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Abstract

Governments design various policies to support the transition to a biobased economy. The
design of these policies is complex and predicting their effectiveness is a major challenge.
Quantitative research in environmental economics can provide valuable assistance for such
policy design by scenario analysis and predicting models. This type of research requires also
microeconomic modelling of material- or energy- intensive firms. These types of firms can be
modelled by integrating material and energy flows as a productive input in the production
function of the firm. However, this integration is not self-evident. Literature indicates several
limitations in this respect.

This paper derives a new production function for material or energy intensive firms in fore-
casting microeconomic models. This EMod function is based on standard requirements for
economic production functions, but also on additional physical restrictions. The algebraic
form is non-linear, and presents interesting characteristics concerning the balance between
capital, labour and energy inputs. The function has been applied in three types of models to
test its feasibility. Its behaviour is coherent with the principles that led to the derivation and it
differs markedly from modelling results with a standard Cobb Douglas function.
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1 Introduction

Industry is confronted with systemic environmental problems such as dependency on scarce
fossil resources, toxicity of end products and waste accumulation. Companies react by exam-
ining new processes for the production of energy and materials based on renewable organic
matter. Industry heavily invests in new production chains, and numerous innovations con-
tribute to the growing applications of renewable feedstock for the production of energy, heat
and materials. Many research projects investigate novel pathways to valorise organic matter
as high quality chemical compounds, food additives or traditional fodder replacements. Gov-
ernments actively want to support this transition to a biobased economy, as these solutions
could potentially create several jobs, and eliminate many systemic environmental problems
related to the use of fossil resources. It is however uncertain how this support should be or-
ganised most effectively. There are also various sustainability problems related to the use of
renewable feedstock.

Detailed economic research can help to provide more precise advice for governments. It can
investigate the effectiveness of policies that support this transition or effects on regional sus-
tainability. Complex models can help to shed light on the interactions between material and
energy flows on the one hand and economic dynamics during this transition on the other.
Quantitative environmental economics offer many instruments in this respect. Some of these
environmental economic models address a specific challenge: the direct integration of eco-
nomic parameters such as labour and capital together with physical parameters such as en-
ergy flows, emissions, raw materials and waste streams. These models are suitable given the
intertwined relations between physical flows and economic value creation. A particular group
of methods is based on Agent-based models (ABM). ABM is increasingly applied in various
economic fields. It is a type of computer based models that represents economic actors as
autonomous, social and learning actors. These actors move within a framework that defines
legal structures, availability of inputs and demands from different markets. Each company is
modelled with specific production functions, growth decisions and a historical background.
In principle, ABMs are the equivalent in economic sciences of the petri dish experiments for
biological sciences. Because ABM can leave behind the principle of economic equilibrium, it is
applicable for the study of the co-evolution of different markets or the transitions in industrial
sectors.

This research investigates the industrial sectors that consist of highly material and energy-
intensive economic actors. These are the actors that will most be affected by the transition
and should adapt their strategies accordingly. Our focus lies on companies that are or will
be using important streams of renewable organic resources. These firms transform one set of
material and energetic flows into another more valuable set. Any kind of firm that produces
bulk goods falls into this category. For instance, a paper factory produces a flux of paper and
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cardboard from fibre pulp, water, additives and large energy flows. Steel factories, chemical
plants, biofuel production units all are applicable. It includes also more specialised industrial
niches, such as waste water treatment installations, flour mills or various types of electricity
plants. Industrialised forms of agriculture also apply. Pig farms for instance are according to
this view installations that absorb piglets, energy, water and pig fodder to produce live pigs
and manure. Biorefineries, large farms or food transforming factories are equally possible.

Industrial applications for whom this approach is less applicable are the firms providing ser-
vices for a major part of their turnover, or firms where the value of the produced goods is
largely determined by the information content and less by the material content. This is the
case for instance for pharmaceutical companies, computer manufacturers, book publishers or
high-end clothing production. But even considering this restriction, the target group of firms
still covers a relatively wide field. The targeted firms have two common characteristics. First
of all, they are highly dependent on material and energy feedstock as production factors next
to the standard production factors capital and labour. The efficiency of material and energy
transformation is crucial for their economic competitiveness. And secondly, the targeted firms
are always installations that can transform matter and energy with a finite capacity. Within
an economic model, both the characteristics need to be reflected. They should be integrated
in the production function that is used to model the firm. However, this integration is not
self-evident.

