
On the Inference of Non-Confluent NLC Graph

Grammars

Robert Brijder1⋆ and Hendrik Blockeel2,3

1 Hasselt University and Transnational University of Limburg,
Belgium, robert.brijder@uhasselt.be

2 Leiden Institute of Advanced Computer Science,
Universiteit Leiden, The Netherlands

3 Department of Computer Science, Katholieke Universiteit Leuven,
Belgium, hendrik.blockeel@cs.kuleuven.be

Abstract. Grammar inference deals with determining (preferably sim-
ple) models/grammars consistent with a set of observations. There is a
large body of research on grammar inference within the theory of formal
languages. However, there is surprisingly little known on grammar infer-
ence for graph grammars. In this paper we take a further step in this
direction and work within the framework of node label controlled (NLC)
graph grammars. Specifically, given a graph G and a set S of disjoint and
isomorphic subgraphs of G, we characterize whether or not there is an
graph grammar consisting of one production such that G may be derived
from G0, the graph obtained from G by “contraction” of each subgraph
in S to a node labelled by N . This generalizes a previous result which
assumes boundary NLC graph grammars, and leads one to consider the
more involved “non-confluent” graph grammar rules.

Keywords: Graph grammars, Grammar inference

1 Introduction

Grammar inference, also called grammar induction, is a general line of research
where one is concerned with determining a “simple” grammar that is consistent
with a given set of possible and impossible outcomes. Hence, one “goes back” in
the derivation: instead of determining the generative power of a grammar, one
determines the grammar given the generated output. This topic is well-studied
for formal languages, especially with respect to regular languages, see e.g. [8, 6],
however, relatively little is known for graph grammars.

The topic of inference of graph grammars is considered in [7] and uses their
so-called Subdue scheme developed in [3]. Moreover, in [2] a rigorous approach of
grammar inference within the framework of node label controlled (NLC) graph

⋆ This research is performed while at Leiden Institute of Advanced Computer Science,
Universiteit Leiden, The Netherlands.

grammars [4, 5], a natural and well-studied class of graph grammars, is initiated.
In this paper, we build on the work in [2].

Given a graph G and a set S of disjoint and isomorphic subgraphs of G,
we characterize whether or not there is an graph grammar consisting of one
production (we extend this in Section 8 to multiple productions) such that G
may be derived from the graph G0, where G0 is the graph obtained from G by
“contraction” of each subgraph Si ∈ S to a node vi labelled by N . In [2] such
a characterization is given assuming a boundary NLC (BNLC) grammar: any
two nodes labelled by N in G0 are required to be non-adjacent. In this way,
we generalize the result in [2]. Such a generalization requires one to deal with a
number of issues. Most notably, one has to deal with non-confluency issues: the
generated graph depends on the order in which subgraphs are generated.

An extended abstract containing selected results without proofs was pre-
sented at CiE’09 [1].

2 Notation and Terminology

We consider (simple) graphs G = (V,E), where V is a finite set of nodes and
E ⊆ {{x, y} | x, y ∈ V, x 6= y} is the set of edges — hence no loops or parallel
edges are allowed. We denote V (G) = V and E(G) = E. For S ⊆ V , the induced
subgraph of G is the graph (S,E′) where E′ ⊆ E and for each e ∈ E we have
e ∈ E′ iff e ⊆ S. We consider only induced subgraphs, and therefore we often
write just “subgraph” instead of induced subgraph. The neighborhood of S ⊆ V
in G, denoted by NG(S), is {v ∈ V \S | {s, v} ∈ E for some s ∈ S}. If S = {x}
is a singleton, then we also write NG(x) = NG(S). A labelled graph is a triple
G = (V,E, l) where (V,E) is a graph and l : V → L is a node labelling function,
where L is a finite set of labels. As usual, graphs are considered isomorphic if
they are identical modulo the identity of the nodes. It is important to realize that
for labelled graphs, nodes identified by an isomorphism have identical labels. In
graphical depictions of labelled graphs we always represent the nodes by their
labels.

Subgraphs S1 and S2 are called disjoint if V (S1) and V (S2) are disjoint.
They are called touching if they are disjoint and there is an edge e ∈ E(G) with
one node in S1 and the other in S2.

Define, as usual, for W1,W2 ⊆ V , W1×W2 = {(x1, x2) | x1 ∈W1, x2 ∈ W2}.
Define u((x1, x2)) to be {x1, x2}, and define πi((x1, x2)) = xi for i ∈ {1, 2}.
Often, for a function f : X → Y we write f(D) = {f(x) | x ∈ D} for D ⊆ X .
Also, if x1, x2 ∈ X , we write f((x1, x2)) = (f(x1), f(x2)).

3 NLC Graph Grammars

Typically, a graph grammar transforms a graph G by replacing an (induced)
subgraph H by another graph H ′ where H ′ is embedded in the remaining part
G\H of the original graph in a way prescribed by a so-called graph grammar
embedding relation. The node label controlled (NLC) graph grammars are the

2

simplest class of these grammars, where H is a single node. Note that for the
grammars the exact identities of the nodes are not important as multiple copies
of H ′ may be inserted. Hence, we consider labelled graphs where the embedding
relation is defined w.r.t. node labels instead of nodes. In this section we recall
informally the notions and definitions concerning NLC grammars used in this
paper, and refer to [4] for a gentle and more detailed introduction to these
grammars.

A NLC graph grammar is a system Q consisting of a set of node labels L,
an embedding relation E ⊆ L2, and a set of productions P where a production
is of the form N → S where N ∈ L and S is a (labelled) graph. For clarity of
exposition, we focus in this paper first on the case |P | = 1, and subsequently
generalize it to the general case in Section 8. Thus, assuming from now on
|P | = 1, Q can be denoted as a rule r = N → S/E (if L is understood from
the context of considerations). Given a graph G, r can be applied to any node
v labelled by N . The result of applying r to v in G is the graph G′ obtained
from G by (1) removing v along with the edges adjacent to v, (2) adding an
isomorphic copy S′ of S, and (3) adding an edge e = {x, y} iff x ∈ V (S),
y ∈ NG(v) and (l(x), l(y)) ∈ E (recall that l is the labelling function). We write
(G, v) →r (G′, S′) (note that S′ is a subgraph of G′). To avoid confusion with
embedding relations, the set of edges of a graph G are written in the remainder
as E(G) and not as E.

b

N N

→

b

a a

b c N

→

b

a a a a

b c b c

Fig. 1: The derivation of graph G′ (right-hand side) from G (left-hand side) in
Example 1.

