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Abstract

In the current big data era, in which we are overloaded with huge amounts of data, there
is a large demand for alternatives to traditional querying systems. In our context, big
data refers to the petabyte scale data analysis to which industry and academia are ex-
posed today; and, where hundreds or thousands of machines, running in parallel, are
required to finish computations in a reasonable amount of time. However, the current
data landscape also has a complex and non-traditional structure, which typically fits well
into the graph model. In semi-structured data, the traditional relational query languages
fall short. Hence, we consider the conjunctive regular path queries (CRPQs); a simple,
but reasonably expressive language for querying graph data. This thesis is about the eval-
uation of CRPQs in MapReduce, a framework that provides a programming abstraction
that enables the design of algorithms that can be executed automatically on a cluster of
machines in a fault-tolerant way.
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Deze thesis behandelt de evaluatie van conjunctieve reguliere pad queries (CRPQs) in
MapReduce. Het doel van de thesis is drieledig. Ten eerste wordt er een omschrijving
gegeven van de complexiteitsresultaten van CRPQs in de sequentiële context. Vervol-
gens wordt er een bespreking gegeven van MapReduce, enkele varianten, en de complexi-
teitsmaten en modelen die er voor MapReduce bestaan. In deze context worden er ook
enkele algoritmen besproken voor gerelateerde problemen die reeds in de MapReduce li-
teratuur voorkomen, zoals het berekenen van joins en het oplossen van het undirected
s-t-connectivity probleem. Tenslotte worden de eerste twee delen gecombineerd om te
komen tot algoritmen voor het evalueren van RPQs en CRPQs in MapReduce.

Big data

In het database onderzoek en de IT management literatuur is big data het modewoord
van het moment. Big data is een subjectief, tijd- en contextafhankelijk begrip, maar met
een gemeenschappelijke kern: het gaat over data die ons door zijn grootte verplicht om
verder te kijken dan de beproefde technologie [37]. Want, hoewel hardware snel evolueert,
zowel qua capaciteit als verwerkingsvermogen, groeit de hoeveelheid data waarmee we
te maken krijgen nog veel sneller. Om hiermee om te kunnen gaan moet er dus verder
worden gekeken dan de traditionele computer en de sequentiële algoritmen. Een populaire
methode om met deze problematiek om te gaan is het distribueren van gegevens over een
cluster van computers om hier vervolgens in parallel berekeningen op uit te voeren. Omdat
het in het algemeen goedkoper is om 8 commodity computers te kopen dan één machine
met 8 keer de capaciteit van een enkele computer [37], worden dit soort clusters ook in de
praktijk veelvuldig gebruikt. Dit is ook een erg schaalbare strategie, omdat er makkelijk
computers kunnen worden toegevoegd wanneer de nood aan capaciteit opnieuw toeneemt.

In onze context verwijst big data naar de verwerking van data waarvan de grootte in
petabytes wordt uitgedrukt. Het zijn deze groottes waar de industrie en academische we-
reld vandaag mee te maken krijgen. Het gaat dan ook niet over clusters van 8 computers,
maar over clusters van honderden of zelfs duizenden computers die met elkaar verbonden
zijn in een netwerk [19]. Jammer genoeg klinkt het allemaal eenvoudiger dan het is. Pa-
rallellisatie van gegevens en distributie van data introduceren een heleboel moeilijkheden
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vi DUTCH SUMMARY

die er niet zijn in een sequentiële context. Zo is er nood aan communicatie, coördinatie
en synchronisatie tussen de betrokken processen. Hier komt nog bij dat de kans dat er
een fout optreed tijdens een berekening op een cluster van duizenden computers ongeveer
100% bedraagt door de grote hoeveelheid hardware componenten die erbij betrokken zijn.
Daarom zijn fouttolerantie en fout afhandeling eveneens van onmisbaar belang. Kortom,
het schrijven van een algoritme voor een dergelijke omgeving is allesbehalve evident.

