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CANARD SOLUTIONS AT NON-GENERIC TURNING POINTS

PETER DE MAESSCHALCK AND FREDDY DUMORTIER

Abstract. This paper deals with singular perturbation problems for vector
fields on 2-dimensional manifolds. “Canard solutions” are solutions that, start-
ing near an attracting normally hyperbolic branch of the singular curve, cross
a “turning point” and follow for a while a normally repelling branch of the
singular curve. Following the geometric ideas developed in [DR] for the study
of canard solutions near a generic turning point, we study canard solutions
near non-generic turning points. Characterization of manifolds of canard so-
lutions is given in terms of boundary conditions, their regularity properties
are studied and the relation is described with the more traditional asymptotic
approach. It reveals that interesting information on canard solutions can be
obtained even in cases where an asymptotic approach fails to work. Since the
manifolds of canard solutions occur as intersection of center manifolds defined
along respectively the attracting and the repelling branch of the singular curve,
we also study their contact and its relation to the “control curve”.

1. Introduction

Consider a singularly perturbed vector field on a 2-dimensional manifold, de-
pending on a small parameter ε. A typical question is to what extent solutions
of the perturbed vector field remain “comparable” to solutions of the unperturbed
vector field (ε = 0). Geometrically speaking, the question can be formulated in
terms of the persistence of invariant manifolds under perturbation. It becomes
interesting if the unperturbed vector field has a curve of singularities (a “critical
curve”) that disappears after perturbation. The dynamics of the phase portrait
can then be decomposed in a slow and a fast part. The fast dynamics are governed
by the attraction towards (or repulsion away from) the critical curve in the unper-
turbed vector field. The slow dynamics appears because the curve of singularities
perturbs, so near this curve a slow drift along it is observed. Both laws play a role
for orbits of points that lie very close to the critical curve, and both will compete
for dominance. The geometric theory of Fenichel states that orbits of perturbed
vector fields follow pieces of slow dynamics for some time and then revert to pieces
of the fast dynamics for some time, or vice versa, depending on whether the normal
hyperbolicity is repelling or attracting at the moment of reversion. Fenichel’s theo-
rem is valid under certain generic conditions (of which the most notable one is the
normal hyperbolicity along the curve of singularities). Apparently, in points where
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normal hyperbolicity is lost, the dynamics can be more complicated. This is be-
cause attraction can change into repulsion on crossing such “contact points”. The
competition between slow and fast dynamics is thus most apparent in points like
these. One might expect that in situations where orbits follow the slow movement,
the orbits will revert to orbits following fast dynamics immediately after crossing a
contact point, because of the repulsive behaviour after this point. On the contrary,
sometimes the orbits will keep on following the critical curve for some time, before
the exchange of dominance occurs. Contact points with that property could be
called “turning points” to make a distinction with the more common “jump point”
which one encounters in relaxation oscillations.

When the family of vector fields has other parameters, we can try—under rather
general conditions—to give a regular condition on ε and on the other parame-
ters so that the exchange of stability occurs at exactly the manifold in parameter
space given by the condition. This process will create what is commonly known
as “overstable solutions”, or “canard solutions”. In the literature, a clear distinc-
tion is made between these two names: the term overstable solution is used in
the complex setting, whereas real solutions are referred to as canard solutions.
In the literature, several successful methods have been brought forward to handle
the existence of both overstable solutions and canard solutions. We mention the
technique of matching inner and outer solutions (Eckhaus, Mishchenko, Kolesov,
Rozov, . . . ), non-standard analysis (Diener et al.) and also complex analytic tech-
niques (Sibuya, Schäfke, Ramis, Canalis-Durand and many others). Lately, serious
progress has been made in applying analytic techniques to singularly perturbed
problems, and a number of the results that are proved in this work have already
been proved using these techniques. But the analytic study does not completely
cover the dynamics on the real axis. We present some examples where real ca-
nard solutions are created, that cannot be complexified to canard solutions in full
complex neighbourhoods (or so called overstable solutions).

The method we use here is based on the construction of center manifolds and the
use of Ck normal forms, as in [DR] and [DR2]. It has also been used by Krupa and
Szmolyan in e.g. [KS1], [KS2], [KS3] and [KS4]. The key element is the family blow
up—a technique of rescaling variables in a geometrical way. Because of this, the
constructed solutions will be smooth in the blow up space. We present conditions
under which a blow down of the center manifolds is possible. We extract some
consequences from it and relate these to treatments of a different nature like the
traditional matching between “inner” (inside the blow up locus) and outer solutions
(in original coordinates) or the resummation.

Our major contribution lies in the generality of our results. Where up to now the
geometric analysis of turning points (like in [DR]) was restricted to the generic case,
we consider here a generalization to non-generic turning points. A specific class of
more degenerate systems is precisely described in theorem 5. In theorem 4 we show
that our results can be applied to what we could call the generic turning point.
These examples are defined in the plane, but our results apply, as the description
shows, to systems on 2-manifolds. All results are valid for vector fields of class Cr,
r sufficiently large.

A second part of this text deals with the angle between center manifolds, defined
on different sides of the contact point. In fact, the entire canard phenomenom can
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be explained geometrically by looking how those two different families of center
manifolds intersect. Orbits following the critical curve in positive time, gathered
in these invariant (center) manifolds, cross the contact point and intersect with
orbits following the critical curve in negative time. Any connection between these
manifolds results in canard solutions, so the intersection is crucial in our study. If
the manifolds intersect transversally, a straightforward adaption of the techniques
in [DR] results in a formula for the angle. We generalize these computations by
providing recursive formulas for calculating the first nonzero higher order angle,
besides describing its relation with the graph of the control curve.

2. Fundamental notions and statement of results

In this section, we will put some constraints on the vector fields under study.
We have tried to write these constraints as much as possible in a coordinate free
manner. Later, we give important classes of vector fields where these conditions
are met. But before stating precise conditions and results, we quickly review some
relevant notions.

Definition 1. A critical curve of a singularly perturbed family of vector fields Xε

on a 2-manifold M is a curve of singularities of the reduced vector field X0. In this
paper, we will regard the critical curve as a curve in the manifold M×{0} = {ε = 0}
in a 3-dimensional manifold with boundary M×[0, ε0[ for some ε0 > 0. If the vector
field depends on other parameters λ we will still call it—with abuse of language—the
critical curve.

In our study we will also use a special parameter—denoted by a—that will
essentially be a parameter breaking the critical manifold in a regular way. In a
moment we will give a precise definition of it. If M is the plane R2 this would mean
we consider smooth families of vector fields

(1) Xε,a,λ :
{

ẋ = f(x, y, ε, a, λ)
ẏ = εg(x, y, ε, a, λ)

with singular parameter ε ∈ R+, and where (a, λ) ∈ R×Λ (Λ ⊂ Rp). We could also
work with analytic Xε,a,λ, and all over the paper we will pay attention to stress
the analyticity or the lack of analyticity of the results in case of analytic Xε,a,λ.
We assume that X0,0,λ has a curve of singularities γ. This curve may depend on λ,
but we will not keep this dependence in the notation of γ. The dependence on λ
is not entirely unconditional; obvious bifurcations in the shape of the curve should
be avoided. We in fact ask γ = γλ to be a trivial λ-family of simple curves; for a
precise statement we refer to a remark after assumption 3.

The paper will deal with simple critical curves with a single contact point. By
“simple” we mean that the curve can be obtained as an image of a C∞ embedding
of [0, 1]. It is “slow” since it consists of singularities of the vector field under
consideration; γ contains a point pγ not lying at its endpoint, with the property
that pγ divides γ into two parts γ− and γ+ with both γ− ∪ {pγ} and γ+ ∪ {pγ}
simple critical curves. We orient γ in a way that γ+ comes after γ−. The fact that
pγ is a simple contact point means that X0 is normally attracting at all points of
γ− and normally repelling at all points of γ+.
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Assumption 1 (Admissible chart):
There exists a (possibly λ-dependent) chart of M in the neighbourhood of pγ

so that in this chart the contact point is the origin (x, y) = (0, 0). Writing
the vector field in this chart as in (1), the critical curve is given by γ =
{ (x, y) | f(x, y, 0, 0, λ) = 0 }. The origin divides γ in two pieces γ− and γ+.
Along γ \{(0, 0)} we suppose that both ∂f

∂x and ∂f
∂y are nonzero, and that γ−

is a graph over the negative real x-axis, and γ+ is a graph over the positive
real x-axis.

A chart where these conditions are met is called an admissible chart.

Assumption 2 deals with the possibility of passage near the critical curves. Let us
focus on γ−; with respect to the repelling part γ+ we require analogous properties.

The unperturbed vector field X0 on M is normally attracting at all points of
γ−. Let p be a point of γ−, and consider the vector field X = X0 + 0 ∂

∂ε on
M × [0, ε0[. Because of the center manifold theorem we can find locally around p
(possibly parameter-dependent) 2-dimensional invariant center manifolds Wp that
are at least C1. Let us consider such a center manifold. Although actually being a
manifold with boundary in M× [0, ε0[, let us—by abuse of language—call it a man-
ifold. Essentially, we want the dynamics on the center manifolds to be topologically
equivalent to the dynamics of a model differential equation

(2) ε
∂

∂x
+ 0

∂

∂ε
.

More precisely, we want the existence of a C1 embedding

ϕ : [0, 1]2 → Wp : (x, ε) 7→ ϕ(x, ε)

so that
(i) ϕ([0, 1]2) is a neighbourhood of p inside Wp;
(ii) ϕ([0, 1]× {0}) ⊂ {ε = 0};
(iii) ϕ|ε=0 is orientation-preserving for the standard orientation on the x-axis and

the chosen orientation on γ.
(iv) ϕ is a topological equivalence between X|Wp and the model vector field (2).

To ensure this model behaviour, it suffices to assume
Assumption 2: For any point p of γ− ∪ γ+, there exists a sufficiently small

neighbourhood V of p in M × [0, ε0[ so that in V there are no singularities
for ε > 0. Furthermore, inside center manifolds in V , the orientation of
the orbits for ε > 0 must be compatible to the orientation on γ.

The compatibility of the orientation of orbits inside center manifolds with the ori-
entation of γ means the following: if we take two sections σ1 and σ2, transversally
cutting γ in points with parameter values r1 and r2, r1 < r2 (according to the ori-
entation), then the orbits for ε > 0 will also be oriented from σ1 to σ2. Assumption
2 does not depend on the chosen center manifold inside V .

Note 1: Assumption 2 gives the basis for a possible transition from attracting
to repelling regime. In other situations, where the transition is from repelling to
attracting, repelling to repelling or attracting to attracting regime, canard solutions
are more likely to occur, and the study is easier. Canard solutions occuring from
transitions like these are often called “faux canards”.

Note 2: In some results we will even allow singularities bifurcating out of γ−∪γ+,
for ε > 0, but we will limit us to results concerning invariant manifolds consisting
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of orbits for which in the vicinity of γ− ∪ γ+ the orientation is compatible with the
orientation of γ.

Assumption 3 will be a regularity condition, and will be described in terms of
an “admissible chart” near the contact point. We will assume that after a single
(family) blow up, the vector field will be desingularized in a nice way. Before making
this precise, let us recall what a family blow up is, and what the regularity condition
means.

At first, a blow up map can be thought of as a singular change of coordinates,
like the polar-coordinate mapping

(u, θ) 7→ (x, y) = (u cos θ, u sin θ).

Another way to denote this map is (u, (x, y)) 7→ (ux, uy), where x2 + y2 = 1.
Now, instead of using coordinates on the circle, we can use charts to rectify parts
of the circle. In the above example, near x = 1, we might as well use the coordinate
change (u, ỹ) 7→ (x, y) = (u, uỹ), with ỹ in a fixed domain. On this new chart,
the point ỹ = ±∞ corresponds to (x, y) = (0,±1). In order not to exaggerate in
notations, one often uses the symbol y for ỹ, and one says to work in the {x = 1}
chart.

The vector field can be pulled back under the blow up map, and if the origin is
a singularity of the original vector field, then the locus u = 0 will be an invariant
set of the pull-back vector field, often even a set of singularities. In the latter case,
we desingularize the new vector field by dividing out a positive factor ui.

Although desingularization by means of blow up, as the one above, is practical,
it can be made more useful by adapting the exponents to the problem under study.
If instead of the homogeneous blow up we use for example (x, y) = (u2x, uy), with
x2 + y2 = 1, or even with x2 + y4 = 1 if advantageous, we sometimes get better
results. This generalization gives us the possibility of assigning weights to all the
variables, and the weights will in practice be chosen in a way to reach the best
desingularization.

An extra possibility when blowing up singularly perturbed differential equations
is to include ε in the list of variables, coming to the notion of family blow up.

If we have a 3-dimensional family of vector fields Xε,λ + 0 ∂
∂ε , and we want to

blow up the origin (x, y, ε) = (0, 0, 0), then we use:

(3)





x = upx
y = uqy
ε = umε

with (x, y, ε) ∈ S2, and u ∈ R+. The weights p, q and m are chosen differently for
different systems. The best choice can be evident and found without problem or
can be based on the use of Newton polyhedra—see e.g. [D].

On the 2-sphere, we have the relation x2 + y2 + ε2 = 1, often implying the need
of working in charts.

Suppose we want to look near the critical curve in these new coordinates, hence
in the region ε ∼ 0. By assumption 1, in a well-chosen chart, γ− is a graph over
the negative real x-axis, and hence γ− would be visible in the chart
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ε=1

y=−1

x=−1 x=+1

Figure 1. Different charts

(4)





x = −up

y = uqy
ε = umε

This chart is valid for (y, ε) small, and is called a phase-directional rescaling
chart, or simply the {x = −1} chart. Notice that the trivial foliation dε = 0 is
replaced here by d(umε) = 0. If the weights are chosen properly, then the preimage
of γ− under the blow up map has a limit for u → 0. We denote this point with P−,
and it is in fact the intersection of γ− with the blow up locus.

Orbits of vector fields in this space will respect the foliation d(umε) = 0, so as u
decreases, ε will increase. Continuing the orbits, we will eventually need to enter a
region where ε is no longer small, and where we can bound |x| away from 1. This
part is visible in “the chart {ε = 1}”, commonly known as the family rescaling
chart, and the formulas to work in this chart are:

(5)





x = upx
y = uqy
ε = um

This chart is valid for (x, y) in a bounded set. In this chart, u is clearly the singular
parameter, and we again have a family of vector fields (since du = 0). This is the
traditional chart where people do “rescaling” in.