Example 1. We assume that the set of labels L is {a, b, c,N}. Let G be the graph
on the left-hand side of Figure 1. Consider the grammar rule r = N → S/E′,
where S is the graph

a a

b c

and E′ = {(a, b), (b, a), (c, c), (a,N), (c,N)}. (Note that formally we have only
defined S up to isomorphism, however, as the behaviour of graph grammars

3

b

a a a a

b c b c

Fig. 2: Graph G′′ obtainable from G in Example 1.

is independent on the exact identity of the nodes of the graph, this is not an
objection.) Then Figure 1 depicts one possible derivation from G to a graph G′

(on the right-hand side of the figure) for which no rule is applicable anymore.
Note that there is one other possible derivation to a “terminal” graph (i.e., a
graph without nodes labelled by N). This terminal graph G′′, different from G′,
is given in Figure 2. To obtain G′′ we choose first the node labelled by N on the
right-hand side (the one not connected to the node labelled by b) in G in the
derivation. This example will be our running example of this paper.

In [2] the inference of NLC grammars with exactly one rule r = N → S/E are
studied where moreover S does not contain a node labelled by N and E does not
contain a tuple containing N . This is sufficient for the case where the subgraphs
isomorphic to S are disjoint and non-touching. To consider the case where the
subgraphs are only disjoint, we allow E to contain tuples containing N . However,
we do require that S remains without nodes labelled by N . Therefore there is no
“real” recursion: no nodes labelled by N can be introduced in any derivation.

4 Known results: Non-touching graphs

In this section we recall some notions and a result from [2] which we will need in
subsequent sections. First we define in this context the notion of compatibility.

Definition 2. Let G be a graph and S be an subgraph of G. We say that
E ⊆ L×L is compatible with S (in G) if there is a graph F , a node v of F , and
a NLC grammar rule r = N → S′/E such that (F, v)→r (G,S).

Note that S′ is necessarily isomorphic to S in Definition 2.

Example 3. Reconsider our running example. Hence we again let G′ be the graph
at the right-hand side of Figure 1. Moreover we let S1 and S2 be the subgraphs
of G′ of isomorphic to S where S1 is the one connected to the node labelled
by b and S2 is the other one. Note that S1 and S2 are disjoint and touching
in G′. We have that, e.g., E1 = {(b, a), (c, c)}, E2 = {(b, a), (c, c), (a, b)} or
E3 = {(b, a), (c, c), (c, b), (b, b)} is compatible with S2 in G′. The middle graph

4

of the figure is a graph F such that an application of the NLC grammar rule
N → S/E to F “creates” S2 and obtains graph G′.

To characterize the notion of compatibility, the notions of inset and outset
for arbitrary Q ⊆ V 2 (where V is the set of nodes of G) are crucial.

Definition 4. Let Q ⊆ V 2. We define the inset of Q, denoted by IQ, as the set
{(l(x), l(y)) | {x, y} ∈ E(G), (x, y) ∈ Q}, and outset of Q, denoted by OQ, as
the set {(l(x), l(y)) | {x, y} 6∈ E(G), (x, y) ∈ Q}.

Remark 5. Note that the inset and outset are precisely the sets l(InQ) and
l(OutQ) respectively, where {InQ, OutQ} is the partition of Q where, for q ∈ Q,
q ∈ InQ iff u(q) ∈ E(G). ⊓⊔

Let S be a subgraph of G. Then the inset (outset, resp.) of S, denoted by IS
(OS , resp.), is defined to be the inset (outset, resp.) of Q = V (S)×NG(V (S)).

The following lemma from [2, Section 4.1] characterizes compatibility for a
single graph S in terms of the inset and outset of S: the inset are tuples that
should be in E, while the outset are tuples that should not be in E.

Lemma 6. Let S be a subgraph of G, and let E ⊆ L×L. Then E is compatible
with S iff IS ⊆ E ⊆ L2\OS (i.e., E separates IS from OS).

Hence, there is an E compatible with S in G iff IS ∩OS = ∅.

Example 7. Reconsider again our running example. Then IS2
= {(b, a), (c, c)}

and OS2
= {(a, a), (a, c), (c, a), (b, c)} (w.r.t. G′). Since IS2

∩ OS2
= ∅, there is

an E compatible with S2 in G′. We have that IS2
⊆ E ⊆ L2\OS2

holds for, e.g.,
E1, E2 and E3 in Example 3.

We consider now sequences of subgraphs to be generated by a single graph
rule. Note that these graphs must necessarily be mutually isomorphic.

Definition 8. Let G be a graph and S1, S2, . . . , Sn be subgraphs of G isomor-
phic to S. We say that E ⊆ L × L is compatible with (S1, S2, . . . , Sn) (in G) if
there are graphs G0, . . . , Gn such that Gn = G and for each i ∈ {1, . . . , n}, Gi

we have (Gi−1, v)→r (Gi, Si) for some node v of Gi−1 and NLC grammar rule
r = N → S/E.

Note that, in general, the order of the elements (S1, S2, . . . , Sn) is important.
E.g. a given E may be compatible with (S1, S2) while it is incompatible with
(S2, S1) (we will see such an example in the next section). However, for a set of
mutually non-touching and isomorphic subgraphs Si for i ∈ {1, . . . , n} of G, the
order of the elements is not important. Thus, E ⊆ L×L being compatible with
C = (S1, S2, . . . , Sn) implies that E is compatible with any permutation of C.
In fact we have that, E ⊆ L × L is compatible with S1, with S2, . . ., and with
Sn iff it is compatible with C (or any permutation of C). Therefore, as noted in
[2], in this case Lemma 6 can be trivially generalized as follows.

Lemma 9. Let C = (S1, S2, . . . , Sn) be a sequence of mutually disjoint, non-
touching, and isomorphic subgraphs of a graph G. Then E ⊆ L×L is compatible
with C iff

⋃
i ISi

⊆ E ⊆ L2\(
⋃

iOSi
).

5

5 Two touching graphs

In this section and the next we consider the case where a single NLC grammar
rule N → S/E generates disjoint subgraphs which can (possibly) touch each
other. As a consequence, we generalize Lemma 9 by removing the non-touching
condition. To this aim we allow the non-terminal N to be present in tuples of the
embedding relation E of the NLC grammar rule N → S/E. This introduces the
issue of non-confluency: the order in which non-terminals are replaced by sub-
graphs influences the obtained graph. Example 1 illustrates this as the different
graphs G′ and G′′ can both be obtained from the original graph G.

