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1 Introduction

We look for analytic models near hyperbolic singularities of families of real
analytic vector fields Xε. The interesting case deals with saddles, since for
sources or sinks we have the results of Poincaré [1, 2]. For families we cannot
use the Siegel theorem since the condition on the small divisors is fragile. Even
on the formal level (i.e. power series) the number of resonances between the
eigenvalues is infinite for a family: for instance in the case of a planar saddle this
comes to the density of the rationals in R. One option is to use a Ck (k <∞)
normal form for the family [5]. Here we want to remain within the analytic
category, and have to allow a less simplified form.

A first standard simplification is to use stable and unstable manifolds, and
to ’straighten’ them, i.e. to write the vector field such that these are linear
subspaces. The fact that these invariant manifolds are analytic and depend
analytically on the parameter will also follow from the results in this paper.
The normal form we aim at will be moreover be ’as flat as desired’ along these
invariant manifolds if there are no low order resonances for X0.

This approach can already be found in [3, 11, 12] and we extend the results
in [12], on which our methods are inspired. Even though in this paper we confine
ourselves to the case of a family of vector fields, we can prove similar results for
a family of diffeomorphisms [7]. We shall also prove that possible symmetries
are preserved in our local analytic model and by the changes of variables.

1



2 Settings and preliminaries

As we only aim local conjugacies near the singularity, we will restrict to analytic
functions being convergent power series on a polydisk

D(a,R) := B(a1, R1)× · · · ×B(an, Rn)

where a = (a1, · · · , an) ∈ Cn and R = (R1, · · · , Rn) ∈ (R+ \ {0})n. We
need a few facts from local analytic function theory [4]. We say that a series∑

m∈Nn am(z) converges normally on a poly-disk D(a,R) if
∑

m∈Nn supz∈K |am(z)|
converges on every compact set K ⊂ D(a,R). If f is analytic on the poly-disk
D(a,R), we have

f(z) =
∑

m∈Nn

∂|m|f

∂zm
(a)

(z − a)m

m!
, z ∈ D(a,R),

with normal convergence. This normal convergence implies that
∑

m∈Nn am(z)
exists and is independent of the order of summation and that the sum is analytic
if all am are analytic.

In what follows we want to work with functions that are analytic in a variable
z ∈ Cp and a parameter ε ∈ Cq. Equipping Cp+q with the maximum-norm,
the cartesian product of a poly-disk in Cp with a poly-disk in Cq is a poly-disk
in Cp+q. Introducing e := (1, 1, · · · , 1) ∈ Cn (with n ≥ 1) this choice of norm
gives us that B(a,R) = D(a,Re) ⊂ Cn. So by the normal convergence, we
have for each analytic function f(z, ε) on D(a,Re) × D(b, r) in Cp × Cq that
f(z, ε) =

∑
m∈Np fm(ε)(z − a)m, for each z ∈ D(a,R) and ε ∈ D(b, r), with

normal convergence and each fm(ε) is analytic in D(b, r). Conversely if the
series

∑
m∈Np fm(ε)(z− a)m converges normally on D(a,R)×D(b, r) and each

fm(ε) is analytic on D(b, r), then by uniform convergence of the series on each
compact subset the function defined by the sum f(z, ε) :=

∑
m∈Np fm(ε)(z−a)m

is analytic on D(a,R)×D(b, r) as it is clear that fm(ε)(z − a)m is analytic on
D(a,R)×D(b, r) and we have normal convergence. We will need the following
consequence of this:

Proposition 1 Let fm(ε) be an analytic function on D(b, r) for each m ∈ Np

and g(z) =
∑

m∈Np gm(z−a)m is an analytic function on D(a,R), with gm real
and positive, such that

|fm(ε)| ≤ gm,∀m ∈ Np,

then the function f : Cp+q → C with

f(z, ε) :=
∑

m∈Np

fm(ε)(z − a)m

is analytic on D(a,R)×D(b, r).

Consider a p-parameter family of n-dimensional real vector fields Xε with a
singularity of hyperbolic type. We assume that the vector field can be written
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as a convergent power series in its variables and the parameter ε such that
if we extend this vector field to Cn, i.e. we replace each real variable by a
complex one, we obtain a complex power series that converges on a poly-disk
D(0, R) × D(0, r) ⊂ Cn × Cp. So we consider a real analytic family. We also
assume that all eigenvalues of the linear part at the singularity have multiplicity
1 for ε = 0. Using the Implicit Function Theorem, we may assume that the
singular point is the origin for all ε near zero and that Xε is given by

Xε : ẋ = Aεx+ fε(x), (1)

where fε(x) = O(|x|2) is an analytic function of (x, ε) on a poly-disk D(0, R)
and Aε is in Jordan Normal Form, in such a way that the eigenvalues of Aε with
negative real part are labeled from 1 upto s and those with postive real part
from s+ 1 upto n.

In order to calculate the formal normal form it is convenient to have a
diagonal linear part at the origin, therefore we will use complex coordinates.
Using the matrix

Q =
(

1 i
1 −i

)
,

we obtain the change of coordinates z = Px where P is a complex n×n matrix.
Applying this change of coordinates (1) is transformed into

Yε : ż = Bεz + Fε(z) (2)

where

Bε = diag(ν1(ε), · · · , νa(ε), α1(ε) + iβ1(ε), α1(ε)− iβ1(ε), · · · ,
αb(ε) + iβb(ε), αb(ε)− iβb(ε), µ1(ε), · · · , µc(ε),
γ1(ε) + iδ1(ε), γ1(ε)− iδ1(ε), · · · , γd(ε) + iδd(ε), γd(ε)− iδd(ε)).