MapReduce

In 2004 werd MapReduce gepubliceerd. MapReduce [19] is een programmeerabstractie
met bijhorende implementatie, ontwikkeld door Google, waarbinnen algoritmen automa-
tisch op een fouttolerante manier kunnen worden uitgevoerd op een dergelijke configuratie.
MapReduce werd al intensief gebruikt bij Google, maar is sindsdien wijd in gebruik ge-
raakt in de industrie en academische wereld via zijn opensource implementatie Hadoop
[1]. Ruwweg wordt een MapReduce stap opgebouwd uit twee functies die door de ge-
bruiker kunnen worden ingevuld: een map functie en een reduce functie. De map functie
verdeelt de input in fragmenten, de reduce functie wordt in parallel op deze fragmenten
uitgevoerd. In veel gevallen reduceert de reduce functie de gegevens waarop ze wordt
uitgevoerd, maar dit is niet noodzakelijk. De elementaire basisblokken in een MapReduce
programma zijn paren van de vorm 〈key; value〉. Hier representeert value de inhoudelijke
data, key fungeert als een soort logisch adres. Zowel de input, output als intermediare
resultaten worden gezien als verzamelingen van dit soort paren. Meer formeel wordt een
map functie gedefiniëerd als een functie die een individueel key-value paar afbeeldt op een
verzameling van key-value paren. De reduce functie wordt gedefiniëerd als een functie die
een verzameling van key-value paren, allen met een zelfde key, afbeeldt op een verzameling
van key-value paren, waarbij alle paren nog steeds diezelfde key hebben.

Een MapReduce programma is een sequentie van MapReduce stappen waarin achter-
eenvolgens de volgende fasen plaatsvinden:

• map fase: de map functie wordt uitgevoerd op ieder afzonderlijk paar. Dit gebeurt
in parallel. Het resultaat is een verzameling van intermediaire key-value paren;

• shuffle fase: op basis van de key velden worden de paren gesorteerd en verdeeld
in groepen waarin ieder paar dezelfde key heeft; en

• reduce fase: de reduce functie wordt uitgevoerd op iedere groep van paren, ook
dit gebeurt in parallel.

Merk op dat de shuffle fase een intensieve berekening inhoudt. Verder kan de shuffle fase
pas plaatsvinden nadat ieder resultaat van de map functie is berekend. Daarom spreekt
men in deze context over een blocking property.

Een typisch voorbeeld van een programma in MapReduce is Wordcount. Beschouw
een verzameling van woorden gecodeerd als key-value paren van de vorm 〈k; (woord)〉.
We kunnen nu gemakkelijk de woorden tellen door de map functie een paar 〈k; (woord)〉
te laten afbeelden op een paar van de vorm 〈woord; 1〉. De reducer streamt een groep
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van woorden en telt de achtervoegsels bij elkaar op. De output van de reducer is dus een
tupel van de vorm 〈woord; sum(input achtervoegsels)〉 en vormt de oplossing voor het
probleem. Er bestaan verschillende varianten voor dit algoritme. In plaats van woorden
te groeperen op basis van het woord zelf, kan er bijvoorbeeld ook gebruik worden gemaakt
van een hash functie, of zelfs een random partitionering. Mogelijk moet er dan wel een
extra MapReduce stap worden geïntroduceerd. Jammer genoeg is niet ieder probleem zo
gemakkelijk in MapReduce op te lossen als het Wordcount probleem. Meestal zorgt de
noodzakelijke communicatie en coördinatie ervoor dat er in de praktijk heel wat extra
overhead bij komt kijken.

Net als in de sequentiële context zijn we ook binnen MapReduce geïnteresseerd in de
complexiteit van algoritmen. Het uitdrukken van de complexiteit en de bruikbaarheid
van MapReduce algoritmen is echter niet triviaal. In een sequentiële context wordt ty-
pisch de hoeveelheid tijd en ruimte dat een algoritme nodig heeft gemeten, maar in een
gedistribueerde context zoals MapReduce komen hier verschillende extra parameters bij
kijken. Ten eerst is er het aantal stappen: hoe meer MapReduce stappen er moeten wor-
den uitgevoerd, hoe vaker de shuffle fase moet plaatsvinden. Het spreekt voor zich dat
het aantal MapReduce stappen dus best zo laag mogelijk wordt gehouden. Een andere
belangrijke maat is de hoeveelheid communicatie die plaatsvindt. Ook hier spreekt het
voor zich dat de hoeveelheid communicatie best zo laag mogelijk wordt gehouden. Ook
het geheugen en de uitvoertijd zijn natuurlijk van belang: eenerzijds dat van individuele
map functie en reduce functie instanties, anderzijds dat van het gehele programma.

Complexiteitsmaten vormen een belangrijk onderdeel in deze thesis. Hoewel er ver-
schillende modellen en maten worden besproken, speelt met name de key- en sequentiële
complexiteit [29] een belangrijke rol. De key complexiteit bestaat uit drie maten:

• de maximum grootte van de input en output van een mapper en reducer;

• de maximum uitvoertijd van een mapper of reducer; en

• het maximum geheugen dat door een mapper of reducer wordt gebruikt.