As we will see the inset and outset between the nodes of two touching graphs
turns out to be crucial. We will now define the inset and outset of two subgraphs
in general.

Definition 10. Let S1 and S2 be subgraphs of G. For Q1 = V (S2)× (V (S1) ∩
NG(S2)), we denote IQ1

andOQ1
by I(S1,S2) and O(S1,S2), respectively. Moreover,

for Q2 = V (S2) × V (S1), we denote IQ2
and OQ2

by I((S1,S2)) and O((S1,S2)),
respectively.

Notice that these in- and outsets, e.g. I(S1,S2), are concerned with the tuples
going from S2 to S1. This is because these tuples are important in the second
step in the derivation to G which first creates S1 (first step) followed by the
creation of S2 (second step).

We now state some basic properties of the insets and outsets of Definition 10.
Note first that I(S1,S2) = I((S1,S2)). In fact, it is equal to the inset of

(V (S2) ∩NG(S1))× (V (S1) ∩NG(S2)).

Also note that, for node labels x and y, we have (x, y) ∈ I((S1,S2)) iff (y, x) ∈
I((S2,S1)). This holds similarly for O((S1,S2)), however, this does not hold in gen-
eral for O(S1,S2). Moreover note that O(S1,S2) ⊆ O((S1,S2)) (as they are the outsets
of Q1 and Q2 resp., where Q1 ⊆ Q2), and

O((S1,S2))\O(S1,S2) = l(V (S2)× (V (S1)\NG(S2))).

Finally note that π2(I(S1,S2)) = l(V (S1) ∩ NG(S2)). We will use these basic
properties frequently in the remainder of this paper.

Example 11. In our running example, we have I(S1,S2) = {(b, a), (c, c)},O(S1,S2) =
{(a, a), (a, c), (b, c), (c, a)}, andO((S1,S2)) = L′2\I(S1,S2) with L′ = {a, b, c}. More-
over, we have I(S2,S1) = {(a, b), (c, c)}, O(S2,S1) = {(a, c), (b, b), (b, c), (c, b)}, and
O((S2,S1)) = L′2\I(S2,S1).

We now adapt the definition of inset and outset for a graph S, by incorpo-
rating the issues related to touching graphs.

Definition 12. Let S1, . . . , Sn be subgraphs of G, let T =
⋃

j∈{1,...,n} V (Sj),

and let Q =
⋃

i∈{1,...,n} (V (Si) × (NG(V (Si))\T)). We denote IQ and OQ by
I[S1,...,Sn] and O[S1,...,Sn], respectively.

6

Note that I[S1,S2] = I[S2,S1] and if S1 and S2 are disjoint and non-touching,
we have I[S1,S2] = IS1

∪ IS2
.

Example 13. In our running example, we have I[S1,S2] = {(a, b)}, and O[S1,S2] =
{(b, b), (c, b)}.

Definitions 10 and 12 are to separate three types of insets and outsets.
Roughly speaking, the two types of insets and outsets of Definition 10 deal
with the tuples between S1 and S2, while the type of inset and outset of Defini-
tion 12 deals with the tuples from S1 to the “outside world” (the nodes in the
neighborhood of S1 which do not belong to S2) plus the tuples from S2 to the
“outside world” (the nodes in the neighborhood of S2 which do not belong to
S1).

We now characterize the embedding relations E such that E is compatible
with (S1, S2) where S1 and S2 are isomorphic and touching subgraphs of G.

Lemma 14. Let S1 and S2 be isomorphic and touching subgraphs of G. Then
E ⊆ L× L is compatible with (S1, S2) iff the following conditions hold:

1. I(S1,S2) ⊆ E,
2. {(x,N) | x ∈ π2(I(S1,S2))} ⊆ E,
3. If e ∈ O((S1,S2)), then (π2(e), N) 6∈ E or e 6∈ E (or both), and
4. I[S1,S2] ⊆ E ⊆ L2\(O[S1,S2]).

Moreover, if this is the case, then we have E ∩O(S1,S2) = ∅.

Proof. In the case where there are no edges between S1 and S2, we have, by
Lemma 6, that E ⊆ L × L is compatible with (S1, S2) iff IS1

∪ IS2
⊆ E ⊆

L2\(OS1
∪OS2

) — this is equivalent to condition (4) (since S1 and S2 are non-
touching).

Now, since edges between S1 and S2 introduce additional constraints on
E (i.e., not less constraints), we may consider only the graph F equal to an
edge having both nodes labelled by N , and check the necessary and sufficient
(additional) constraints on E to transform the graph in two steps where S1

appears first and then S2 such that the edges between S1 and S2 are identical
to those between S1 and S2 in G.

Now, let x be a node of S1 labelled by b, and y be a node of S2 labelled by
a. Assume first that x is connected to y in G. Now, if we apply the NLC rule
to create S1, then x should be connected to the node labelled by N — thus
we need (b,N) ∈ E. Indeed, without this rule x will not be connected to any
node of S2 (after applying the NLC rule to create S2). Now, if we subsequently
apply the NLC rule to create S2, then y should be connected to x and hence
we need (a, b) ∈ E. Hence (a, b) ∈ E and (b,N) ∈ E results in an edge between
x and y. Conversely, if (b,N) 6∈ E or (a, b) 6∈ E, then x is not connected to y.
Consequently, both (a, b) ∈ E and (b,N) ∈ E iff there is an edge between every
node labelled by b in S1 and every node labelled by a in S2 (equivalently, we
may replace “every node” by “a node”).

7

Thus,E is compatible with (S1, S2) iff 1) I((S1,S2))∪ {(x,N) | x ∈ π2(I((S1,S2)))}
⊆ E and 2) both (a, b) ∈ E and (b,N) ∈ E implies (a, b) 6∈ O((S1,S2)). Recall
that I((S1,S2)) = I(S1,S2), and the iff statement holds.

Finally, we have in this case E∩O(S1,S2) = ∅. Indeed, if e ∈ E∩O(S1,S2), then
e ∈ O((S1,S2)) and e ∈ E and therefore, by condition (3), (π2(e), N) 6∈ E. Now,
π2(O(S1,S2)) ⊆ π2(I(S1,S2)) = l(V (S1)∩NG(S2)) cf. Definition 10. Consequently,
by condition (2), (π2(e), N) ∈ E — a contradiction. ⊓⊔

Note that Lemma 14 does not hold when S1 and S2 are disjoint non-touching
subgraphs of G. Indeed, in this case, E is compatible with (S1, S2) iff I[S1,S2] ⊆
E ⊆ L2\(O[S1,S2]) (i.e., condition (4) holds). Moreover, condition (1) and (2)
hold trivially as I(S1,S2) = ∅. However, condition (3) may not hold in this case.