Observe that the y coordinate in (5) is not the same as y in (4), but intuitively
they serve a common purpose, in the sense that they are both a rescaled form of
the same y coordinate. It is of course easy to give formulas for the relation between
the two expressions of y.

As x gets closer to +1, ε gets closer to 0, so we will have to leave the ε = 1 chart.
Like in the first part, we study this section using the chart

(6)





x = +up

y = uqy
ε = umε

Here, the γ+ part of the critical curve will be visible, and as before, if the weights
are chosen properly, the preimage of this critical curve will have a well-defined limit
point P+ as u → 0.

The whole process can be depending on the extra parameters λ, which we do
not blow up. In the description we also keep a = 0.
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We are now ready for stating precise requirements:
Assumption 3 (Regularity condition):

After blowing up at (0, 0, 0) the (x, y, ε)-variables — in an admissible chart
— of Xε,0,λ, we get the following:

The preimages of γ− and γ+ in the blow up space (including the endpoints
of γ± on the blow up locus) are normally hyperbolic. Define P± = γ± ∩ Σ,
where Σ is the blow up locus, i.e. the preimage of (x, y, ε) = (0, 0, 0) under
the blow up map.

Important Remark: the regularity condition is restrictive in the following sense:
the blow up weights are chosen independent of λ, hence in order for the blow up
procedure to work for all choices of λ, the order of degeneracy of the critical curve
must not depend on λ. We have in mind for example quadratic contacts where the
second order angle changes:

γ : y = λx2 + O(x3), λ > λ0 > 0

or contacts of order ‘2n’, with a fixed n, i.e.

γ : y = λx2n + O(x2n+1), λ > λ0 > 0

Situations where the order of degeneracy of the critical curve undergoes a bifurca-
tion (for example γ : y = λx2 + x4, where λ = 0 is inside the parameter space) will
generally not satisfy assumption 3. The way to proceed in these situations is to
include λ in the family blow up.

The next assumption is the sequel of assumption 2, but expressed in blow up
coordinates as we come to introduce. There must be a way to proceed along the
“corner”. We work in a phase-directional rescaling chart, as in (4). Choosing a
section {u = u0 > 0}means choosing a section in the neighbourhood of the normally
hyperbolic part of the critical curve, whereas choosing a section {ε = ε0 > 0} means
choosing a section transversally cutting the blow up locus. As in assumption 2, we
have in mind a model vector field to express the dynamics in center manifolds. First,
the existence of center manifolds near P− follows from assumption 3. Choosing a
manifold W near P−, then we essentially want the vector field on W to be equivalent
to

(7) −uε
∂

∂u
+ ε2 ∂

∂ε

More precisely:
Let p = P− be the end point of γ−, in a blown up admissible chart, and let Wp

be a center manifold of X at p. We require the existence of a C1 embedding

ϕ : [0, 1]2 → Wp : (u, ε) 7→ ϕ(u, ε)

so that
(i) ϕ([0, 1]2) is a neighbourhood of P− inside Wp;
(ii) ϕ([0, 1]× {0}) ⊂ γ− ∪ {P−};
(iii) ϕ({0} × [0, 1]) is inside the blow up locus.
(iv) ϕ|[0,1]×{0} is orientation-preserving for the standard orientation on the u-axis

and the negative orientation on γ.
(v) ϕ is a topological equivalence between X|Wp and the model vector field (7).
This model behaviour will be ensured by assumption 2 and the next assumption:
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Assumption 4 (Regular corner passage): Let p = P− be the end point
of γ− in a blown up admissible chart, then there exists a sufficiently small
neighbourhood V of p so that in V there are no singularities for ε > 0. A
similar requirement is made for the end point P+ of γ+.

Assumption 5 (Connection condition):
Under the conditions of assumption 3, there is a heteroclinic connection Γ
(for a = 0) on the blow up locus Σ connecting P− to P+. We assume that
this connection consists of one orbit going from P− to P+.

Of course, it would be interesting to see what can happen if we let a parameter
tend to the boundary of the parameter set where assumption 5 is satisfied. Possibly,
a saddle-node may appear on the connection, or, the connection may be a curve
of singularities in the limit. At first, we will focus on the case where there is a
connection without singularities, but the techniques are general enough to be used
in more degenerate cases, see the examples for such a generalization in the normally
hyperbolic passage.

Let us now precisely describe the role of a, starting by describing the role of a
regular breaking parameter in the case that γ remains a critical manifold for the
vector fields Xε,a,λ with a 6= 0. To focus on the specificity of this case let us write
a = A. In that case the blow up in (x, y, ε)-space can not only be applied for A = 0
but also for the fields with A 6= 0. Due to assumption 3 we recover, for A = 0, in
the blow up the points P±, that will persist as normally hyperbolic points for small
values A 6= 0. Also the invariant manifolds of respectively P− and P+ inside the
blow up locus {ε = 0} will persist. We know from assumption 5 that they form a
heteroclinic connection for A = 0. In the family rescaling chart and inside {ε = 0}
we can choose a section σ transverse to the flow of the blow up vector field. We
choose a regular parameter z on σ and we denote by z±(A, λ) the intersection with
σ of the invariant manifolds of respectively P±. By assumption 5, we know that
z−(0, λ) = z+(0, λ).

Definition 2. We say that A is a regular breaking parameter if

(8) ρ(λ) :=
∂

∂A
(z− − z+)(0, λ) 6= 0.

This definition does not depend on the choice of the regular coordinate z, nor
on the transverse section σ.

Assumption 6 (Breaking parameter): Using the family rescaling chart
expressed in (5), there exists some n ∈ N such that A := a/un (hence
a = Aεn/m) is a regular breaking parameter.

The idea is that the family Xε,a,λ is replaced by a subfamily Xε,Aεn/m,λ, but in
this subfamily we know that the critical curve γ of Xε,0,λ persists to a critical curve
of Xε,Aεn/m,λ with A 6= 0.

The presentation in this paper is adapted to the study of the so called canard
solutions. It means that we stay in a region in parameter space outside which no
such solutions can exist. This is reflected in the rescaling

(a, ε) = (unA, um),

as used to express assumption 6. In fact, if one wants to use family blow up to
make a study in a complete neighbourhood of (0, 0) in the (a, ε)-plane, the way to
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proceed is first to make a blow up in the parameter plane by writing

(9) (a, ε) = (vkA, v`E),

for A2 + E2 = 1 (or equivalently working with charts E = +1 or A = ±1.) There-
after one continues with blow up in the (x, y, v)-space:

(x, y, v) = (upx, uqy, uε),

with x2 + y2 + ε2 = 1 (or equivalently working with charts). It of course leads to
the same result under the condition E = 1.

In the sections 3.2, 4 and 5 we will hence write system (1) as

(10) Xv,A,λ :
{

ẋ = f(x, y, v, A, λ)
ẏ = vg(x, y, v, A, λ)

to emphasize that we might already have written the original (a, ε) as (a, ε) =
(vkA, v`) for some (k, `) ∈ N2. We can hence suppose that X0,A,λ has a curve of
singularities through the origin for all (A, λ) under consideration.

As an example, consider the Van der Pol system

(11)
{

ẋ = y − x2

2 − x3

3
ẏ = ε(a− x)

In this example, a is not a regular breaking parameter, however in [DR] it is shown
that a/

√
ε is a regular breaking parameter. Hence, in (11) one can write

a = vA, ε = v2E,

with A2 + E2 = 1. Being interested in A ∼ 0, we can consider the chart E = 1,
and check the assumptions for the parameters (v, A) instead of (ε, a).

Important remark: assumption 2, the second part of assumption 5 and assump-
tion 4 are “open” assumptions, i.e. we could restrict the parameter set (A, λ) to an
open subset where these conditions are satisfied. It would be interesting to know
what happens if (A, λ) tends to the boundary of this set, i.e. a singularity could
appear on the slow dynamics, or on the heteroclinic connection, or even more de-
generate phenomena could occur. In extremis, the connection on the blow up locus
could consist out of singular points, with possible loss of normal hyperbolicity at
some point!

To formulate the results, we need some definitions.

Definition 3. A “simple passage” turning point is a contact point satisfying the
properties described in assumptions 1–6 above.

Definition 4. The basin of attraction of γ− is the set of points in the manifold M
for which the orbit in positive time under the unperturbed vector field X0,0,λ has its
ω-set in γ−. A similar definition holds for the basin of repulsion of γ+, using the
α-set.

Definition 5. Let Σ be a smooth curve in M × [0, ε0[, possibly depending on some
extra parameters. Assume that this curve is a graph in ε ≥ 0. The saturation of
Σ is defined as the topological closure of the union of all orbits (w.r.t. the extended
vector field Xε,a,λ + 0 ∂

∂ε) of points of Σ. The need to take a topological closure
becomes clear if one considers the limit point of Σ as ε → 0: the orbits become
singular for this limit point.
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The main result is theorem 2, but a first preliminary result is the existence of
canard solutions, with arbitrary boundary conditions. Two boundary conditions
are chosen as follows: take a smooth curve Σ−, transverse to the manifold {ε = 0}
and so that the end point b− in {ε = 0} is inside the basin of attraction of γ−, and
take a smooth curve Σ+ transverse to {ε = 0} so that the end point b+ is inside
the basin of repulsion of γ+. Theorem 1 states that we can write the parameter a
in terms of ε in a way that the saturation in forward time of Σ− coincides with the
saturation in backward time of Σ+, thereby creating a manifold of canard solutions
for (1). The canard solutions are global of nature in this approach.

The saturation of Σ− contains the limit point in γ− of the orbit of b−. We will
call this limit point a corner point of the saturation of Σ− and denote it by c−.
Similarly, a corner point c+ for the saturation of a curve Σ+ can be introduced.
We need one more definition.

Definition 6. An admissible entry boundary curve Σ− is a curve in M × [0, ε0[-
space (possibly (a, λ)-dependent) that is a graph ε 7→ s−(ε) ∈ M . We assume that
s− is C∞ for ε > 0, and C0 at ε = 0. Furthermore, we assume

∀n ∈ N, ∃N ∈ N :
∂n

∂εn
s−(ε) = O(ε−N ), as ε → 0.

Similarly, an admissible exit boundary curve can be defined.

This definition allows graphs that are C∞ at ε = 0, but also graphs like ε 7→
ε log ε, graphs that are C∞ in ε1/r for some r > 0 etc.

Theorem 1. Let Xε,a,λ be a vector field on a 2-manifold with a simple passage
turning point. Let Σ± be admissible entry/exit boundary curves. Then for some
m ∈ N and for ε ∈ [0, ε0[ with ε0 > 0 sufficiently small, there exists a unique smooth
curve a = A(ε1/m, λ) so that A(0, λ) = 0 and so that the saturation of Σ− along
Xε,A(ε1/m,λ),λ forms a manifold with boundary of canard solutions containing Σ+

as well. The manifold with boundary is smooth in the blow up space, everywhere
except1 at the two corner points c± defined above. The ∞-jet of A(u, λ) w.r.t. u is
independent of the chosen admissible entry/exit boundary curves.

Remark 1: A curve a = A(ε1/m, λ), like in the statement of theorem 1, is called
a control curve, or a canard line. It depends on the choice of Σ±. However, two
different control curves have an infinite contact at ε = 0, uniformly in λ.

Remark 2: The smoothness of the control curve and of the manifolds will be in
terms of the rescaled variables, due to the rescaling. This effect is most visible in
the control curve; this curve will in general only be smooth in ε1/m for some m ∈ N
depending on the blow up construction.

Remark 3: This theorem has strong implications on the orbits of points on Σ−, for
ε ∼ 0. The corner points are essentially the points where the change of dominance
takes place. Following the fast dynamics, a point of Σ− fastly moves towards a small
neighbourhood of the critical curve γ−, near the corner point c−, then staying close
to γ− slowly moves over the contact point towards the repelling part of the critical
curve, and near c+ again moves fastly away from γ+ finally reaching Σ+.

1if the boundary curves are nonsmooth at their base points then the smoothness is of course
also lost along the orbits of these base points.
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Remark 4: The manifolds with boundary in theorem 1, and other manifolds with
boundary will be referred to as manifolds.

Remark 5: If two different sets of boundary curves Σ± and Σ′± are taken, then the
two manifolds are infinitely tangent to each other between the corner point c− or
c′− (whichever is closer to the contact point) and the corner point c+ or c′+. Also
the control curves are infinitely tangent to each other.

A second result concerns the possibility of blowing down the invariant manifold
and getting smoothness in the original phase space. When blowing down, it is a
priori possible to loose differentiability. (Written in polar coordinates, a cone for
example is differentiable w.r.t. (r, θ), but it is not a differentiable object in cartesian
coordinates.) In section 8.1 we will show an example of such a phenomenom for
fields Xε,a,λ satisfying all assumptions which we made. So let us ask ourselves
the question when the invariant manifolds blow down to differentiable objects.
Obviously, a necessary condition is the existence of a Taylor expansion in the origin.
The following theorem states that this is in fact also a sufficient condition.

Theorem 2. Let Xε,a,λ be a vector field on a 2-manifold with a simple passage
turning point. Because of this, we already know that the blow down of the invariant
manifolds from theorem 1 are in an admissible chart near the contact point graphs
y = Ψ(x, ε, λ). Assume that there exist formal power series

â =
∞∑

n=0

an(λ)εn, ŷ =
∞∑

n=0

yn(x, λ)εn

so that yn is smooth in a uniform neighbourhood of x = 0, and so that ŷ is formally
invariant2 under X̂ε,â,λ, then Ψ will be smooth in a neighbourhood of the origin.
The infinite jet j∞(Ψ) will coincide with ŷ, and also j∞(A) will coincide with â.

By this theorem, it is also clear that the canard solutions constructed by means of
analytic techniques coincide with the invariant manifolds from theorem 1. It is well
known that such formal solutions are unique, if they exist, under the assumptions
that we made.

The invariant manifolds in theorem 1 are constructed by connecting “center
manifolds” along γ− to center manifolds along γ+. This concept is important in
order to understand the next theorem, so let us recall a few notions.