Ten tweede is er de sequentiële complexiteit, die een maat vormt voor de complexiteit van
alle mappers en reducers in één MapReduce stap. De sequentiële complexiteit heeft twee
delen:

• de grootte van alle inputs en outputs van mappers en reducers; en

• de totale uitvoertijd voor alle mappers en reducers.

Een ander model dat een belangrijk rol speelt in deze thesis isMRC [39] (MapReduce
Class). Dit model probeert op design niveau grenzen te formuleren die de praktische
uitvoerbaarheid van een algoritme moeten garanderen. Omdat zelfs een lineair aantal
machines, of een lineaire hoeveelheid geheugen ten opzichte van de input grootte in onze
context onrealistisch groot zijn, wordt er in dit model gewerkt met sublineare bovengren-
zen. Formeel wordt het model als volgt gedefinieerd:
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Definitie: Fixeer een ε > 0. Een MapReduce algoritme is inMRCi als:

• het algoritme een correcte antwoord oplevert met kans minstens 3/4;

• iedere mapper µ een (gerandomiseerde) functie is, die kan worden geïmplementeerd
op een RAM met woorden van grootte O(logn), die O(n1−ε) ruimte gebruikt en
slechts een polynomiale hoeveelheid tijd nodig heeft in n;

• iedere reducer ρ een (gerandomiseerde) functie is, die kan worden geïmplementeerd
op een RAM met woorden van lengte

(
logn), waarvan de hoeveelheid ruimte be-

grenst is door O(n1−ε) en de tijd polynomiaal is in n;

• de totale hoeveelheid ruimte die wordt ingenomen door alle intermediare key-value
paren (output van mappers) in een enkele MapReduce stap begrensd is doorO(n2−2ε);
en

• het aantal stappen begrensd is door O(logi n).

NoemMRC = ⋃
i≥0MRCi en noem DMRC de deterministische variant. Het idee achter

dit model is dat algoritmen die aan deze grenzen voldoen gegarandeerd kunnen worden
uitgevoerd in MapReduce met slechts een sublinear aantal machines met ieder een subli-
neare hoeveelheid geheugen, ten opzichte van de input grootte.

Naast een omschrijving van MapReduce zelf worden er in deze thesis ook omschrijvin-
gen gegeven van enkele meer recente MapReduce-achtige abstracties die in onze context
interessant lijken. Het gaat over Pregel [47], GraphLab [46], PowerGraph [30], en een me-
thode voor het gedistribueerd evalueren van Datalog programma’s [5]. Deze abstracties
worden beknopt besproken en dienen vooral als illustratie van de golf van abstracties die
MapReduce in gang heeft gezet, alsook ter illustratie van de beperkingen in de MapReduce
abstractie zelf, die deze modellen reeds trachten te verhelpen.

RPQs en CRPQs

Naast de grote hoeveelheid data, doet er zich in het huidige datalandschap een tweede
probleem voor: data nemen vaak een complexe structuur aan. Typische voorbeelden
hiervan zijn sociale media, zoals Facebook en Twitter, die bestaan uit complexe netwerken
van zelf-omschrijvende structuren [23]. Er zijn ook tal van voorbeelden te vinden in andere
domeinen, zoals de financiële wereld, de bioinformatica en de chemie. In het kort komt
het erop neer dat de vorm van deze data niet toelaat dat ze op triviale wijze in het
traditionele relationele model past. Daarom is het in de praktijk nu al vaak gebruikelijk
om relationele databases aan te vullen met niet-relationele systemen, ook wel NoSQL
databases genoemd. In onze context zijn we vooral geïnteresseerd in semi-gestructureerde
data die op natuurlijke wijze binnen het graafmodel kan worden gemodelleerd.