Intuitively, condition (4) of Lemma 14 deals with the edges from both S1

and S2 to the “outside world”, while conditions (1) to (3) deal with the edges
between S1 and S2. For the latter, conditions (1) and (2) state the tuples that
must necessarily be in E, while condition (3) states requirements on which tuples
must not (together) be in E.

Since E ∩O(S1,S2) = ∅ by Lemma 14, we may modify conditions (1) and (3)
of the previous lemma as follows:

1’. I(S1,S2) ⊆ E ⊆ L2\O(S1,S2),

3’. If e ∈ O((S1,S2))\O(S1,S2) = l(V (S2) × (V (S1)\NG(S2))), then (π2(e), N) 6∈
E or e 6∈ E (or both).

However, in this way the condition E ∩ O(S1,S2) = ∅ is explicitly assumed and
not part of the result as stated in the lemma.

Remark 15. Note that by condition (4) of the lemma, we may go even further
and instead state “e ∈ l(V (S2)× (V (S1)\NG(S2)))\O[S1,S2]” in condition (3’).

⊓⊔

Also note that we have, for e ∈ I[S1,S2] ∪ I(S1,S2) (and hence e ⊆ E), e ∈
O((S1,S2)) implies (π2(e), N) 6∈ E.

Example 16. We continue our running example. As we have seen, an E ⊆ L×L
compatible with (S1, S2) in G′ allows, given the graph G on the left-hand side of
Figure 1, for the generation of the middle graph (in the figure) and subsequently
the generation of G′. We now determine, using Lemma 14 and the modified
conditions below the lemma, the constraints on E for it to be compatible with
(S1, S2).

Recall that I(S1,S2) = {(b, a), (c, c)}, O(S1,S2) = {(a, a), (a, c), (b, c), (c, a)},
I[S1,S2] = {(a, b)}, and O[S1,S2] = {(b, b), (c, b)}. Moreover, we have π2(I(S1,S2)) =
l(V (S1)∩NG(S2)) = {a, c} and thus {(x,N) | x ∈ π2(I(S1,S2)) = {(a,N), (c,N)}.
Hence, by conditions (1’), (2), and (4) of Lemma 14 we have {(a, b), (b, a), (c, c),
(a,N), (c,N)} ⊆ E and E ∩ {(a, a), (a, c), (b, b), (b, c), (c, a), (c, b)} = ∅. Now,
O((S1,S2))\O(S1,S2) = l(V (S2) × (V (S1)\NG(S2))) = {a, b, c} × {b} = {(a, b),

8

(b, b), (c, b)}. Hence by condition (3’) (b,N) 6∈ E or (a, b) 6∈ E. The latter is a
contradiction, hence (b,N) 6∈ E. Consequently,

E = {(a, b), (b, a), (c, c), (a,N), (c,N)}

is compatible with (S1, S2), in fact, in this case, E is unique with the property of
being compatible with (S1, S2) in G′. Note that since E is unique, the interme-
diate graph in Figure 1 in the derivation of G′ from G is also unique. Note that
E is not compatible with (S2, S1) in G′. Finally note that e.g. E2 = E∪{(b,N)}
is incompatible with (S1, S2) — the generated graph would then have edges
between the node labelled b in S1 and the two nodes labelled a in S2.

Using Lemma 14, the existence of an embedding relation E is elegantly char-
acterized, as shown in the next lemma.

Lemma 17. Let S1 and S2 be isomorphic and touching graphs. There is an
E ⊆ L× L compatible with (S1, S2) iff

(I[S1,S2] ∪ I(S1,S2)) ∩O[S1,S2] = ∅,

π2(I(S1,S2)) ∩ π2(I[S1,S2] ∩O((S1,S2))) = ∅, and

I(S1,S2) ∩O((S1,S2)) = ∅.

Moreover, if this is the case, then (I[S1,S2] ∪ I(S1,S2)) ∩O(S1,S2) = ∅.

Proof. Assume first that that right-hand side of the iff statement of the lemma
holds. Then take E′ = I[S1,S2]∪I(S1,S2), take F

′ = π2(I(S1,S2)), and let E = E′∪
{(x,N) | x ∈ F ′}. Now, conditions (1), (2), and (4) of Lemma 14 hold trivially.
Finally to prove condition (3), we need to show that e ∈ O((S1,S2)) ∩ E implies
(π2(e), N) 6∈ E. Let e ∈ O((S1,S2)) ∩ E. We have, by definition of E, that e ∈
I[S1,S2] or e ∈ I(S1,S2). The latter is a contradiction of I(S1,S2)∩O((S1,S2)) = ∅. The
former implies, by the second equality of this lemma, that π2(e) 6∈ π2(I(S1,S2)) =
F ′. Consequently, (π2(e), N) 6∈ E.

Now, we prove the reverse implication. If there is such compatible E, then,
by Lemma 14, (I[S1,S2] ∪ I(S1,S2)) ∩ O[S1,S2] = ∅. Assume I(S1,S2) ∩ O((S1,S2)) 6=
∅, and let e ∈ I(S1,S2) ∩ O((S1,S2)). Since e ∈ I(S1,S2), we have, by condition
(1) in Lemma 14, e ∈ E, and we have by condition (2) (π2(e), N) ∈ E. Now
since e ∈ O((S1,S2)) we have a contradiction by condition (3). Finally, assume
π2(I(S1,S2)) ∩ π2(I[S1,S2] ∩O((S1,S2))) 6= ∅ and let x ∈ π2(I(S1,S2)) ∩ π2(I[S1,S2] ∩
O((S1,S2))). Then, by condition (2), (x,N) ∈ E, and by condition (3), (x,N) 6∈ E
— a contradiction.

By Lemma 14, we have in this case (I[S1,S2] ∪ I(S1,S2)) ∩ O(S1,S2) = ∅, since
I[S1,S2] ∪ I(S1,S2) ⊆ E and E ∩O(S1,S2) = ∅ for any compatible E. ⊓⊔

Recall that I(S1,S2) = I((S1,S2)), hence the third equality of Lemma 17 may
be rephrased more symmetrically as “I((S1,S2)) ∩ O((S1,S2)) = ∅”. Notice that
the case NG(V (S1) ∪ V (S2)) = ∅ (roughly) corresponds to the situation where
the original graph F that generates G has a connected component equal to an

9

edge where both nodes are labelled by N . In this case, by Lemma 17, there
is an E ⊆ L × L compatible with (S1, S2) iff I((S1,S2)) ∩ O((S1,S2)) = ∅ (since
I[S1,S2] = O[S1,S2] = ∅).