Definition 7. A “center manifold” for the system (1) is the saturation of a local
center manifold at a normally hyperbolic point on the critical curve. The saturation
may define an invariant manifold up to the contact point, or more specifically, up
to a part of the blow up locus. Thus, two classes of center manifolds exist: center
manifolds along γ− and along γ+. The quotes around center manifolds make it
clear that this is not a center manifold at the contact point. Important to notice
is that the center manifolds depend regularly on A, unlike the manifolds of canard
solutions, where A has already been expressed in terms of ε.

The idea is that the left center manifolds and the right center manifolds can
be compared when intersecting both with a section transversally cutting the blow

2We say that y = ψ(x, ε) is formally invariant under Xε : {ẋ = f(x, y, ε), ẏ = g(x, y, ε)} if the
infinite jet of f(x, ψ(x, ε), ε)ψ′(x, ε)− g(x, ψ(x, ε), ε) w.r.t. ε is zero.
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up locus. More precisely, in the family rescaling chart we can e.g. take a section
T : {x = 0} and look at the intersection of the left and right center manifolds with
T . Choosing coordinates z on σ := T ∩{u = 0}, we can use (z, u) as coordinates on
T . The intersection of the left and right center manifolds with T are hence graphs

(12) z = ζ±(u,A, λ).

Notice that
ζ±(0, A, λ) = z±(A, λ),

where z± is the graph in (8).
Intuitively, the next theorem states that the angle between ζ− and ζ+ is propor-

tional to the angle of the control curve of the canard solutions:

Theorem 3. Under the conditions of theorem 1, and with the notations introduced
above, we have:

1. The first nonzero coefficient of ε1/m in the expansion of A is related to the
first nonzero coefficient in the expansion of (ζ− − ζ+)(u, 0, λ). In fact, they are
proportional, and the ratio is precisely −ρ(λ), with ρ(λ) the nonzero coefficient
in (8).

2. The first nonzero coefficient of ζ−−ζ+ can be calculated, either using the previous
item if having a preexisting knowledge of A, or using a Melnikov integral along Γ
(the heteroclinic connection on the blow up locus from ζ− to ζ+). The integrands
can be obtained through a formal recursive process.

Finally, we present some classes of vector fields having expression (1) for which
the assumptions of this paper are satisfied.

For h = f or g, we introduce the notation

h◦ := h(0, 0, 0, 0, λ), hx :=
∂h

∂x
(0, 0, 0, 0, λ),

and similar notations for other partial derivatives.

Theorem 4. If

(i) f◦ = 0, fy 6= 0 (existence of critical curve by means of implicit function
theorem);

(ii) fx = 0, fxx 6= 0 (at the origin, normal hyperbolicity is lost in the most generic
way);

(iii) g◦ = 0, gx 6= 0 (connection condition);

(iv) gx

∣∣∣∣
fy fa

fxy fxa

∣∣∣∣− fxx

∣∣∣∣
fy fa

gy ga

∣∣∣∣ 6= 0 (breaking parameter condition);

(v) The product gxfy is negative (transition from attracting to repelling).

Then, near (x, y) = (0, 0) and for (a, ε) sufficiently small, assumptions 1–6 are
verified for the vector field (1), using the blow up (x, y, ε) = (ux, u2y, u2ε) and
writing a = uA. Also, the conditions of theorem 2 are satisfied.

Remark: it may be appropiate to perform some coordinate changes to get the
conditions independent of λ, as required.

The next theorem generalizes the previous one, however, in this case a formal
power series solution generally does not exist.
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Theorem 5. If
(i) f◦ = 0, fy 6= 0 (existence of critical curve by means of implicit function

theorem);
(ii) fx = 0, fxx = 0, . . ., fx2n−1 = 0, fx2n 6= 0 (at the origin, normal hyperbolicity

is lost);
(iii) g◦ = 0, gx = 0, . . ., gx2n−2 = 0, gx2n−1 6= 0 (connection condition);

(iv) gx2n−1

∣∣∣∣
fy fa

fxy fxa

∣∣∣∣− fx2n

∣∣∣∣
fy fa

gy ga

∣∣∣∣ 6= 0 (breaking parameter condition);

(v) The product gx2n−1fy is negative (transition from attracting to repelling).

Then, near (x, y) = (0, 0) and for (a, ε) sufficiently small, assumptions 1–6 are
verified for the vector field (1), using the blow up (x, y, ε) = (ux, u2ny, u2nε) and
writing a = u2n−1A.

3. Proof of theorem 1

3.1. Existence of center manifolds along γ±. In this section, we will saturate
any boundary condition curve Σ± along the vector field described in theorem 1, to
form a smooth invariant manifold (called center manifold). We will not describe
the crossing over the contact point here. We will only treat Σ−; the other case can
be handled similarly after reversing time.

Let L be a compact piece of the critical curve γ− of Xε,0,λ, bounded away from
the contact point. In this compact set, L is normally hyperbolic, and at each point
of L we can always choose a local Ck center manifold W for the vector field Xε,a,λ

in (x, y, ε, a)-space (see [K] or [HPS]).

Lemma 3.1. Let k ∈ N\{0} be fixed. In points of L, choosing a Ck center manifold
for Xε,a,λ, the vector field Xε,a,λ is Ck-equivalent to

(13)
{

ẋ = −x
ẏ = g(y, ε, a, λ)

where g is a positive Ck function for ε 6= 0 and g(y, 0, a, λ) = 0. The chosen center
manifold is mapped to {x = 0}, L is mapped to {x = ε = a = 0} under this equiv-
alence, and the slow dynamics is directed towards the contact point (i.e. increasing
y means moving towards the contact point).

Note that often, one can consider that g(y, ε, a, λ) = εσ for some σ ≥ 1, but in
general this is not possible without extra blow ups (think for example of a situation
where g(y, ε, a, λ) = ε(ε2 + y2 + λ2)). Before proving this lemma, let us recall a
theorem, that we will not only use to prove lemma 3.1, but also to prove more
complicated statements later on.

Theorem 6. [Bon] Let Xλ(x, y, z, a) be a C∞ family of vector fields on R4 having
the following properties:

(i) (0, 0, 0, 0) is a singular point of Xλ.
(ii) Xλ is tangent to the foliation da = 0.
(iii) Xλ is tangent to the foliation dF (y, z) = 0 where F (y, z) = ypzq for (p, q) =

(0, 1) or p, q ∈ N \ {0} and relatively prime.
(iv) DXλ(0, 0, 0, 0) has exactly one non-zero eigenvalue and the related eigenspace

is given by y = z = a = 0.
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Let W be a Ck center manifold of Xλ at (0, 0, 0, 0) with k ∈ N \ {0}.
Then there exists a local Ck change of coordinates ϕ of the form

(x, y, z, a) 7→ (ϕ1(x, y, z, a, λ), ϕ2(x, y, z, a, λ), ϕ3(x, y, z, a, λ), a)

with
F (ϕ2(x, y, z, a, λ), ϕ3(x, y, z, a, λ)) = F (y, z),

and a strictly positive Ck function h(x, y, z, a) such that

[h.ϕ∗X](x, y, z, a) = ±x
∂

∂x
+ Yλ(y, z, a),

with Yλ of class Ck, Y.a = 0, Y.F = 0 and ϕ(W ) = {x = 0}.
Proof. (of lemma 3.1) We follow the techniques in [DR]. Take any point of L, then
a translation will take this point to the origin. Due to the normal hyperbolicity
along L, a linear change of coordinates will ensure that the linear part of the
vector field for ε = 0 looks like

(
0 0
0 ±1

)
. Apply the theorem now: the vector field

±x ∂
∂x + g(y, ε, a, λ) ∂

∂y is Ck-equivalent to the original one. Due to assumption 2,
g has no zeroes for ε > 0 in a neighbourhood of (y, ε, a) = (0, 0, 0). By changing
x → −x and t → −t if necessary, we can make g positive, and get to the expression
in the lemma. ¤

Proposition 3.2. The saturation of Σ− is a smooth invariant manifold along any
compact piece of the critical curve L, except at the corner point c−. This point is
the limit of the fast orbit of the endpoint of Σ− on the critical curve. At the point
c−, the saturation of Σ− is continuous.

Proof. For ε 6= 0 the saturation of Σ− is clearly C∞, since we only deal with
regular C∞ vector fields. The only problem hence deals with the extension for
ε = 0. It is assumed that the endpoint of Σ− lies in the basin of attraction of the
critical curve γ−. This means that in a neighbourhood along the fast orbit of the
endpoint, no singularities appear. Hence, (ε, a) are regular perturbation parameters
in that neighbourhood and the saturation of Σ− will be smooth. We can extend
this manifold until we enter a neighbourhood of c− where a normal form can be
used. The normal form specified in lemma 3.1 can be solved implicitely: given an
boundary condition curve {x = γ(ε, λ), y = y0} the saturation is a graph

x(y, ε, λ) = γ(ε, λ) exp
(
−

∫ y

y0

ds

g(s, ε, a, λ)

)

where y0 is the y-coordinate of c−. We prove the smoothness of this expression
as ε → 0 in proposition A.1 (see the appendix). (Note that admissible boundary
curve γ need not be Ck at ε → 0, but at least there is an N ∈ N so that εNγ
is Ck as ε → 0; see the definition of admissible boundary curves. This is a slight
obstruction, but can be removed by applying proposition A.7, where it is proved
that exp(− ∫ y

y0

ds
g(s,ε,a,λ) ) is O(εN ) for all N .) Since we can cover the compact L by

a finite number of neighbourhoods where a normal form as in lemma 3.1 is valid,
the required smoothness of the saturation of Σ− along L (except in c−) follows.

We recall that Ck-smoothness for all k is enough in our case to conclude C∞-
smoothness, because the domain in which Ck-smoothness is proved does not shrink
as k increases. ¤
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3.2. Extending manifolds in the blow up space. To extend the center man-
ifolds from section 3.1, we need to blow up the origin. For more information re-
garding family blow up, we refer to the literature. Recall that the parameter plane
(ε, a) might have already been rescaled, like in (9) with E = 1, so that is why this
section uses the vector field (10) with parameters (v, A). In any case, v plays the
role of singular parameter, while A is a regular breaking parameter. We will not
blow up A, nor λ. Let

(14) Φ: R+ × S2 → R3 : (u, (x, y, v)) 7→ (x, y, v) = (upx, uqy, umv).

where p, q and m are natural numbers representing weights for the variables x, y
and v. The number m will be especially important, since all objects will be smooth
in u, and hence smooth in v1/m—which might be ε1/mk if a preliminary scaling
ε = vk has taken place, like in (9) with E = 1 (see also the remark after theorem
1).

The preimage of γ− is a subset

γ− ⊂ {v = 0}.
So the first place to look at is in a chart v ∼ 0. In other words, we can look
in the chart (x, y) ∈ S1 (S1 seen as the circle {v = 0} inside S2). Let (x, y) be
represented by an angular value z in the neighbourhood of the endpoint of γ−, and
assume z = 0 corresponds to this endpoint.

Lemma 3.3. Near P−, and for any k ∈ N, the vector field Φ∗(X) is Ck equivalent
to

(15)





u̇ = −uvh(u, v, A, λ)
v̇ = mv2h(u, v,A, λ)
ż = −z,

for some Ck function h.

Proof. Again, we follow the techniques in [DR], and apply theorem 6. The necessary
conditions can be readily checked: the existence of a Ck+2-center manifold follows
from the general theory in e.g. [HPS]; the presence of the foliation is a result of the
blow up: d(umv) = 0 and we also know dA = 0, while the partial hyperbolicity is
presumed in assumption 3 (normal hyperbolicity at the end point P−).

Hence, a normal form z ∂
∂z +Yλ(u, v, a) is obtained, with Y tangent to the foliation

dA = 0 and d(umv) = 0. Write

Yλ(u, v, a) = h1(u, v, A, λ)
∂

∂u
+ h2(u, v,A, λ)

∂

∂v
.

The set {uv = 0} is preserved under the normal form with {u = 0} as part of
the blow up locus, and {v = 0} outside the blow up locus (corresponding to the
manifold {ε = 0}). In any case, both spaces are invariant under Yλ. This invariance
implies that h1 = O(u), and hence

h1(u, v, A, λ) = −uh3(u, v,A, λ),

for some function h3. The tangency to d(umv) = 0 then yields

h2(u, v, A, λ) = mvh3(u, v, A, λ).
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The center manifold {z = 0} has to include a line of singularities {z = 0, v = 0}.
We conclude that h3 = O(v) and

h3(u, v, A, λ) = vh(u, v,A, λ)

for some function h. Since we started with a Ck+2 normal form, h will at least be
Ck. ¤

The existence of Ck normal forms for any k enables us to prove C∞ smoothness
of invariant manifolds:

Proposition 3.4. The saturation of Σ− forms a smooth invariant manifold in the
blow up space, in a neighbourhood of the corner point P−.

Proof. We use the normal form in lemma 3.3 to prove the Ck-smoothness. We
may assume that Σ− is inside the neighbourhood where the normal form is valid,
using proposition 3.2 if necessary. We may suppose that the curve is a graph
{z = γ(v), u = u0 > 0}, and we suppose that u0 > 0 is chosen such that all
(u, v) ∈ [0, u0]2 are in the definition domain of the function h of lemma 3.3.

We can reduce to the case m = 1 by writing ũ = um:




˙̃u = −ũvh̃(ũ, v, A, λ)
v̇ = v2h̃(ũ, v, A, λ)
ż = −z,

with
h̃(ũ, v, A, λ) := mh(ũ1/m, v, A, λ)

It seems that we loose differentiability in terms of ũ, but for the remainder of the
proof, we just need that ũkh̃ is Ck, and this is still the case.