There is a long scientific tradition in the integration of physical resources as an input for eco-
nomic production functions. The use of production functions in economics dates from the
19th century [9]. Theoretical forms have allowed diverse and multiple inputs since a long
time [8]. New applications of production functions emerged with the interest in environmen-
tal economics. Here multiple inputs and outputs were considered. These additional inputs
and outputs included emissions, waste, primary resources, or energy. These are physical and
material inputs, unlike labour and capital. The energy crises provoked a distinct and growing
line of research integrating energy and matter as a separate production input, next to labour
and capital [2, 3, 16]. For instance, KLEM-models consider four inputs and differentiate be-
tween energy and material inputs [2, 16]. Energy contains here all fossil fuels, nuclear heat
used for electricity generation. Material inputs are minerals and primary resources for a par-
ticular sector. These quantities are aggregated in monetary terms, by multiplying them with
their respective prices.

Recently there is a renewed interest in the development of economic models taking explicitly
matter and energy into account. In a more fundamental way, Van den Bergh [22] outlines pre-
cise definitions for substitutability between energy and capital, and develops general forms
for production functions integrating both. In practise, very few projects employ these integra-
tions in economic evolutionary or agent-based models. An important exception is the work of
Safarzynska [17, 19, 18] where the model is based on a CES-function and includes the technical
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electricity generation efficiency as a part of the agent’s productivity parameters.

There are however indications in scientific literature that standard economic production func-
tions cannot integrate physical input resources unconditionally. Several authors indicate that
physical resources need to respect fundamental physical restrictions as well as economic re-
strictions. For a general case, Coelli et al [4] show that efficiency models with production
functions do not respect the material balance condition, being a fundamental physical law.
They use this finding to define an optimal efficiency that is coherent with the material balance
condition as well. Unfortunately, their approach requires that both inputs and outputs contain
factors that are accounted for in material units, such as weight or MJ. If the output is defined
as one single economic output in monetary terms, then the restrictions imposed by Coelli et al
[4] are no longer applicable.

In the context of macro-economic analysis, Kuemmel et al. detail several physical constraints
for matter and energy that lead to modifications of the economic production function [10, 14].
First, they indicate the decreasing marginal productivity of capital when the relative labour
or energy input tend to zero. It is argued that capital cannot be productive by itself, it needs
labour or energy inputs to enable production. Secondly, in a tendency towards full automation
of the economy, when labour input falls to zero, there is a linear relation between the needed
capital and the needed energy input. This relation indicates the final energy efficiency of the
fully automated capital stock. And finally, the overall elasticity of scale is set to one. Growth or
efficiency increase are related to creativity and economic shocks in time, whereas the produc-
tion function represents the constant economic productivity between two shocks [12]. Based
on these restrictions, Kuemmel et al. derive a new production function, the Linex function,
linear in energy and exponential in labour and capital inputs. The importance of this distinc-
tion was illustrated in macro-economic analysis, where results indicate a large influence of the
growth rate of energy inputs on the growth rate of national economies [1]. Other production
functions did not yield the same results. Recently, Stresing et al.[21] showed that the depen-
dence of national production on energy inputs is much larger when considering the specific
character of the energy input than with a standard Cobb-Douglas production function and a
common input elasticity of about 5%.

A final constraint on the effect of energy inputs is the concept of maximum transformation ca-
pacity as defined above. Ayres et al. also describe this limitation of capacity utilisation when
interpreting the results obtained with the Linex function [11]. In our case, we regard produc-
tion capacity at the firm level, for the particular type of firms targeted in this research. The
maximum transformation capacity is solely defined by the actual capital and labour input.
Modifying the capital or labour input can increase the production capacity. For instance, a
biodiesel plant can be designed to produce 300.000 barrels of biodiesel a year. At its optimal
production regime, the firm produces only 220.000, because higher production would call for
input materials to be transported over a longer distance, causing no marginal profit. How-
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ever, if the biodiesel prices rise, the firm can consider to increase production. In practise this
requires investments in the installation, enabling a higher production rate with the same staff,
or it leads to a larger labour input to keep the installation operational during a longer period
of the year. It is very common in practise that an increase of production always requires a
simultaneous investment of capital or labour together with the additional input of physical
resources, matter and energy. Only rarely the production level can be raised significantly by
simply increasing the input of physical resources. The actual capital and labour input of the
firm determine in practise its maximal capacity by which the physical input resources can be
transformed into final products. This restriction is not reflected in standard economic produc-
tion functions.