Example 18. We continue Example 16 (our running example). Recall that I[S1,S2]

∪I(S1,S2) = {(a, b), (b, a), (c, c)} and O[S1,S2] = {(b, b), (c, b)} — hence these sets
are disjoint. Also, π2(I(S1,S2)) = {a, c} and π2(I[S1,S2]∩O((S1,S2))) = π2({(a, b)})
= {b}, and therefore these sets are also disjoint. Finally, I(S1,S2)∩O((S1,S2)) = ∅.
Consequently, by Lemma 17, there is an E compatible with (S1, S2) — such an
E is given in Example 16.

Finally note that by Lemma 17 one requires precisely the sets I[S1,S2], O[S1,S2],
I(S1,S2), and O((S1,S2)) to determine the existence of a compatible E.

6 Set of touching graphs

Let S be a set of mutually isomorphic and disjoint subgraphs of G. In this
section we turn to the question of whether or not there is an E ⊆ L × L and a
linear ordering C = (S1, S2, . . . , Sn) of S such that E is an embedding relation
compatible with C.

The following result is easily obtained from Lemma 14.

Lemma 19. Let G be a graph, E ⊆ L×L, and C = (S1, . . . , Sn) be a linear or-
dering of S. Then E is compatible with C iff (1) I[S1,...,Sn] ⊆ E ⊆ L2\(O[S1,...,Sn])
and (2) for each two touching Si and Sj with i < j, we have that the first three
conditions of Lemma 14 hold w.r.t. E and (Si, Sj).

N

a bS2

a b

a

a

a b

S1 S3

N

N

Fig. 3: Graphs G (left-hand side) and G′ (right-hand side) of Example 20.

Example 20. Let G be the graph on the left-hand side of Figure 3. Moreover,
let S be the graph consisting of precisely one edge e where the endpoints of e
are nodes labelled by a and b, and let G′ be the graph on the right-hand side

10

of Figure 3 where we have identified three occurrences S1, S2, and S3 of S in
G′. Let S = {S1, S2, S3}. The set of labels L is {a, b,N}. In this new running
example, we examine the (possible) derivation of G′ from G through the rule
r = N → S.

Let C be the ordering (S1, S2, S3) of S. By Lemma 19, E ⊆ L × L is com-
patible with C iff I[S1,S2,S3] ⊆ E ⊆ L2\(O[S1,S2,S3]) and, for 1 ≤ i < j ≤ 3,
the first three conditions of Lemma 14 hold w.r.t. E and (Si, Sj). We have
I[S1,S2,S3] = {(a, a)}, O[S1,S2,S3] = {(b, a)}, and I(S1,S2) = I(S2,S3) = I(S1,S3) =
{(a, b)}. Therefore, assuming E is compatible with C, we have (1) {(a, a), (a, b),
(b,N)} ⊆ E and (2) (b, a) 6∈ E. Moreover, we have O((S1,S2)) = O((S2,S3)) =
O((S1,S3)) = {(a, a), (b, a), (b, b)}. Hence, (3) (a,N) 6∈ E or (a, a) 6∈ E, and (4)
(b,N) 6∈ E or (b, a), (b, b) 6∈ E. Conversely, when these four conditions hold,
E ⊆ L× L is compatible with C (by Lemma 19). Consequently, precisely when
both {(a, a), (a, b), (b,N)} ⊆ E and (b, a), (b, b), (a,N) 6∈ E, we have that E is
compatible with C. Note that, in this case, E is unique with this property.

As we have seen in Section 4, the compatibility of E for the case where
the elements of S are mutually non-touching is much less involved: it does not
depend on the ordering C of S — it only depends on S. For touching graphs,
the situation is different as the conditions in Lemma 14 are not symmetric: e.g.
I(Si,Sj) and I(Sj ,Si) generally differ. Hence, we must choose a linear ordering in
a “compatible” way. First, we focus on the question whether or not there exists
an E compatible with a given linear ordering C of S.

We characterize the existence by generalizing Lemma 17 for the case where
more than two graphs can (possibly) touch each other.

To this aim consider the following graph that represents, w.r.t. an ordering
C of S, whether or not subgraphs Si and Sj in S touch.

Definition 21. Let G be a graph and let C = (S1, S2, . . . , Sn) be an ordering
of S. The touching graph of G w.r.t. C, is the directed graph (S, {(Si, Sj) |
Si and Sj touch, and i < j}).

S1 S2 S3

Fig. 4: Touching graph D of G′ w.r.t. C = (S1, S2, S3) of Example 20.

Example 22. We continue Example 20 (our new running example). Let again C
be the ordering (S1, S2, S3) of S. The touching graph D of G′ w.r.t. C is given
in Figure 4.

For e = (Si, Sj) ∈ E(D) we write Oe = O(Si,Sj) and O(e) = O((Si,Sj)) (and
similarly for the insets Ie and I(e)).

Roughly speaking, by Lemma 19, the requirement for embedding relation E
to be compatible with C = (S1, S2, . . . , Sn) is the “union” of the requirements

11

of E to be compatible with any e = (Si, Sj) where Si and Sj are touching and
i < j. Therefore the generalization of Lemma 17 for arbitrary C is obtained in
a straightforward way by replacing e.g. the inset I(S1,S2) and outset O(S1,S2) in
Lemma 17 by the union of the insets Ie and outsets Oe for these e. However
some care must be taken for I[S1,...,Sn] and O[S1,...,Sn], and therefore we prove
this result directly instead of relying on Lemma 17.

Theorem 23. Let G be a graph, let C = (S1, S2, . . . , Sn) be an ordering of S,
and let D be the touching graph of G w.r.t. C. There is an E ⊆ L×L compatible
with C iff

(I[S1,...,Sn] ∪ (∪e∈E(D)Ie)) ∩O[S1,...,Sn] = ∅, (1)

π2(∪e∈E(D)Ie) ∩ π2(I[S1,...,Sn] ∩ (∪e∈E(D)O(e))) = ∅, and (2)

(∪e∈E(D)Ie) ∩ (∪e∈E(D)O(e)) = ∅. (3)

Moreover, if this is the case, then

(I[S1,...,Sn] ∪ (∪e∈E(D)Ie)) ∩ (∪e∈E(D)Oe) = ∅. (4)

Proof. This proof is in the same spirit as the proof of Lemma 17.