So assume now m = 1 (and drop the tildes). Observe that assumption 4 implies
that h is nonzero for v > 0, and from assumption 2 we know that its sign is positive.
So, in the domain uv > 0, (15) is equivalent to





u̇ = −uv
v̇ = v2

ż = −z/h(u, v, A, λ),

Fixing (u1, v1) the orbit in negative time of (u1, v1, z1), for any z1, crosses the
plane u = u0 at v = u1v1/u0. So, if we take (u0, u1v1/u0, γ(u1v1/u0)) as initial
conditions for (u, v, z), and if we follow the orbit for a time T (u1, v1) = u0−u1

u1v1
, then

we reach a point (u1, v1) of the saturation of the chosen curve. This yields a graph
z = z(u1, v1):

z(u1, v1) = γ(u1v1/u0) exp

(
−

∫ T (u1,v1)

0

dt

h(u0 − u1v1t,
u1v1

u0−u1v1t , A, λ)

)

Writing
t = T (u1, v1)s,

the above expression yields

z(u1, v1) = γ(u1v1/u0) exp
(
−

∫ 1

0

ds

g(s, u1, v1, A, λ)

)
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with

g(s, u1, v1, A, λ) :=
u1v1

u0 − u1
h

(
u0 − (u0 − u1)s,

u1v1

u0 − (u0 − u1)s
,A, λ

)

For u1 sufficiently small (let us say u1 < 1
2u0), and 0 ≤ s < 1 the function g is Ck if

u1v1 ≥ 0 and positive if u1v1 > 0. A problem could raise at s = 1: let us however
remark that, in the region under consideration (including s = 1)

0 <
u1

u0 − (u0 − u1)s
≤ 1,

while
∂n

∂un
1

(
u1

u0 − (u0 − u1)s

)
= (−1)n−1n!

u0s
n−1(1− s)

(u0 − (u0 − u1)s)n+1
,

such that un
1

∂n

∂un
1
( u1

u0−(u0−u1)s
) is bounded. It hence easily follows that

uk−1
1 g(s, u1, v1, A, λ)

is of class Ck. This observation will allow us to use proposition A.7 in the appendix.
From this proposition follows

exp

(
−

∫ S

0

ds

g(s, u1, v1, A, λ)

)

is Ck for all 0 < S ≤ 1, u1v1 ≥ 0. Intersecting with the plane S = 1 gives us the
smoothness of z(u1, v1), and we also know that z(u1, v1) is Ck-flat at u1v1 = 0.

We have shown that the saturation is Ck in all points including the boundary
u1v1 = 0. The boundary consists of the critical curve up until its intersection
with the blow up locus, together with the invariant manifold on the blow up locus.
Once we have passed the corner point, no more singularities are expected in a
neighbourhood of A = 0, u = 0 (assumption 4). This means that we can saturate
the curve beyond the neighbourhood where the normal form is valid. This implies
that the saturation is Ck in a neighbourhood that does not depend on k. Since
the result holds for all k, this proves the C∞ smoothness in a neighbourhood of
P−. ¤

3.3. Connecting the center manifolds. The saturation of the section Σ− forms
a smooth invariant manifold W−, as above, and by reversing time, so will the
saturation of Σ+ along −Xv,A,λ. Along this work, we had to reduce the neighbour-
hood in which v can vary, possibly it has been necessary to restrict A to a small
neighbourhood of the origin; on the compact set Λ we did not put constraints.

To connect the two manifolds W− and W+ together (and hence construct canard
solutions), we consider a chart on the blow up locus where both manifolds are shown
to exist. This is the family rescaling chart, shortly denoted as the chart v = 1. Here,
the variables are rescaled as follows:




x = upx
y = uqy
v = um.

In this chart, u becomes a regular perturbation parameter; we obtain a family of
vector fields

Xu,a,λ :
{

ẋ = f(x, y, u,A, λ)
ẏ = g(x, y, u,A, λ).
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We have assumed in assumption 5 (connection condition) that a heteroclinic con-
nection Γ exists that connects γ− to γ+. Since X does not have any singularities
in the neighbourhood of any compact piece of Γ, we can extend the two manifolds
W− and W+ to meet in a transversal section T : choose a smooth transverse section
(transversally intersecting Γ, and hence locally transverse to the flow of X), then
W− intersects T in a smooth curve inside T , and so will W+. Denote these curves
by ζ− and ζ+.

Let σ be the intersection of T with the blow up locus {u = 0}. Choose a
coordinate system on σ, and denote the coordinate by z. Then, locally (z, u) is a
coordinate system in T , and ζ− and ζ+ are graphs in (u,A, λ). Let z±(u,A, λ) be
such graph representations (w.r.t. some fixed coordinate system of T ), then from
assumptions 5 and 6 we know:

(i) z−(0, 0, λ) = z+(0, 0, λ)
(ii) ∂z−

∂A (0, 0, λ) 6= ∂z+
∂A (0, 0, λ).

The first condition is merely the existence of a heteroclinic connection Γ on the
blow up locus for A = 0. In proposition 5.7 we derive a formula that could be used
to check the above equations.

Anyway, under these assumptions, we can use the implicit function theorem to
solve

z−(u,A(u, λ), λ) = z+(u,A(u, λ), λ)
for A. This proves theorem 1.

4. Proof of theorem 2

The smoothness of manifolds in the blow up space does not necessarily imply the
smoothness in the standard phase space. But, we can recover a great deal. First,
outside the blow up locus the blow up map is a regular diffeomorphism, so outside
the origin we can prove the smoothness of the constructed invariant manifolds. To
show smoothness at the origin, extra arguments are needed.

A second observation is the necessity of the conditions in theorem 2. If a formal
expansion does not exist at the origin, then the manifolds can never be smooth
there—this is because the Taylor expansion of any smooth manifold would agree
with these conditions.

A third observation is relevant: sometimes, a formal expansion can be found to
be formally invariant under the vector field, up to order k. In that case, we are
able to prove the Ck-smoothness of the invariant manifolds in the origin.

4.1. Reduction to (v, A) parameters. The formal expansions in theorem 2 are
expressed in terms of (ε, a), but if necessary, we can replace the expansions by
expansions in terms of (v, A). Indeed, if

(a, ε) = (vkA, v`),

for some (k, `) (following the rescaling in (9)), we can translate the formal power
series â to a series in Â; this yields Â = v−kâ(v`, λ). In this section we will focus on
two results: on one hand that Â is a genuine power series in v and on the other hand
that smoothness in terms of (v, λ) of canard manifolds is equivalent to smoothness
in terms of (ε, λ).
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Instead of continuing to work with the formal power series, we realize these series
as Taylor series of smooth functions; this is possible due to Borel’s theorem (see
e.g. [WA]). Choose

a = ã(ε, λ), y = φ̃(x, ε, λ).
We can consider y = φ̃(x, ε, λ) as a perturbation of a canard manifold W , but it
is advantageous to see it as a canard manifold of a perturbed vector field. We
therefore introduce an error function for (φ̃, Ã):

E(x, ε, λ) := f(x, φ̃(x, ε), ε, ã(ε, λ), λ)
∂φ̃

∂x
(x, ε)− vg(x, φ̃(x, ε), ε, ã(ε, λ), λ).

Due to the formal invariance of (â, φ̂), we know that E is flat in ε, uniformly in
(x, λ). Consider now a slightly altered vector field

(16) X̃ε,a,λ :
{

ẋ = f(x, y, ε, a, λ)
ẏ = vg(x, y, ε, a, λ) + E(x, ε, λ)

Clearly, for the family X̃ the same blow up procedure as for X leads to a good
desingularization. Hence, theorem 1 applies to X̃ and we can choose a control
curve a = A(ε, λ) as a blow down of a C∞ control curve expressed in (A, v)-
coordinates. Because the same blow up weights were used, it is clear that A(ε, λ) =
εk/`A1(ε1/`, λ). Because A is infinitely tangent to ã, it is clear that Â = Â1(v, λ),
implying that it is a genuine series in v.

We can now safely state that under the conditions of theorem 2, there exist

Â =
∞∑

n=0

An(λ)vn, ˆ̃y =
∞∑

n=0

ỹn(x, λ)vn,

with ˆ̃y being a formal canard “solution” of (10), and where ỹ is obtained using
Â = v−kâ. Assume for a moment that we can prove that the graph y = Ψ̃(x, v, λ)
is smooth in terms of (x, v, λ), then we can go back to the original parameters:

y = Ψ(x, ε, λ) := Ψ̃(x, ε1/`, λ),

and because the formal expansion of Ψ only has terms in powers of v`, the above
function will still be smooth in ε. Similarly, the smoothness of a control curve in
terms of v will imply the smoothness of the control curve in terms of ε.

4.2. Canard solution manifold as a graph. Suppose a formal expansion as in
theorem 2 exists. From now on, we will interpret theorem 2 in terms of (v, A)
instead of in terms of (ε, a). Reading this section, one can treat (v, A) as being
equal to (ε, a), but for the sake of generality we prefer to make a distinction.

Take a control curve A(v, λ) and a manifold of canard solutions W as in theorem
1. The blow down of this manifold W is, when restricted to v = 0, at least
continuous at the origin (because of the existence of a connection on the blow
up locus). Outside the origin, this restriction must coincide with the critical curve,
and this critical curve can be written as a graph in x (this is assumed in theorem
2). Hence, locally around the origin, we can blow down W to a graph in (x, v, λ).
Assume now that

y = Ψ(x, v, λ)
is the blow down of W . We already know that it is smooth outside (x, v) = (0, 0),
for x close to 0. To prove theorem 2, it suffices now to prove:
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Proposition 4.1. For all n, r ∈ N we have

lim
v→0

1
n!

∂n+rΨ
∂vn∂xr

(x, v, λ) =
∂ryn

∂xr
(x, λ),

where yn is defined in the statement of theorem 2.

As before we realize these series as Taylor series of smooth functions

A = Ã(v, λ), y = φ̃(x, v, λ).

so that the infinite jet of Ã resp. φ̃ coincides with the formal power series Â resp. φ̂.
In view of proving the proposition, we can now say that it is necessary to prove:





lim
v→0

∂n+rΨ
∂vn∂xr

(x, v, λ) =
∂n+rφ̃

∂vn∂xr
(x, 0, λ).

lim
v→0

∂nA
∂vn

(v, λ) =
∂nÃ

∂vn
(0, λ),

uniformly in λ and for all (n, r). One can look at these expressions in blow up
coordinates, in the various charts. In the family rescaling chart (v = 1) it suffices
to check that

(17)





lim
u→0

Ψ(upx, um, λ)− φ̃(upx, um, λ)
us

= 0,

lim
u→0

A(um, λ)− Ã(um, λ)
us

= 0,

uniformly in λ and for all s ∈ N. We do not need to prove similar conditions
on ∂n+r∆

∂vn∂xr with ∆ = Ψ − φ̃, since the function ∆(u, x, λ) := ∆(upx, um, λ) is a
C∞ function. The existing relations between the derivatives w.r.t. (v, x) and the
derivatives of H w.r.t. (u, x) will imply the necessary conditions.

We must investigate these expressions in a full neighbourhood of (v, x) = (0, 0),
so it is necessary to look at the phase directional rescaling as well. There, the
denominator will be of the form (urv`) for arbitrary (r, `). Supposing that one
needs to look in the directional chart {x = −1}, one finds sufficient conditions to
be

(18) lim
umv→0

Ψ(−up, umv, λ)− φ̃(−up, umv, λ)
urvs = 0.

(If the above equation is true, then one has that the numerator is O(urvs), and, due
to the smoothness in terms of (u, v), that its n-th derivative w.r.t. u is O(ur−nvs).
Similarly, derivatives w.r.t. v and λ are treated.)

4.3. Perturbing the vector field. We can consider y = φ̃ as a perturbation of
the manifold W , but we can also regard it as a manifold of canard solution of a
perturbed vector field. We therefore introduce an error function for (φ̃, Ã) :

E(x, v, λ) := f(x, φ̃(x, v), v, Ã(v, λ), λ)
∂φ̃

∂x
(x, v)− vg(x, φ̃(x, v), v, Ã(v, λ), λ).

Due to the formal invariance of Â and ŷ, we know that E is flat in v, uniformly in
(x, λ). Consider now a slightly altered vector field

(19) X̃v,A,λ :
{

ẋ = f(x, y, v, A, λ)
ẏ = vg(x, y, v, A, λ) + E(x, v, λ)



CANARD SOLUTIONS AT NON-GENERIC TURNING POINTS 21

Then, the graph y = φ̃(x, v, λ) defines a smooth manifold W̃ and (Ã, W̃ ) is a
manifold of canard solutions for X̃.

So, on one hand we have a family of vector fields (10), and on the other hand,
we have a family of vector fields (19) from which we know that it has an invariant
manifold {A = Ã(v, λ), y = φ̃(x, v, λ)}. Both families of vector fields are strongly
related to each other: the infinite jets with respect to v of both vector fields are the
same.

Consider the blow up map introduced for the vector field X. If we apply the same
blow up map on X̃, then we can compare X with X̃ in blow up coordinates. They
are everywhere infinitely tangent to each other along the blow up locus. Looking
in the phase directional rescaling charts, we used Ck-normal form coordinates as in
lemma 3.3, so applying the same transformation to X̃, it is not hard to prove that
the perturbed vector field looks like

(20) X̃ :





u̇ = −uvh̃(u, v, z, A, λ)
v̇ = mv2h̃(u, v, z, A, λ)
ż = −z + f̃(u, v, z, A, λ),

where h̃ − h = O(urv`), f̃ = O(urv`) for (r, `) arbitrary high (provided that we
choose a Ck normal form with k ≥ r+` and shrink the neighbourhood of (u, v, z) =
(0, 0, 0)).

The following lemma proves (18):

Lemma 4.2. Let z = ψ̃(u, v, A, λ) be invariant under the Ck vector field (20) in
a neighbourhood of (u, v, z) = (0, 0, 0). Then z = ψ̃(u, v,A, λ) is O(urv`) flat to
z = 0, with r + ` ≤ k. This asymptotic property is uniform in λ ∈ Λ and in A near
the origin.

Before proving this lemma, we show how this lemma can be used to prove (17),
finishing the proof of theorem 2. In the family rescaling chart, these invariant
manifolds can be extended until they intersect the section T , and we can do the
same thing in backward time for manifolds coming from the other side. The lemma
states that at some point (near infinity in the family rescaling chart) the invariant
manifold of X̃ is O(ur)-close to the invariant manifold of X.

Following the flow of X in the family rescaling map will not decrease the order of
separation between the two manifolds; this is due to the absence of singularities in
a tube around the heteroclinic connection Γ, and due to the fact that u̇ = 0 there.

