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Abstract—Wireless Sensor Networks (WSNs) are subject to
high levels of dynamism arising from changing environmental
conditions and application requirements. Reconfiguration allows
software functionality to be optimized for current environmental
conditions and supports software evolution to meet variable ap-
plication requirements. Contemporary software modularization
approaches for WSNs allow for software evolution at various
granularities; from monolithic re-flashing of OS and application
functionality, through replacement of complete applications, to
the reconfiguration of individual software components. As the
nodes that compose a WSN must typically operate for long
periods on a single battery charge, estimating the energy cost
of software evolution is critical. This paper contributes a generic
model for calculating the energy cost of the reconfiguration in
WSN. We have embedded this model in the LooCI middleware,
resulting in the first energy aware reconfigurable component
model for sensor networks. We evaluate our approach using
two real-world WSN applications and find that (i.) our model
accurately predicts the energy cost of reconfiguration and (ii.)
component-based reconfiguration has a high initial cost, but
provides energy savings during software evolution.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are composed of embed-
ded computers, or ‘motes’, equipped with low power radios
and sensors that are capable of detecting phenomena in the
physical world. Motes must typically execute for long periods
on limited batteries, making energy conservation a critical
issue. Software reconfiguration is also a critical issue for
WSN due to two factors. Firstly, due to the high cost of
deploying a WSN, sensor networks are increasingly required to
support multiple applications throughout their lifespan [1], [2].
Secondly, the resource constraints of WSN necessitate optimal
configuration of software to suit environmental conditions. As
environmental conditions change, reconfiguration is required
to maintain optimal operation. As WSNs are often deployed
at scale in inaccessible or dangerous locations such as flood
plains [3], remote reconfiguration is required.

Software evolution approaches for WSN can be cate-
gorized by their granularity. Monolithic approaches allow
for reconfiguration through replacement of the entire soft-
ware image running on each mote, including both OS and
application functionality. This approach is exemplified by
TinyOS [4]. Application-based approaches, such as Contiki [5]
and Squawk [6] separate OS functionality from application
functionality, allowing for the replacement of complete appli-
cation images. Component-based approaches such as Open-
COM [7], Figaro [8] and LooCI [9] allow for the replacement
of individual components within an application at runtime.

While research from the field of WSN has resulted in a
variety of software evolution approaches, current techniques
do not quantify the energy cost of reconfiguration, which
makes it difficult for application developers to reason over
reconfiguration options. Furthermore, the relative costs of each
reconfiguration approach have not yet been evaluated in real
world WSN scenarios.

The first contribution of this paper is a generic model for
calculating the energy cost of software evolution in WSN.
We validate this model using two real world industrial case
studies. Our results show that, our energy model has an
average accuracy of 98% for embedded motes [10] and 89%
for more capable Java-based mote platforms [11]. The second
contribution of this paper is the incorporation of this energy
model into the LooCI middleware [9], resulting in the first
energy aware, runtime reconfigurable component model. The
final contribution of this paper is an evaluation of the energy
cost of component-based and application-based reconfigura-
tion in two real-world applications. Our results indicate that
component-based development consumes more energy during
initial configuration but offers distinct advantages for software
evolution.

The remainder of this paper is structured as follows: Sec-
tion II provides background on reconfiguration and software



evolution in WSNs. Section III describes the case-study sce-
narios. Section IV describes a generic model for calculating
the energy cost of the reconfiguration in WSNs. Section V
models the LooCI middleware running on two heterogeneous
mote platforms. Section VI evaluates an implementation of
the energy model for LooCI. Section VII discusses related
research. Finally, Section VIII concludes and discusses direc-
tions for future work.

II. BACKGROUND

The need for reconfiguration of software functionality has
been evident since the inception of the field of WSN re-
search. For example, in the pioneering Great Duck Island
experiment [12], researchers used a WSN to monitor the nest-
ing behavior of birds. The application used a heterogeneous
architecture wherein battery powered motes were deployed
to monitor nests, smart phones were used for on-site data
gathering and a PC-class gateway provided a satellite uplink.
In the early stages, low-power radios were used for local
communication within sensor patches and 802.11b was used
to relay data to the WSN gateway. This architecture was later
reconfigured to use low-power links for all communication.
The authors highlighted the need for a range of reconfiguration
techniques ranging from re-parameterization to evolution of
deployed software functionality.