Assume first that that right-hand side of the iff statement holds. Then take
E′ = I[S1,...,Sn]∪(

⋃
e∈E(D) Ie), and take F ′ = π2(

⋃
e∈E(D) Ie). Now, let E = E′∪

{(x,N) | x ∈ F ′}. Hence, by the first assumed equality, we have I[S1,...,Sn] ⊆ E ⊆
L2\(O[S1,...,Sn]). Thus by Lemma 19 it suffices to show that for each two touching
Si and Sj with i < j, the first three conditions of Lemma 14 hold w.r.t. E and r =
(Si, Sj). Now, conditions (1) and (2) of Lemma 14 hold trivially. Finally to prove
condition (3) of Lemma 14, we show that e ∈ O(r) ∩ E implies (π2(e), N) 6∈ E.
Let e ∈ O(r)∩E. We have, by definition of E, that e ∈ I[S1,...,Sn] or e ∈ I(Sk1

,Sk2
)

for some k1 and k2. The latter is a contradiction of I(Sk3
,Sk4

) ∩ O(r) = ∅ (the
third assumed equality). The former implies, by the second assumed equality,
that π2(e) 6∈ π2(

⋃
e∈E(D) Ie) = F ′. Consequently, (π2(e), N) 6∈ E.

Now, we prove the reverse implication. Assume that there is an E ⊆ L × L
compatible with C. Then by Lemma 19, (1) I[S1,...,Sn] ⊆ E ⊆ L2\(O[S1,...,Sn])
and (2) for each two touching Si and Sj with i < j, we have that the first
three conditions of Lemma 14 hold w.r.t. E and (Si, Sj). Hence, by Lemma 14,
(I[S1,...,Sn] ∪ (

⋃
e∈E(D) Ie)) ∩ O[S1,...,Sn] = ∅. Assume now that If1 ∩ O(f2) 6= ∅

for some f1, f2 ∈ E(D), and let e ∈ If1 ∩ O(f2). Since e ∈ If1 , we have, by
condition (1) in Lemma 14, e ∈ E, and we have by condition (2) (π2(e), N) ∈ E.
Now since e ∈ O(f2) we have a contradiction by condition (3). Finally, assume
π2(If1) ∩ π2(I[S1,...,Sn] ∩ O(f2)) 6= ∅ and let x ∈ π2(If1) ∩ π2(I[S1,...,Sn] ∩ O(f2)).
Then, by condition (2), (x,N) ∈ E, and by condition (3), (x,N) 6∈ E — a
contradiction.

Finally, we have E∩Oe = ∅ for all e ∈ E(D), by the same reasoning as in the
proof of Lemma 14, and we have both I[S1,...,Sn] ⊆ E and Ie ⊆ E for all e ∈ E(D)
by Lemma 19. Consequently, (I[S1,...,Sn] ∪ (

⋃
e∈E(D) Ie))∩ (

⋃
e∈E(D) Oe) = ∅. ⊓⊔

12

Note that, in Theorem 23, ∪e∈E(D)Ie equals ∪i<jI(Si,Sj) as I(Si,Sj) = ∅ when-
ever Si and Sj are non-touching. However, note that we may not replace, e.g.,
∪e∈E(D)O(e) by ∪i<jO(Si,Sj).

Hence, by Theorem 23, for a given set S of disjoint subgraph and an ordering
C of S, it is computationally efficient to determine whether or not a compat-
ible embedding relation E exists. Indeed, we ‘only’ need to determine the sets
I[S1,...,Sn], O[S1,...,Sn],

⋃
e∈E(D) Ie, and

⋃
e∈E(D) O(e), where D is the touching

graph of G w.r.t. C.

Example 24. We continue the running Example 20. Recall that for C = (S1, S2, S3),
we have I[S1,S2,S3] = {(a, a)}, O[S1,S2,S3] = {(b, a)},

⋃
e∈E(D) Ie = {(a, b)}, and

⋃
e∈E(D) O(e) = {(a, a), (b, a), (b, b)}, where D is the touching graph of G′ w.r.t.

C given in Figure 4. By Theorem 23 we easily (cf. the deduction in Exam-
ple 20) see that there is an embedding relation E compatible with C: we have
(in this order) ({(a, a)} ∪ {(a, b)}) ∩ {(b, a)} = ∅, π2({(a, b)}) ∩ π2({(a, a)} ∩
{(a, a), (b, a), (b, b)}) = {b} ∩ {a} = ∅, and {(a, b)} ∩ {(a, a), (b, a), (b, b)} = ∅.

7 Determining compatible sequences of subgraphs

In the previous section we described, below Theorem 23, a method to determine
an E ⊆ L × L compatible with a given ordering C of a set S of disjoint and
isomorphic subgraphs. In this section we discuss a method to determine, given
S, an ordering C of S for which there exists a compatible E. A näıve method
would simply check the conditions of Theorem 23 for every possible ordering C
until one such C satisfies the conditions. However, as we will show, we can do
much better.

First we state the following corollary to Theorem 23 — the corollary is better
suited to computationally determine a valid C for given S.

Corollary 25. Let G be a graph and C = (S1, . . . , Sn) be a sequence of sub-
graphs of G and let D be the touching graph of G w.r.t. C. There is an E ⊆ L×L
compatible with C iff

I[S1,...,Sn] ∩O[S1,...,Sn] = ∅, (5)

I[S1,...,Sn] ∩Oe = ∅ and Ie ∩O[S1,...,Sn] = ∅ for all e ∈ E(D), (6)

Ie ∩O(f) = ∅ and π2(Ie) ∩ π2(I[S1,...,Sn] ∩O(f)) = ∅ for all e, f ∈ E(D). (7)

Proof. The corollary is obtained by iteratively applying the distributivity prop-
erty (i.e., (A∪B)∩C = (A∩C) ∪ (B ∩C)) of union and disjunction on each of
the four conditions of Theorem 23.