Het kunnen ondervragen van data is essentieel om inzicht te kunnen krijgen in de
inhoud of structuur ervan. SQL is de ondervragingstaal bij uitstek binnen het relati-
onele model, maar schiet tekort in expressiviteit voor de ondervraging van graafdata.
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Met name pad expressies ontbreken. De vraag welke querytalen het meest geschikt zijn
voor het ondervragen van semi-gestructureerde data is echter niet nieuw [60]. De on-
dervragingstaal die populair is in deze context is een combinatie van de conjunctieve
queries (CQs), het in de praktijk meest gebruikte deel van SQL, en reguliere pad queries
(RPQs). De Conjuntieve reguliere pad queries (CRPQs) zijn voor semi-gestructureerde
data ongeveer hetzelfde als wat CQs zijn voor het relationele model. Met andere woorden,
een taal met voldoende uitdrukkingskracht om alledaagse vragen te kunnen formuleren,
maar tegelijkertijd ook een taal met heel wat beslisbare eigenschappen. Dit verklaart de
grootte interesse voor CRPQs binnen de wetenschappelijke gemeenschap [11, 17, 41, 61].
De expressiviteit van CRPQs wordt bovendien (gedeeltelijk) omvat in query talen die in
de praktijk worden gebruikt voor de ondervraging van graafdata, zoals SPARQL, voor
de ondervraging van semantisch web data, en XPath/XQuery voor de ondervraging van
XML.

Syntactisch wordt een CRPQ als volgt gedefiniëerd.

Definitie: Een conjunctieve reguliere pad querie (CRPQ) over een eindig alfabet Σ is
een expressie van de vorm:

ans(z̄)←
∧

1≤i≤m
(xi, ri, yi),

waar m > 0, iedere xi en yi is een knoop-variabele, iedere ri is een reguliere expressie over
Σ, en iedere zi in z̄ is een xj of yj .

Voorbeeld: Gegeven een graaf waarin een boog van knoop u naar knoop v met label
ouder aangeeft dat v een ouder is van u. We kunnen de relatie vinden van personen met
gemeenschappelijke voorouders via de volgende CRPQ :

ans(u,w)← (u, ouder∗, z) ∧ (w, ouder∗, z).

In deze thesis worden de syntax, semantiek en complexiteit van conjunctieve queries
in de sequentiële context besproken. In het bijzonder wordt er aandacht besteed aan
de verschillende manieren om complexiteit uit te drukken: data complexiteit, expressie
complexiteit, en gecombineerde complexiteit. Het verschil zit in de elementen op basis
waarvan de complexiteit wordt uitgedrukt, dit wil zeggen, enkel de grootte van de in-
put, enkel de grootte van de query, of de combinatie van beiden. In het bijzonder wordt
de np-compleetheid (gecombineerde-complexiteit) en ac0 bovengrens (data complexiteit)
van conjunctieve queries besproken. Vervolgens behandelen we een gemakkelijker deel
van de conjunctieve queries, namelijk de acyclische conjunctieve queries. Hiervan be-
handelen we de ptime bovengrens. Voor CRPQs doen we hetzelfde: we behandelen de
np-compleetheid binnen de gecombineerde-complexiteit en de nl-compleetheid binnen de
data-complexiteit. Vervolgens wordt er ingegaan op de acyclische conjunctieve reguliere
pad queries die nl-compleet zijn wat betreft gecombineerde-complexiteit.
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CQs en USTCON in MapReduce

CRPQs worden op het moment van schrijven niet in de literatuur rond MapReduce
bestudeerd. Daarom wordt er ingegaan op algoritmen voor enkele gerelateerde problemen
die wel reeds in de literatuur aan bod komen.

In de eerste plaats zijn dit CQs en joins. In de MapReduce context encoderen we
een relatie instantie steeds als een verzameling MapReduce paren, waarbij ieder tuple uit
een relatie overeenkomt met een paar, waarvan de value zowel het tuple als de relatie-
naam omvat. We bespreken hoofdzakelijk twee algoritmen voor het uitvoeren van joins
in MapReduce. De meest natuurlijke manier om joins in de context van MapReduce uit
te voeren is door, via de map functie, alle paren te groeperen op basis van de waarde
van hun join-attribuut. Op deze manier wordt de input opgesplitst in strikte fragmenten
waartussen er geen join moet worden berekend. De reduce functie voert vervolgens de
join uit op paren binnen zo een fragment. Het probleem met deze methode is dat, wan-
neer de frequenties van waarden voor de join-attributen sterk afwijken van elkaar, ook de
groottes van de fragmenten sterk zullen verschillen. Mogelijk zijn bepaalde fragmenten
zelfs groter dan een enkele machine kan verwerken, wat maakt dat deze methode enkel
praktisch bruikbaar is als er een begrenzing op de frequenties bestaat. Het alternatief is
een benadering die de reducers centraal plaatst. Hierbij treed er een overhead op in de
communicatie doordat er overlap ontstaat tussen de fragmenten die worden beschouwd,
maar we bezitten wel over garanties over de hoeveelheid paren die door een individuele
reducer zullen moeten worden verwerkt.

