
Cost-effective Web-based Media Synchronization Schemes for Real-time
Distributed Groupware

Maarten Wijnants, Peter Quax and Wim Lamotte
Hasselt University – tUL – iMinds

Expertise Centre for Digital Media, Wetenschapspark 2, 3590 Diepenbeek, Belgium

Keywords: Multimedia, Inter-Destination Media Synchronization (IDMS), Group Synchronization, Cost-benefit Analy-
sis, synchronous MediaSharing (sMS).

Abstract: A multitude of application domains benefit from synchronized multimedia content presentation and playback
across spatially scattered client stations. Online remote tutoring, telework and teleconferencing, and the non-
co-located synchronous browsing through a digital photo album are merely some examples of potential use
cases, which are referred to collectively as real-time distributed groupware. This paper presents five concrete
schemes that realize media synchronization over the Web. The proposed techniques have been implemented
and experimentally validated as part of the synchronous MediaSharing (sMS) service, a framework which
grants geographically dispersed users the ability to share and synchronously consume digital pictures and
video clips. All five schemes are completely Web-compliant, achieve relatively loose synchronization accu-
racy, and can be categorized as being non-distributed in the sense that they require centralized coordination.
Besides being technically compared, the synchronization solutions are subjected to a high-level assessment in
terms of their infrastructural requirements and the thereby associated necessary operational expenditure.

1 INTRODUCTION

The shared, co-located consumption of multimedia
such as pictures and video clips occupies an important
niche in media-centered communication paradigms.
In this model, people physically convene in order to
consume particular media content in the presence of
each other. The co-located setting hereby often leads
to highly rich human interactions. As an example, it
has been found that jointly browsing through a phys-
ical photo album gives rise to the evocation and po-
tentially even the reliving of shared memories (Sar-
vas and Frohlich, 2011). Another example is given
by the fact that people typically enjoy watching the
live television broadcast of important sport events to-
gether with friends, because the social contact adds an
additional and highly valued dimension to the setting.

Unfortunately, numerous practical factors like
travelling overhead and time constraints increasingly
prevent group members from physically meeting up,
both in professional and recreational scenarios. At the
same time, due to the popularization of Online Social
Networks (OSNs), international contacts are becom-
ing common practice. To mitigate the potential disad-
vantages (concerning social interaction) induced by

a distributed setting, we have previously proposed a
digital media sharing and synchronization framework
called synchronous MediaSharing (sMS) that emu-
lates a sense of co-presence and physical togetherness
for geographically dispersed content consumers (Wi-
jnants et al., 2012a). The framework is exclusively
built around Web technologies and standards in order
to maximize its adoption and market penetration po-
tential (by avoiding platform lock-in). User-centric
research has revealed that the sMS tool nicely fits in
with the contemporary content sharing and consump-
tion habits of multimedia amateurs; furthermore, the
system has been found to be largely complementary
to existing digital multimedia sharing services like
Flickr and YouTube (Wijnants et al., 2012b).

At the core of any synchronous media sharing
platform lies its real-time content synchronization
procedure. The synchronicity requirement namely
dictates that spatially distributed participants need to
be presented the same content at (approximately) the
same time. In the literature, this concept is sometimes
denoted by the term group synchronization (Boronat
et al., 2009) or Inter-Destination Media Synchroniza-
tion (IDMS) (Stokking et al., 2010). This paper will
present five synchronization schemes that have been

149
Wijnants M., Quax P. and Lamotte W. (2013).
Cost-effective Web-based Media Synchronization Schemes for Real-time Distributed Groupware.
In Proceedings of the 9th International Conference on Web Information Systems and Technologies, pages 149-154
DOI: 10.5220/0004369401490154
Copyright c SciTePress



developed in the context of the sMS platform. Besides
describing the technical implementation of the differ-
ent methods (in Section 2), they will also be compared
in terms of their economic effectiveness by investigat-
ing their deployment and hosting demands (in Sec-
tion 3). It is hereby emphasized that the findings and
results described in this article are not bound to the
sMS framework but instead, through generalization,
are applicable to many Web-based services that are
conceptually situated in the same time, different place
category of the groupware typology introduced by Jo-
hansen (Johansen, 1988).