The equalities obtained from Equality 4, I[S1,...,Sn] ∩ Oe = ∅ for e ∈ E(D)
and Ie ∩ Of = ∅ for e, f ∈ E(D), are used as follows. The former is included
in Equality 6, while the latter is omitted as Of ⊆ O(f) for all f ∈ E(D): hence
Ie ∩O(f) = ∅ implies Ie ∩Of = ∅. ⊓⊔

13

Note that Equality 5 (in the corollary) is computationally much easier to
check compared to Equality 6, while Equality 6 in turn is much easier to check
compared to Equality 7. As we will see, the reason for including the superfluous
(see the proof of Corollary 25) equality I[S1,...,Sn] ∩ Oe = ∅ in Equality 6 is to
speed up the evaluation of Equality 7.

For touching graphs S1 and S2, we call e = (S1, S2) admissible (w.r.t. S) if
both I[S1,...,Sn] ∩ Oe = ∅ and Ie ∩ O[S1,...,Sn] = ∅. Equality 6 (in the previous
corollary) thus states that all edges of D are admissible.

Definition 26. The admissible touching graph of G w.r.t. S is the directed
graphA = (S, {e ∈ S2 | the nodes of e are touching graphs and e is admissible})
(we allow anti-parallel edges).

Example 27. We continue the running Example 20. Recall that I[S1,S2,S3] =
{(a, a)}, O[S1,S2,S3] = {(b, a)} and I(S1,S2) = I(S2,S3) = I(S1,S3) = {(a, b)}. More-
over we have O(S1,S2) = O(S2,S3) = O(S1,S3) = {(b, b)} and thus (S1, S2), (S2, S3),
and (S1, S3) are admissible. However, as I(S2,S1) = I(S3,S2) = I(S3,S1) = {(b, a)},
(S2, S1), (S3, S2), and (S3, S1) are not admissible. Hence, as it turns out, the
admissible touching graph of G′ w.r.t. S is precisely the touching graph D of G′

w.r.t. C = (S1, S2, S3) given in Figure 4.

The general outline of the algorithm is as follows: (1) check Equality 5, (2)
construct the admissible touching graph A = (S, EA), and check that any two
distinct v1, v2 ∈ S where v1 and v2 touch in G have an admissible edge, and (3)
find a linear ordering C of S such that for the touching graph T = (S, ET) of
G w.r.t. C we have that both ET ⊆ EA holds and Equality 7 holds (i.e., it is
possible to remove edges of A which have an anti-parallel counterpart such that
the obtained graph has a topological ordering that satisfies Equality 7). Only if
checks (1) and (2) are fulfilled and a suitable C in (3) is found, then the obtained
C is an ordering of S for which there is a compatible E.

One can see now that including equality I[S1,...,Sn] ∩Oe = ∅ in the definition
of admissible is an optimization: the less number of edges in A, the less number
of possible orderings C for which Equality 7 needs to be checked.

This algorithm is additionally optimized by further reducing the number of
edges of A as follows. If there are edges e and f of A such that the Equality 7
does not hold for e and f , then they cannot both appear in any E(D) where D
is the touching graph of any suitable C. Since any two touching subgraphs must
have an admissible edge, if edge e = (x, y) does not have the anti-parallel edge
(y, x) and e and f together do not satisfy Equality 7, then f can be removed
from A. Clearly, if f also does not have an anti-parallel edge, then we can stop
and there is no suitable C.

Now, the algorithm to determine an ordering C of S such that there is an
E ⊆ L× L, where E is compatible with C, is as follows.

1: procedure FindOrdering(G,S)
2: if Eq. 5 (of Corollary 25) does not hold then ⊲ Checking Eq. 5

14

3: stop and there is no such C
4: end if

5: construct the admissible touching graph A of G w.r.t. S.
6: if there are vertices v1, v2 of A without any edge between them and the

subgraphs v1 and v2 of G touch then ⊲ Checking Eq. 6
7: stop and there is no such C
8: end if

9: Q = {e ∈ EA | e has no anti-parallel counterpart}
10: while Q 6= ∅ do ⊲ Optimization
11: let e ∈ Q and Q← Q \ {e}
12: for all f ∈ EA do

13: if e 6= f and Eq. 7 does not hold for e and f then

14: if f has an anti-parallel counterpart f ′ in A then

15: remove f from A
16: Q← Q ∪ {f ′}
17: else

18: stop and there is no such C
19: end if

20: end if

21: end for

22: end while

23: if there is a graph B obtainable from A by removing antiparallel edges
such that Eq. 7 holds for B then ⊲ Checking Eq. 7

24: return C
25: end if

26: stop and there is no such C
27: end procedure

Notice that lines 9 to 22 represent the above described optimization to reduce
the number of edges of A by detecting local incompatibilities of Equality 7.

8 Grammars with Multiple Productions

In this section we demonstrate that the results of this paper can be generalized
in a straightforward way to the case where a NLC graph grammar Q can have
more than one production. Although we could have stated our results directly for
the general case, for clarity of exposition however, we choose to restrict ourselves
to the case of one production and subsequently show ways to generalize it.

Thus let Q have now a set P of productions: P = {Ni → Si | i ∈ {1, . . . , n}}.
Recall that the embedding relation E by definition is always fixed for given NLC
graph grammar. We do again assume that the labels of Si are terminals, i.e.,
none of the labels are equal to Ni for any i. This is the only restriction we make
in this section compared to NLC graph grammars in general.

In the special case where all Ni are identical, say to N , it is easy to see that
the results of the previous sections carry over essentially unchanged. Indeed, the

15

restriction that all the elements of S are isomorphic to some graph S is not
relevant in any of the results and proofs — the restriction was only needed to
allow it to be generated by only one production N → S.

We now consider the case where we have different non-terminals Ni. As is
illustrated in the next example, we do require some modifications in the results
to incorporate this case. As it turns out the required changes are only moderate.

S1S2

a

b

N2 N1 c

b

a

S3

c

b

N3

Fig. 5: Graphs G (left-hand side) and G′ (right-hand side) of Example 28.

Example 28. Let G be the graph on the left-hand side of Figure 5, and let the
labels N1, N2, N3 of G be distinct. Moreover, let G′ be the graph on the right-
hand side of Figure 5 having the disjoint subgraphs S1, S2, and S3 as depicted in
the figure, and let ri = Ni → Si for i ∈ {1, 2, 3} be rules of the graph grammar
Q. We examine for which embedding relation E, G′ can be generated from G by
Q, replacing N1, N2, N3 by S1, S2, S3 in this order.