Verder werden er twee eenvoudige graaf problemen bestudeerd. In het bijzonder is
dit het undirected s-t-connectivity (USTCON) probleem, dat gegeven een ongerichte graaf
vraagt of twee knopen s en t in de graaf met elkaar verbonden zijn. Ook het gerelateerde
finding connected components probleem, waarbij er gezocht wordt naar de verzamelingen
van knopen in een graaf die met elkaar geconnecteerd zijn, wordt behandeld.

RPQs en CRPQs in MapReduce

Het laatste onderdeel bestaat uit een studie van de evaluatie van RPQs en CRPQs in
MapReduce zelf, door de inzichten die werden bekomen uit de domeinstudie rond CRPQs
in de sequentiële context, MapReduce, de complexeitsmaten, en de algoritmen voor gere-
lateerde problemen te combineren. In het bijzonder worden er algoritmen voorgesteld en
geanalyseerd die gebaseerd zijn op de partiële evaluatie van padqueries door gebruik te
maken van automaten. Er wordt eveneens ingegaan op acyclische CRPQs in deze context.
In het algemeen kan geconcludeerd worden dat het uitvoeren van joins in MapReduce niet
evident is. De kost van het berekenen van multi-way joins neemt dan ook sterk de boven-
hand in onze analyse.
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Conclusie en vooruitzicht
De klassieke complexiteitsgrezenden voor de evaluatie van CQs, RPQs, en CRPQs uit de
traditionele sequentiële context worden besproken. Zowel voor het algemene probleem als
voor de acylische tegenhangers. Het MapReduce model en de verschillende complexiteits-
maten en modellen worden besproken. Er worden eveneens enkele alternatieven besproken
die bepaalde problemen in de MapReduce abstractie aanpakken, in het bijzonder het ver-
werken van grafen. In aanloop naar de evaluatie van RPQs en CRPQs werden er enkele
algoritmen bestudeerd die reeds in de literatuur in MapReduce werden onderzocht. Ten-
slotte werden de inzichten uit de voorgaande delen gebundeld om te komen tot algoritmen
voor de evaluatie van RPQs en CRPQs.

Bepaalde delen van de literatuur werden niet behandeld. Zo worden er enkel complexi-
teitsresultaten gegeven die nuttig lijken in onze context. We gaan er steeds vanuit dat
queries worden geëvalueerd zoals ze zijn. Er worden geen technieken voor het herschrij-
ven van queries behandeld, die in de praktijk natuurlijk wel een belangrijke rol spelen.
In de literatuur wordt er reeds aandacht besteed aan de relaties tussen MapReduce en
andere theoretische modellen, zoals PRAM, BSP en streaming modellen. Omdat we niet
verwachtten dat hier voor onze context bruikbare resultaten uit te halen waren, werd dit
deel van de MapReduce literatuur eveneens niet behandeld. Verder wordt er een selectie
aan MapReduce varianten besproken, maar er bestaan er natuurlijk veel meer. Tenslotte,
door een gebrek aan ondergrenzen hebben we geen informatie over de nauwheid van de
complexiteitsgrenzen voor de evaluatie algoritmen die werden geformuleerd. Het uitvoeren
van experimenten had mogelijk een beter inzicht in de praktische bruikbaarheid kunnen
opleveren. Er werd echter niet beschikt over een dataset die tot een relevante analyse kon
leiden. In het algemeen lijkt er wel nog heel wat verbetering mogelijk te zijn, al dan niet
binnen MapReduce.

Hoewel MapReduce veelvuldig wordt gebruikt in de praktijk, heeft het model ook heel
wat tekortkomingen. Hieronder vallen ondermeer de hoge kost voor het berekenen van
joins, en de moeilijkheden in het omgaan met graafdata; beiden onmisbaar in de context
van CRPQs.

MapReduce heeft het onderwerp van gedistribueerde en parallelle berekeningen nieuw
leven ingeblazen en een golf van abstracties in gang gezet. Verschillende van deze nieuwe
abstracties trachten reeds tekortkomingen van MapReduce aan te pakken. Daarom zien
we MapReduce eerder als een beginpunt dan een eindpunt. We verwachten dat er nog
heel wat modellen zullen volgen.
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1
Introduction

Big data; in current database research and IT management literature it is all about big
data. But what is big data? It is a subjective, time, and context dependant buzzword.
However, there also is a common crux:

“Big data is data whose size forces us to look beyond the tried-and-true meth-
ods that are prevalent at that time [37].”