2 SYNC SCHEMES

This section presents a total of five schemes that
achieve content synchronization in the sMS sys-
tem. Given the system’s Web-conformance design
premise, an unconditional prerequisite for the devel-
oped group synchronization solutions was that they
had to be completely Web-compliant. Another trait
that is shared by all proposed schemes is that they
are not very strict, in the sense that they yield rel-
atively loose group synchronization; timing discrep-
ancies amounting up to a handful of seconds might
occur across participating sites. Qualitative end-user
research has proven that the level of inter-destination
synchronization that is attainable by the presented
schemes suffices for entertainment purposes and for
recreational applications of the sMS platform (Wij-
nants et al., 2012b). Other application domains (e.g.,
distributed learning) might demand more strict syn-
chronization solutions (Gutwin, 2001). A next simi-
larity is that all five implementations conceptually be-
long to the master-slave receiver category in Boronat
et al.’s taxonomy of group synchronization schemes
(Boronat et al., 2009). Finally, the schemes are all
non-distributed in nature as they depend on a central
process to streamline the synchronization procedure.

2.1 Webserver plus AJAX

The rationale of this scheme is that synchronization
records are stored in, and fetched from, a centralized
location. In particular, whenever a user actively mod-
ifies the state of a sMS session, an AJAX transac-
tion is initiated by his client to invoke a server-side
PHP script, which in turn inserts the transported con-
tent synchronization payload in a relational database
(RDBMS). Conversely, clients periodically solicit the
most recent synchronization data that pertains to their
current sMS session from the server (again via AJAX)

and apply the response locally. Factual implementa-
tion details can be found in (Wijnants et al., 2012a).

2.2 Synchronization in the Cloud

An interesting alternative to the use of a dedicated
and privately hosted webserver for the distribution of
synchronization instructions (as described in Section
2.1), is to resort to the Platform as a Service (PaaS)
cloud computing service model. Due to hardware vir-
tualization technology and economies of scale bene-
fits, a cloud-deployed solution will typically be more
resource-efficient and cost-effective (see Section 3).
At the same time, the synchronization scheme auto-
matically inherits the advantageous properties that are
typically associated with cloud hosting, including dy-
namic scalability, the availability of powerful cloud-
side APIs that foster application implementation, and
highly reliable Quality of Service (QoS) guarantees.

In this particular case, the synchronization model
has been realized on Google App Engine (GAE), the
PaaS cloud computing service provided by Google.
The model’s design largely mimics that of the dedi-
cated webserver deployment from Section 2.1: clients
rely on AJAX to push sMS synchronization data to
a back-end repository, and remote clients obtain the
pushed data from this repository. Some significant
differences in terms of implementation however ex-
ist between both approaches. First, the back-end soft-
ware has in this case been implemented as JavaServer
Pages (JSPs) instead of as PHP scripts. Secondly, the
synchronization instructions are server-side persisted
by means of a schemaless NoSQL object store that
guarantees automatic data storage scalability through
the use of a distributed architecture. Third, clients do
not need to explicitly and periodically poll the server
to be informed of the most up-to-date sMS session
state. Instead, as soon as the cloud application re-
ceives novel synchronization instructions, it will in-
stantaneously and automatically push these instruc-
tions to all clients that are participating in the involved
sMS session. This type of selective broadcast behav-
ior is enabled by the Channel API service for Java-
coded GAE applications.

The cloud solution technologically clearly out-
performs the dedicated webserver synchronization
scheme. Not only do GAE’s intrinsic scalability
features guarantee adequate performance under high
workloads and large data sets, the push-based Chan-
nel API additionally expedites the dissemination of
synchronization records among involved client termi-
nals and as such improves sMS session consistency.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

150



Figure 1: Synchronization via a public Facebook Page.

2.3 XMPP MUC

The Extensible Messaging and Presence Protocol
(XMPP) is essentially intended to realize the distri-
bution of (instant) messages and presence informa-
tion among distributed sites. It is an open XML-
based IETF standard that has been designed with ex-
tensibility in mind. One example of an XMPP ex-
tension is the Multi-User Chat (MUC) specification.
Via the definition of a room or channel concept, this
extension introduces textual group chat functionality
in XMPP that unlocks controlled one-to-many text-
based communication. Note MUC’s large conceptual
resemblance to the GAE Channel API discussed in
Section 2.2. Also remark that, thanks to the openness
of the protocol, anyone is allowed to develop and host
a (proprietary) XMPP server; many public servers are
available to which users can connect free of charge.