If we apply the implicit function theorem to connect the center manifolds coming
from the left and from the right, then no difference is seen between the perturbed
invariant manifolds and the actual invariant manifolds up to order r. So in the
implicit solution we will see no difference between A and Ã up to order r. This
means that A and Ã are asymptotic of order O(ur) for any r. Hence, the second
part of (17) is shown. The first part easily follows now too, since from now on,
we can treat A and Ã to be the same, and the invariant manifold will then stay
O(ur)-close to the perturbed invariant manifold uniformly in any compact subset
of the family rescaling chart.

Remains to prove the lemma.
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Proof. (of lemma 4.2) The smoothness of such manifolds has already been proved.
So let us first consider the restriction to u = 0. This restriction is invariant under

v2h(0, v, A, λ)
∂

∂v
+ (−z)

∂

∂z
.

In the domain v ≥ 0, there is a unique invariant (center) manifold: z = 0. Hence
ψ̃ = O(u). Writing now z = uz1, we can pullback the vector field and write it in
terms of (u, v, z1). This yields





u̇ = −uvh̃(u, v, uz1, A, λ)
v̇ = mv2h̃(u, v, uz1, A, λ)

ż1 = −(1− vh̃(u, v, uz1, A, λ))z1 + 1
u f̃(u, v, uz1, A, λ)

which leads to an equivalent vector field




u̇ = −uvh̃1(u, v, z, A, λ)
v̇ = mv2h̃1(u, v, z, A, λ)

ż1 = −z1 + f̃1(u, v, z1, A, λ),

but where f̃1 = O(ur−1v`) and is a Ck−1 function. This new vector field has an
invariant manifold z1 = ψ1(u, v,A, λ) := 1

u ψ̃(u, v, A, λ). Remains to prove that ψ1 is
O(ur−1v`). Continuing this process reduces to the case r = 0. So let us now assume
r = 0. Looking at v = 0, we find that zr = ψ̃r(u, 0, A, λ) is identically 0, since f̃ is
O(v`), with ` ≥ 1. Hence, we can proceed as before by writing z = vz1. ¤

5. Proof of theorem 3

In section 3, we have proved the existence of the “center manifolds” coming from
both sides of the blow up locus, and meeting somewhere on the blow up locus. In
fact, they only meet for ε = a = 0. So what happens when ε 6= 0, or a 6= 0?
In that cases, the manifolds are separated. We derive formulas for calculating the
separation of these manifolds.

Since the comparison between the left and right center manifolds is done in the
family rescaling charts, we will work most of the time in this chart.

In section 5.2 we state some facts on saddle connections in the plane using
Melnikov theory, which we will use to prove the second part of theorem 3.

5.1. The relation between angle and the control curve. We focus on the
first part of theorem 3. We use the notations from theorem 3. Let A(u, λ) be a
control curve as in theorem 1, and define

∆(u,A, λ) = ζ−(u,A, λ)− ζ+(u,A, λ)

where ζ± hase been defined in (12). ∆ is the separation of the forward and backward
center manifolds. Of course, ∆ as well as A depend on the boundary curves Σ−
and Σ+ chosen in theorem 3, but the asymptotic expansion is unique. Suppose

A(u, λ) = ar(λ)ur + o(ur),

for r ≥ 1 and with ar(λ) 6= 0, then,

∆(u,A(u, λ), λ) ≡ 0.
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This has an effect on the asymptotic expansion:

∆(u, 0, λ) +A(u, λ)
∂∆
∂a

(u, 0, λ) = o(A(u, λ)).

Hence,

(21) lim
u→0

(
∆(u, 0, λ)
A(u, λ)

+
∂∆
∂a

(0, 0, λ)
)

= 0.

Notice that ∂∆
∂a (0, 0, λ) is the nonzero number ρ(λ) in (8). (An expression for this

number is calculated in proposition 5.7.) Conclusion:

(22)
{ A(u, λ) = ar(λ)ur + o(ur)

∆(u, 0, λ) = br(λ)ur + o(ur),
with

br(λ)
ar(λ)

= −ρ(λ) 6= 0.

Note that (21) is slightly more general than (22), since it can also be used in the
case A(u, λ) is infinitely flat in u. But in such a case, we must add the assumption
that A(u, λ) 6= 0 for u 6= 0.

5.2. Perturbations of regular orbits in the plane. We intend to study the
breaking of a heteroclinic connection on the plane, inducing expressions that can
be used in the specific problem that we want to investigate. We will consider a
1-dimensional parameter µ, which will be the bifurcation parameter. The whole
setting may depend on other parameters λ, which are “trivial” in the sense that
they do not induce bifurcations. We hence will work with a family, depending on
λ, of 3-dimensional situations. We will keep µ a 1-dimensional parameter although
it is not necessary.

Consider a vector field

Xµ :
{

ẋ = f(x, y, µ)
ẏ = g(x, y, µ),

where f and g are smooth on R2 × P . We will work most of the time with the
extended vector field Xµ + 0 ∂

∂µ . Let φ(t, (x, y, µ)) be the flow for this vector field.
Choose now a (fibred) section T ⊂ R2 × P transverse to the flow of Xµ, with a
coordinate mapping

ψ : (h, µ) 7→ (ψ0(h, µ), µ).

We try to calculate intersections of heteroclinic connections passing through T in
these coordinates. In this section however, instead of a heteroclinic connection, a
perturbation of a regular orbit is considered. In the next section, we will see how
the results can be maintained if we let the orbit tend to a heteroclinic connection.

Consider the projection on T along the orbits of Xµ:

P (x, y, µ) := φ(τ(x, y, µ), (x, y, µ)),

where τ is the transition time to go from (x, y, µ) to a point in T . Of course, P is
not defined everywhere, but is certainly defined in an open neighbourhood of the
chosen orbit. One sees that P is constant along orbits of Xµ and hence

H(x, y, µ) := 〈(1, 0), ψ−1(P (x, y, µ))〉
(the h coordinate of ψ−1(P (x, y, µ))) is a first integral for Xµ in some open neigh-
bourhood of the orbit.
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Lemma 5.1. There is an integrating factor θ defined on the domain of P so that

Xµ :
{

ẋ = −θ(x, y, µ)−1 ∂H
∂y (x, y, µ)

ẏ = θ(x, y, µ)−1 ∂H
∂x (x, y, µ).

Proof. Because H is invariant along orbits of Xµ, one has f ∂H
∂x + g ∂H

∂y = 0. So one
could define θ−1 as g/∂H

∂x in points where the denominator is nonzero, or −f/∂H
∂y in

other points. Both denominators cannot be zero at the same time (because there
are no fixed points). ¤

The key to finding the angle between the manifolds lies in the study of θ. But
first, we will show how to use the lemma to calculate the intersection.

Let γ be the chosen orbit for µ = 0. We study perturbations of γ as follows:
we consider a vertical line segment (segments of the form {(x, y, µ)|µ ∈ (R, 0)},
with (x, y) chosen on γ) and let points of such a line segment flow. It is in a
way unnatural to choose line pieces instead of more general curves, but in view of
proving the results in this paper, vertical line segments suffice. The flow of this line
segment is intersected with T , and compared to γ ∩ T .

The curve γ intersects T in a single point, but if we lift the curve vertically
(π−1(γ) if π is the projection onto {µ = 0}), then the intersection of π−1(γ) with T
is some curve, say parametrized as h = c(µ). Any point above γ meets this curve,
if it follows the flow of X0. So consider a point (p, µ) above γ (i.e. p ∈ γ), and let
it flow along X0 until it meets T . The fundamental theorem of calculus states

c(µ)−H(p, µ) =
∫

X0(H),

where the integration is along the curve γ (lifted to height µ) from (p, µ) to T . We
could calculate c(µ), but this is not necessary: let (q, µ) be another point above γ
at the same height, then

(23) H(p, µ)−H(q, µ) = −
∫

γ(p,q)

X0(H),

where γ(p, q) is the piece of γ from p to q.
In this section, we will only describe jµ

k H(p)− jµ
k H(q) (writing jµ

k for the k-jet
w.r.t. µ); only in a later section we will proceed to the limit (letting p and q tend
to infinity, or in other words, letting γ(p, q) tend to a heteroclinic connection).

For fixed p and q, we have

jµ
k H(p)− jµ

k H(q) = −
∫

γ(p,q)

jµ
k X0(H),

Elaborating the integrand yields

X0(H) = f0
∂H

∂x
+ g0

∂H

∂y
= θ(f0g − g0f).

So, if we are able to calculate θ up to any order, then we can calculate the contact
between the invariant manifolds up to any order.

For calculating θ up to any order, observe that manipulating the two forms for
Xµ will show that

Xµ(θ) = −θ div Xµ.
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This expression gives θ as a solution to a differential equation; if we have an initial
condition for θ, we can calculate θ explicitely. An appropiate initial condition is
obtained as follows:

Lemma 5.2. In points p ∈ T , we have

θ(p) := det (∂hψ0(h, µ) |Xµ(p))−1
,

with h = H(p). (We write ∂hψ0(h, µ) as the first column in a matrix, and Xµ(p)
as the second column.)

Proof. There is a strong relation between H and ψ, since

H(ψ0(h, µ), µ) = h.

Derive this equation with respect to h:

D(x,y)H(ψ0(h, µ), µ)∂hψ0(h, µ) = 1.

Let p = ψ0(h, µ), then the above equation becomes

D(x,y)H(p)∂hψ0(h, µ) = 1,

or differently written

det
(

∂hψ0(h, µ), (−∂H

∂y
(p),

∂H

∂x
(p))

)
= 1.

Since θf = −∂H
∂y and θg = ∂H

∂x it gives the result. ¤

The problem with this result is that the initial condition θ depends on µ. We
will see that this is a problem that we would like to avoid. First, notice that if
θ0 = θ|µ=0 then

X0(θ0) = −θ0 div X0,

so

θ0(p) = θ0(P (p, 0)) exp

(∫

O(p,0)

div X0

)
,

where O(p, 0) is the orbit along X0 from p to the intersection point P (p, 0) of the
orbit with T . Assuming we can calculate this integral explicitely, then we can move
on to θ1 := ∂θ

∂µ |µ=0. However, plugging this into the equation, we see that at some
point we need to calculate X1(θ0), with X1 = ∂X

∂µ |µ=0.
This means that we must be able to derive θ0 ◦ P as well as an integral along

orbits of X0. It is however possible to avoid deriving θ0 ◦P , if we choose the section
T in such a way that θ0 does not depend on µ. Since the choice of the section will
not affect implicit results (such as the calculation of the control curve), we have
some freedom in the choice of the coordinate system on T .

Lemma 5.3. On T , there exists a coordinate system (and an associated integrating
factor θ on the blow up locus) so that for all points p ∈ T close enough to the
intersection point γ ∩ T , we have

θ(p) = 1.
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Proof. Let h = α(k, µ) be a regular change of coordinates, so that

ψα(k, µ) := (ψ0(α(k, µ), µ), µ)

is a new coordinate function for T . We will put conditions on α so that θ with
respect to this new coordinate function has the required property. According to
lemma 5.2, we need to solve

g(p)
∂

∂k
(ψ0x(α(k, µ), µ))− f(p)

∂

∂k
(ψ0y(α(k, µ), µ)) = 1,

where p = ψα(k, µ). Working out the above expression yields a differential equation
for α:

dα

dk
=

1

g(p)∂ψ0x

∂h (α, µ)− f(p)∂ψ0y

∂h (α, µ)

∣∣∣∣∣
p=(ψ0(α,µ),µ)

.

The local existence of solutions of differential equations implies the result. ¤

In these coordinates, we can calculate θ more easily. Writing

Xµ = X0 + µX1 + µ2X2 + · · · ,

and
θµ = θ0 + µθ1 + µ2θ2 + · · · ,

we can give recursive formulas for θi (always under the assumption that µ is 1-
dimensional):

(24)
∑

i,j

Xi(θj)µi+j =
∑

i,j

(−θj div Xi)µi+j

At zero order:

θ0 = exp(
∫

O(p,0)

div X0),

with O(p, 0) the orbit from (p, 0) to the intersection point at T . For higher orders,
we have to solve differential equations at each point, but an integration along orbits
of X0 will always lead to solutions. This knowledge combined with the fact that
the initial conditions are trivial leads to a recursion only depending on the jets of
Xµ along µ = 0. Note that the integrands at higher order could contain Xi(θj), so
a way of deriving θj needs to be available to be able to calculate the integrals. All
these integrals only involve the unperturbed vector field, but still they can be quite
complicated.

Using (24), one finds

(25) θn = θ0

∫

O(p,0)

n−1∑

k=0

(θk/θ0)(div Xn−k + Xn−k(log θ0) + Xn−k(θk/θ0)).

5.3. Heteroclinic connections on the blow up locus. Let us apply the results
of section 5.2 to the setting of this paper. Take a section T transverse to the flow
of X on the blow up locus (in the family rescaling chart), and assume T intersects
the heteroclinic connection Γ which connects the points at infinity P− and P+.

Write

(26) θ(x, y) := exp

(∫

O(x,y)

div X
∣∣
u=A=0

)
.
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where O(x, y) denotes the orbit along the unperturbed vector field from (x, y) to
the intersection point in T . We have chosen a coordinate system on T so that θ = 1
for points on T (see lemma 5.3).

Let ζ− be the intersection of an invariant manifold W− from section 3.3 with
T , and let ζ+ be the intersection of W+ with T for some choices for the mani-
folds W− and W+. In the chosen coordinate system, let z−(u,A, λ) be the graph
representation of ζ− and z+(u,A, λ) be the graph representation of ζ+.

Following the techniques of the previous section, we can calculate the k-jets
jk(z+ − z−), with respect to µ, provided that we are able to calculate X0(H) for
a first integral H. The link between X0(H) and ζ± is stated in a limit version of
formula (23):

Lemma 5.4. Consider the vector field X|A=0 with the perturbation parameter u.
Then, in (23),

lim
p→P−

ju
k H(p, u) = ju

k z−(0, λ), lim
q→P+

ju
k H(q, u) = ju

k z+(0, λ),

where ju
k is the k-jet w.r.t. u. Hence, also the right hand side of (23) converges:

lim
p→P−,q→P+

∫

γ(p,q)

jµ
k X0(H) =

∫

Γ

jµ
k X0(H),

where Γ is the heteroclinic connection from P− to P+.