The SICS factory surveillance system described in [13]
used a WSN to monitor conditions in a factory complex.
The application used a homogeneous architecture composed
of 25 battery powered motes and was implemented as a set
of Contiki modules [5]. The authors highlight the need for
autonomic reconfiguration as well as the need for evolution of
deployed application functionality to meet changing applica-
tion requirements.

The GridStix flood monitoring system [3] was deployed
on two rivers in the UK to provide early warning of floods.
The system used a heterogeneous architecture composed of
Embedded Linux boards powered by batteries and solar panels
to monitor conditions on a 1KM stretch of river. Ad-hoc
802.11b and Bluetooth were used to implement spanning-
tree data collection protocols, which relayed data to a single
GSM uplink. All application functionality was implemented
using the OpenCOM [7] component model. In [3] the au-
thors demonstrate that component-based reconfiguration can
be used to optimize application behavior to meet changing
environmental conditions.

The Cambridge badger monitoring experiment [14] used a
WSN to monitor the behavior of badgers in a nature reserve.
The application used a heterogeneous architecture with RFID
tags deployed on the collars of badgers, static RFID detection
stations and battery-powered motes that monitored the local
microclimate. Application functionality was implemented as a
set of Contiki modules [5]. After deployment, software was
subject to evolution based upon input from domain experts
and to accommodate changes in the hardware platform.

Considering the example applications discussed above, it
can be seen that the need for software evolution is inherent in

WSN applications, from the pioneering early experiments [12]
to contemporary WSNs [14]. Software evolution serves two
general purposes: (i.) to evolve application functionality to
meet changing requirements and (ii.) to optimize application
functionality to suit changing environmental conditions.

A. Requirements for WSN Reconfiguration

Reconfiguration in WSN imposes some specific require-
ments in terms of energy awareness, remote reconfiguration
and granularity of reconfiguration:

Energy Awareness: In all of the scenarios discussed above,
some or all of the motes must last for long periods on a
single battery charge, and thus have a finite energy budget.
Requirement 1: software evolution approaches must accurately
predict the energy cost of reconfiguration actions.

Remote Reconfiguration: As WSNs are typically deployed
at large scale, the manual reconfiguration of thousands of
nodes is generally too costly to be feasible. Furthermore,
WSNs are frequently deployed in inaccessible or dangerous lo-
cations. This necessitates support for remote (re)configuration
of software functionality. Requirement 2: it should be possible
to enact reconfiguration remotely.

Granularity of Reconfiguration: The reconfigurations dis-
cussed in Section II, call for not only monolithic re-flashing of
application functionality [12], but also fine-grained evolution
and tailoring of the components that compose an applica-
tion [3]. Requirement 3: support is required for component-
based reconfiguration of application functionality.

III. CASE STUDIES

We introduce two case-study applications: smart parking
and waste bin tampering. These case-study applications were
provided by OneAccess, an international company with re-
search and development facilities located in the Flanders
region of Belgium. OneAccess have developed a common
hardware/software architecture that is used to support both
case studies. This architecture features a common network
environment and four tiers of functionality:

1) Network environment: IPv6 is supported end-to-end
using the Routing Protocol for low-power and Lossy
networks (RPL) [15] and all motes use industry standard
IEEE 802.15.4 radios.

2) Sensor tier: based on a custom embedded mote platform
that offers a 16MHz ARM Cortex CPU, 16KB RAM
and 128KB flash memory. Sensor motes monitor their
local environment, execute simple analysis algorithms
on sensor data and send the results to the routing tier. To
conserve resources, the sensor tier does not participate in
multi-hop routing, which is provided by the routing tier.
Sensors motes are powered by two AA batteries with
an average initial charge of 2400mAh. This battery pack
must last for a minimum of 5 years without replacement
to ensure economic viability.

3) Router tier: based on the same embedded mote plat-
form as the sensor tier, router motes offer dedicated
multi-hop routing functionality, relaying data between



the sensor tier and the gateway tier . The routers form a
tree-like topology with the gateway as root. The routers
are permanently powered from the electricity grid.

4) Gateway tier: is based on a more powerful Alix embed-
ded PC platform, which offers a 500MHz AMD Geode
CPU, 256MB RAM, 802.15.4 and 802.11g networking.
The gateway runs embedded Linux and Java SE. The
gateway is powered directly from the electricity grid.
The gateway serves as bridge between the WSN running
RPL over 802.15.4 and community wireless networks
running standard IP over 802.11g.

