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1 Introduction

We consider differentiable dynamical systems generated by a diffeomorphism or

a vector field on a manifold. We restrict to the finite-dimensional case, although

some of the ideas can also be developed in the general case [21]. We also restrict

to the behavior near a stationary point or a periodic orbit of a flow.

Let the origin 0 of Rn be a stationary point of a C1 vector field X, i.e.

X(0) = 0. We consider the linear approximation A = dX(0) of X at 0 and

its spectrum σ(A), which we decompose as σ(A) = σs ∪ σc ∪ σu where σs resp.

σc resp. σu consists of those eigenvalues with real part < 0 resp. = 0 resp.

> 0. If σc = ∅ then there is no central manifold, and the stationary point 0

is called hyperbolic. Let Es, Ec and Eu be the linear A-invariant subspaces
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corresponding to σs resp. σc resp. σu. Then Rn = Es ⊕ Ec ⊕ Eu. We look for

corresponding X-invariant manifolds in the neighbourhood of 0, in the form of

graphs of maps. More precisely:

Theorem 1 Let the vector field X above be of class Cr (1 ≤ r < ∞). There

exist map germs φss : (Es, 0) → Ec ⊕ Eu, φsc : (Es ⊕ Ec, 0) → Eu, φuu :

(Eu, 0) → Es⊕Ec, φcu : (Ec⊕Eu, 0) → Es and φc : (Ec, 0) → Es⊕Eu of class

Cr such that the graphs of these maps are invariant for the flow of X. Moreover

these maps are of class Cr, and their linear approximation at 0 is zero, i.e. their

graphs are tangent to respectively Es, Es ⊕Ec, Eu, Ec ⊕Eu and Ec. If X is of

class C∞ then φss and φuu are also of class C∞. If X is analytic then φss and

φuu are also analytic.

The graph of φc is called the (local) central (or: centre, center) manifold of

X at 0 and it is often denoted by W c. Thus: it is an invariant manifold of X

tangent at the generalized eigenspace of dX(0) corresponding to the eigenvalues

having zero real part.

2 (Non-)uniqueness, smoothness

Most proofs in the literature [20] use a cut-off in order to construct globally

defined objects, and then obtain the invariant graph as the solution of some

fixed point problem of a contraction in an appropriate function space. Although

this solution is unique for the globalized problem, this is not the case at the germ

level: another cut-off may produce a different germ of a central manifold. In
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other words: locally a central manifold might not be unique, as is easily seen on

the planar example x2∂/∂x− y∂/∂y. On the other hand, the ∞-jet of the map

φc, in case of a C∞ vector field, is unique, so if there would exist an analytic

central manifold then this last one is unique; in the foregoing example it is the x-

axis. But for the (polynomial) example (x−y2)∂/∂x+y2∂/∂y one can calculate

that the ∞-jet of x = φc(y) is given by j∞φc(y) =
∑

n≥1 n!yn+1, which has a

vanishing radius of convergence, so there is no analytic central manifold. On

the other hand, by the Borel theorem we can choose a C∞ representative for

φc. This can be generalized in the planar case:

Proposition 1 If n = 2 and if X is C∞ and if the ∞-jet of X in the direction of

the central manifold is nonzero, then this central manifold is C∞. In particular,

if X is analytic then the central manifold is either an analytic curve of stationary

points or is a C∞ curve along which X has a nonzero jet.

See also [2] for proofs and additional reading. In general a central manifold

is not necessarily C∞ (van Strien, 1979 and [1]): for the system in R3 given by

(x2− z2)∂/∂x + (y + x2− z2)∂/∂y + 0.∂/∂z one can find a Ck central manifold

for every k but there is no C∞ central manifold. Indeed, in this case the domain

of definition of φc shrinks to zero when k tends to infinity.

3 Central manifold reduction

The importance of a central manifold lies in the principle of central manifold

reduction, which roughly says that for local bifurcation phenomena it is enough
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to study the behavior on the central manifold, i.e. if two vector fields, restricted

to their central manifolds, have homeomorphic integral curve portraits, and if

the dimensions of Es and Eu are equal, then the two vector fields have homeo-

morphic integral curve portraits in Rn, at least locally near 0. Let us become

more precise.