The XMPP MUC functionality has been exerted
to implement inter-destination content synchroniza-
tion according to the publish-subscribe interaction
paradigm. sMS session participants are grouped in
a unique MUC room, after which synchronization-
related messages are broadcast within this room. This
implies that, when a user modifies the state of the
session, his client transmits a state description mes-
sage to his XMPP server, which in turn propagates the
message to all other session participants on the basis
of the member list of the corresponding MUC room.

2.4 Facebook

Facebook offers a number of SDKs for different pro-
gramming languages (including PHP and JavaScript)
that enable software developers to interface with
the platform and to build socially-inspired applica-
tions. The proposed Facebook-mediated synchroniza-
tion approach has been realized exclusively by means
of the Facebook JavaScript SDK.

The basic idea of this implementation is to ex-
change sMS session state information by means of a
specialized yet public Facebook Page (see Figure 1).

Whenever a new sMS session is created, the initiat-
ing client publishes a post on this Facebook Page and
records the post’s unique Facebook ID. The posted
message holds configuration information about the
session, including the URL of the Media RSS feed
that syndicates the content that is being shared. On the
basis of the unique ID, other users are able to retrieve
the Facebook post and to join the associated session
by processing the data contained in the message. Syn-
chronization records on the other hand are communi-
cated as comments on the Facebook post that corre-
sponds to the involved sMS session. Session mem-
bers repeatedly query the Facebook Page to acquire
the most recent comment on the relevant post, parse
the synchronization record it represents and apply the
resulting data locally to achieve content synchroniza-
tion. To prevent an explosion of the number of syn-
chronization comments, the model instructs clients to
delete all their previously published comments that
pertain to a particular sMS session when posting new
synchronization instructions for this session. Also re-
mark that, by relying on a specialized Facebook Page
as the communication medium, the synchronization
scheme avoids pollution of the timeline of the partici-
pating users’ Facebook account with synchronization
messages that are meaningless to humans.

Although the described synchronization model is
technically valid, it suffers from two practical is-
sues. First, Facebook dynamically limits the volume
of posts and comments that applications are allowed
to publish within a certain time interval, as well as the
rate at which this can occur. As these publishing con-
straints are enforced on-the-fly and in an opaque and
largely variable manner (depending on, for instance,
the current workload experienced by the Facebook
back-office), they are impossible to predict. This in
turn unfortunately undermines the dependability and
reliability of the synchronization scheme. Secondly,
considerable time (in the order of minutes) might pass
before a post or comment is replicated to all the Face-
book servers. As a result, session participants who are
geographically vastly dispersed are likely to witness
significantly variable delays before they gain access
to published synchronization data.

2.5 Twitter

As is the case with Facebook, a number of APIs are
available to interface third-party applications with the
Twitter platform. There for instance exist RESTful
API methods to post tweets. In addition, the so-called
Twitter Streaming API grants developers low latency
access to the global stream of tweets by allowing them
to set up a long-lived HTTP connection to the Twitter

Cost-effective�Web-based�Media�Synchronization�Schemes�for�Real-time�Distributed�Groupware

151



Figure 2: Synchronization via a public tweet.

back-office, over which tweets will then be streamed
incrementally. In combination with extensive filter-
ing mechanisms (hashtag-based, for example), appli-
cations in this way obtain near-real-time access to ex-
actly the type of tweets they are interested in.

In the Twitter-mediated synchronization model,
the content synchronization data is exchanged as pub-
lic tweets (see Figure 2). These tweets are published
on the Twitter account of the user who altered the state
of the sMS session and they include a specific hashtag
(#syncMedSha) as well as an ID that uniquely deter-
mines the relevant session. A PHP daemon running
on a back-end webserver leverages the Streaming API
to filter all the tweets that transport synchronization
records, parses them, and persists the extracted syn-
chronization instructions in a local RDBMS. Clients
iteratively query this database (by issuing an AJAX
request to a server-side PHP script) to retrieve the up-
to-date state of the sMS session in which they are cur-
rently engaged. Note that, as opposed to the Facebook
scheme described in Section 2.4, nonsensical mes-
sages (from a human perspective) are in this solution
actually being introduced in the user’s tweets list. To
minimize the potential detrimental effects of this ap-
proach, a background client-side thread exploits the
Twitter REST API to delete synchronization-related
tweets that were previously issued by the local user
and that have become obsolete.