In order to build a coherent model for material- and energy-intensive firms, another algebraic
form is necessary that responds to these restrictions. Many of these restrictions are mainly re-
lated to macroeconomic assessments. This makes for instance the Linex function is not directly
suitable for ABM-models. Moreover, Saunders [20] also indicated that the Linex production
function is not concave in labour, thereby not respecting a standard economic requirement for
production functions, and this can lead to unwanted deviation in forecasting models.

This paper proposes a new production function that underpins the behaviour of an economic
actor within an ABM. This new function is derived based on two aspects. The first aspect is
the characteristic dependency on material input factors, and thus the integration of material
and energy input. The second aspect is the set of physical restrictions on the use of material
and energy as outlined above.

This paper is structured as follows. In section 2 we formalize the conditions and expectations
of the function. An algebraic form is derived and the first ideas on its behaviour are illustrated.
In section 3 we test the new algebraic form. The function is applied in three consecutive steps.
It is first used in a data regression. Then the results are used for a analysis of the optimal
input cost shares. Finally, the function is used in a predictive model, where the modelled firms
are subjected to price changes in the market. The response to this market shock is calculated.
In order to provide a reference point, the results are compared with parallel results using a
standard Cobb-Douglas function. Section 4 concludes.
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2 Derivation and properties of the proposed algebraic form

The algebraic function is derived for three productive inputs : capital, labour and energy, de-
fined according to table 1. The last category gathers both material and energy inputs. These
two factors can be aggregated using multiple physical units. For instance in Cumulative
Energy (CE) [7] or exergy [6]. This gives an advantage that compared to the earlier KLEM-
models, the inputs of material and energy no longer need to be separated, they can be aggre-
gated in common terms respecting their physical value. We will therefore derive the algebraic
forms for only one ”energy and matter” input x.

An algebraic form of the production function can be derived based on the theoretical and func-
tional restrictions it has to respect. Standard economic theory requires at least the following
characteristics [5, 8]:

• Nonnegativity :
y(k, l, x) ∈ <+ (1)

• Weak essentiality :

If y(k, l, x) > 0 then k 6= 0 ∨ l 6= 0 ∨ x 6= 0 (2)

• Non decreasing in inputs : For instance for capital:

If k1 ≥ k2 then y(k1, l, x) ≥ y(k2, l, x) (3)

The rules for non-decreasing output in labour and energy are analogous.

• Concavity, the law of decreasing marginal input productivities, for instance for capital :

∂2y

∂2k
< 0 (4)

The rules for concavity in labour and energy are similar.

• Additional to these restrictions, a production function with multiple inputs is required
to be twice cross-differentiable for each input.

Table 1: Nomenclature
Description Symbol Unit Description Symbol

Production output y [Units] Output price p
Capital input k [EUR] Capital unit price wk

Labour input l [FTE] Labour unit price wl

Material and energy input x [MJ] Material and energy unit
price

wx
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These are the most common constraints imposed to production functions by standard eco-
nomic theory. These constraints can be relaxed under certain circumstances, but we intend to
respect these in a first phase.

The particular nature of the material and energy input adds two more restrictions. One of the
restrictions defined by Kuemmel et al [14, 13] remains valid in this approach. They describe the
diminishing productivity of capital. If the energy input is negligible compared to the capital
input, the marginal productivity of capital tends to zero. If Ek is the capital elasticity of the
function then :

lim
x→0

Ek = 0 (5)

The second restriction is imposed by our interpretation of the company as a matter and energy
transforming unit. This leads to the concept of a maximal transformation capacity c(k, l) as a
function of k and l. The firm is not obliged to operate at its maximum capacity, the produced
output can be lower than c(k, l). With increasing energy and matter input x, the total produc-
tion does not increase indefinitely, but it tends asymptotically to the maximum capacity c(k, l).
This practical restriction is not represented when the production function is modelled by a
Cobb Douglas function 2

In this approximation, the output can increase indefinitely when the material input rises, with-
out additional input of labour nor capital. Surely, when fitting this production function to real
data, this is not a problem. The relationship between the different inputs is implicit in the data
itself. But for modelling of functions as autonomous agents, there are no relations between
the inputs defined. So extrapolation from a realistic situation can produce very unrealistic
outcomes. Within the model, several additional constraints can provide links between the in-
puts to avoid this deviation, but this leads in practise to overly restricted behaviour as the
inputs become directly dependent one on another. A more appropriate algebraic form for the
production function has to take account for the maximum transformation capacity of the firm
directly. There are many algebraic forms that approach a maximum limit asymptotically for
increasing x. The proposed EMod form also follows the restrictions outlined above :

y(k, l, x) = c(k, l)(1− e−m(k,l)xγ+g(k,l)) (6)

In this functional form, c(k, l) is the maximum transformation capacity of the firm, andm(k, l),
c(k, l) and g(k, l) are functions of capital and labour independent of x. The exponent of the
energy factor is γ > 0. The form is compared to a standard Cobb-Douglas function in figure 1.