Proof. Let us focus on z−, and get a clear idea of what we have to prove. Given a
point p on the blow up locus, then the line segment {(p, u)|u ≥ 0} can be saturated
with respect to X. We have to prove that as p gets closer to the end point P−,
the intersection of this saturation with T is O(uk)-close to any choice of invariant
manifold W−, and this for any k > 0. Close enough to P− the straight line seg-
ment in Ck-normal form coordinates is expressed by a Ck-curve (v(u), z(u)) with
(v(0), z(0)) on the center manifold of P− (the connection on the blow up locus).
Choose a C with 0 < v(0) < C and saturate (in normal form coordinates) the Ck

curve until the section T ′ : {v = C} is met.
Take an initial point (u0, v0, z0), and let (u, v, z) be the coordinates of the inter-

section of the orbit through (u0, v0, z0) with T ′. In the light of these remarks, we
have to prove that z = O(uk).

It is easy to show that there is a κ > 0 so that the transition time τ to go from
a sufficiently small neighbourhood of (0, v(0), 0) to T ′ has a lower bound given by

τ ≥ κ

v0

Since z(t) = z0 exp(−t), we find |z| ≤ |z0| exp(−κ/v0). Finally, we have a first
integral umv, hence um

0 v0 = umC. We conclude

|z| ≤ |z0| exp(−κ̃/u1/m)

for some κ̃ > 0. This proves the k-flatness to z = 0 in the section T ′. ¤
Lemma 5.5. Consider the vector field X|u=0 with the perturbation parameter A.
Then, in (23),

lim
p→P−

jA
k H(p,A) = jA

k z−(0, λ), lim
q→P+

jA
k H(p,A) = jA

k z+(0, λ),

where jA
k is the k-jet w.r.t. A.
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Proof. The technique of proving this lemma is slightly different. Let us again focus
at z−. Look at line segments {(p,A)|A ∼ 0}. Taking the union for all p on the
heteroclinic connection, we get a manifold (not necessarily invariant) U . As in
the previous lemma, we choose a section T ′ close to P−, and look in the phase
directional rescaling chart. Consider now the normal form of lemma 3.3, restricted
to u = 0 and look in the (v, z, A)-space:





Ȧ = 0
v̇ = mv2h(0, v, A, λ)
ż = −z,

In these coordinates, the manifold U is a graph z = φ(v,A), and any choice of
invariant manifold W is O(Ak)-close to z = 0 (in fact {z = 0} is the unique center
manifold for this system—all invariant manifolds W have a common intersection
with the blow up locus). The normal form is integrable: if an initial condition
(v0, z0, A0) inside U is taken, and we intersect with a section T ′ : {v = C}, then we
get

A = A0, v = C, z = φ(v0, A) exp

(
−

∫ C

v0

ds

ms2h(0, s, A, λ)

)
.

Letting v0 tend to zero, one can prove that the k-jet of the last expression tends to
zero as well (it is in fact a consequence of case (b) of proposition A.1, if we apply
the transformation s = −s̃). We conclude that the saturation of line pieces are
O(Ak)-close to any choice of invariant manifold W if the line pieces tend to the line
of singularities. ¤

Remark that the preceding two lemma’s use techniques from the previous section,
with µ = u or µ = A one-dimensional. If we want to examine ju,A

k , then the previous
section needs to be formulated in a more-dimensional context.

Now, let us apply the results in the previous section, first on X|A=0, and on
X|u=0. An immediate consequence of the above lemmas, and (23) is:

(27) (ju
k z−(0, λ)− ju

k z+(0, λ)) = ju
k

∫

Γ

θ(f |u=0g − g|u=0f)
∣∣∣∣
A=0

and (
jA
k z−(0, λ)− jA

k z+(0, λ)
)

= jA
k

∫

Γ

θ(f |A=0g − g|A=0f)
∣∣∣∣
u=0

where Γ is the heteroclinic connection for u = A = 0.
Define the separation function

(28) ∆(u, A, λ) := z−(u,A, λ)− z+(u, A, λ).

Then, using the k-jet formulas from above, we can easily find expressions for the
1-jet:

Proposition 5.6.

∆(u, 0, λ) = u

∫

Γ

Fu + O(u2)

with

Fu := θ

(
f

∂g

∂u
− g

∂f

∂u

)∣∣∣∣
u=A=0

and with θ as in (26).
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Proof. Immediate from (27), if one calculates the 1-jet of θ(f |u=0g − g|u=0f) with
respect to u. ¤

Proposition 5.7.

∆(0, A, λ) = A

∫

Γ

FA + O(A2),

with

FA := θ

(
f

∂g

∂A
− g

∂f

∂A

)∣∣∣∣
u=A=0

and with θ as in (26). The parameter A has the required regular breaking property
if and only if

ρ(λ) =
∫

Γ

FA 6= 0,

where ρ(λ) has been introduced in (8).

Combining these two propositions yields

Corollary 5.8. The first order term in A(u, λ) is

∂A
∂u

(0, λ) = −
∫
Γ

Fu∫
Γ

Fa
.

where Fu and Fa are defined above.

5.4. Higher order angles. Assuming that the first order angle is zero, it may be
interesting to find the first order contact that is nonzero. Remark that even though
the first order angle is zero, the invariant manifolds can be tilted; the angle in the
forward manifolds is then the same as the angle in the backward manifolds. The
appearance of a tilt will have an effect on higher order terms, and that is the reason
why the knowledge of z± up to order uk−1 is necessary to calculate the angle of
order uk. The method to work is to calculate inductively the terms of order uk of
the invariant manifolds, and stop at the first order where the angle has a nonzero
coefficient. The method consists in expanding (27) in terms of u. This involves
calculating the integrating factor θ up to order uk−1, or at least θ|Γ. To that end,
the recursive formule (25) can be used, however, as one might expect, the formulas
become quite cumbersome.

6. Proof of theorem 4

Under the conditions of theorem 4, we can explicitely calculate the optimal
weights for the blow up and check the conditions for theorems 1 and 2. Let us first
rewrite the vector field in some kind of standard form:

Lemma 6.1. Under the conditions of theorem 4, Xε,a,λ is locally C∞ conjugate to

X̃ε,a,λ :
{

ẋ = −y + 1
2x2 + x3F1(x, y, ε, a, λ) + xεF2(x, y, ε, a, λ)

ẏ = εG(x, y, ε, a, λ).

Furthermore,
(i) G(0, 0, 0, 0, λ) = −g◦fxxfy;
(ii) ∂G

∂x (0, 0, 0, 0, λ) = −gxfy;

(iii)
∂G

∂a
(0, 0, 0, 0, λ) = gx

∣∣∣∣
fy fa

fxy fxa

∣∣∣∣− fxx

∣∣∣∣
fy fa

gy ga

∣∣∣∣ .
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Proof. Consider a transformation of the form

x = α(y, a, λ)x̃ + β(y, a, λ).

Since ẏ = O(ε), we have ẋ = α ˙̃x + O(ε), and hence

˙̃x =
1
α

f(αx̃ + β, y, 0, a, λ) + O(ε)

=
1
α

f(β, y, 0, a, λ) +
∂f

∂x
(β, y, 0, a, λ)x̃

+ α
∂2f

∂x2
(β, y, 0, a, λ)

x̃2

2
+ O(x̃3) + O(ε).

Consider the mapping

I : (y, a, λ, α, β) 7→
(

∂f

∂x
(β, y, 0, a, λ), α

∂2f

∂x2
(β, y, 0, a, λ)

)
.

Defining α0 = 1/fxx, then I(0, 0, λ, α0, 0) = (0, 1). Furthermore,

Dα,β(I)(0, 0, λ, α0, 0) =
(

0 fxx

fxx ∗
)

This linear operator is invertible, hence the implicit function theorem gives us the
existence of (α, β) so that

˙̃x = F (x̃, y, ε, a, λ) :=
1

α(y, a, λ)
f(β(y, a, λ), y, 0, a, λ) +

x̃2

2
+ O(x̃3) + O(ε).

Because we need it for the second part, we will give the asymptotics of α and β
w.r.t. (y, a):

α(y, a, λ) =
(

1
fxx

)
+ O(‖(y, a)‖)

and

β(y, a, λ) =
(−fxy

fxx

)
y +

(−fxa

fxx

)
a + O(‖(y, a)‖2)

Define now

(29) ỹ := −F (0, y, ε, a, λ) =
−1

α(y, a, λ)
f(β(y, a, λ), y, 0, a, λ) + O(ε).

We can use ỹ as new y coordinate, locally near (y, ε, a) = (0, 0, 0). In this form, we
find

˙̃x = −ỹ +
1
2
x̃2 + O(x̃3) + εO(x).

This finishes the first part of the lemma. The second part is more elaborate. Let
y = φ(ỹ, ε, a, λ) be the implicit solution of (29), then

˙̃y = −ε
∂F

∂y
(0, y, ε, a, λ)g(x, y, ε, a, λ)

∣∣∣∣
y=φ(ỹ,ε,a,λ)

So,

G(x̃, ỹ, ε, a, λ) = −∂F

∂y
(0, φ, 0, a, λ)g(αx̃ + β, φ, 0, a, λ) + O(ε).



CANARD SOLUTIONS AT NON-GENERIC TURNING POINTS 31

We can calculate ∂F
∂y (remembering that ∂f

∂x (β(y, a, λ), y, 0, a, λ) ≡ 0):

∂F

∂y
(0, y, 0, a, λ) =

−1
α(y, a, λ)2

f(β(y, a, λ), y, 0, a)
∂α

∂y
(y, a, λ)

+
1
α

∂f

∂y
(β(y, a, λ), y, 0, a, λ).

So,
∂F

∂y
(0, 0, 0, 0, λ) = fxxfy.

From this last property easily follow the expressions for both G(0, 0, 0, 0, λ) and
∂G
∂x (0, 0, 0, 0, λ) as claimed in the lemma. Let us now focus on ∂G

∂a (0, 0, 0, 0, λ):

∂G

∂a
(0, 0, 0, 0, λ) = g◦C(λ)

− fxxfy

(
gx

(
∂β

∂a
(0, 0, λ) +

∂β

∂y
(0, 0, λ)

∂φ

∂a
(0, 0, 0, λ)

)

+gy
∂φ

∂a
(0, 0, 0, λ) + ga

)
,

where C(λ) is some function of which the value is irrelevant in view of proving the
lemma, since under the assumptions of theorem 4, g◦ = 0). If we find the value of
∂φ
∂a we can put all pieces together. It can be readily checked from formula (29) that

∂φ

∂a
(0, 0, 0, λ) = −

∂F
∂a (0, 0, 0, 0, λ)
∂F
∂y (0, 0, 0, 0, λ)

= −fa

fy
.

We conclude:
∂G

∂a
(0, 0, 0, 0, λ) = g◦C(λ)− fxxfy

(
gx(−fxa

fxx
+

fxy

fxx

fa

fy
)− gy

fa

fy
+ ga

)
.

Elaborating this expression yields a proof of the lemma. ¤

Corollary 6.2. Under the assumptions of theorem 4, the family of vector fields
Xε,a,λ is locally C∞-equivalent to

(30) X̃ε,a,λ :
{

ẋ = −y + 1
2x2 + x3F1,λ(x, y, ε, a) + xεF2,λ(x, y, ε, a)

ẏ = ε(a + x + Gλ(x, y, ε, a))

with F1,λ, F2,λ and Gλ C∞ functions and

G(x, y, ε, a, λ) = O(ε, y, ‖(x, a)‖2),
and where the O notation is uniform in λ.

Proof. Take G as in lemma 6.1. From the assumptions of theorem 4 we know
that ∂G

∂x (0, 0, 0, 0, λ) > 0. By rescaling ε with a positive factor, we may assume
that ∂G

∂x = −1. We also know that ∂G
∂a (0, 0, 0, 0, λ) 6= 0. By rescaling the a-space

with a nonzero factor, we may assume that this derivative is 1. This proves the
corollary. ¤

Let us now check all assumption 1–6 for the normal form (30). The first
assumption—the existence of a critical curve—is guaranteed by the implicit func-
tion theorem:

y − 1
2
x2 + x3F1,λ(x, y, 0, 0) = 0.



32 PETER DE MAESSCHALCK AND FREDDY DUMORTIER

Clearly, there is a unique solution in the neighbourhood of (x, y) = (0, 0). Here,
the curve is a graph y = φ(x) = 1

2x2 + O(x3). Looking at the linear part of (30),
we find, for ε = 0: (

x + O(x2) −1 + O(x3)
0 0

)

The eigenspace transverse to the curve of singularities γ has eigenvalue x, so for
x < 0 we have attraction, and for x > 0 there is repulsion.

Assumption 2 can be checked as follows: Substituting y = φ(x) in 1
ε ẏ leads to

the slow dynamics
φ′(x)x′ = x + Gλ(x, φ(x), 0, 0).

Since φ′(x) = x + O(x2), we find

x′ = 1 + O(x).

The slow dynamics ensures movement from the attracting to the repelling part of
the critical curve.

To look at assumption 3, we need to blow up the family of vector fields. We use
a rescaling in the parameter space:

a = vA, ε = v2.

The parameter A will serve as regular breaking parameter, but we come to that
later. In terms of these new parameters, the vector field yields

(31)
{

ẋ = −y + 1
2x2 + x3F̃1,λ(x, y, v, A) + xv2F̃2,λ(x, y, v, A)

ẏ = v2(vA + x + G̃λ(x, y, v, A)

The blow up formulas for blowing up the origin are

x = ux, y = u2y, v = uv.

In the phase directional rescaling chart, we look at the directional chart y = 1, and
find (after dividing through u) a family





u̇ = 1
2uv2 (vA + x + O(u))

v̇ = − 1
2v3 (vA + x + O(u))

ẋ = −1 + 1
2x2 − 1

2xv2(vA + x) + O(u)

The preimage of the attracting part γ− is represented by {x = −√2+O(u), v = 0},
which is normally hyperbolically attracting with eigenvalue x < 0. Similarly, the
preimage of the repelling part will be normally hyperbolic up to the end point P+.

To check the connection assumption (assumption 5), we look in the family rescal-
ing chart v = 1. Here, the family of vector fields is equivalent to

{
ẋ = −y + 1

2x2 + O(u)
ẏ = A + x + O(u).