Besides being less elegant than the Facebook im-
plementation (due to the use of public and personal
tweets to communicate synchronization instructions),
the Twitter-powered synchronization method faces a
number of constraints that are dictated by Twitter
and that render the solution to be suboptimal at best.
First, tweet length restrictions limit the potential pay-
load volume of synchronization messages. Secondly,
Twitter explicitly advises not to access the Streaming
API from within Web browsers given their Same Ori-
gin Policy with respect to the execution of JavaScript
code. As a result, a substantial financial overhead
is incurred due to the necessity to deploy a server-
side component (see also Section 3). To aggravate
matters, unnecessary additional delay is introduced.
Third, like Facebook, Twitter imposes rate limits on
the usage of its APIs and enforces restrictions to
ensure fairness among users and to protect the ser-
vice from downtime due to overload. Contrary to

Facebook however, these usage restrictions are well-
documented. This implies that a strict per-day upper
bound is set on the number of synchronization mes-
sages that a user will be able to disseminate. Finally,
again analogous to the Facebook implementation, the
publication of synchronization data tends to be slow,
as the posting of tweets via the Twitter REST API is
typically non-instantaneous.

3 COST ANALYSIS

Section 2 has indicated that substantial differences
exist between the five solutions in terms of syn-
chronization efficiency and performance. Now, we
will take a high-level look at the financial repercus-
sions that are associated with the adoption of each of
the approaches. Commercial applications might rate
cost-effective deployment and maintenance models
equally important to synchronization performance.

Table 1 summarizes the economic implications
due to infrastructural requirements for each of the de-
scribed synchronization solutions. Three out of the
five schemes can be rolled out without incurring any
back-end hardware deployment cost. Of these three
technologies, XMPP MUC and Facebook are further
characterized by the complete absence of operational
or maintenance-related expenses, which makes them
particularly attractive. The same is also true for the
third solution, Synchronization in the Cloud, given
that the distributed groupware service does not violate
the resource quota of the PaaS provider’s zero-cost
policy. Typically, these quota suffice for a Proof-of-
Concept deployment, and often even for a small-scale
commercial installation of the service.

When collating the Webserver plus AJAX and the
Synchronization in the Cloud solutions, the latter will
typically outperform the former in terms of financial
efficiency, even if the involved synchronous applica-
tion would exceed the resource quota associated with
the PaaS vendor’s cost-free pricing model. Many
cloud platforms leverage a pay-per-use billing sys-
tem, whereas traditional webserver hosting typically
imposes a monolithic monthly or yearly fee. This im-
plies that cloud-based solutions in most cases will ex-
hibit a much more favourable cost-benefit trade-off.

Finally, although the Facebook-mediated synchro-
nization scheme scores highly in the bird’s-eye cost-
benefit analysis, one must keep in mind the practical
limitations that are entailed by this approach. A de-
veloper who opts to host his application on Facebook
is completely dependent on Facebook’s hardware in-
frastructure. In this context, no guarantees are given
in terms of performance, as there is no notion of Ser-

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

152



Table 1: Hosting and deployment requirements and associated operational expenditure.

Technology Necessary infrastructure and cost estimate

Webserver + AJAX Webserver hosting (with PHP and RDBMS support) and management.
Synchronization in
the Cloud

All back-end hardware is hosted and managed by the PaaS cloud provider. Actual cost
depends on the cloud provider’s pricing model. Many vendors (including GAE) offer free
policies for applications that do not exceed predefined resource usage quota (e.g., CPU).