The behaviour of the function is determined by the three subfunctions, which are still to be
defined. To control the behaviour, we evaluate two features of production functions as indica-
tors.

2The general form of the Cobb-Douglas function used in this paper is : y(k, l, x) = c0k
ρlσxγ .
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Figure 1: Contrary to the Cobb-Douglas form, the proposed EMod form tends asymptotically
to a finite maximum production.

• Scale elasticity :

S =
∑

Inputs

d ln(y)

d ln(i)
(7)

The Linex-function is built with a constant scale elasticity of 1. This can be considered
too rigid for particular technologies. The scale elasticity should not be restricted to 1,
and in the best case it should be constant over the entire domain.

• Elasticity of substitution between capital and labour : The elasticity of substitution be-
tween capital and labour is defined as :

ESk,l =
d ln(kl )

d ln( MPL
MPK )

(8)

Imposing the form 6 is a very strong restriction on the behaviour of the function. These
forms impose an input hierarchy where the effect of x is governed by k and l. It is there-
fore all the more important to uphold some flexibility with regards to the inputs k and
l. Especially the substitutability between the two main inputs k and l needs to be pre-
served. In the best case, the solution should respect a constant elasticity of substitution
between k and l over the entire range of inputs irrespective of x. If this restriction needs
to be relaxed, it should be controlled that the input elasticity of substitution remains not
constant but at least computable for all values of x.
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Based on functional form 6, we assume g(k, l) = 0 for reasons of simplicity, so the input elas-
ticities can be calculated as :

Ek =
k

y

∂y

∂k
=

k

c(k, l)

∂c(k, l)

∂k
+ kxγ

e−m(k,l)xγ

1− e−m(k,l)xγ
∂m(k, l)

∂k
(9)

El =
l

y

∂y

∂l
=

l

c(k, l)

∂c(k, l)

∂l
+ lxγ

e−m(k,l)xγ

1− e−m(k,l)xγ
∂m(k, l)

∂l
(10)

Ex =
x

y

∂y

∂x
= γxγm(k, l)

e−m(k,l)xγ

1− e−m(k,l)xγ
(11)

Combining 9 with restriction 5 leads to the first relation between c(k, l) and m(k, l) :

k

c(k, l)

∂c(k, l)

∂k
+

k

m(k, l)

∂m(k, l)

∂k
= 0 (12)

If the production function is required to exhibit constant elasticity to scale, then the scale effect
in the exponential part of the function should be cancelled out. This leads to a second relation
for m(k, l) :

m(λk, λl) =
1

λγ
m(k, l) (13)

The clearest functions for c(k, l) and m(k, l) that respect both 12 and 13 are :

m(k, l) =
m0

kρlγ−ρ
(14)

c(k, l) = c0k
ρlγ−ρ (15)

y(k, l, x) = c0k
ρlγ−ρ(1− e−

m0x
γ

kρlγ−ρ ) (16)

Here c0,m0, ρ and γ are constants. The overall input elasticity of scale in this case is equal to γ,
and as such solely determined by the exponential of the energy inputs. For many applications
this is too restrictive.

If the requirement for a constant elasticity to scale is relaxed, we can allow one more degree of
freedom. This allows independent power factors for k and l, so the functions can be defined
as:

m(k, l) =
m0

kρlσ
(17)

c(k, l) = c0k
ρlσ (18)

y(k, l, x) = c0k
ρlσ(1− e−

m0x
γ

kρlσ ) (19)

Equation 19 describes the EMod function. This function is fixed by the choice of the five
constants c0,m0, ρ, σ and γ. In this solution the elasticity of scale is no longer constant over
the range of inputs, but it has the freedom to vary over a large range. At the same time, the
elasticity of substitution between k and l remains constant and equal to 1, independent of k,
l or x. A derivation of this is presented in annex A. A first indication of the characteristics
of equation 19 is illustrated in figure 2. This figure compares two isoproduction lines in the
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Figure 2: The isoproduction line of the resulting function (EMod) is much steeper than the
isoproduction line of a Cobb-Douglas function

capital-energy field, while labour is constant. Contrary to the Cobb-Douglas isoproduction
line, equation 19 leads to a very steep behaviour with rising x or k. The obtained isoproduction
line resembles more closely a Leontief isoproduction line.