Although hardware capacity evolves quickly, the amounts of data we are faced with tend to
grow even faster. Therefore, this definition perfectly catches the challenges of processing
big data.

Nowadays, it is generally cheaper to buy 8 off-the-shelf commodity machines than one
with 8 times the capacity of a single machine [37]. Hence, it is a common strategy to
use large clusters of cheap commodity machines connected in a network in order to evade
the limitations of a single machine. In our context, big data refers to the petabyte scale
data analysis to which industry and academia are exposed today; and, where hundreds
or even thousands of machines, running in parallel, are required to finish computations
in a reasonable amount of time [19]. Unfortunately, parallelization and distribution of
data also brings a lot of drawbacks: the need for coordination, communication, and
synchronization are only a few of the causes that make a simple algorithm extremely
hard to implement. Furthermore, in a cluster of this size, where the chance of possible
errors is near 100 percent, fault tolerance and error handling are of inevitable importance.
In 2004, Google introduced MapReduce [19], a framework that provides a programming
abstraction that enables the design of algorithms that can be executed automatically
on a cluster of machines in a fault-tolerant way. MapReduce has been used intensively
at Google, and has since widely been adopted in industry and academia throughout its
open-source implementation, Hadoop [1].

Although size matters, much data in the current data landscape also has a complex
and non-traditional structure. Social media that consist of complex, interlinked networks
of self-describing structures [23], like Facebook and Twitter, are typical examples. Other
challenging examples can be found in, for example, finance, bioinformatics, and chemistry.
It is already common to complement traditional databases with NoSQL databases (i.e.,

1



2 CHAPTER 1. INTRODUCTION

non-relational systems) in order to handle the variety of elements in the current data
landscape; especially semi-structured data, which naturally fits into the graph model.
Semi-structured data is not new, nor is the question how to query it [60]. SQL, and
in particular the conjunctive part, is the main query language of interest in relational
databases. In semi-structured data, however, these languages fall short due to a lack of
navigational expressiveness. Therefore, ubiquitous, large graph data has led to a renewed
interest in path queries and graph pattern matching languages [61]. In this context, reg-
ular path queries (RPQs) and conjunctive regular path queries (CRPQs) are considered.
CRPQs are reasonably expressive, but still have a lot of decidable properties, which ex-
plains the great interest of the scientific community [11, 17, 41, 61]. Furthermore, CRPQs
are (partially) subsumed by many graph and tree languages that are used in practice; like
SPARQL [34], the default language for querying semantic web data; and XPath/XQuery,
which is the default language for querying XML.

Driven by size and shape of the data to which we are exposed, the challenges of cluster
computing, and the recent wave of abstractions to handle them, the goal of this thesis is
threefold:

1. understanding the established research of CQs and CRPQs in the (traditional) se-
quential context;

2. performing a domain study of MapReduce, its properties, and complexity measures;
and

3. designing and analyzing algorithms for the evaluation of CRPQs in MapReduce by
combining the knowledge gained from the previous parts.

Thesis Outline
In Chapter 2, the background concepts that are heavily used throughout this thesis, are
introduced. Part I contains a domain study of conjunctive queries (CQs), regular path
queries (RPQs) and conjunctive regular path queries (CRPQs) in a sequential context.
Chapter 3 covers the syntax and semantics of CQs together with the classical complexity
results. In Chapter 4 an analogous study is performed on CRPQs. Part II is twofold:
it consists of the domain study of MapReduce and MapReduce-like environments; and
introduces algorithms to evaluate CRPQs on large graphs with MapReduce. First, in
Chapter 5, a theoretical study of MapReduce is performed, including a description of
its complexity measures. Since RPQs and CRPQs are not yet studied in the context of
MapReduce, some related problems are studied in the MR abstraction. In particular, in
Chapter 6, the evaluation of conjunctive queries and joins is studied in MapReduce. In
Chapter 7, a similar analysis is performed for the problem of undirected s-t-connectivity
and the related problem of finding connected components. MapReduce has initiated
a wave of parallel abstractions. Some of these MapReduce extensions or alternatives
are discussed in Chapter 8. Finally, in Chapter 9 and Chapter 10, algorithms for the
evaluation of RPQs and CRPQs are introduced. In Chapter 11 the conclusions and
outlook are given.