5) Back-end tier: is comprised of powerful servers on
high-speed connections, which gather data from all
sensors and expose processed results to users via a web
interface.

In order to maximize return on investment, OneAccess use
a common routing, gateway and back-end infrastructure to
support multiple sensing applications. The sensor mote tier
is then extended as needed by specific sensing applications.
Section III-A describes a ‘smart parking’ application and III-B
describes a ‘waste bin tampering’ application.

A. Smart Parking Application

The smart parking application makes parking more efficient
in crowded city centers, by using motes to monitor free parking
spaces and communicating this information to drivers via their
smart phones.

Sensor motes are embedded in a durable casing known
as a ‘speeddisk’, which is commonly deployed on roads to
slow down traffic. The speed disk is securely attached to
the concrete at street level and is capable of withstanding
the pressure of cars driving over it. Each mote is equipped
with a magnetometer, which measures the local magnetic
field on three axes and an Infra-Red (IR) distance sensor.
The magnetometer is polled once per second and a simple
algorithm is applied to detect whether a car has arrived or left.
The battery level of the mote is polled once per minute. Where
a state transition is detected (i.e. a car has arrived or left),
an update message containing a boolean value representing
parking space availability and the current battery level is
forwarded to the routing tier and from there to the gateway.
The back end system then publishes updated parking space
availability.

B. Waste Bin Tampering Application

The waste bin tampering application monitors when public
waste bins are opened and closed in order to detect tampering
(the bins should only be opened by staff). Where tampering
is detected, cleaning crews are dispatched to the waste bin to
fix the problem.

For this application, sensor motes are extended with a
magnet activated reed switch which detects when the bin is
opened or closed. When a hardware interrupt is generated by
the reed switch, the time that the bin was opened is stored
in flash memory. This log of open/close times is sent to the
gateway every 24 hours.

As with the smart parking system, the waste bin tampering
system has been extensively simulated and tested at small
scale at the OneAccess site. However, further reconfiguration
is expected to be necessary when the system is deployed.

IV. ENERGY AWARE RECONFIGURATION MODEL

In Section IV.A, we first present a generic model for
calculating the energy consumption of remote software recon-
figuration. In Section IV.B we then introduce a methodology
for parameterizing this model based upon the energy charac-
teristics of specific mote platforms.

A. Generic Modeling Approach
The energy cost of a reconfiguration can be broken down

into the cost of inspecting a configuration using introspection,
the cost of deploying new functionality and the cost of config-
uring the deployed functionality. The total energy consumption
of any reconfiguration can therefore be defined as:

ER = ED + EI + EC . (1)

Where ED is the energy consumption of the component de-
ployment, EI is the energy consumption of introspection calls
and EC is the energy consumption of configuration calls. We
expect that the energy consumed during the deployment of new
software functionality will have a positive linear relationship
to the size of the software that is being deployed. ED may thus
be calculated using the following linear regression equation:

ED =

n∑
i=1

((CS i × β1) + β0). (2)

Where β0 is the minimum cost of a deployment operation, β1
defines the relationship between component size and additional
energy consumption, CS i refers to the size of the component
and n denotes the number of deployments. The energy con-
sumption of introspection (EI ) and control (EC) operations
are given by:

EI =

n∑
i=1

Ei. (3)

EC =

n∑
i=1

Ei. (4)

Where n refers to the number of introspection or control
commands and Ei denotes the energy consumption of i
introspection or control commands.

B. Energy Measurement Methodology

This section introduces a methodology that may be used
to obtain fine-grained energy calibration data for any mote
platform and reconfiguration API. The only requirements are
the availability of a digital output pin on the test mote platform
and the ability to instrument the code under test to signal when
energy measurement should start and stop.
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Fig. 1. Energy Monitoring Methodology
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1) Hardware Instrumentation: The proposed methodology is
designed to measure individual API calls, which may execute
over short time-scales. Contemporary mote platforms offer
from tens [10] to hundreds [11] of MIPS, requiring high-speed
energy monitoring. To meet these time constraints, a Digital
Storage Oscilloscope (DSO) is required. We use a common
mid-range DSO with a maximum sampling frequency of 500
MSa/s [16], which is fast enough to provide clock-tick accurate
power measurements for motes of up to 250 MIPS, which is
faster than either of our test platforms. The power consumption
of the mote under test is measured using Ohm’s law based
upon the voltage drop over a shunt resistor placed in series
with the power supply of the mote, as shown in the circuit
diagram provided in Figure 1. In our experiments we use a
high precision 10Ω resistor with a maximum relative error
of 0.1%. Due to the short time-scale over which software
operations occur and the limited memory of DSOs, it is
necessary to automatically trigger the oscilloscope to start
monitoring when a software operation is called and stop
monitoring when it returns. To achieve this, we provide a
simple API to support software instrumentation, as described
in the following section.