The corresponding input elasticities of equation 19 are :

Ek =
k

y

∂y

∂k
= ρ+

kxγρ(−m0)

kρ+1lσ
e−

m0x
γ

kρlσ

1− e−
m0x

γ

kρlσ

(20)

= ρ(1− m0x
γ

kρlσ
e−

m0x
γ

kρlσ

1− e−
m0x

γ

kρlσ

) (21)

El =
l

y

∂y

∂l
= σ +

lxγσ(−m0)

kρlσ+1

e−
m0x

γ

kρlσ

1− e−
m0x

γ

kρlσ

(22)

= σ(1− m0x
γ

kρlσ
e−

m0x
γ

kρlσ

1− e−
m0x

γ

kρlσ

) (23)

Ex =
x

y

∂y

∂x
=
γm0x

γ

kρlσ
e−

m0x
γ

kρlσ

1− e−
m0x

γ

kρlσ

(24)

This leads to an unexpected relation between the input elasticities :

Ek = ρ(1− Ex
γ

) (25)

El = σ(1− Ex
γ

) (26)

This interdependence of the input elasticities is illustrated in figure 3. This figure illustrates
the separate input elasticities of scale for ρ = 0.7, σ = 0.5 and γ = 1. When the energy input x
is small or negligible, the input elasticities of labour and capital tend to zero. This is a logical
consequence for the capital input elasticity corresponding to restriction 5. The behaviour of the
labour input elasticity follows because of the substitutability between labour and capital. In
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Figure 3: The variation of the three input elasticities and the total elasticity of scale in function
of energy input x

this range of small energy inputs, the production function behaves as an exponential function
of x only. This clarifies also why the total elasticity of the firm tends to γ when the energy input
is very small, independent of any of the constants. At the other end of the spectrum, when x
is very large, the energy input elasticity is negligible, and production can only be changed by
modifying k or l. The total elasticity of scale in this case is constant and equals ρ + σ. At this
end of the spectrum, the production function behaves as a Cobb-Douglas function in k and l.
It is the transition between the two extremes that is of interest. In the range where k, l and x are
balanced, the use of this function should more appropriate than a Cobb-Douglas or a standard
exponential function.
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3 Applications

3.1 Using the function in a data regression

The function of equation 19 is fitted to a dataset of 645 observations of diary farms between
1995 and 2001 assembled by Meul et al [15]. This dataset combines information on outputs,
capital and labour inputs, and material and energy inputs. The material and energy inputs are
in this case aggregated by measurements in Cumulative Energy. This approach is including
also the indirect energy and solar irradiation, being the energy needed for the creation of the
cow fodder and other materials. The origin of the data and more information on the particular
aggregation procedure can be found in [15]. Some general indicators for this dataset are given
in table 2.

The function parameters are estimated using an Ordinary Least Squares (OLS) estimation tech-
nique. A regression using a standard Cobb-Douglas function is provided as a benchmark. The
regression results are illustrated in table 3. The results cannot be compared directly with each
other. ρ, σ and γ are the input elasticities for capital, labour and energy respectively in the
case of a Cobb-Douglas. But these constants do not have the same significance for the EMod
function. A first approximation of the goodness of fit can be provided by the R2 indicators,
and it is quite similar for both regressions.

The constants ρ and σ add up to 1.6 in the case of the EMod function. This implies that the
elasticity of scale varies between 1.15 and 1.6. To judge the usefulness of the current EMod
form, it is important to know if the average elasticity is comparable to the one found by the
Cobb-Douglas regression. If the average elasticity turns out to be low, then the regression
with the EMod form converged to a suboptimal point where the influence of k and l was
neglected, and all variation is imputed to x. Whereas if the average elasticity tends to 1.6, then
the opposite has happened, and the regression converged to that part of the spectrum that
only regards k and l as meaningful inputs. The Cobb-Douglas regression shows a constant
elasticity of scale of 1.21. The input elasticities have been calculated for each data point in the
set. The results of these calculations are given in table 4. This shows that the average scale
elasticity using the EMod form is estimated at 1.20. This is very close to the estimation of the