As fε is a real analytic function with a complex extension converging on a
poly-disk D(0, R), we have that Fε is an analytic function of (z, ε) where z has
the following properties:

• if λj(ε) is a real eigenvalue of Aε, then zj = zj = xj , in other words zj is
a real variable,

• if λj(ε) and λj+1(ε) form a pair of complex conjugate eigenvalues of Aε,
then zj = zj+1. So xj = zj+zj+1

2 and xj+1 = zj−zj+1
2i .

Therefore Fε will be analytic for

• |zj | = |xj | < Rj , if zj is real,

• |zj + zj+1| = 2|xj | < 2Rj and |zj − zj+1| < 2Rj+1, if zj = zj+1.

This immediately gives the following properties of Fε:

• if zj is real, then Fε,j(z) = Fε,j(z),

• if zj = zj+1, then Fε,j(z) = Fε,j+1(z).
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3 Spectral conditions and results

In Siegel’s Theorem the eigenvalues are assumed to be a fortiori non-resonant.
Here we want to relax the notion of non-resonance a bit. Therefore we consider
a complex n × n matrix A with Spec(A) = {λ1, · · · , λn} where λ1, · · · , λs have
negative real part and λs+1, · · · , λn have positive real part. Following [12] we
consider (for any integer ` ≥ 1):

S`,n,s :=

m ∈ Nn|
s∑

j=1

mj < ` or
n∑

j=s+1

mj < `

 (3)

T`,n,s :=

m ∈ Nn|
s∑

j=1

mj ≥ ` and
n∑

j=s+1

mj ≥ `

 (4)

so Nn = S`,n,s ∪ T`,n,s and S`,n,s ∩ T`,n,s = ∅. For any formal power series
F (x) =

∑
m∈Nn Fmx

m we have

F (x) =
∑

m∈S`,n,s

Fmx
m +

∑
m∈T`,n,s

Fmx
m

=: [F (x)]S`,n,s + [F (x)]T`,n,s .

We recall that Spec(A) is a resonant set if there exists a m ∈ Nn with |m| ≥ 2
and k = 1, · · · , n such that

n∑
j=0

mjλj = λk. (5)

In what follows we will fix an integer ` (which one wants to take as large as
possible in applications) and demand that no element of S`,n,s is a solution of
(5). In such a case we will say that S`,n,s causes no resonances in Spec(A).
It is obvious that if Spec(A) is non-resonant, then S`,n,s will cause no resonance
in Spec(A). To fix the ideas we give an example of a hyperbolic singularity
which is resonant but no element of S`,n,s (for given ` and n) satisfies (5). Take
` = 19, n = 3, s = 1 and eigenvalues −11, 9+i and 9−i, then the first resonance
equation becomes

−11m1 + (9 + i)m2 + (9− i)m3 = −11.

We consider all solutions of this equation and take the solution with the smallest
stable and unstable ’length’. In this case m = (19, 11, 11), i.e. m1 = 19 and
m2 + m3 = 22. Thus, even though the system is resonant, S19,3,1 causes no
resonances in {−11, 9 + i, 9− i}.

In the statement of the results of this paper we shall use the following norms:

|y| = max
1≤j≤n

|yj |,∀y ∈ Cn

‖F‖r = max
|x|≤r

|F (x)|
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for any continuous function F on D(0, re).

Theorem 1 Consider a fixed integer ` ≥ 1 and an n-dimensional real vector
field

Xε : ẋ = Aεx+ fε(x) (6)

such that Aε is a real n×n matrix in Jordan Normal Form, fε(x) = O(|x|2) for
x→ 0 where fε is a real analytic function of x and ε such that f�ε , the complex
extension of fε(x), is analytic on a poly-disk D(0, R)×D(0, r) and S`,n,s causes
no resonances in Spec(A0), where s denotes the number of eigenvalues of A0

that have a negative real part. Then there exists positive constants r0, r1, K0,
K1, ρ and a change of coordinates

x = y + φε(y) (7)

which is real analytic in (y, ε) such that φ�ε is analytic on D(0, r1e)×D(0, ρe),
such that ‖φε‖q ≤ K0q

2 for q < r0 and ε ∈ D(0, ρe), and (7) conjugates (6) to

Yε : ẏ = Aεy + gε(y), (8)

where gε(y) is real analytic in (y, ε), [gε(y)]
S`,n,s = 0 and

|gε(y)| ≤ K1|(y1, · · · , ys)|`|(ys+1, · · · , yn)|`

for y ∈ D(0, r1e).

From the properties of gε in (8) and the fact that the transformation given
by (7) is analytic in the variable and the parameter gives us the following result
as a corollary of Theorem 1.

Corollary 1 Under the conditions of Theorem 1 we have that the stable and
unstable manifold of Xε at the origin are real analytic manifolds depending in
a real analytic way on the parameter ε.

If the original family admits symmetry, then we have the following result.

Theorem 2 If - under the conditions of Theorem 1 - the family of vector fields
Xε admits an analytic family of symmetries Sε (i.e. Sε is an analytic family
of linear maps such that (Sε)∗Xε = Xε), then the transformation given by (7)
commutes with Sε and the resulting family of vector fields given by (8) admits
the same family of symmetries.