2) Code Instrumentation: The software developer is sup-
ported with a simple code instrumentation scheme that allows

methods to be monitored using the hardware setup described
in the previous section. For remotely initiated operations,
each method must be executed multiple times, as the total
energy consumed in enacting an API call also includes the
energy consumed by the radio in receiving the command,
which happens before the API call itself. To instrument a
method, the EnergyFlag() method call is added to the end of
the function. This method flips the correct digital output pin
from low to high or vice versa. The operation is then called
multiple times in quick succession. This allows the complete
operation, including radio transmissions, to be identified by
only considering the interval in between two pin flips. The
signal captured by the DSO is shown in Figure 2.

3) Data Analysis: As described previously, each experiment is
composed of several executions of the code block being tested.
Once an experiment has been successfully run, data from the
DSO is exported to an experimental database. Each entry in
the database contains: (i.) a time-stamp, (ii.) the voltage drop
over the shunt resistor and (iii.) the digital output signal state.
Together this information is sufficient to perform a fine-grained
trace of power consumption.

Figure 2 shows a graphical representation of a single set of
experimental results. The blue signal represents the voltage
drop of the shunt resistor used to calculate the current of the
circuit, and the green line is the voltage value of the digital pin.
The red line represents the ’trigger position’, i.e. the voltage
value of the digital pin which causes energy measurement
to start. The transitions of the green signal (see Figure 2)
represent the entirety of a single API call execution.

To calculate the energy consumption of a concrete API call,
the database entries are analyzed by a Matlab script as follows:

1) The shunt resistor signal is split into many parts as
indicated by the transitions of the digital output signal.
In the case of the Figure 2, the blue signal is split into 6
parts as the EnergyFlag() is called 12 times. This gives
the Vsr(t) of the shunt resistor for each API call.

2) Once Vsr(t) is calculated, Ohm’s Law is applied to
calculate the current draw: Ic(t) = Vsr(t)

Rsr
.

3) The input voltage to the node n is calculated using: Vn =
Vps − Vsr, where Vps is a constant voltage supplied by
a external power supply.

4) The power consumption of the node is then calculated
using: P (t) = Ic(t)× Vn.

5) Finally, the energy consumption of a concrete API call
is calculated as Ei =

∫ b

a
P (t) dt.

To ensure the statistical validity of the experimental results,
we applied simple statistical tests. We obtained 10 energy
consumption readings for each API call. We then computed
the mean and the standard deviation for each API call. We
also calculated the confidence interval for the mean to identify
the range of energy cost for each API call, with a confidence
level of 95%. For the calculation of confidence interval, we
used the small sample confidence interval methodology based
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granularity of individual interfaces infeasible. This critical
problem must be addressed before the benefits of reconfig-
urable component models can be fully exploited in large-
scale WSNs.

This paper proposes a scheme to extend component mod-
els such that all component interfaces provide a compact
semantic description of the functionality that they offer.
This scheme facilitates manual reconfiguration by allow-
ing the developer to reason at the level of functionally
equivalent services, rather than unique interfaces, and sup-
ports autonomic reconfiguration through runtime compati-
bility testing of interface pairs. We have implemented this
scheme for the Loosely Coupled Component Infrastructure
(LooCI) component model [4]. Our evaluation shows that
this scheme imposes minimal computational and memory
overhead, while reducing the development complexity and
bandwidth requirements of reconfiguration actions. In rela-
tion to our previous work [4,10,11], this paper offers the
following unique contributions: (i) a complete description of
the semantic type system of LooCI, (ii) a large-scale ana-
lytic evaluation and (iii) performance figures that quantify
the overhead of semantics for two representative classes of
WSN devices: AVR Raven [12] and Sun SPOT [15].