Table 2: Data characteristics for 645 observations of Diary farms
Observations Mean St.Dev. Min. Max Unit

Output : Earnings 645 150 292 68 765 20 445 622 791 EUR
Capital 645 400 913 188 608 60 623 1 142 400 EUR
Labour 645 1.48 0.34 0.35 3.50 FTE
Energy inputs 645 1 175 491 253 3 579 GJ
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Table 3: Results of data regression
EMod production function Cobb-Douglas production function

c0 295 c0 47.6
m0 0.20
ρ 0.513 ρ 0.214
σ 0.792 σ 0.260
γ 1.155 γ 0.735
R2 0.965 R2 0.966

Adj.R2 0.965 Adj.R2 0.966
Residual SS 2.73e10 Residual SS 5.98e11

Table 4: Distribution of local input elasticities with the EMod regression
Variable Observations Mean St.Dev. Min. Max Cobb-Douglas
Ek 645 0.163 0.051 0.048 0.355 0.214
El 645 0.251 0.079 0.074 0.547 0.260
Ex 645 0.790 0.115 0.358 1.047 0.735
Total elasticity of scale 645 1.203 0.015 1.169 1.260 1.209

Cobb-Douglas function. But more importantly, it shows that the EMod form converged to a
point where all three inputs are required for maximal estimation accuracy, and that the data
points are fitted to the transition range of the curve.

This indicates that the particular algebraic form can be fitted to actual data with satisfactory
results. However, the results are not substantially different from regressions with a standard
Cobb-Douglas function. This first estimation does not show very similar results but no added
value when using this functional form for data regression.
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3.2 Optimal input cost shares

The second purpose of the new algebraic form is to deliver a function with a distinctly different
behaviour than standard economic production functions when used for predictive modelling.
This new behaviour should reflect the limitation of a maximum transformation capacity as
outlined above.

This section further elaborates on the results of the regressions in table 3. These results give
two functions fitted on the same dataset. We now want to compare the optimal input cost
shares for these two functions. A range of outputs is defined from 6.400 to 400.000. For each
output, the profit-maximising input shares are determined. To that effect, market data are
introduced with prices for inputs and outputs. These are the same for both functions.

The equations for the optimal cost shares are derived in annex B profit-maximising point dif-
fers between a Cobb-Douglas approximation (CD) and an EMod approximation (EMod). The
CD cost shares are constant, regardless of the produced output. In this case, the input cost
shares are 18%, 21% and 61% for capital, labour and energy respectively. The EMod cost shares
are varying with a tendency for an increasing energy cost share with increasing output. With
the same market prices, the profits obtained in CD are steadily higher than with EMod. These
results are illustrated in table 5. This could be a consequence of the fact that the EMod function
is an inherently constrained function and is not capable of unlimited exponential growth.

Table 5: Profit-maximisation for a fixed output y leads to varying input cost shares
Total production Cobb Douglas

approximation
EMod Approximation

Output y Maximum profit Maximum profit Capital Labour Energy
6 400 -2 309 -2 751 10 % 16 % 74 %
12 800 -2 648 -3 581 10 % 15 % 75 %
25 600 -1 801 -3 739 10 % 15 % 76 %
51 200 2 598 -1 375 9 % 14 % 76 %
102 400 16 193 8 137 9 % 14 % 77 %
150 000 31 800 19 957 9 % 14 % 77 %
200 000 50 060 34 256 9 % 14 % 78 %
250 000 69 681 49 930 9 % 13 % 78 %
300 000 90 344 66 660 9 % 13 % 78 %
350 000 111 846 84 243 9 % 13 % 78 %
400 000 134 047 102 538 8 % 13 % 78 %

The results are also illustrated in figure 4. The large variation in input cost shares shows a
large difference with the approach of the Cobb-Douglas function.
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Figure 4: The EMod function leads to variable optimal cost shares and lower profit margins
than a Cobb-Douglas function

3.3 Optimal input cost shares with restricted cash-flow after a market change

In a next step the market prices are altered and consequently also the market equilibria. Each
firm, determined in the first step, adjusts its cost shares. Profits are again maximised. But
there is a single restriction that the total cash flow of the company cannot increase. So the total
of the costs incurred for capital, labour and energy should remain the same. The adaptations
show clearly the differences in behaviour between the EMod function and the Cobb-Douglas
function. Annex B details the equations used to find the optimised cost shares before and after
the market change.