Remark 1 If we replace the family Xε in Theorem 2 is reversible instead of
symmetric with respect to Sε, i.e. (Sε)∗Xε = −Xε, then the result of Theorem 2
remains valid provided that ` ≤ 3. For instance this implies that the local sta-
ble and unstable manifold can straightened by means of an analytic change of
variables which commutes with the symmetry.
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4 Absence of small divisors

In this section we want to show that if S`,n,s causes no resonances in
Spec(A0), then there exists a constant ρ > 0 such that for all ε ∈ B(0, ρ) ⊂ Cp

we have that S`,n,s causes no resonances in Spec(Aε).
We consider the kth resonance equation (for k = 1, · · · , n):

a∑
j=1

rjνj(0) +
b∑

j=1

sj(αj(0) + iβj(0)) +
b∑

j=1

s̃j(αj(0)− iβj(0)) + (9)

c∑
j=1

tjµj(0) +
d∑

j=1

uj(γj(0) + iδj(0)) +
d∑

j=1

ũj(γj(0)− iδj(0)) = λk(0)

where λj(ε) is the jth component of Λε = (λ1(ε), · · · , λn(ε)). Looking more
closely at this equation, one should note that there are actually 2 equations to
consider: one coming from the real parts and one coming from the imaginary
parts.

Proposition 2 Let Aε be as in (6). Then the eigenvalues of A0 are resonant iff
the eigenvalues of Ã0 are resonant, where Ãε is the (a+b+c+d)×(a+b+c+d)
matrix defined by

Ãε =


A

(1)
ε 0 0 0
0 Ã

(2)
ε 0 0

0 0 A
(3)
ε 0

0 0 0 Ã
(4)
ε


where A(1)

ε and A
(3)
ε are defined in (1) and A

(2)
ε = diag(α1(ε), · · · , αb(ε)) and

A
(4)
ε = diag(γ1(ε), · · · , γd(ε)).

Proof: The eigenvalues of A0 form a resonant set iff (5) has a solution. Looking
at the real and the imaginary part of this equation, we obtain the following two
equations

a∑
j=1

rjνj(0) +
b∑

j=1

(sj + s̃j)αj(0) +
c∑

j=1

tjµj(0)

+
d∑

j=1

(uj + ũj)γj(0) = <(λk(0)), (10)

b∑
j=1

(sj − s̃j)βj(0) +
d∑

j=1

(uj − ũj)δj(0) = =(λk(0)). (11)

If =(λk(0)) = 0, a solution of (11) is given by taking s̃j = sj for j = 1, · · · , b
and ũj = uj for j = 1, · · · , d. If =(λk(0)) 6= 0, then we have to look at the
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sign of <(λk(0)). In the positive case there is a q ∈ {1, · · · , d} such that we
take ũq(0) = ũq(0) ± 1 (the ± is determined by the sign of =(λk(0))). Taking
s̃j = sj for j = 1, · · · , b and ũj = uj for j 6= q, we find a solution of (11). In the
negative case there is a q ∈ {1, · · · , d} such that we take s̃q(0) = s̃q(0)± 1 (the
± is determined by the sign of =(λk(0))). Taking s̃j = sj for j 6= q and ũj = uj

for j = 1, · · · , d, we find a solution of (11). In all of these cases (10) is reduced
to

a∑
j=1

rjνj(0) +
b∑

j=1

sj(2αj(0)) +
c∑

j=1

tjµj(0) +
d∑

j=1

uj(2γj(0)) = <(λk(0)).

This latter equation is equivalent with saying that there is resonance between
the eigenvalues of

Â =


A

(1)
0 0 0 0
0 2Ã(2)

0 0 0
0 0 A

(3)
0 0

0 0 0 2Ã(4)
0

 .

In a similar way one proves that the eigenvalues of Ã0 are resonant iff the
eigenvalues of Â are resonant. Q.E.D.

From the proof of Proposition 2 we obtain the following result.

Corollary 2 Let Aε be as in (6). Then S`,n,s causes no resonances in Spec(A0)
iff S˜̀,ñ,s̃ causes no resonances in Spec(Ã0), where Ãε is defined in Proposition 2
and

ñ = a+ b+ c+ d,

s̃ = a+ b,

`

2
− max

1≤k≤n

λ̃k(0)
2

≤ ˜̀≤ `

2
− min

1≤k≤n

λ̃k(0)
2

.

The exact value of ˜̀ depends on Spec(Ã0).

In order to fix the ideas we give some examples of this situation:

• Consider Spec(A0) = {−3, 5 + i, 5 − i}, then S6,3,1 causes no resonances
in Spec(A0) (and 6 is the maximal value of ` causing no resonances). As
Spec(Ã0) = {−3, 5}, we have that S3,2,1 causes no resonances in Spec(Ã0),
hence ˜̀= 3 = `

2 .

• Consider Spec(A0) = {−2, 5 + i, 5 − i}, then S2,3,1 causes no resonances
in Spec(A0). As Spec(Ã0) = {−2, 5}, we have that S2,2,1 causes no reso-
nances in Spec(Ã0), hence ˜̀= 2 = `

2 −
(−2)

2 .
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To facilitate the notations, we use the constants ˜̀, ñ and s̃ defined in Corol-
lary 2, this way we can write that Ãε is an ñ × ñ matrix and that there are s̃
stable directions. Also we introduce Λ̃ε as the ñ-tuple of eigenvalues of Ãε.