The remainder of this paper is structured as follows: Sec-
tion 2 describes the LooCI, which provides our implemen-
tation environment. Section 3 describes the semantic type
system and its role at development time and runtime. Sec-
tion 4 provides a worst-case analysis of the algorithm used to
encode semantic information. Section 5 provides a scenario-
based evaluation on two classes of WSN hardware. Section 6
reviews related work; Sect. 7 discusses directions for future
work. Finally, Sect. 8 concludes.

2 The LooCI middleware

We have implemented a prototype of our semantic type
system for the Loosely-coupled Component Infrastructure
(LooCI) [4]. LooCI is comprised of a lightweight execution
environment, runtime reconfigurable component model and
an event-based binding model. These elements are described
in Sects. 2.1 to 2.3, respectively. Section 2.4 discusses recon-
figuration in LooCI.

2.1 The LooCI execution environment

In this section, we introduce LooCIs execution environment.
Figure 1 presents a distributed view of LooCIs architecture,
providing details on the distributed event bus and a configured
remote binding.

LooCIs Reconfiguration Engine maintains references to
all local components and enacts incoming reconfiguration
commands that are received over the event bus. As all
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Fig. 1 The LooCI architecture

reconfiguration occurs over the event bus, it is possible for
any component to enact reconfiguration of any other com-
ponent within the network, subject to access control policies
[17].

The Event Manager is a node local artifact that, coop-
eratively with instances on other nodes, implements a Dis-
tributed Event Bus to which every LooCI component and all
Reconfiguration Engine modules are connected. Event bus
communication follows a decentralized topic-based publish–
subscribe model.

The Network Framework offers a uniform set of net-
working services to the upper middleware layers, includ-
ing network-wide broadcast, one-hop broadcast and unicast.
Components cannot access the Network Framework directly
and communicate solely via explicit bindings over the event
bus.

LooCI provides interoperability across various Underly-
ing Platforms; i.e., operating systems and execution environ-
ments. Current implementations of LooCI allow developers
to realize components using: C for Contiki [12], Java ME for
Squawk [13] and Java SE for OSGi [15]. All ports of LooCI
are open source [16].

2.2 The LooCI component model

The LooCI component model is platform and language
agnostic, allowing developers to implement components in
various languages and for different operating systems. Upon
deployment, a LooCI component registers with the local
Reconfiguration Engine, which supports introspection of
component state and life cycle control.

LooCI offers a simple notion of component interfaces,
wherein components model their provided interfaces as a set
of events that may be published to the bus and their required
interfaces as a set of events that may be consumed from the
bus. In the LooCI component model, events always flow from
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Fig. 3. Communicating LooCI Execution Environments

on t-distribution [17].

V. MODELING THE LOOCI RECONFIGURATION API ON
HETEROGENEOUS MOTE PLATFORMS

We now use the generic energy model and energy measure-
ment methodology to create a specific energy model for the
LooCI middleware running on the Sun SPOT [11] and the
AVR Raven [10].

A. The LooCI Middleware

We model the reconfiguration API of the Loosely-coupled
Component Infrastructure (LooCI) [9], a component-based
middleware for sensor networks that was developed by our
group. LooCI is comprised of an execution environment,
component model and event-based binding model. The ar-
chitecture of the LooCI execution environment is shown in
Figure 3. LooCI provides a good test platform as it runs on
heterogeneous hardware/software stacks and thus affords the
opportunity to demonstrate that our energy modeling approach
is generic (i.e. not tied to a specific hardware platform,
operating system or programming language).

LooCI currently supports three underlying platforms: Con-
tiki [5], Squawk [6] and OSGi [18]. The LooCI event man-
ager implements an Event Bus to which all components are
connected. The reconfiguration manager maintains references
to all local components and enacts incoming deployment,
configuration and introspection commands via the event bus.
Deployment commands allow for the insertion and removal of
software components. Introspection commands allow for the
discovery of what components are present on a node, their
interfaces, state and bindings. Configuration commands allow
for the activation, deactivation and binding of components. All
commands may be enacted remotely at runtime. The LooCI
reconfiguration API is shown in Listing 1.