2
Preliminaries

The aim of this chapter is to give a brief overview of the theoretical results that are used
throughout this thesis. First, a short description of the relational and graph model are
provided. Second, the complexity of queries in a sequential setting is discussed, including
the parallel complexity class ac0. Next, an application of Chernoff bounds is described,
which we will use several times. Finally, some basic notations of regular expressions are
covered.

2.1 Relational Databases
When referring to a database, we usually mean a database in the relational model which
was introduced by Codd. Formally, a relational database is an instance of a database
schema. A database schema R specifies the structure of a database and is defined as set
of relation schemas {R1, R2, . . . , R2}. In turn, a relation schema Ri is a set of attributes
{X1, X2, . . . , Xn}, where R itself is called the relation name. Furthermore, a countable
and infinite set of constants dom is defined as the underlying domain. Since we only
make use of the equality relation, the exact shape of the structure associated to dom is
unimportant in our context.

A database instance I over a database schema R is an image that maps every relation
schema R ∈ R on a finite set of tuples over R, written I(R). A tuple t̄ over R is an
image from the set of attributes in R on dom. Moreover, when talking about constants
we mean elements in dom.

In the context of queries defined over a database schema R we sometimes refer to
instances that are compatible to a query q. By this we mean instances from the domain
associated to R. In addition, when referring to a tuple compatible to a query q, we also
assume that this tuple has the same arity as the output relation of q.

2.2 Semi-Structured Data and Graphs
Data in the relational model is highly structured. Munch of the data in the current data
landscape, however, does not conform to this formal structure. We use the term semi-
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4 CHAPTER 2. PRELIMINARIES

structured data to denote any data in between raw and, highly structured, relational data.
A natural way to model semi-structured data is by means of a graph, or graph database
[10].

A graph is a mathematical structure defined as a pair (V,E), where V is a finite set
of nodes and E ⊆ V × V is a set of edges between these nodes. A graph can be directed
or undirected. Most of the time we refer to directed graphs, i.e, graphs where edges are
ordered pairs of nodes. When referring to an undirected graph, we assume that for every
edge in E, the other direction is available in E as well.

Sometimes, we consider graphs where the edges or nodes are labeled. A Σ-labeled
graph is a graph where Σ represents an underlying finite domain of labels. Formally,
labels are associated to nodes or edges by means of a labeling function. Hence, we define
a labeling function on nodes λv : V → Σ as a total function on the nodes in G that maps
every node on its associated label. Analogous we define a labeling function on edges
λe : E → Σ as a total function on the edges in G that maps every edge on its associated
label. When it is clear from the context λe and λv are shorthanded by λ to denote the
appropriate function.

A path η in G from v1 to vk is a sequence of edges between v1 and vk, or equivalent, a
sequence of nodes v1v2v3 . . . vk−1vk such that (vi, vi+1) ∈ E for each i ∈ [1, k−1]. For nota-
tional simplicity we sometimes use an alternative definition for edges that combines the
end-nodes and the labeling function on edges, i.e., E ⊆ V ×Σ×V . We extend λe to paths
η = e1e2 . . . ek in the natural way, that is, λe(η) = λe(e1e2 . . . ek) = λe(e1)λe(e2) . . . λe(ek),
where ei ∈ E for every i ∈ [1, k].

Let G = (V,E) be an undirected graph. We use the notation Γ(v), where v ∈ V
to denote the set of neighbours of v. The degree of v, written deg(v), is the number of
adjacent edges of v. In a directed graph, we typically make a distinction between the
incoming edges, i.e., degi(v), and the outgoing edges, i.e., dego(v). We use ∆(G), or
simply ∆ when G is clear from the context, to denote the maximum degree of a node in
G.

2.3 Query Complexity

There are three different ways to evaluate the complexity of queries [59]: data complexity,
expression complexity1 and combined complexity. The difference between these types is
in the way the complexity is expressed; that is, in the size of the instance, the size of the
query, or the size of both the query and the instance. As usual, the complexity is measured
in terms of a decision problem instead of the evaluation itself. For query languages the
decision problem is called the recognition problem. More formally, for relational query
language Q the recognition problem of Q is defined as the problem to decide whether
t̄ ∈ q(I), where I is a relation instance, q a query in Q, and t̄ a tuple.

We define the data complexity of a relational query language Q as the complexity of
its recognition problem where q is fixed, i.e., the complexity of Q-eval(q).