Now we look at the kth resonance equations on the eigenvalues of Ã0:

a∑
j=1

rjνj(0) +
b∑

j=1

sjαj(0) +
c∑

j=1

tjµj(0) +
d∑

j=1

ujγj(0) = λ̃k(0). (12)

As we assume that the eigenvalues are non-resonant, (12) has no non-trivial solu-
tions in S˜̀,ñ,s̃. We can interpret this non-resonance in the following geometrical
way. Consider the ñ-tuple

(r1, · · · , ra, s1, · · · , sb, t1, · · · , tc, u1, · · · , ud)

as a point on the grid Zñ, then the non-resonance of the eigenvalues of Ã0

means that the hyperplane H with equation given by (12) contains only one of
the “grid points” in S˜̀,ñ,s̃. This point is the intersection of H with the xk-axis
(the kth axis in Rñ) and it has coordinates ek := (0, · · · , 0, 1, 0, · · · , 0) with a
1 on the kth position. The hyperplane H will intersect the xj-axis (for j 6= k)

in the point λ̃k(0)

λ̃j(0)
ej . For each point P of S˜̀,ñ,s̃ (with |P | ≥ 2) we consider the

hyperplanes through the points P and ek. These hyperplanes will intersect each
axis in a point of the form

(
λ̃k(0)

λ̃j(0)
+ ηH′,P

)
ej where ηH′,P ∈ R\{0} depends on

the hyperplane H ′ and the point P . As we are working in S˜̀,ñ,s̃ we know that
min

P∈S˜̀,ñ,s̃

|ηH′,P | > 0, so there exists a θ > 0 such that θ = min
P∈S˜̀,ñ,s̃

|ηH′,P | > 0.

Let us denote the hyperplane that gives this θ by Ĥ, the intersection of this
hyperplane with the axis will give us the “closest” resonance. This way we have
obtained a bound for the ratio of the eigenvalues of Ãε:

λ̃k(0)
λ̃j(0)

− θ <
λ̃k(ε)
λ̃j(ε)

<
λ̃k(0)
λ̃j(0)

+ θ, (13)

for j = 1, · · · , ñ. The region U of Rñ defined by the bounds

λ̃k(0)
λ̃j(0)

− θ <
xk

xj
<
λ̃k(0)
λ̃j(0)

+ θ,

for j = 1, · · · , ñ, is an open subset of Rñ containing Λ̃0. We know that for
each k = 1, · · · , ñ, ε 7→ λ̃k(ε) is a continuous map that is either strictly positive
either strictly negative in a neighbourhood of the origin. As U is open, the
continuity of the mappings ε 7→ λ̃k(ε)

λ̃j(ε)
gives us the existence of a ρk > 0 such

that (13) is fulfilled for all ε ∈ B(0, ρk). Taking ρ as minimum of all ρk (as there
only a finite number of ρk, we have that ρ > 0), we have that S˜̀,ñ,s̃ causes no
resonances on the eigenvalues of Ãε for all ε ∈ B(0, ρ) = D(0, ρe). By virtue of
Proposition 2 we have that S`,n,s causes no resonances on the eigenvalues of Aε

if ε ∈ B(0, ρ) = D(0, ρe).
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Proposition 3 If S`,n,s causes no resonances in Spec(A0), then there exists a
positive constant κ such that ∀m ∈ S`,n,s and ∀ε ∈ B(0, ρ) = D(0, ρe) (where ρ
was determined in the previous argumentation):

| 〈Λε,m〉 − λj(ε)| ≥ κ|m| (14)

where 1 ≤ j ≤ n and λj(ε) denotes the jth eigenvalue of Aε.

As we have that

| 〈Λε,m〉 − λj(ε)| ≥ |<(〈Λε,m〉 − λj(ε))|

≥
∣∣∣〈Λ̃ε, m̃

〉
−<(λj(ε))

∣∣∣
where m̃ ∈ S`,ñ,s̃ is related to m as follows:

m̃j = mj for 1 ≤ j ≤ a
m̃a+j = ma+2j−1 +ma+2j for 1 ≤ j ≤ b
m̃a+b+j = ma+2b+j for 1 ≤ j ≤ c
m̃a+b+c+j = ma+2b+c+2j−1 +ma+2b+c+2j for 1 ≤ j ≤ d,

and
|m̃| = |m|.

Proposition 3 will be a consequence of

Proposition 4 There exists a positive constant K such that for the eigenvalues
of Ãε we have that ∀ε ∈ B(0, ρ) = D(0, ρe):∣∣∣〈Λ̃ε,m

〉
− λ̃j(ε)

∣∣∣ ≥ K|m| (15)

for all m ∈ S˜̀,ñ,s̃ and j = 1, · · · , ñ.
To prove Proposition 4 we need another result. To make the proof a bit

clearer, we will assume that the eigenvalues of Ã0 meet

λ̃1(0) ≤ · · · ≤ λ̃s̃(0) < 0 < λ̃s̃+1(0) ≤ · · · ≤ λ̃ñ(0).

This can be achieved by a permutation of the basis vectors, so it won’t effect
the result given in (15).