Listing 1. The core LooCI API
Deployment
CompID deploy(ComponentFile, NodeID)
Boolean removeComponent(CompID, NodeID)

Configuration
Boolean deactivate(CompID, NodeID)
Boolean activate(CompoID, NodeID)
Boolean wireLocal(EventType, SourceCompID,

DestCompID, NodeID)
Boolean wireFrom(EventType, SrcCompID, SrcNodeID,

DestCompID, DestNodeID)
Boolean wireTo(EventType, SrcCompID, SrcNodeID,

DestNodeID)

Introspection
CompID[] getComponentIDs(NodeID)
String getComponentType(NodeID, CompID)
State getComponentState(NodeID, CompID)
Event[] getInterfaces(NodeID, CompID)
Event[] getReceptacles(NodeID, CompID)

B. Mote Platforms

We have modeled the energy cost of the LooCI reconfiguration
API on two mote platforms: the AVR Raven [10] and Sun
SPOT [11]:

The AVR Raven offers a 20MHz ATmega1284PV MCU,
16KB RAM, 128KB flash and AT86RF230 IEEE 802.15.4
radio [10]. The Raven motes run the Contiki OS [5] and the
LooCI middleware [9]. All software is implemented in C.

The Sun SPOT offers a 180MHz ARM920T MCU, 512KB
RAM, 4MB flash and CC2420 IEEE 802.15.4 radio [11]. The
SPOT motes run the Squawk OS and JVM [6] and the LooCI
middleware [9]. All software is implemented in Java.

As can be seen from the specifications above, these motes
are heterogeneous in terms of hardware resources, operating
systems and languages and are thus appropriate to demonstrate
the generic nature of our approach.

C. Energy Models

The LooCI reconfiguration API is grouped into introspection
commands, which support inspection of component config-
urations, deployment commands which support over-the-air
installation and removal of components and configuration
commands which allow components to be bound together,
activated and deactivated. Any reconfiguration action in LooCI
is thus composed of a set of deployment and configuration
operations, while introspection commands allow component
configurations to be validated before and after reconfiguration.

As expected, deployment operations consume orders of mag-
nitude more energy than introspection or configuration com-
mands due to the transmission of component functionality.
This is shown in Figure 4, wherein the red cross shows the
average energy cost of the component deployment and the
red line indicates the 95% confidence interval. In the current
version of LooCI, the maximum component size on the AVR
Raven is 3.2KB, while the maximum component size on the
Sun SPOT is 40KB.
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Fig. 5. Energy Cost of Non-Deployment API Calls in LooCI

Figure 5 shows the energy cost of non-deployment remote
API calls for Raven and Sun SPOT hardware platforms. The
average energy cost of non-deployment API calls follows a
similar trend on both of our experimental platforms, except
that the energy cost of removing a component consumes
a large amount of energy on the Sun SPOT due to the
energy used when accessing flash memory. The average energy
consumption is 3mJ for the AVR Raven and 225mJ for the Sun
SPOT, thus Raven API calls consume 1.33% of the energy
consumed by the SPOT API calls. We have represented the
95% confidence interval with blue bars for each API call.

Figure 4 shows that, there is a positive relationship between
the energy cost of the deployment and the component size. A
linear regression equation was computed from our sample data
and is shown by the blue line in Figure 4. Our linear energy
model for the component deployment captures the relationship
between the energy cost of the deployment and the component

size. This model can therefore be used to obtain the energy
cost of any component deployment for Raven and Sun SPOT
hardware platforms.

VI. IMPLEMENTATION AND EVALUATION

All reconfiguration in LooCI is enacted via a manager com-
ponent which runs on the network gateway. The manager
accepts and executes simple scripts of reconfiguration API
calls. We extended this script interpreter to provide energy
cost estimates for all reconfiguration scripts using the model
presented in the previous section. This provides developers
with a simple mechanism to assess the energy costs of re-
configuration actions before they are enacted. In the following
section we explore the accuracy of the model in predicting the
energy cost of archetypal reconfiguration scripts for our case-
study applications. All experiments report the energy cost of
reconfiguration for a single mote in a one-hop network. As the



Raven Sun SPOT
Data Size ELF Size Suite Size

(bytes) (bytes) (bytes)
Smart Parking

Manager 154 1068 2404
Sensor 338 1408 2256
Filter 202 1140 2117

Battery 318 1368 2229
Total 1012 4984 9006

Waste Bin Tampering
Manager 452 1068 2443
Sensor 316 1388 2061
Battery 318 1368 2228

Total 1086 3824 6732

TABLE I
SIZE OF COMPONENT-BASED APPLICATION COMPOSITION

Raven Sun SPOT
Data Size ELF Size Suite Size

(bytes) (bytes) (bytes)
Smart Parking 436 1682 6289

Waste Bin Tampering 472 1720 6048

TABLE II
SIZE OF THE SINGLE APPLICATION IMPLEMENTATION

router tier is powered, we do not model energy consumption
in this tier and only the sensor motes are relevant.