Theorem 2 Let m be the dimension of Ec. There exists p, 0 ≤ p ≤ n − m,

such that X is locally C0 conjugate to

X ′ =
m∑

i=1

X̃i(z1, . . . , zm)
∂

∂zi
+

m+p∑
i=m+1

zi
∂

∂zi
−

n∑
i=m+p+1

zi
∂

∂zi

where (z1, . . . , zm) is coordinate system on a central manifold, (z1, . . . , zn) is a

coordinate system on Rn extending (z1, . . . , zm) and
∑m

i=1 X̃i
∂

∂zi
is the restric-

tion of X to a central manifold. Moreover, if

Y =
m∑

i=1

Ỹi(z1, . . . , zm)
∂

∂zi
+

m+p∑
i=m+1

zi
∂

∂zi
−

n∑
i=m+p+1

zi
∂

∂zi

and if
∑m

i=1 Ỹi
∂

∂zi
is C0 equivalent (resp. C0 conjugate) to

∑m
i=1 X̃i

∂

∂zi
then

X is C0 equivalent (resp. conjugate) to Y .

For a proof and further reading (a generalization) see [17].

In case that more smoothness than just C0 is needed, we have the principle

of normal linearization along the central manifold. More concretely, let x denote

a coordinate in the central manifold and let y be a complementary variable, i.e.

let X = Xc∂/∂x+Xh∂/∂y. We define the normally linear part along the central

manifold by

NX := Xc(x, 0)
∂

∂x
+

∂Xh

∂y
(x, 0).y

∂

∂y
.
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Under certain nonresonance conditions [19, 4] on the real parts of the eigenvalues

of dX(0) there exists a Cr local conjugacy between X and NX for each r ∈ N

(assuming X of class C∞). If there are resonances, then one can conjugate with

the so called seminormal or renormal form containing higher order terms, see

[5, 4] and the references therein; here one can also find results in case that extra

constraints should be respected, like symmetry, reversibility, invariance of some

given foliation etcetera.

Parameters. Having an eigenvalue with zero real part is ungeneric, so

in bifurcation problems we consider p-parameter families Xλ near, say, λ = 0.

With respect to the results above we remark that such a family can be considered

as a vector field near (0, 0) ∈ Rn ×Rp tangent to the leaves Rn × {λ}. In fact

the parameter-direction Rp is contained in Ec. In all the mentioned results this

structure ’of being a family’ is respected. For example in theorem 2 we replace

X̃i(z1, . . . , zm) by X̃i(z1, . . . , zm, λ). Hence, if X̃λ is a versal unfolding of X̃0

then Xλ is a versal unfolding of X0. By this the search for versal unfoldings is

reduced to the unfolding of singularities whose linear approximation at 0 has a

purely imaginary spectrum.

Diffeomorphisms, periodic orbits. A completely analogous theory can

be developed for fixed points of diffeomorphisms f : (Rn, 0) → Rn. Here we

split up the spectrum of the linear part L = df(0) at 0 as σ(L) = σs ∪ σc ∪ σu

where σs resp. σc resp. σu consists of those eigenvalues with modulus < 1

resp. = 1 resp. > 1. This theory can be applied to the time t-map of a vector

field (and will give the same invariant manifolds) and to the Poincaré map of a
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transversal section of a periodic orbit of a vector field [9].

4 Normal forms

The general idea of a normal form is to put a (complicated) system into a

form ’as simple as possible’ by means of a change of coordinates. This idea was

already developed to a great extent by H. Poincaré. Simple examples: 1) putting

a square matrix into Jordan form, 2) the flow box theorem [1] near a nonsingular

point. Depending on the context and on the purpose of the simplification, this

concept may vary greatly. It depends on the kind of changes of coordinates that

are tolerated (linear, polynomial, formal series, smooth, analytic) and on the

possible structures that must be preserved (e.g. symplectic, volume-preserving,

symmetric, reversible etcetera). Let us restrict to local normal forms, i.e. in the

vicinity of a stationary point of a vector field or a diffeomorphism (the latter

can be applied to the Poincaré map of a periodic orbit). We concentrate on

the simplification of the Taylor series. The general idea is to apply consecutive

polynomial changes of variables; at each step we simplify terms of a degree higher

than in the step before. The ideal simplification would be to put all higher order

terms to zero, which would (at least at the level of formal series) linearize the

system. But as soon as there are resonances (see below), this is impossible: the

planar system 2x∂/∂x + (y + x2)∂/∂y cannot be formally linearized.