Before stating and proving the lemma, we need to introduce the following
notations

q0(ε) :=

 max
1≤j≤s̃

λ̃j(ε) if min
1≤j≤s̃

|λ̃j(ε)| < min
s̃+1≤j≤ñ

|λ̃j(ε)|

min
s̃+1≤j≤ñ

λ̃j(ε) if min
1≤j≤s̃

|λ̃j(ε)| > min
s̃+1≤j≤ñ

|λ̃j(ε)|

q+(ε) :=

 min
1≤j≤s̃

λ̃j(ε) if q0(ε) < 0

max
s̃+1≤j≤ñ

λ̃j(ε) if q0(ε) > 0

q−(ε) :=

 max
s̃+1≤j≤ñ

λ̃j(ε) if q+(ε) < 0

min
1≤j≤s̃

λ̃j(ε) if q+(ε) > 0

dxe := min{k ∈ Z|x ≤ k}.
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We remark that q0, q+ and q− are always continuous functions of ε but not
necessarily analytic functions of ε.

For eachm ∈ S`,n,s we use the following notations which denotes the splitting
with respect to the stable and the unstable directions:

Ms := (m1, · · · ,ms)
Mu := (ms+1, · · · ,mn).

Lemma 1 As S˜̀,ñ,s̃ causes no resonances in Spec(Ãε), we have for all m ∈
S˜̀,ñ,s̃ satisfying

|m| ≥
⌈
q+(ε)
q0(ε)

− (˜̀− 1)
q−(ε)
q0(ε)

+ (˜̀− 1)
⌉

:= Ξ(ε, ˜̀) (16)

the following inequality∣∣∣〈Λ̃ε,m
〉
− λ̃j

∣∣∣ ≥ |(˜̀− 1)q−(ε) + (|m| − ˜̀+ 1)q0(ε)− q+(ε)| (17)

for all j = 1, · · · , ñ.

Proof: First we establish the inequality for those m for which |m| is “suffi-
ciently” large, afterwards we show that these |m| are bounded below by Ξ(ε, ˜̀).

First we consider the case where |Ms̃| < ˜̀. For |Mũ| sufficiently large〈
Λ̃ε,m

〉
− λ̃j(ε) will be positive. So taking |Ms̃| = ˜̀− 1, we have〈

Λ̃s̃
ε,Ms̃

〉
≥ (˜̀− 1)λ̃1(ε),〈

Λ̃ũ
ε ,Mũ

〉
≥ λ̃s̃+1(ε)(|m| − ˜̀+ 1),

−λ̃j(ε) ≥ −λ̃ñ(ε),

where

Λ̃s̃
ε := (λ̃1(ε), · · · , λ̃s̃(ε)),

Λ̃ũ
ε := (λ̃s̃+1(ε), · · · , λ̃ñ(ε)).

So we can conclude〈
Λ̃,m

〉
− λ̃j(ε) ≥ (˜̀− 1)λ̃1(ε) + λ̃s+1(ε)(|m| − ˜̀+ 1)− λ̃ñ(ε) > 0. (18)

Second we consider the case where |Mũ| < ˜̀. For |Ms̃| sufficiently large〈
Λ̃ε,m

〉
− λ̃j(ε) will be negative. So taking |Mũ| = ˜̀− 1, we have〈

Λ̃s̃
ε,Ms̃

〉
≤ (|m| − ˜̀+ 1)λ̃s̃(ε),〈

Λ̃ũ
ε ,Mũ

〉
≤ (˜̀− 1)λ̃ñ(ε),

−λ̃j(ε) ≤ −λ̃1(ε).
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So we can conclude〈
Λ̃,m

〉
− λ̃j(ε) ≤ (˜̀− 1)λ̃ñ(ε) + λ̃s(ε)(|m| − ˜̀+ 1)− λ̃1(ε) < 0. (19)

Combining (18) and (19) we find the inequality stated in (17).
The right-hand side of (17) will be increasing after the unique zero of this

function. A short calculation will give us the lower bound Ξ(ε, ˜̀) as stated in
(16). Q.E.D.
Proof(of Proposition 4): From (17) we deduce that there exists a constant
K∗ for all m ∈ S˜̀,ñ,s̃ with |m| ≥ Ξ(ε, ˜̀) such that

∣∣∣〈Λ̃ε,m
〉
− λ̃j(ε)

∣∣∣ ≥ K∗|m|.
Starting from the right-hand side of (17) we have that

|(˜̀− 1)q−(ε) + (|m| − ˜̀+ 1)q0(ε)− q+(ε)| ≥
|q0(ε)|.|m| − |(˜̀− 1)q−(ε) + (1− ˜̀)q0(ε)− q+(ε)|.

The latter expression will be positive for |m| ≥ Ξ1(ε, ˜̀). Take |m| ≥ ξε,˜̀ :=
max{Ξ(ε, ˜̀),Ξ1(ε, ˜̀)}, then

|q0(ε)| − |(˜̀−1)q−(ε)+(1−˜̀)q0(ε)−q+(ε)|
|m| ≥

K∗ := inf
ε∈B(0,ρ)

(
|q0(ε)| −

|(˜̀− 1)q−(ε) + (1− ˜̀)q0(ε)− q+(ε)|
ξε,˜̀

)
,

hence
|(˜̀− 1)q−(ε) + (|m| − ˜̀+ 1)q0(ε)− q+(ε)| ≥ K∗|m|

and
K∗ ≤ inf

ε∈B(0,ρ)
|q0(ε)|.