By Lemma 14 (more precisely, by the trivial generalization of this result), E
is compatible with (S1, S2) in G′ iff {(a, c), (a, b), (b, b), (c,N2), (b,N2)} ⊆ E and
E ∩ {(b, c)} = ∅ (replacing N2 by S2 in the derivation). Also, by Lemma 14, E
is compatible with (S1, S3) in G′ iff {(a, c), (c,N3)} ⊆ E, E ∩ {(b, c), (c, c)} = ∅,
and (b,N3) 6∈ E or (a, b), (b, b), (c, b) 6∈ E (replacing N3 by S3 in the derivation).
We conclude, by Lemma 19, that E is compatible with (S1, S2, S3) in G′ iff
{(a, c), (a, b), (b, b), (c,N2), (b,N2), (c,N3)} ⊆ E and E ∩{(b, c), (c, c), (b,N3)} =
∅. Thus such an E compatible with (S1, S2, S3) in G′ exists as we assume that
N2 6= N3. However, if N2 = N3, then there is no compatible E as we would have
(b,N2) ∈ E and (b,N2) = (b,N3) 6∈ E — a contradiction.

The previous example illustrates that by increasing the number of non-
terminals, we have more freedom/independence to find a compatible E. Indeed,
we may have the requirements (a,Ni) ∈ E and (a,Nj) 6∈ E, and these require-
ments can only both be fulfilled when Ni 6= Nj .

Assume now the most general case: each Si ∈ S is generated by a unique
non-terminal in the derivation (thus this requires at least |S| non-terminals and
productions). Then, we see, e.g., that the requirement “π2(Ie) ∩ π2(I[S1,...,Sn] ∩
O(f)) = ∅ for all e, f ∈ E(D)” in Eq. 7 in Corollary 25 must now hold only for the
case where e and f have a common outgoing node Sj (i.e., π2(e) = π2(f) = Sj).
Since the other requirements of the corollary are not concerned with tuples of
E having a non-terminal, this is the only modification we need to incorporate.
Hence we straightforwardly obtain the following generalization of Corollary 25.

16

Corollary 29. Let G be a graph and C = (S1, . . . , Sn) be a sequence of disjoint
(but not necessarily isomorphic) subgraphs of G and let D be the touching graph
of G w.r.t. C. There is an E ⊆ L× L compatible with C iff

I[S1,...,Sn] ∩O[S1,...,Sn] = ∅,

I[S1,...,Sn] ∩Oe = ∅ and Ie ∩O[S1,...,Sn] = ∅ for all e ∈ E(D),

Ie ∩O(f) = ∅ and π2(Ie) ∩ π2(I[S1,...,Sn] ∩O(f)) = ∅

for all e, f ∈ E(D) with π2(e) = π2(f).

Thus, except for modifying Eq. 7 in Corollary 25 as described above, the
algorithm of Section 7 remains unchanged. Note that the checks on lines 13 and
23 in the algorithm should thus only be done on edges having the same outgoing
node (as we require π2(e) = π2(f)).

Remark 30. Recall that we are determining whether or not a given set S of
subgraphs of G is “compressible” by graph rules to a graph I having vertices
labelled by N instead of the subgraphs in S (note however that, in general, G
is only uniquely reproducible from I when also the order in which the vertices
labelled by N are used in a production are stored). Although allowing S to
contain non-isomorphic graphs does not significantly increase the complexity of
our problem under consideration, the problem of finding an optimal (in some
measure) set S of subgraphs of G that is compressible by graph rules is compu-
tationally significantly harder when S may have non-isomorphic subgraphs. ⊓⊔

9 Discussion

In this paper we considered the problem of graph grammar inference for the case
where one is given a set S of disjoint and isomorphic subgraphs to be generated
by a single rule r = N → S/E, where the embedding relation E is allowed
to contain tuples containing N . Moreover, we have considered ways to extend
the results for sets of rules instead of a single rule. In this way we generalize
results in [2]. The results of this paper are to be seen as a further step towards
a systematic account of NLC graph grammar inference.

Formally, we characterized, given a S, the existence of an ordering C of S and
an E ⊆ L × L such that E is compatible with C. Moreover, if such a C exists,
then it is shown to be a topological ordering of a suitable graph that identifies
admissible pairs of touching subgraphs. The efficiency of the resulting algorithm
depends significantly on the cardinality of S — for small S the algorithm seems
practical, however this has yet to be verified.

Finding a graph S, such that the set S of subgraphs of G isomorphic to
S is (1) “compressible”, i.e., there is an embedding relation compatible with
an ordering of S, and (2) optimal (either in cardinality of S, or in some other
measure) remains to be investigated.

Also, it is natural to consider the case where we allow non-terminals as labels
of nodes of S on the right-hand side of productions p = N → S. This would

17

introduce “real” recursion where graphs may be “nested” in various ways —
in this way the restriction of disjointness of the graphs in S considered here is
loosened.

Acknowledgements

We thank the referee for comments and corrections on the paper. As a conse-
quence, the paper is significantly improved. This research is supported by the
Netherlands Organization for Scientific Research (NWO), project “Annotated
graph mining”.

References

1. H. Blockeel and R. Brijder. Learning non-confluent NLC graph grammar rules. In
K. Ambos-Spies, B. Löwe, and W. Merkle, editors, 5th Conference on Computability
in Europe (CiE 2009), Mathematical Theory and Computational Practice, Abstract
Booklet, pages 60–69, 2009.

2. H. Blockeel and S. Nijssen. Induction of node label controlled graph grammar
rules. In Proceeding of the 6th International Workshop on Mining and Learning
with Graphs (MLG 2008), 2008.

3. D.J. Cook and L.B. Holder. Substructure discovery using minimum description
length and background knowledge. Journal of Artificial Intelligence Research, 1:231–
255, 1994.

4. J. Engelfriet and G. Rozenberg. Graph grammars based on node rewriting: An
introduction to NLC graph grammars. In Graph-Grammars and Their Application
to Computer Science, pages 12–23, 1990.

5. J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In G. Rozen-
berg, editor, Handbook of Graph Grammars and Computing by Graph Transforma-
tion. Vol. I: Foundations, chapter 1, pages 1–94. World Scientific, Singapore, 1997.

6. K.S. Fu and T.L. Booth. Grammatical inference: introduction and survey - part I.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:343–359, 1986.

7. I. Jonyer, L. Holder, and D. Cook. MDL-based context-free graph grammar in-
duction and applications. International Journal on Artificial Intelligence Tools,
13:65–79, 2004.

8. E. Vidal. Grammatical inference: An introductory survey. In Grammatical Inference
and Applications, volume 862 of Lecture Notes in Computer Science, pages 1–4, 1994.

18