The invariant line y = 1
2x2 − 1 is a curve without singularities, connecting P− to

P+. To verify that P± is indeed a part of this line, one needs to look at y = 1
2x2−1

in the phase directional rescaling coordinates; there, this curve is represented by
{x2 = 2(v2 + 1), u = 0}. In any case, assumption 5 is verified.

Assumption 6 can be checked easily in this case. This is because the unperturbed
vector field is Hamiltonian in the family rescaling chart, with integrating factor

θ(x, y) = exp(−y).
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Using proposition 5.7, the parameter A is a regular breaking parameter if
∫

Γ

(−y +
1
2
x2)θ(x, y) 6= 0.

where Γ is the heteroclinic connection y = 1
2x2 − 1. The integral can be explicitely

evaluated.
This proves the first part of theorem 4. The next lemma deals with the second

part of the proof of theorem 4:

Lemma 6.3. There exist formal power series

â =
∞∑

n=0

an(λ)εn, ŷ =
∞∑

n=0

yn(x, λ)εn

so that yn is smooth in a uniform neighbourhood of x = 0, and so that ŷ is formally
invariant under (30).

Proof. For the sake of readibility, we drop the dependence on λ in the notation.
Let us first start by making an observation. Let w(x, z, ε, a) be a smooth function
in the neighbourhood of the origin. Then we can define

ŵ(x, z, ε, a) :=
∞∑

|k|=0

wk(x)zk1εk2ak3

where k = (k1, k2, k3) is a multi-index and the functions wk are defined in a uniform
neighbourhood Ω of x = 0. If we have formal power series z = ẑ (w.r.t. ε) where
the coefficients are also defined in Ω, and if we have a formal power series a = â,
then we assert that ŵ(x, ẑ, ε, â) makes sense, and is a formal power series where the
coefficients are defined in the same neighbourhood Ω, i.e. the neighbourhood does
not shrink. This is true, provided that ẑ and â have no terms in ε0.

Holding this property in mind, we write y = φ0(x, a) + z, where y = φ0(x, a)
is the graph of the curve of singularities of the unperturbed vector field (ε = 0)
(the existence of φ0 follows from the implicit function theorem). In the search of a
formal expansion of z, its constant term will be 0. The formula for ẋ yields

ẋ = −z + xO(ε).

As for ż, we get

ż = ẏ − φ′0(x)(z + xO(ε))

= ε
(
a + x + O(ε, z, ‖(x, a)‖2))− φ′0(x)(−z + xO(ε))

Knowing that φ′0(x) = x + O(x2), we find
{

ẋ = −z + xO(ε, a)
ż = φ′0(x)z + ε(a + x + O(ε, z, ‖(x, a)‖2))

Solutions satisfy the differential equation:

(32) (−z + xO(ε, a))
dz

dx
= φ′0(x)z + ε(a + x + O(ε, z, ‖(x, a)‖2))

Assume that ẑ =
∑∞

n=1 zn(x)εn is known up to order εn and â is known up to order
εn−1. Look now at the coefficient of order εn+1 of the above equation. Remembering
that ẑ = O(ε) and â = O(ε), observe that the coefficient of order εn+1 of terms like
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ẑ2, ẑ3, εẑ, ε2â etc. are functions in x, z1, . . . , zn, a1, . . . , an−1. Hence, the term in
εn+1 in the lefthand side of (32) is a function

Fn(x, z1, . . . , zn,
dz1

dx
, . . . ,

dzn

dx
, a1, . . . , an−1) + xHn(x, an)

dz1

dx
.

Similarly, the right hand side of (32) is of the form

φ′0(x)zn+1 + an + Gn(x, z1, . . . , zn,
dz1

dx
, . . . ,

dzn

dx
, a1, . . . , an−1)

for some function Gn. Assuming that z1, . . ., zn and a1, . . ., an−1 are already
known, looking at the εn+1 level in (32) yields an equation

F̃n(x) + xHn(x, an)
dz1

dx
= φ′0(x)zn+1 + an + G̃n(x).

From the above equation, one can find a unique an, by reducing the equation to
x = 0, and once an is known, the equation becomes

φ′0(x)zn+1 = O(x).

From this equation, a smooth zn+1 can be found, since φ′0(x) = x + O(x2). This
process is a recursion to find unique â and ẑ as formal power series in ε. The final
step will define ŷ:

ŷ = φ(x, â) + ẑ.

which still will be a formal power series, with coefficients smooth in a uniform
neighbourhood of x = 0. ¤

7. Proof of theorem 5

Under the conditions of theorem 5, we can explicitely calculate the optimal
weights for the blow up and check the conditions for theorem 1. Let us first rewrite
the vector field in some normal form:

Lemma 7.1. Under the conditions of theorem 5, Xε,a,λ is locally C∞ conjugate to

X̃ε,a,λ :
{

ẋ = −y + 1
2nx2n + xF (x, y, ε, a, λ)

ẏ = εG(x, y, ε, a, λ).

with F (x, 0, 0, 0, λ) = O(x2n). Furthermore,

(i) F (0, 0, 0, a, λ) =
(

1
fy

∣∣∣ fy fa

fxy fxa

∣∣∣
)

a + O(a2);

(ii) G(x, 0, 0, 0, λ) =
(

−1
α2n−2 fy

gx2n−1

(2n−1)!

)
x2n−1 + O(x2n)

(iii) G(0, 0, 0, a, λ) =
(−α

∣∣ fy fa
gy ga

∣∣) a + O(a2),

with α =
(

fx2n

(2n−1)!

)1/(2n−1)

.

Proof. The proof is straightforward: apply the transformation

x̃ = αx, ỹ = −αf(0, y, ε, a, λ)

for some well chosen number α. If α is nonzero, then we can use (x̃, ỹ) locally as
new variables, since we know that fy 6= 0. Let’s calculate the new vector field:

˙̃x = αf(
1
α

x̃, y, ε, a, λ) = αf(0, y, ε, a, λ) + O(x̃) = −ỹ + F̃ (x̃, ỹ, ε, a).
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for some function F̃ = O(x̃). The terms of O(x̃) can be specified a bit more:
from the conditions of theorem 5 follow (using the notations introduced in the
announcement of this theorem)

F̃ (x̃, 0, 0, 0, λ) =
1

α2n−1
fx2n

x̃2n

(2n)!
+ O(x̃2n+1).

Choose α =
(

fx2n

(2n−1)!

)1/(2n−1)

so that F̃ (x̃, 0, 0, 0, λ) = x̃2n

2n + O(x̃2n+1), and con-
clude:

˙̃x = −ỹ +
x2n

2n
+ x̃F (x̃, ỹ, ε, a, λ),

with F (x̃, 0, 0, 0, λ) = O(x2n). This finishes the first part of the lemma. The
second part is more elborate. Let y = φ(ỹ, ε, a, λ) be the implicit solution of
ỹ = αf(0, y, ε, a, λ), then

∂F

∂a
(0, 0, 0, 0, λ) =

∂2F̃

∂x̃∂a
(0, 0, 0, 0, λ)

=
∂2f

∂x∂a
(0, 0, 0, 0, λ) +

∂2f

∂x∂y
(0, 0, 0, 0, λ)

∂φ

∂a
(0, 0, 0, λ)

= fxa + fxy
∂φ

∂a
(0, 0, 0, λ).

From ỹ = −αf(0, φ(ỹ, ε, a, λ), ε, a, λ), we obtain fa +fy
∂φ
∂a (0, 0, 0, λ) = 0, and hence

∂F

∂a
(0, 0, 0, 0, λ) =

1
fy

(fxafy − fxyfa).

Let us now concentrate on ˙̃y: ˙̃y = εG(x̃, ỹ, ε, a, λ), with

G(x̃, ỹ, ε, a, λ) = −α
∂f

∂y
(0, φ(ỹ, ε, a, λ), ε, a, λ)g(

1
α

x̃, φ(ỹ, ε, a, λ), ε, a, λ).

Hence,

G(x̃, 0, 0, 0, λ) = −αfyg(
1
α

x̃, 0, 0, 0, λ) =
−1

α2n−2
fygx2n−1

x2n−1

(2n− 1)!
+ O(x2n).

Finally it is easy to calculate that

∂G

∂a
(0, 0, 0, 0, λ) = −αfy

(
gy
−fa

fy
+ ga

)
= α(gyfa − gafy).

This finishes the proof. ¤

Corollary 7.2. Under the assumptions of theorem 5, the family of vector fields
Xε,a,λ is locally C∞-equivalent to

(33) X̃ε,a,λ :
{

ẋ = −y + x2n

2n + xF1(x, y, ε, a, λ)
ẏ = ε(Ca + x2n−1 + G1(x, y, ε, a, λ))

with F1(x, 0, 0, 0, λ) = O(x2n), and G1(x, y, ε, a, λ) = O(x2n, a2, y, ε). The constant
C may depend on λ, and the regular breaking condition in theorem 5 is translated
to

C 6= ∂F1

∂a
(0, 0, 0, 0, λ).
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Proof. Take F and G as in lemma 7.1. From the assumptions of theorem 5, we
know that the coefficient

(
−1

α2n−2 fy
gx2n−1

(2n−1)!

)
is strictly positive hence by rescaling ε

with this the positive factor
(

−1
α2n−2 fy

gx2n−1

(2n−1)!

)
, we reduce the coefficient of x2n−1

in G to +1. The coefficient of a in G will change to
(−α

∣∣ fy fa
gy ga

∣∣)

−
(

−1
α2n−2 fy

gx2n−1

(2n−1)!

) =
α2n−1(2n− 1)!

fygx2n−1

∣∣ fy fa
gy ga

∣∣

Since α2n−1 = fx2n/(2n− 1)!, the coefficient of a in G equals

C :=
fx2n

fygx2n−1

∣∣ fy fa
gy ga

∣∣ .

The regular breaking condition in theorem 5 states that this coefficient C cannot
be equal to 1

fy

∣∣∣ fy fa

fxy fxa

∣∣∣ which is exactly the coefficient in a of F1. ¤

Let us now check all assumption 1–6 for the normal form (33). The first
assumption—the existence of a critical curve—is guaranteed by the implicit func-
tion theorem: we search y in terms of x so that

y − 1
2n

x2n + xF1(x, y, 0, 0, λ) = 0.

Clearly, there is a unique graph solution in the neighbourhood of (x, y) = (0, 0).
Here, the curve is a graph y = φ(x) = 1

2nx2n + O(x2n+1) (to see this, remember
that F1(x, 0, 0, 0, λ) = O(x2n)). Looking at linear part of (33), we find, for ε = 0:

(
x2n−1 + O(x2n) −1 + O(x)

0 0

)

The eigenspace transverse to the curve of singularities γ has a negative eigenvalue
for x < 0, so there we have attraction, and for x > 0 there is repulsion.

To look at assumption 3, we need to blow up the family of vector fields. We use
a rescaling in the parameter space:

a = v2n−1A, ε = v2n.

The parameter A will serve as regular breaking parameter, but we come to that
later. We then blow the origin, as follows:

x = ux, y = u2ny, v = uv.

In the phase directional rescaling chart, we look at the directional chart y = 1, and
find (after dividing through u2n−1) a family





u̇ = 1
2nuv2n

(
Cv2n−1A + x2n−1 + O(u)

)
v̇ = − 1

2nv2n+1
(
Cv2n−1A + x2n−1 + O(u)

)
ẋ = −1 + 1

2nx2n + DAx− 1
2nxv2n(Cv2n−1A + x2n−1) + O(u)

with

D =
∂F1

∂a
(0, 0, 0, 0, λ).

The preimage of the attracting part γ− is represented by {x = − 2n
√

2n + O(u), v =
0}, which is normally hyperbolically attracting, with eigenvalue −x2n−1. Similarly,
the preimage of the repelling part will be normally hyperbolicly repelling up to the
end point P+.
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To check the connection assumption (assumption 5), we look in the family rescal-
ing chart v = 1. Here, the family of vector fields is equivalent to

{
ẋ = −y + 1

2nx2n + DxA + O(u)
ẏ = CA + x2n−1 + O(u).

The invariant line y = 1
2nx2n− 1 is a curve without singularities, connecting P− to

P+. To verify that P± is indeed a part of this line, one needs to look at y = 1
2nx2n−1

in the phase directional rescaling coordinates; there, this curve is represented by
{x2n = 2n(v2n + 1), u = 0}. In any case, assumption 5 is verified.

Assumption 6 can be easily checked in this case. This is because the unperturbed
vector field is Hamiltonian in the family rescaling chart, with integrating factor

θ(x, y) = exp(−y).

Using proposition 5.7, the parameter A is a regular breaking parameter if
∫

Γ

(
C(−y +

1
2n

x2n)−Dx2n

)
θ(x, y) 6= 0.

where Γ is the heteroclinic connection y = 1
2nx2n−1. The integral can be explicitely

evaluated:∫

Γ

(
C(−y +

1
2n

x2n)−Dx2n

)
θ(x, y) = (C −D)e

∫ ∞

−∞
exp(−s2n/2n)ds,

where e is the Euler number. Hence, the regular breaking condition is satisfied
provided C 6= D.

This proves theorem 5.

8. Examples

The examples in this section are not meant to describe general classes of vector
fields, but are aimed at illustrating in a rather unexpected way the theorems.

8.1. C1 canard solutions. Consider

Xε,a :
{

ẋ = y − x4

4 + εx2

ẏ = ε(a− x3)

According to theorem 5 and theorem 1, there exist manifolds of canard solutions
that are C∞ in the blow up space. Also the control curves, related to C∞ boundary
conditions Σ− and Σ+ are C∞ in ε1/4. We show here that these manifolds can be
blown down in a C1 way, but not in a C2 way, although the control curve itself will
be smooth. Indeed, first notice that

y =
x4

4
− (1 + x2)ε + O(ε2), a = O(ε)

is a graph that is formally invariant w.r.t. Xε,a, up to order O(ε). Let us try to
extend this to an expansion

y =
x4

4
− (1 + x2)ε + y2(x)ε2 + O(ε3), a = a1ε + O(ε2).

Expressing the formal invariance of this new expansion quickly yields

y2(x) =
a1 − 2x

x3
.
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Hence, no choice of (a1, y2) exists so that the formal invariance is true up to order
O(ε2) and so that y2 is continuous at the origin.