For each r with 1 ≤ |m| < Ξ(ε, ˜̀) we can find a constant Km > 0 such that∣∣∣〈Λ̃ε,m
〉
− λ̃j(ε)

∣∣∣ ≥ Km|m|: we just take

Km := inf
ε∈B(0,ρ)

∣∣∣〈Λ̃ε,m
〉
− λ̃j(ε)

∣∣∣
|m|

.

Defining
K := min

(
{Kr | |r| < Ξ(ε, ˜̀)} ∪ {K∗}

)
,

we have the wanted constant. K will be strictly positive as it is the minimum
of a finite set of strictly positive numbers. Q.E.D.

5 Proof of Theorem 1

The proof of Theorem 1 consists of 3 parts: first we determine 2 equations that
will give us (7), second we show that there exists a formal solution and finally we
show that the formal solution converges, i.e. there exists an analytic solution.
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5.1 Determining the change of coordinates

In this subsection we want to establish an equation which will allow us to deter-
mine the transformation (7) we are seeking. From now on we will work in the
complexified setting given by (2), this will make it easier to determine a formal
solution. This means that we will need to “complexify” the function φε given
by (7).

So we have a vector field given by

ż = Bεz + Fε(z)

where z = Px with P defined previously, which we want to transform into a
vector field

ẇ = Bεw +Gε(w)

where P−1w ∈ Rn (as we wish to return to a real vector field at the end) and
[Gε(w)]S`,n,s = 0, by a transformation

z = w + ϕε(w).

In order to return to a real vector field we will have

φε(w) = P−1 · ϕε(Pw) (20)

and
Gε(w) = P−1 · gε(Pw)

where P is the matrix defined previously, that gives the change of basis. Per-
forming this transformation we find the following two equalities

ż = (In +Dwϕε(w))(Bεw +Gε(w))
ż = Bε(w + ϕε(w)) + Fε(w + ϕε(w))

If we introduce the operator LBε

LBε
ϕε(w) = Dwϕε(w)Bεw −Bεϕε(w) (21)

then these equations can be combined to obtain

LBεϕε(w) = Fε(w + ϕε(w))−Gε(w)−Dwϕε(w)Gε(w) (22)

We split (22) up into two separate equations. This splitting up will be done
with respect to S`,n,s and T`,n,s. Thus we will solve

LBεϕε(w) = [Fε(w + ϕε(w))]S`,n,s (23)

[Fε(w + ϕε(w))]T`,n,s = (In +Dwϕε(w))Gε(w) (24)

If we can solve (23), then we can determine Gε(w) directly as (In+Dwϕε(w))
is invertible in a sufficiently small neighbourhood of the origin. We know that
the formal expansion of ϕε starts with terms of degree 2 in w, so multiplying

12



[Fε(w + ϕε(w))]T`,n,s with (In + Dwϕε(w))−1 will only increase the degree of
each term in w, hence[

(In +Dwϕε(w))−1 [Fε(w) + ϕε(w))]T`,n,s

]S`,n,s

= 0,

so [Gε(w)]S`,n,s = 0.
Also from (24) we immediately have that |Gε(w)| ≤ K1|Ws|`|Wu|`, where

Ws = (w1, · · · , ws) and Wu = (ws+1, · · · , wn). Hence by virtue of (20) we have
the same bounds for gε(y).

In the next subsections we will solve (23) and show that the solution has all
properties as stated in Theorem 1.

5.2 Formal solution of (23)

A direct calculation shows that

LBε,j (vw
m) = v(〈Λε,m〉 − λj(ε))wm,

1 ≤ j ≤ n, for any m ∈ Nn and any v ∈ Cn. This means that if we want to
have a formal solution ϕε(w) =

∑
|m|≥2 am(ε)wm, then (23) becomes

∑
|m|≥2

am,j(ε)(〈Λε,m〉−λj(ε))wm =

 ∑
|m|≥2

Fm,j(ε)

w +
∑
|k|≥2

ak(ε)wk

mS`,n,s

(25)
where 1 ≤ j ≤ n and

Fε(w) =
∑
|m|≥2

Fm(ε)wm.

We now show how (25) can be solved formally. First we take the coefficient of
wM for M ∈ Nn with |M | = 2, then (25) gives

aM,j(ε) =
FM,j(ε)

〈Λε,M〉 − λj(ε)

thus aM,j(ε) is an analytic function. We now proceed by induction, so assume
that am,j is an analytic function of ε for all m ∈ Nn with 2 ≤ |m| ≤ N − 1.
Now take a m ∈ Nn with |m| = N . Taking the coefficients of wm in (25) we
find

am,j(ε) = σm

Fm,j(ε) +
∑

r∈Nn

|r|≤N−1

Pm
r ( (ak(ε))||k|≤N−1)Fr,j(ε)

〈Λε,m〉 − λj(ε)
(26)

where σm is defined by

σm :=
{

1 if m ∈ S`,n,s

0 if m ∈ T`,n,s

13



and where Pm
r is a polynomial with positive integer coefficients. This result can

be proved by induction.
As we know that all Fr,j are analytic on the same poly-disk and the de-

nominator is non-zero, the induction hypothesis will give us that aM,j(ε) is an
analytic function of ε in a poly-disk independent of M and j.