The market price of energy is reduced with 25%. Logically, production should increase for all
firms in both functions. It is also expected to see profits rise, as the inputs are less expensive,
but the output price remains unchanged. The first point of interest is to see the changes in
inputs and input cost shares and to compare the differences between the two functions. The
results are presented in table 6.
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Table 6: The total Cash Flow being constant, the market responses of firms modelled with
Cobb Douglas or with the EMod function are remarkably different.

Cobb Douglas approximation EMod approximation
Initial

turnover
New

Turnover
New
profit

Profit
increase

New
Turnover

Change in cost share New
profit

Profit
increase

[EUR] [EUR] [EUR] [EUR] [EUR] Capital Labour Energy [EUR] [EUR]
6 400 7 908 -802 1 508 7 373 6.7% 10.4% -17.1% -1 778 973

12 800 15 815 367 3 015 15 170 5.9% 9.1% -15.1% -1 211 2 370
25 600 31 631 4 230 6 031 31 009 5.2% 8.1% -13.3% 1 670 5 409
51 200 63 262 14 660 12 062 63 082 4.6% 7.2% -11.8% 10 507 11 882

102 400 126 523 40 316 24 123 127 870 4.1% 6.4% -10.5% 33 607 25 470
150 000 185 337 67 137 35 337 188 475 3.9% 6.0% -9.9% 58 432 38 475
200 000 247 116 97 177 47 116 252 361 3.7% 5.7% -9.4% 86 617 52 361
250 000 308 895 128 577 58 895 316 404 3.6% 5.5% -9.1% 116 334 66 404
300 000 370 674 161 018 70 674 380 574 3.5% 5.4% -8.8% 147 234 80 574
350 000 432 453 194 299 82 453 444 833 3.4% 5.2% -8.6% 179 076 94 833
400 000 494 232 228 279 94 232 509 170 3.3% 5.1% -8.5% 211 708 109 170

The cost shares of the Cobb Douglas function do not change. The price decrease of energy is
met with an increase in energy intake. The overall energy cost share remains the same. The
increased energy intake leads to a larger production and to larger profits. This is however not
the behaviour that was intended for the type of company under investigation. Only rarely the
production can increase by increasing the energy input. A simultaneous investment in capital
or labour is needed in practise, so the estimation of the firm’s response with a Cobb Douglas
function is not likely.

The cost shares of the EMod function on the other hand do change simultaneously. Every
increase in energy intake is accompanied by a smaller investment in capital and in labour. The
cost shares of labour and capital rise significantly to the detriment of the energy cost share.
This is a more realistic reaction. This is also illustrated in figure 5.

The firm adapts its inputs and it also increases its profits. This is illustrated in figure 6. The
Cobb-Douglas model shows a consistent profit increase that follows the advantages of scale
exhibited by the function. The EMod model shows smaller profit increases at small capacities
of production. At regular production capacities, the overall profit increase due to adaptation
after the market shock is relatively similar for both models.
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Figure 5: Whereas for the Cobb-Douglas model only the energy intage increases, both the
capital and the energy intake increase for the EMod model.

Figure 6: The EMod model and the Cobb-Douglas model show similar profit increases over
the range of production.
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4 Conclusions

The microeconomic modelling of material- and energy-intensive firms can be done with stan-
dard economic production functions, that integrate one or several material and energy input
factors. However, this approach does encounter some principle obstacles, because standard
production functions do not always reflect precisely the physical limitations of material and
energy use. This is not an issue when the model is set up to fit functions to existing data. The
physical restrictions of material and energy use will be present in the data implicitly. However,
it might be a problem for predicting or extrapolating models.

In this paper a new production function was derived exactly for this purpose. This EMod
function is based on standard requirements for economic production functions, but also on
additional constraints related to the physical restrictions on the transformation of matter and
energy. The resulting algebraic form is convenient, because it can be defined by only five
parameters. It allows modelling of different technologies with varying scale advantages and
ensures a constant elasticity of substitution between capital and labour. However the form is
non-linear which might oblige the use of complicated econometric methods.