Setting. Let X be a Cr+1 vector field defined on a neighbourhood of

0 ∈ Rn, and denote A = dX(0) (its linear approximation at 0). The Taylor
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expansion of X at 0 takes the form

X(x) = A.x +
r∑

k=2

Xk(x) + O(|x|r+1)

where Xk ∈ Hk, the space of vector fields whose components are homogeneous

polynomials of degree k. The classical formal normal form theorem is as follows.

We define the operator LA on Hk by putting LAh(x) = dh(x).A.x−A.h(x); one

calls LA the homological operator . One checks that LA(Hk) ⊂ Hk. One also

denotes this by adA(h)(x): see further in the Lie algebra setting. Let Rk be the

range of LA, i.e. Rk = LA(Hk). Let Gk denote any complementary subspace to

Rk in Hk. The formal normal form theorem states, under the above settings:

Theorem 3 [9, 11] There exists a composition of near identity changes of vari-

ables of the form

x = y + ξk(y), (1)

where the components of ξk are homogeneous polynomials of degree k, such that

the vector field X is transformed into

Y (y) = A.y +
r∑

k=2

gk(y) + O(|y|r+1)

where gk ∈ Gk, k = 2, . . . , r.

Sometimes this theorem is applied to the restriction of a vector field to its

central manifold, for reasons explained in section 3. This is the reason why we

did not assume X to be C∞; in the latter case one can let r → ∞ and obtain

a normal form on the level of formal Taylor series (also called ∞-jets). Using

a theorem of Borel we infer the existence of a C∞ change of variables φ such
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that the Taylor series of φ∗(X) is A.y+
∑∞

k=2 gk(y). For practical computations

it is often appropriate to first simplify the linear part A and to diagonalize it

whenever possible. Hence it is convenient to use a complexified setting and

to use complex polynomials or power series. One can show that all involved

changes of variables preserve the property of ’being a complex system coming

from a real system’, i.e. at the final stage we can return to a real system. See

e.g. [1] for a more precise mathematical description.

Hence we can assume that A is an upper triangular matrix. Let the eigenvalues

be λ1, . . . , λn. It can be calculated that the eigenvalues of LA, as an operator

Hk → Hk, are then the numbers 〈λ, α〉 − λj where α ∈ Nn,
∑n

j=1 αj = k and

1 ≤ j ≤ n. Hence, if these would all be nonzero then Bk = Hk and then we

have an ideal simplification i.e. all gk equal to zero. However, if such a number

is zero, that is,

〈λ, α〉 − λj = 0 (2)

this is called a resonance between the eigenvalues. In such a case we have to

choose a complementary space Gk. From linear algebra it follows that one can

always choose

Gk = ker(LA∗) (3)

where A∗ is the adjoint operator. But this choice (3) is not unique and is

from the computational point of view not always optimal, especially if there

are nilpotent blocks. This fact has been exploited by many authors. A typical

example for this is the case where A = y∂/∂x. On the other hand if A is

semisimple we can choose the complementary space to be ker(LA), so LAgk = 0;
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we can assume it to be the (complex) diagonal[λ1, . . . , λn]. In that case we can

be more explicit as follows. Let ej = ∂/∂xj denote the standard basis on Cn.

For a monomial one can calculate that

LA(xαej) = (〈λ, α〉 − λj)xαej . (4)

If the latter is zero, then the monomial is called resonant. This implies that the

normal form can be chosen so that it only contains resonant monomials.