5.3 Convergence of the formal solution

We now want to prove that this formal solution converges, i.e. we have an
analytic solution in w. For this we will use the classical technique of majorants
[6, 10, 12]. Using this technique in combination with Proposition 1 will give
us that ϕε(w) is analytic in (w, ε). Given two formal power series f(z) =∑

m∈Nnfmz
m and g(z) =

∑
m∈Nngmz

m, one says that g is a majorant of f if
we have that |fm| ≤ gm, ∀m ∈ Nn. One should note that in the latter definition
the coefficients of g(z) must be real and positive whilst the coefficients of f(z)
may be complex.

Given m ∈ S`,n,s with |m| ≥ 2, we have that

ν(m) := inf
ε∈B(0,ρ)

min
1≤k≤n

| 〈Λε,m〉 − λk(ε)|

is bounded away from zero by virtue of Proposition 3. If we use the notation

c̃m := sup
ε∈B(0,ρ̃)

max
1≤k≤n

|Fm,k(ε)|,

for a fixed ρ̃ with 0 < ρ̃ < ρ, then we can define

F̃ (w) =
∑
|m|≥2

c̃mw
me

so F̃ is analytic in w, F̃1 = · · · = F̃n and F̃j is a majorant of Fε,j for j = 1, · · · , n.
Let ϕ̃(w) =

∑
|m|≥2 ãmw

m be the solution of∑
|m|≥2

m∈S`,n,s

ν(m)ãmw
m =

[
F̃ (w + ϕ̃(w))

]S`,n,s

. (27)

As the coefficients on the right-hand side of (23) are majorised by the coefficients
on the right-hand side of (27) and the moduli of the coefficients on the left-hand
side of (23) are majorising the coefficients on the left-hand side of (27), hence
by division and (26) we obtain that ϕ̃ is a majorant of ϕε for all ε ∈ B(0, ρ̃), in
other words

|am,j(ε)| ≤ ãm,j , j = 1, · · · , n (28)

we also have that ϕ̃1 = · · · = ϕ̃n.
We would like to reduce the of question of convergence to a 1-dimensional

problem. Therefore we will need another majorant. We define

ck :=
∑
|m|=k

c̃m
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and
F̂ (Z) :=

∑
k≥2

ckZ
k, Z ∈ C

then F̂ (Z) equals F̃j(Ze) for each j = 1, · · · , n, so F̂ (Z) is obviously a majorant
for each component of F̃ (Ze). As F̂ (Z)e = F̃ (Ze), F̂ is analytic iff |Z| ≤ Rj

for all j = 1, · · · , n. Hence F̂ (Z) is analytic on B(0, R̂) = D(0, R̂e) where
R̂ = min

1≤j≤n
Rj . In the same line of arguments we introduce

νk := min
|m|=k

m∈S`,n,s

ν(m)

then by Proposition 3 we know there exists a constant κ > 0 for which we have

νk ≥ κk.

We can look at the solution ϕ̂(Z) =
∑

k≥2 âkZ
k of∑

k≥2

κkâkZ
k = F̂ (Z + ϕ̂(Z)). (29)

As before we obtain that ϕ̂(Z) is a majorant of each component of ϕ̃(Ze), i.e.

ãm,j ≤ âk

for all m ∈ S`,n,s with |m| = k and 1 ≤ j ≤ n.
As k ≥ 2, it is obvious that

∑
k≥2 κkâkZ

k is a majorant for
∑

k≥2 κâkZ
k.

We know that F̂ is analytic on B(0, R̂), so we have that

lim
k→∞

k
√
ck =

1
R̂
. (30)

Take a small but fixed δ > 0, then (30) implies that there exists a K ∈ N such
that for all k ≥ K we have

k
√
ck ≤

1 + δ

R̂
,

whence

ck ≤
(

1 + δ

R̂

)k

,∀k ≥ K.

For 2 ≤ k ≤ K − 1 we obviously have

ck ≤ ck

(
R̂

1 + δ

)k (
1 + δ

R̂

)k

.

Defining Ř = R̂
1+δ and

č := max

ck
 R̂

1 + δ

)k
∣∣∣∣∣∣ 2 ≤ k ≤ K − 1

 ∪ {1}

 ,
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we have that

ck ≤ č

(
1
Ř

)k

,∀k ≥ 2.

As F̌ (Z) := č
∑
k≥2

(
Z

Ř

)k

is a geometrical series, we know that F̌ (Z) is analytic

on B(0, Ř) and F̌ is a majorant of F̂ .
Let Φ(Z) =

∑
k≥2 ǎkZ

k be the solution of

κΦ(Z) = F̌ (Z + Φ(Z)), (31)

then Φ will be a majorant of ϕ̂.
As F̌ is given by a geometrical series (31) becomes

κΦ(z) = č

(
Z + Φ(Z)

Ř

)2∑
k≥2

(
Z + Φ(Z)

Ř

)k−2

=
č

Ř2

(Z + Φ(Z))2

1− Z+Φ(Z)

Ř

,

which gives the following quadratic equation in Φ(Z):(
č+ κŘ

)
Φ(Z)2 +

((
2č+ κŘ

)
Z − κŘ2

)
Φ(Z) + čZ2 = 0. (32)

The discriminant of (32) is given by

D(Z) =
((

2č+ κŘ
)
Z − κŘ2

)2 − 4
(
č+ κŘ

)
čZ2.