The EMod function has been applied in order to test its utility, first for data regression. The
results are very similar to those of a standard Cobb-Douglas regression. But similarity as such
is not a sufficient argument to adopt this EMod function. The non-linearity makes data regres-
sion certainly more complex. However, when using this function in a optimisation model or
a partial equilibrium model, the results are very different and show the added value of this
approach. We compared the behaviour of the EMod function under influence of changing ex-
ternal market factors. The main differences in behaviour are the changes in optimal input cost
shares. These cost shares no longer are constant, and they tend to favour larger energy cost
shares. Furthermore, when a price modification changes the market equilibrium, the EMod
function presents a more restricted behaviour. Investments in additional energy or material
input also necessitate related investments in capital and labour. This is coherent with the prin-
ciples of microeconomic behaviour that led to the derivation of the EMod function. The overall
predictions of profit increase is the same whether the EMod or the Cobb-Douglas function is
applied. But the underlying dynamics and substitution between inputs to obtain this profit
increase are very different between the two models.

More diversified applications of this EMod function can learn more about the advantages and
the limitations to its use. Secondly, it is foreseen in future research to compare the behaviour
also with other production functions such as the Leontief or Translog function.

Several models of environmental economics simulate economic agents that require a large in-
put of physical resources, such as agricultural flows, energy flows or minerals. These models
can opt for the use of the EMod form, as it is designed to simulate much closer the physi-
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cal behaviour of the installations. At this preliminary stage, it is still required to accompany
this with a parallel implementation of standard economic equations. This ensures a correct
interpretation of the obtained results.
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A Appendix A : Elasticity of substitution between k and l for the
EMod form

The elasticity of substitution between capital and labour is defined as :

ESk,l =
d ln(kl )

d ln( MPL
MPK )

(27)

The marginal products of capital and labour (MPK and MPL respectively) are:

MPK =
∂y

∂k
= c0ρk

ρ−1lσ(1− e−
m0x

γ

kρlσ ) + c0k
ρlσ

m0x
γ

kρlσ
ρ

k
e−

m0x
γ

kρlσ (28)

=
c0ρ

k
(kρlσ(1− e−

m0x
γ

kρlσ ) +m0x
γe−

m0x
γ

kρlσ ) (29)

MPL =
∂y

∂l
=

c0σ

l
(kρlσ(1− e−

m0x
γ

kρlσ ) +m0x
γe−

m0x
γ

kρlσ ) (30)

This indicates that the ratio between the two marginal products is :

MPL

MPK
=

σk

ρl
(31)

ln(
MPL

MPK
) = ln

σ

ρ
+ ln

k

l
(32)

Equation 32 shows a linear relationship, so that ESk,l = 1.

B Appendix B : Optimal cost shares for profit-maximising firms

The optimal input cost shares of the firm depend on the prevailing market prices. Competitive
markets are assumed and the individual firms have no market power. The output market price
is p. The input prices for capital, labour and energy are wk, wl and wx respectively. This allows
to define the profit π of the firm as:

π = py − wkk − wll − wxx (33)

In the first step, the total production y of the firm is fixed. So the optimal cost shares can be
found with the first order differentiation which leads to :

wkk

py
=

k

y

∂y

∂k
= Ek (34)

wll

py
=

l

y

∂y

∂l
= El (35)

wxx

py
=

x

y

∂y

∂x
= Ex (36)
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For the Cobb Douglas function, the input elasticities are the coefficients of the functions, and
are thus constant. The former equations allow thus to determine the optimal input cost shares
directly.

For the EMod function, the solution has to be found iteratively. The input elasticities allow the
following simplifications :

wxx

py
= Ex (37)

wkk

py
= ρ(1− Ex

γ
) (38)

wll

py
= σ(1− Ex

γ
) (39)

In the first phase, the output y is constant and fixed on beforehand. First a estimation for x
is fixed, x̆. Then the related quantities for k and l are determined, which lead to an output
estimation y̆. y̆ is compared to y and x̆ is adopted accordingly with the following relations :

wkk̆ = ρpy(1− wxx̆

γpy
) (40)

wl l̆ = σpy(1− wxx̆

γpy
) (41)

py̆ = c0k̆
ρ l̆σ(1− e−

m0x̆
γ

k̆ρl̆σ ) (42)

In the second phase, y is no longer constant, but is also adapted influenced by the modified
market price for energy ẇx. So the production moves from the original equilibrium y(k, l, x)

to the new one ẏ(k̇, l̇, ẋ). One can follow the same procedure as above to determine the new
equilibrium, by adding the constraint that the total cash flow CF remains the same.

CF = wkk + wll + wxx = wkk̇ + wl l̇ + ẇxẋ (43)
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