A. Case-study Evaluation

To evaluate our energy model, two versions of the smart park-
ing and waste bin tampering applications were developed. The
first version was developed as a single executable application,
while the second version was developed as a composition
of components. A series of reconfiguration scripts were then
run in order to compare the energy predictions of the model
against the energy readings recorded by the oscilloscope. All
experiments were conducted 10 times.

Tables I and II show that, as expected, single-unit applications
are smaller than component-based applications due to the
overhead of component meta-data and their encapsulation in
an executable object format prior to deployment. On Contiki
components are encapsulated in the Executable and Link-
able Format (ELF) [19], while on Squawk components are
encapsulated in a custom suite format [6]. Table IV shows
that a component-based implementation of the case-study
applications incurs a size overhead for deployable components
of between 122% and 196% for the Raven and between 11%
and 43% for the SPOT. The higher overhead on Contiki
is primarily due to inefficiencies in the ELF object format.
Switching from ELF to Compact ELF would reduce overhead
by 50% [19], however, this is outside the scope of this work.

Experiment 1 - Initial Configuration: The first experiment
we performed was initial deployment and configuration of
each application implementation. In the case of the single-
unit application, no configuration is necessary, and therefore

all energy cost is due to the deployment of functionality. In
the case of the component-based application, components had
to be deployed, wired and activated. The results of our energy
evaluation are presented in Tables III and IV, which shows
that (i.) our energy model is on average 98.57% accurate
on the AVR Raven and 87.3% accurate on the Sun SPOT
and (ii.) the initial component-based configuration incurs an
energy overhead of 178.63% on the AVR Raven and 176.94%
on the Sun SPOT. The greater error in predicting the energy
consumption of the SPOT is attributed to the non-deterministic
behavior of the Squawk JVM.

Experiment 2 - Reconfiguration: The second experiment
tackles a problem which emerged for OneAccess during small-
scale testing of their system. The magnetometer sensor was
proving hard to calibrate and so the application had to be
reconfigured to also use the IR sensor to detect when cars
arrived or left. In the case of a component-based application,
this change necessitates the deployment, wiring and activation
of a new IR sensor component, while in the case of the
single application, it requires wholesale redeployment of the
application image. The results of our energy evaluation are
presented in Tables III and IV, which show that (i.) our
energy model is 96.33% accurate on the AVR Raven and
93.08% accurate on the Sun SPOT and (ii.) component-based
reconfiguration results in energy savings of between 18.98%
and 32.52% compared to a single application implementation
for the underlying platform.

In summary, it can be seen that our generic energy modelling
approach is accurate for application-based and component-
based applications running on heterogeneous OS and hard-
ware platforms. Furthermore, our analysis reveals that while
component-based reconfiguration has a significantly higher
initial cost than application-based reconfiguration, incremental
software updates are significantly more efficient, which over
the life-time of the sensor network is likely to compensate for
the initial configuration overhead.

Using our energy model to estimate the cost of monolithic
re-flashing of application and OS functionality, as used in
TinyOS [4], we find that the cost of configuring and recon-
figuring our case-study applications is over 40 Joules for the
Raven and 340 Joules for the SPOT. This is more than an
order of magnitude more energy than is required by either
application-based or component-based (re)configuration.

VII. RELATED WORK

Energy consumption is one of the most important considera-
tions WSN developers face. This issue has led to the devel-
opment of processes, methodologies and simulation software
designed to estimate energy consumption in WSN. Work in
this area can be categorized into three groups: analytical,
software-based and experimental methods.