Now Φ is given by

Φ(Z) =
Ř2κ−

(
2č+ κŘ

)
Z −

√
D(Z)

2
(
č+ κŘ

) ,

where we take the solution with −
√
D(Z) as we need the solution without

constant and linear terms in its formal series expansion. Now it is clear that Φ
is analytic in B(0, Ř). From the series expansion it is clear that ‖Φ‖r ≤ K0r

2

for any r < r0 := Ř, and by virtue of the majorisation we have the same bound
for ϕε. Writing down everything in its real components we obtain the properties
stated in Theorem 1.

6 Symmetric case

Consider an analytic family of linear maps Sε : Rn → Rn, then Sε is a symmetry
of the family of vector fields Xε if (Sε)∗Xε = Xε. Consider a family of real
vector fields Xε with a symmetry Sε. First of all we put DXε(0) in its Jordan
Normal Form Aε, this can be done with a suitable matrix Mε such that Aε =

16



M−1
ε DXε(0)Mε, hence the vector field becomes X̃ε = M−1

ε · Xε ◦ Mε. It is
well-known, see for instance [2], that under a linear change of coordinates the
symmetry Sε of Xε is transformed into the symmetry S̃ε = M−1

ε · Sε ·Mε.
So from now on we will assume that DXε(0) = Aε is already in its Jordan

Normal Form. As Sε is a symmetry of the family of real vector fields Xε, we
have that Tε := P−1SεP is a symmetry of the complexified system where P was
defined previously. Given the fact that Tε is a symmetry of ż = Bεz + Fε(z),
we necessarily have that Tε commutes with Bε and Fε. As Bε is diagonal and
all its eigenvalues are non-zero and have multiplicity 1, Tε will be diagonal as
well. Therefore Tε cannot “mix up” stable directions with unstable directions.
This gives us that Tε also commutes with [·]S`,n,s and [·]T`,n,s .

6.1 φε commutes with Sε

First we show that Tε commutes with ϕε. To obtain this result we need to look
at (23). We know that ϕε is the unique analytic non-zero solution of (23), so if
we prove that T−1

ε ◦ ϕε ◦ Tε is also a solution of (23) then by unicity we have
that ϕε = T−1

ε ◦ ϕε ◦ Tε or in other words Tε ◦ ϕε = ϕε ◦ Tε.
Let us define ψε := T−1

ε ◦ ψε ◦ Tε, then ψε is a solution of (23) iff

Dψε(w)Bεw −Bεψε(w) = [Fε(w + ψε(w))]S`,n,s

or equivalently

D
(
T−1

ε ◦ ϕε ◦ Tε

)
(w)Bεw − Bε

(
T−1

ε ◦ ϕε ◦ Tε

)
(w)

=
[
Fε(w + (T−1

ε ◦ ϕε ◦ Tε)(w)
]S`,n,s

. (33)

As Tε commutes with Bε, Fε and [·]S`,n,s , (33) is equivalent with

T−1
ε ·Dϕε(Tεw)TεBεw − T−1

ε Bεϕε(Tεw) = T−1
ε [Fε(Tεw + ϕε(Tεw))]S`,n,s .

(34)
As Tε is invertible we can put Tεw =: z for all z ∈ Cn. Hence (34) is equivalent
with

Dϕε(z)Bεz −Bεϕε(z) = [Fε(z + ϕε(z))]
S`,n,s . (35)

Obviously (35) is equivalent with the demand that ϕε is a solution of (23). So
if ϕε is a solution of (23) also ψε will be a solution of (23) and vice versa. As
we have proved that (23) has a unique solution, necessarily ψε = ϕε.

From this it is straightforward to prove that φε and Sε commute.

6.2 gε commutes with Sε

To obtain the desired commutation result we need (24) and prove that Gε

commutes with Tε. We use the same line of arguments as in the previous
section. So define Γε := T−1

ε ◦Gε ◦ Tε, then Γε is a solution of (24) iff

[Fε(w + ϕε(w))]T`,n,s = (In +Dϕε(w))Γε(w)
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or equivalently

[Fε(w + ϕε(w))]T`,n,s = (In +Dϕε(w))(T−1
ε ◦Gε ◦ Tε)(w). (36)

As Tε commutes with ϕε we have by differentiating both sides of ϕε ◦ Tε(w) =
Tε ◦ ϕε(w) that Dϕε(Tεw)Tεw = TεDϕε(w), which is equivalent with

T−1
ε Dϕε(Tεw)Tεw = Dϕε(w). (37)

Applying (37) on (36) gives us

[Fε(w + ϕε(w))]T`,n,s = (In + T−1
ε Dϕε(Tεw)Tε)(T−1

ε Gε(Tεw)). (38)

As Tε commutes with Bε, ϕε, Fε and [·]T`,n,s , (38) is equivalent with

T−1
ε [Fε(Tεw + ϕε(Tεw))]T`,n,s = T−1

ε (In +Dϕε(Tεw))Gε(Tεw). (39)

Putting Tεw =: z for all z ∈ Cn we obtain that (39) is equivalent with

[Fε(z + ϕε(z))]
T`,n,s = (In +Dϕε(w))Gε(w). (40)

Obviously (40) is equivalent with the demand that Gε is a solution of (24). This
means that Γε is a solution of (24) iff Gε is a solution of (24). As (24) has a
unique solution, necessarily Γε = Gε, hence Tε ◦Gε = Gε ◦Tε. As we did before
one derives that this latter equality is equivalent with Sε ◦ gε = gε ◦ Sε.

This means we have proved Theorem 2.
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