Putting a system into normal form not only simplifies the original system,

it also gives more geometric insight on the Taylor series. To be more precise,

suppose (for simplicity: this can be generalized [11]) that A is semisimple. One

can calculate that the condition LAgk = 0 implies: exp(−At)gk(exp(At)x) =

gk(x) for all t ∈ R. This means that gk is invariant for the 1-parameter group

exp(At). A typical example in the plane is: A has eigenvalues iλ,−iλ. Note that

the (only) resonances are 〈(iλ,−iλ), (p+1, p)〉−iλ = 0 and 〈(iλ,−iλ), (p, p+1)〉+

iλ = 0 for all p ∈ N. We suppose that the original system was real i.e. on R2;

we can choose linear coordinates such that for z = x + iy, z̄ = x− iy the linear

part is A =diagonal[iλ,−iλ]. Applying the remarks above we conclude that

the normal form only contains the monomials (zz̄)pz∂/∂z and (zz̄)pz̄∂/∂z̄. The

geometric interpretation here is that these monomials are invariant for rotations

around (0, 0). This can also be seen on the real variant of this: the Taylor

series of the (real) normalized system has the form (λ + f(x2 + y2))(x∂/∂y −

y∂/∂x) + g(x2 + y2)(x∂/∂x + y∂/∂y) and is invariant for rotations. Warning:

the dynamic behaviour of a formal normal form in the central manifold can be
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very different from that of the original vector field, since we are only looking at

the formal level. A trivial example is (take f = g = 0 in the foregoing example)

X(x, y) = λ(x∂y − y∂x)− exp(−1/(x2))∂/∂x, where orbits near (0, 0) spiral to

(0, 0), whereas the normal form is just a linear rotation. This difference is due to

the so called flat terms , i.e. the difference between the transformed vector field

and a C∞ realization of its normalized Taylor series (or polynomial). In case of

analyticity of X one can ask for analyticity of the normalizing transformation φ.

Generically this is not the case in many situations. The precise meaning of this

’genericity condition’ is too elaborate to explain in this repository paper. We

provide some further reading in section 5. One could roughly say that, in the

central manifold, the normal form has too much symmetries and is too poor to

model more complicated dynamics of the system, which can be ’hidden in the

flat terms’. To quote Il’yashenko [13]: ’In the theory of normal forms of analytic

differential equations, divergence is the rule and convergence the exception . . . ’.

In many applications we want to preserve some extra structure, such as a

symplectic structure, a volume form, some symmetry, reversibility, some pro-

jection etcetera; the case of a projection is important since it includes vector

fields depending on a parameter. Sometimes a superposition of these struc-

tures appears (e.g. a family of volume preserving systems). We would like that

the normal form procedure respects this structure at each step. One can often

formulate this in terms of vector fields belonging to some Lie subalgebra L0.

The idea is then to use changes of variables like (1) where ξk is then generated

by a vector field in L0. This will guarantee that all changes of variables are
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’compatible’ with the extra structure. Unlike the general case where we could

work with monomials like in (4) we will have to consider vector fields hk in

L0 whose components are homogeneous polynomials of degree k. If this can

be done, one says that L0 respects the grading by the homogeneous polynomi-

als. In order to fix the ideas: suppose that L0 are the divergence free planar

vector fields. Remark that a monomial xiyj∂/∂x is not divergence free. We

can instead use time one mappings of homogeneous vector fields of the form

a(q + 1)xp+1yq∂/∂x− a(p + 1)xpyq+1∂/∂y. Up to terms of higher order we can

use the time one of hk instead of x + hk(x). In case that one asks for a C∞

realization of the normalizing transformation, we need an extra assumption on

the extra structure, i.e. on L0, called the Borel property: denote J∞,0 the set of

formal series such that each truncation is the Taylor polynomial of an element

of L0. The extra assumption is: each element of J∞,0 must be the Taylor series

of a C∞ vector field in L0. It can be proved [6] that the following structures

respect the grading and satisfy the Borel property: being an r-parameter fam-

ily, respecting a volume form on Rn, being a Hamiltonian vector field (n even),

being reversible for a linear involution.

One could consider other types of grading of the involved Lie-algebras.

This method, using the framework of the so called filtered Lie algebras, is

explained and developed systematically in a more general and abstract context

in [6].

In nonlocal bifurcations, such as near a homoclinic loop for example, it is not

enough to perform central manifold reduction near the singularity: a simplified
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smooth model in a full neighbourhood of the singularity is often needed, for

example in order to compute Poincaré maps.

