higher reduction of the programming
workload, which is the primary goal of these toolkits. With-
out such scale, it is also hard to assess whether new or im-
proved toolkits are advancing the state of the art or not. In
our opinion, this is a challenge that the community has not
yet solved.
By comparing several toolkits, we noticed that they can be
clustered into three groups called flow-based, state-based and
token-based toolkits. Toolkits within each group do not only
offer the same services to their users, but also exhibit resem-
blance in their visual languages.

FUTURE WORK
A potentially successful way to continue this research may
consist of (a) the creation of a simple textual programming
language for specifying composite events, (b) the creation of
a simple textual programming language for specifying the ex-
ecution of concurrent and synchronized actions, and (c) the
development of a graphical editor that allows representing
human-machine dialogs as state diagrams whose arcs will be
annotated with the utterances of the languages mentioned in
(a) and (b). The utterances of (a) will specify the compos-
ite events that will cause a system transition, and the utter-
ances of (b), the actions to be performed during this transi-
tion. A state diagram enhanced with the languages (a) and (b)
will give us the following advantages: First, the possibility to
specify composite events with a textual notation rather than
with a graphical one, will lead us to more concise models,
which are probably easy to read, maintain, and extend. Sec-
ond, the inability of CoGenIVE’s visual language for speci-
fying the concurrent execution of many subroutines will be
overcome by annotating the arcs of a state diagram with the
utterances of the textual language described in (b). Third,
readers in general will not have to accomplish the undesirable
task of inferring the semantics of CoGenIVE’s visual lan-
guage from informal descriptions of running examples. The
semantics of a state diagram can be concisely and formally

described with a set of mathematical formulas.

ACKNOWLEDGMENTS
This research was funded by the BOF financing of Hasselt
University. We want to thank our UHasselt colleagues of the
HCI group for the discussions about and feedback on this re-
search.

REFERENCES
1. Bourget, M. Designing and prototyping multimodal

commands. In Proc. of INTERACT’03 (2003).

2. Bui, T. Multimodal Dialogue Management - State of the
Art. PhD thesis, University of Twente, 2008.

3. De Boeck, J., Vanacken, D., Raymaekers, C., and Coninx,
K. High level modeling of multimodal interaction
techniques using NiMMiT. Journal of Virtual Reality and
Broadcasting 4, 2 (2007).

4. Dragicevic, P., and Fekete, J. Icon: Input device selection
and interaction configuration. In ACM UIST 2002 (2002).

5. Dumas, B., Lalanne, D., and Ingold, R. Description
Languages for Multimodal Interaction: A Set of
Guidelines and its Illustration with SMUIML. Journal of
Multimodal User Interfaces 3, 3 (2010).

6. Dumas, B., Lalanne, D., and Oviatt, S. Multimodal
interfaces: A survey of principles, models and
frameworks. In Human Machine Interaction, Springer
Verlag (2009).

7. Lawson, L., Al-Akkad, A., Vanderdonckt, J., and Macq,
B. An open source workbench for prototyping
multimodal interactions based on off-the-shelf
heterogeneous components. In Proc. of the 1st ACM
SIGCHI Symposium on Engineering Interactive
Computing Systems EICS 09 (2009).

8. Navarre, D., Palanque, P., Ladry, J., and Barboni, E.
ICOs: A Model-Based User Interface Description
Technique dedicated to Interactive Systems Addressing
Usability, Reliability and Scalability. ACM Transactions
on Computer-Human Interaction 16, 4 (2009).

9. Werner, K., Raedle, R., and Harald, R. Interactive Design
of Multimodal User Interfaces - Reducing technical and
visual complexity. Journal on Multimodal User
Interfaces 3, 3 (2010).

162

	Introduction
	Toolkit for Rapid Prototyping of Multimodal Systems
	A scale for measuring the gains offered by a toolkit
	Heuristics to uncover framework's capabilities

	Evaluation and comparison of toolkits
	Conclusions
	Future Work
	Acknowledgments
	REFERENCES