Raven Sun SPOT
Estimation (mJ) Real Consumption (mJ) Accuracy (%) Estimation (mJ) Real Consumption (mJ) Accuracy (%)

Smart Parking
Initial Configuration 3885 3887 99.94 32876 29851 90.79

Bin Tampering
Initial Configuration 3387 3484 97.21 24594 20612 83.81

Smart Parking
Reconfiguration 1089 1124 96.33 7780 7260 93.08

Average 97.83 Average 89.23

TABLE III
EVALUATION OF ENERGY MODEL ACCURACY FOR INITIAL CONFIGURATION AND RECONFIGURATION

Effect of Using Components on Size Effect of Using Components on Energy
Comp-based (b) App-based (b) Change (%) Comp-based (mJ) App-based (mJ) Change (%)

Raven
Smart Parking 4984 1682 +196.31 3887 1311 +196.49

Waste Bin Tampering 3824 1720 +122.32 3484 1336 +160.77
Smart Parking Reconfiguration 1404 1922 -26.95 1124 1594 -29.49

SunSPOT
Smart Parking 9006 6289 +43.20 29851 9302 +220.90

Waste Bin Tampering 6732 6048 +11.30 20612 8847 +132.98
Smart Parking Reconfiguration 2084 6409 -32.52 7260 8961 -18.98

TABLE IV
IMPACT OF COMPONENT-BASED RECONFIGURATION ON APPLICATION SIZE AND ENERGY CONSUMPTION

A. Analytical Methods

Analytical models provide designers with the possibility of
evaluating the lifetime of their WSN applications in a fast
and platform-independent way. In [20], the authors propose a
probabilistic lifetime energy model based upon the relationship
between the lifetime of a single mote and the whole sensor
network. A different approach is presented in [21] where a
state-based battery model is proposed. This model has been
implemented within the resource constraints of a sensor node
and provides accurate battery life estimates. A key problem
of these methods is that they only take into account energy
consumption related to packet transmission and reception.
These approaches therefore provide poor estimates when the
energy consumption of other devices such as a CPU or sensors
is significant. For example our results show that API calls that
access the flash memory on the Sun SPOT consume significant
amounts of energy.

B. Software-based methods

In [22], authors have identified and quantified the different
factors which cause deviations between the software and
hardware techniques. Furthermore, the have proven that soft-
ware techniques are a feasible way of estimating energy
consumption (estimation error is 1.13%±1.15%), particularly
evaluating protocols where the CPU is used intensively. Power-
TOSSIM [23] is a simulation environment for sensor networks
based on the TOSSIM simulator [24]. This system is able to
track the activity of each hardware component on the simulated
motes. PowerTOSSIM generates a data file which is combined
with a platform-specific energy model in order to calculate the
energy consumption of each component. A similar approach is

proposed in [25], wherein the authors present a mechanism to
calculate how long each of the node’s hardware components
have been active. Once these times are known, the energy
consumption of a mote can be estimated. Software methods
are suitable for measuring energy consumption when large
simulations are required. However, they do not allow for
the accurate measurement of the energy consumption of a
node over short periods of time. In contrast to our approach,
software based methods do not provide explicit support for
modelling new hardware platforms.

C. Experimental methods

In [26], the authors propose the use of large capacitors to
estimate the lifetime of a sensor node. By replacing the battery
of the nodes with such a capacitor and measuring the voltage
before and after a set of operations, it is possible to accurately
discern energy consumption due to the predictable discharge
profile of capacitors. A more commonly-used methodology
for measuring energy consumption is based on the use of
an oscilloscope, an operational circuit connected to the target
node and a program executing on a PC to analyze the data
obtained from the oscilloscope [27], [28]. We build upon this
energy monitoring approach, while adding software instrumen-
tation to automate the testing process and providing a model
that accurately predicts the energy consumption of software
operations.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has highlighted the critical problem of predicting
the energy cost of reconfiguration operations for WSN middle-
ware. We address this problem through two contributions: (i.)



a generic energy model that predicts the energy consumption
of any reconfiguration API call and (ii.) the first energy-
aware runtime reconfigurable component model. Evaluation
shows that our energy model accurately predicts the energy
consumed by reconfiguration actions on two heterogeneous
mote platforms: the Sun SPOT [11] and the AVR Raven [10].
Furthermore, our analysis shows that while the component-
based approach uses more energy during initial configuration,
it is more efficient for software evolution.

Our future work will focus on two complementary research
tracks. In the short term, we will address two key limitations
of our current work by (i.) extending our model to predict the
energy cost of reconfiguration for 3rd party middleware and
(ii.) extending our approach to consider multi-hop network
environments. In the longer term, we will focus on extending
and automating our code instrumentation and testing approach,
with the goal of realizing a reusable energy testbed.

We have taken care to ensure that the results presented in this
paper are reproducible. All software tools, circuit diagrams,
data sets and software used in this paper are available online
at: http://people.cs.kuleuven.be/∼wilfried.daniels/energy.
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