But there is one more interesting observation to be made about this family of
vector fields: for a = 0, the vector field Xε,a has a symmetry {x 7→ −x, t 7→ −t}.
This means that if the two curves Σ− and Σ+ in theorem 1 are chosen symmetrically
with respect to the y-axis, then the control curve will be situated at {a = 0}! As
a consequence, all control curves will be flat to a = 0. Combine this with the
knowledge that the control curves are smooth in ε1/4, and we can conclude that
each choice of control curve a = A(ε) will be C∞ in ε!

Also, if the two boundary curves Σ− and Σ+ are not chosen “symmetrically” (Σ−
is not inside the backward saturation of Σ+ with respect to Xε,0, or equivalently
Σ+ is not inside the forward saturation of Σ− w.r.t. Xε,0), then the control curve
cannot be analytic, even if we know that the vector field and the boundary curves
are analytic.

8.2. Normal crossing of lines of singularities. Consider the scalar o.d.e.

ε
dy

dx
= a + x2n−1y + εF (x, y, ε, a, λ)

and the associated vector field

Xε,a,λ :
{

ẋ = ε
ẏ = a + x2n−1y + εF (x, y, ε, a, λ),

with F a C∞ function in the neighbourhood of (x, y, ε, a) = (0, 0, 0, 0). For ε = a =
0, we have a crossing of the lines of singularities: x = 0 and y = 0. Along x = 0, it
would not be possible to satisfy the regular passage property, but along y = 0, it
will be, so we will define y = 0 as the critical curve.

Observe that along y = 0, for x < 0 the critical curve is attracting, and for x > 0
the critical curve is repelling. Given a point p on the attracting part of the critical
curve, then the regular passage assumption (assumption 2) is trivially satisfied,
since ẋ = ε > 0. To check the remaining assumptions, we blow up the origin:

ε = v4n, a = v4n−1A, x = u2x, y = uy, v = uv.

In the phase-directional rescaling chart x = +1, we find (after dividing by u4n−2)




u̇ = 1
2uε4n

v̇ = − 1
2v4n+1

ẏ = v4n−1A + y − 1
2v4ny + O(u).

Clearly, assumption 3 is satisfied, and due to the absence of singularities outside
uv = 0 assumption 4 also holds. Look now in the family rescaling chart v = 1:

{
ẋ = 1
ẏ = A + x2n−1y + O(u).

Clearly, for A = 0 there is a connection y = 0 connecting P− to P+, and on
this connection, no singularities appear. This shows that assumption 5 is satisfied.
Finally, in order to check assumption 6, one needs to calculate an integrating factor.
One readily checks that

θ(x, 0) = exp
(∫ 0

x

s2n−1ds

)
= exp

(−x2n/2n
)
.
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Using proposition 5.7, A is regular breaking parameter because∫

y=0

θ 6= 0.

The control curve A = A(u) in original coordinates is a curve

a(ε) = ε(4n−1)/4nA(ε1/4n).

where A is smooth in its argument. If n > 1, then generally, a(ε) will not be C∞

in ε. If n = 1, then one can prove the existence of a formally invariant expansion,
and using theorem 2, the smoothness in ε can be shown.
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Appendix

Proposition A.1. Let g be a positive (not necessarily strictly positive) Ck function
on V ×W×Λ, where V is a compact interval in R, W is a set of singular parameters
(part of a finitely dimensional vector space), and Λ is a set of regular parameters
(part of a finitely dimensional vector space). Define for a fixed y0 ∈ V , and for all
y > y0:

w(y, ε, λ) := exp
(
−

∫ y

y0

ds

g(s, ε, λ)

)
, ε ∈ W,λ ∈ Λ.

Assume for y1 > y0 that (y1, ε0, λ) is in the closure of the domain of w. If
(a) g(s, ε0, λ) = 0, ∀s ∈ [y0, y1],
(b) or if g(s, ε0, λ) is only zero in the end point s = y1 and not in [y0, y1[, and if

∂g
∂y (y1, ε0, λ) = 0.

Then the function w can be extended in a Ck way to (y1, ε0, λ), and in this point
w and all its derivatives (up to order k) are zero.

Proof. We will first treat case (a), and then tell how to adapt the proof for case
(b). We claim that it suffices to prove that

(P1) for all N ∈ N : lim
(y,ε)→(y1,ε0)

w(y, ε, λ)
g(y, ε, λ)N

= 0;

(P2) for all K, M ∈ N :

lim
(y,ε)→(y1,ε0)

w(y, ε, λ)g(y, ε, λ)KM

(∫ y

y0

ds

g(s, ε, λ)K

)M

= 0,

and where the convergence is uniform in λ. Note that the limits can only be taken
in the closure of the set of points (y, ε, λ) where w(y, ε, λ) is defined properly. Note
also that we do not claim anything for y = y0; indeed this point is excluded in the
formulation of the proposition. In fact, w is in general not even C1 in the point
(y0, ε0, λ).

The proof of properties (P1) and (P2) will be carried out in two lemma’s, but
here we will show that those two properties are sufficient to prove the proposition.

To that end, calculate all first-order derivatives of w, in the points (y, ε, λ) where
w is defined:

∂w

∂y
(y, ε, λ) = w(y, ε, λ)

−1
g(y, ε, λ)

∂w

∂ε
(y, ε, λ) = w(y, ε, λ)

∫ y

y0

∂g
∂ε (s, ε, λ)
g(s, ε, λ)2

ds

∂w

∂λ`
(y, ε, λ) = w(y, ε, λ)

∫ y

y0

∂g
∂λ`

(s, ε, λ)

g(s, ε, λ)2
ds.

Observing these three equations, one finds that applying a general differential op-
erator D to w results in

Dw(y, ε, λ) =
∑

i

w(y, ε, λ)
∏

j

Fij(y, ε, λ)
g(y, ε, λ)Nij

∫ y

y0

Gij(s, ε, λ)
g(s, ε, λ)Kij

ds,

with Nij ,Kij ∈ N, Fij and Gij are functions of class Ck−|D| and where the sum
and products are finite. In order to prove that Dw(y, ε, λ) → 0 as ε → ε0, it is
sufficient to prove that each summand of the above expression tends to zero. By
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raising these expressions to some power, we can distribute the effect of w(y, ε, λ)
among all types of factors, and we find the following two conditions:

(a) for all N ∈ N: lim
(y,ε)→(y1,ε0)

w(y, ε, λ)F (y, ε, λ)
g(y, ε, λ)N

= 0;

(b) for all K,M ∈ N:

lim
(y,ε)→(y1,ε0)

w(y, ε, λ)g(y, ε, λ)KM

(∫ y

y0

G(s, ε, λ)
g(s, ε, λ)K

ds

)M

= 0.

(the factor gKM is included in (b) because we want to do so, and we can: we simply
need to increase the N in (a)). Since F and G are at least C0, these properties are
true once the two properties (P1) and (P2) are satisfied.

The remainder of the section involves the proof of (P1) and (P2). Let us start
with

Lemma A.2. (Under condition (a) in proposition A.1) For all K > 0 there exists
a neighbourhood V of ε = ε0 such that

∫ y

y0

ds

g(s, ε, λ)
≥ −K(y − y0) log g(y, ε, λ),

for all y ∈ [y0, y1], λ ∈ Λ and ε ∈ V (only for those ε where w is defined.)

Proof. Let

F : (y, ε, λ) 7→
∫ y

y0

ds

g(s, ε, λ)
+ K(y − y0) log g(y, ε, λ).

then F (y0, ε, λ) = 0, so it remains to prove that ∂F
∂y (y, ε, λ) ≥ 0 for all y ∈ [y0, y1].

In short notation, we have

∂F

∂y
=

1
g

+ K log g +
K(y − y0)

g

∂g

∂y

=
1
g

(
1 + Kg log g + K(y − y0)

∂g

∂y

)
.

The mapping u 7→ u log u tends to zero in the origin, so for ε small enough, we
may assume that g log g ≥ − 1

3K . Furthermore, since also ∂g
∂y tends to zero, we may

assume that for ε small enough, ∂g
∂y ≥ − 1

3K(y1−y0)
. Applying these inequalities to

the equation above, we find

∂F

∂y
(y, ε, λ) ≥ 1

g(y, ε, λ)

(
1 + K

−1
3K

+ (y − y0)K
−1

3K(y1 − y0)

)
.

As y − y0 ≤ y1 − y0, we have ∂F
∂y (y, ε, λ) ≥ 1

3g(y,ε,λ) ≥ 0. ¤

Corollary A.3. For all N ∈ N and for all intervals [y0 + δ, y1] on the y-axis (with
δ > 0), there exists a neighbourhood V of ε = ε0 such that

w(y, ε, λ) ≤ g(y, ε, λ)N+1,

for all y ∈ [y0 + δ, y1], λ ∈ Λ and ε ∈ V (only for those ε where w is defined). This
proves property (P1) in case (a).
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Proof. Apply lemma A.2 with K = N+1
δ , and find

w(y, ε, λ) ≤ g(y, ε, λ)
N+1

δ y.

The corollary follows from the facts that N+1
δ y ≥ (N + 1) and, for ε small enough,

g(y, ε, λ) < 1. ¤

For the proof of (P2), define

F (y, ε, λ) = w(y, ε, λ)1/Mg(y, ε, λ)K

∫ y

y0

ds

g(s, ε, λ)K

Lemma A.4. For all ν > 0, there exists a neighbourhood V of ε = ε0 such that

F (y, ε, λ) < ν,

for all y ∈ [y0, y1], λ ∈ Λ and ε ∈ V (only for those ε where w is defined). This
proves property (P2) in case (a).

Proof. It is sufficient that we prove

F (y0, ε, λ) < ν and
(

F (y, ε, λ) ≥ ν =⇒ ∂F

∂y
(y, ε, λ) < 0

)
.

The first statement is obvious, since F (y0, ε, λ) = 0. To prove the second statement,
assume F (y, ε, λ) ≥ ν. Then (write g′ for ∂g

∂y ):

∂F

∂y
= w1/M

( −1
Mg

gK

∫
1

gK
+ KgK−1g′

∫
1

gK
+ gK 1

gK

)

= w1/M +
( −1

Mg
+

Kg′

g

)(
w1/MgK

∫
1gK

)

= w1/M − F

Mg
(1−KMg′).

Taking ε small enough, we may assume that g′ ≤ 1
2KM . Since we also know that

w is bounded by 1, we have

∂F

∂y
≤ 1− F

Mg

(
1− 1

2

)
≤ 1− ν

2Mg
.

As g gets smaller, ∂F
∂y will turn negative. ¤

These lemmas prove properties (P1) and (P2) in the case (a) of proposition A.1,
and it was already pointed out that this is enough in view of proving proposition
A.1. Let us now adapt the proof to the case (b). Key element in the proofs of the
lemmas was the fact that g and g′ becomes zero. In the case (b), we do not have
this property uniformly in [y0, y1], but only in the end point y1. We will need to
be more careful:

Lemma A.5. If we define F (y, ε, λ) :=
∫ y

y0

ds
g(s,ε,λ) + K(y − y0) log g(y, ε, λ), then

there exists a δ ∈]y0, y1[ and a neighbourhood V of ε = ε0 such that for all y ∈ [δ, y1]:

F (y, ε, λ) ≥ F (δ, ε, λ).

for all λ ∈ Λ and ε ∈ V (only for those ε where w is defined.)

Proof. Completely similar to the proof of lemma A.2. ¤
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Corollary A.6. For all N ∈ N there exists a neighbourhood V of ε = ε0, a C > 0
and a δ ∈]y0, y1[ such that

w(y, ε, λ) ≤ Cg(y, ε, λ)N+1,

for all y ∈ [δ, y1[, for all λ ∈ Λ and ε ∈ V (only for those ε where w is defined).
This proves property (P1) in case (b).

Proof. Apply the lemma to K = N+1
δ̃

, where δ̃ is an arbitrary small number. There
exists a δ ∈ [y0, y1[ such that for all y ∈ [δ, y1[:

w(y, ε, λ) ≤ g(y, ε, λ)K(y−y0)g(δ, ε, λ)−K(δ−y0)w(δ, ε, λ).

So for y ≥ max{δ, y0 + δ̃}:
w(y, ε, λ) ≤ g(y, ε, λ)N+1g(δ, ε, λ)−K(δ−y0)w(δ, ε, λ).

Since g(δ, 0, λ) 6= 0 we find that it can be bounded away from zero, which proves
the corollary. ¤

The proof of (P2) in case (b) goes completely similar as in case (a), by replacing
y0 by a δ close enough to y1.

¤
A slight generalization is needed. The results of proposition A.1 remain true if

not g(y, ε, λ) but εNg(y, ε, λ) is a Ck function for some N > 0:

Proposition A.7. Let g be a positive (not necessarily strictly positive) C0 function
on V ×W ×Λ, where V is a compact interval in R, W = [0, ε0[ is a set of singular
parameters, and Λ is a set of regular parameters (part of a finitely dimensional
vector space). Assume that εNg is a Ck function for some N ≥ 0. Define for a
fixed y0 ∈ V , and for all y > y0:

w(y, ε, λ) := exp
(
−

∫ y

y0

ds

g(s, ε, λ)

)
, ε ∈ W,λ ∈ Λ.

Assume for y1 > y0 that (y1, 0, λ) is in the closure of the domain of w. If g(s, 0, λ) =
0,∀s ∈ [y0, y1], then the function w can be extended in a Ck way to (y1, 0, λ), and
in this point w and all its derivatives (up to order k) are zero.

Proof. The setting is similar to the setting in proposition A.1, and the proof can
be copied after a slight change: next to the properties (P1) and (P2), we have to
prove additionally

(P3) w(y, ε, λ) = O(εÑ ), ∀Ñ > 0

Let us explain why: to show that the properties (P1) and (P2) are sufficient to prove
the smoothness in proposition A.1, we replaced all differentials of g by constants—
this is possible since all differentials are C0. Here, we have to replace the differentials
by C/εÑ , hence (P3) is needed. The proof of (P3) is trivial since g ≤ Kε for some
constant K > 0, and thus w(y, ε, λ) ≤ exp(−y−y0

Kε ). ¤
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