Let us start with the ’purely’ hyperbolic case (i.e. dim Ec = 0). First we

compute the formal normal form like above. If there are no resonances (2) then

we can formally linearize the vector field X. If X is C∞ then a classical theorem

of Sternberg (1958) states that this linearization can be realized by a C∞ change

of variables (i.e. no more flat terms remaining). In case there are resonances,

we must allow nonlinear terms: the resonant monomials. Also in this case we

can reduce C∞ to this normal form. Using the same methods it is also possible

to reduce to a polynomial normal form, but this time using Ck (k < ∞) changes

of variables. More precisely, if k is a given number and if we write the vector

field as X = XN + RN where XN is the Taylor polynomial up to order N

(which can be assumed to be in normal form) and where RN (x) = O(|x|N+1),

then for N sufficiently large there is a Ck change of variables conjugating X

to XN near 0. The number N depends on the spectrum of A = dX(0). An

elegant proof of these facts can be found in [15]. In case that extra structure

must be preserved: see [4], which also deals with the partially hyperbolic case

(dim Ec ≥ 1). As already remarked above, the case of a parameter-dependent

family can be regarded as a partially hyperbolic stationary point preserving this

extra structure.

The question of an analytic normal form, also in the hyperbolic case, leads

to convergence questions and calls upon so called small divisor problems. The

classical results are due to Poincaré and Siegel; let us summarize them; they are
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formulated in the complex analytic setting:

Theorem 4 (a) If the convex hull of the spectrum of A does not contain 0 ∈ C

then X can locally be put into normal form by an analytic change of variables.

Moreover this normal form is polynomial.

(b) If the spectrum {λ1, . . . , λn} of A satisfies the condition that there exists

C > 0 and µ > 0 such that for any m ∈ Nn with
∑

j mj ≥ 2:

|〈(λ1, . . . , λn),m〉 − λj | ≥
C

|m|µ
(5)

for 1 ≤ j ≤ n then X can be locally linearized by an analytic change of variables.

Note that case (a) contains the case where 0 is a hyperbolic source or sink.

This case (a) in theorem 4 can be extended if there are parameters: if X depends

analytically on a parameter ε ∈ Cp near ε = 0 then the change of variables is

also analytic in ε; moreover the normal form is then a polynomial in the space

variables whose coefficients are analytically dependent on the parameter ε.

For case (b) this is surely not the case, since the condition (5) is fragile: a

small distortion of the parameter generically causes resonances, be it of a high

order. To fix the ideas: consider n = 2 and suppose λ1 < 0 < λ2. By a generic

but arbitrary small perturbation we can have that the ratio of these eigenvalues

becomes a negative rational number −p/q, which gives a resonance of the form

(2) with j = 1 and α = (q + 1, p), so (5) is violated.

So analytic linearization, or even a polynomial analytic normal form, is un-

generic for families of such hyperbolic stationary points. The search for analytic

normal forms, i.e. simplified models, for families is still under investigation. A
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first simplification is obtained via the stable and unstable manifold from the-

orem 1, that is: the graphs of φss and φuu. When X is analytic near 0 then

these manifolds are also analytic. So up to an analytic change of variables we

can assume that Es and Eu are invariant, which gives a simplification of the

expression of X. Moreover there is analytic dependence on parameters.

For local diffeomorphisms there are completely similar theorems about all

the above.

5 Further reading

The concept of central manifold can be extended to more general invariant sets:

see [10] and the references in that paper. It can also be extended to the infinite

dimensional case and can be applied to partial differential equations: see [21].

Concerning the generic divergence of normalizing transformations: [7, 8, 13,

14]. Although the power series giving the normalizing transformation generally

diverges, the study of the dynamics is often performed by truncating the normal

form at a certain order. Recently, in [16] the question about what is an optimal

truncation is studied. It is shown, in case dX(0) is semi-simple, that the order of

the normal form can be optimized so that the remainder satisfies some estimate

shrinking exponentially fast to zero as a function of the radius of the domain.

Concerning normal forms preserving the Hamiltonian structure see [3, 18]

for a starting point; this is an extended subject on its own, sometimes called

Birkhoff normal form, and it would require another repository paper.
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Further simplifications of the normal form can sometimes be obtained by

taking into account nonlinear terms (instead of just A) in order to obtain re-

ductions of higher order terms: see [12] and especially the reference list therein.

More further reading about applications of normal forms and central mani-

folds to bifurcation theory: [11].
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