XMPP MUC MUC-enabled XMPP server(s). Complimentary XMPP servers are abundantly available.
Facebook None. Facebook’s back-office takes care of storage and dissemination of sync instructions.
Twitter Webserver hosting (with PHP and RDBMS support) and management.

vice Level Agreements (SLAs) between the developer
and the platform holder. As an additional disadvan-
tage, a software developer has no control whatsoever
over the behaviour of the Facebook back-end. Section
2.4 has for instance clarified that Facebook’s dynamic
rate limiting policy transforms the proposed synchro-
nization scheme into a highly unreliable and unpre-
dictable service whose performance will be unaccept-
able for the majority of online synchronous applica-
tions. Note that the Twitter-powered synchronization
scheme suffers from identical issues.

4 CONCLUSIONS

This paper has presented and compared a total of five
concrete hosting and deployment strategies for Web-
based group synchronization applications that involve
the synchronous presentation and consumption of
multimedia content at geographically distributed end-
points. The comparison was not limited to the tech-
nological methodology and performance of the pro-
posed schemes, but also encompassed a non-detailed
economic cost-benefit analysis. The described solu-
tions namely all rely on a central entity that man-
ages the inter-destination synchronization, and setting
up and maintaining such centralized infrastructure
might have significant financial implications. The
study has revealed that a XMPP MUC-powered so-
lution is not only highly efficient in terms of con-
tent consistency performance (courtesy of its ability
to disseminate synchronization instructions in a push-
based, multicast-like fashion), it is in addition gratu-
itously realizable given the abundance of public and
complimentary XMPP MUC servers on the Internet.
A cloud-hosted synchronization coordinator that uti-
lizes the PaaS service model has been found to be
a decent runner-up. With regard to technical fea-
tures and synchronization efficiency, the XMPP MUC
and Synchronization in the Cloud schemes are largely
comparable. In terms of economic cost-benefit ratio,
cloud platforms generally invoice applications only

for the back-end resources that they actually con-
sume. The pricing models of many cloud computing
providers even incorporate cost-free plans, yet the re-
source quota bestowed upon these models are likely
to be unsatisfactory when envisioning a comprehen-
sive deployment of a real-time distributed groupware
application. Finally, despite their conceptual attrac-
tiveness and theoretical feasibility, the Facebook- and
Twitter-situated content synchronization techniques
have been proven to be practically unsuitable. The
limitations enforced by both Facebook and Twitter
concerning the usage of their back-end infrastructure
are so strict and time-variant that they rule out the
building of a dependable, robust and adequately per-
forming synchronization scheme.

ACKNOWLEDGEMENTS

Part of the research described in this article was per-
formed in the context of the iMinds project 3DTV 2.0.
This project is co-funded by iMinds, a research insti-
tute founded by the Flemish Government. Companies
and organizations involved in the project include An-
drome NV and TP Vision, with financial support of
IWT Flanders. We thank Davy Vanclee for the imple-
mentation of the Sync in Cloud and FB schemes.

REFERENCES

Boronat, F., Lloret, J., and Garcı́a, M. (2009). Multi-
media Group and Inter-stream Synchronization Tech-
niques: A Comparative Study. Information Systems,
34(1):108–131.

Gutwin, C. (2001). The Effects of Network Delays on
Group Work in Real-Time Groupware. In Proceedings
of ECSCW 2001, pages 299–318, Bonn, Germany.

Johansen, R. (1988). GroupWare: Computer Support for
Business Teams. The Free Press.

Sarvas, R. and Frohlich, D. M. (2011). From Snapshots
to Social Media - The Changing Picture of Domestic
Photography. Springer.

Cost-effective�Web-based�Media�Synchronization�Schemes�for�Real-time�Distributed�Groupware

153



Stokking, H., van Deventer, M. O., Niamut, O., Walraven,
F., and Mekuria, R. (2010). IPTV Inter-Destination
Synchronization: A Network-Based Approach. In
Proceedings of ICIN 2010, pages 1–6, Berlin, Ger-
many.

Wijnants, M., Dierckx, J., Quax, P., and Lamotte, W.
(2012a). synchronous MediaSharing: Social and
Communal Media Consumption for Geographically
Dispersed Users. In Proceedings of MMSys 2012,
pages 107–112, Chapel Hill, NC, USA.

Wijnants, M., Lamotte, W., De Meulenaere, J., and Van den
Broeck, W. (2012b). Qualitative Assessment of Con-
temporary Media Sharing Practices and Their Rela-
tionship to the sMS Platform. In Proceedings of SAM
2012, pages 31–36, Nara, Japan.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

154