1Expression complexity is sometimes called query complexity, but its value depends more on the
expression than on the actual query [59].
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Problem: Q-eval(q)
Input: An instance I and tuple t̄ that are compatible with q.
Output: t̄ ∈ q(I)?

The expression complexity of a relational query languageQ is defined as the complexity
of its recognition problem where I is fixed. That is, the complexity of Q-eval(I).

Problem: Q-eval(I)
Input: A query q ∈ Q and a tuple t̄ that is compatible with q.
Output: t̄ ∈ q(I)?

Eventually, the combined complexity of a relational query language Q is the com-
plexity of its recognition problem, where no input parameters are fixed. We define the
corresponding decision problem as Q-eval.

Problem: Q-eval
Input: An instance I, a query q ∈ Q and a tuple t̄ compatible with q.
Output: t̄ ∈ q(I)?

The data complexity, expression complexity, and combined complexity for graph query
languages is defined in an analogous way. For convenience, the definition of combined
complexity for queries over graph databases is given below.

Problem: Q-eval
Input: Let Σ be a finite alphabet, G a graph database over Σ, q ∈ Q

a query, and v̄ a tuple of nodes in G compatible with q.
Output: v̄ ∈ q(G)?

2.4 AC0

A boolean circuit C is a directed acyclic graph with n input nodes (wit no incoming edges)
and 1 output node (with no outgoing edges). Every non-input node is called a gate and is
labeled with a logical connective or, and, or not. The size of C is defined as its number
of nodes.

The evaluation of a boolean circuit C over input x ∈ {0, 1}n is defined inductively
as follows. The ith input node evaluates to the ith input value. Every non-input node
evaluates to the value corresponding to the evaluation of the associated connective on the
values on its incoming wires.

It is important to note that Boolean circuits are non-uniform models of computation.
Nevertheless, it is possible to place a uniformity condition on the circuits. A circuit family
{Cn} is logspace-uniform if there is an implicitly logspace computable function mapping
1n to the description of circuit Cn [9].



6 CHAPTER 2. PRELIMINARIES

Definition 2.1: For every i, Q-eval(q) is in aci, if it can be decided by a logspace-
uniform family of circuits {Cn} where every Cn has a polynomial size in n and depth
O(login). An unbounded amount of input wires is allowed for or and and gates.

In particular we consider ac0, in which the depth of the circuits is constant. ac0 is
contained in the complexity class l ; i.e., the class of logspace algorithms.

2.5 Chernoff Bounds
Let X1, X2, . . . , Xm be independent Bernoulli trails, i.e., a set of experiments where the
output can be either 1 or 0. Let pi be the chance that Xi = 1 and 1 − pi be the chance
that Xi = 0. Then let X = ∑m

i=1Xi and E[X] be the expectation of X. Moreover:

E[X] =
m∑
i=1

pi.

We also write µ to denote the expectation.
In the context of randomized algorithms it is a frequent necessity to show that prop-

erties are true with high probability. Chernoff bounds provide a tool that is perfectly
suitable for this task. In particular, in our context we use Chernoff bounds to prove that
X > (1 + δ)µ, for a given δ .

There is no such thing as a Chernoff bound, rather, Chernoff bounds are applications
of Markov’s inequality (i.e., Pr[X ≥ a] ≤ E[X]

a , where a is a non-negative integer) to etX
for some wel chosen t. The complete theory of Chernoff bounds would lead us to far.
Therefore, we refer to [49] and [48] for a more in detail overview. Nevertheless, it is a
classic result that for any δ > 0

Pr[X ≥ (1 + δ)µ] <
(

eδ

(1 + δ)(1+δ)

)µ
. (2.1)

Moreover, when δ ≥ 2e− 1, Equation (2.2) holds as well:(
eδ

(1 + δ)(1+δ)

)µ
≤
(

e(1+δ)

(1 + δ)(1+δ)

)µ
≤
(1

2

)µ(1+δ)
, (2.2)

which leads to a simplified version of Equation (2.1) when δ ≥ 2e− 1:

Pr[X > (1 + δ)µ] < 2−µ(1+δ).

2.6 Regular Expressions and NFAs
Let Σ be an alphabet. When referring to regular expressions we mean the simple regular
expressions that are typically used in literature. ε and a ∈ Σ are regular expressions.
Furthermore, regular expressions are closed under concatenation, set union and the Kleene
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star operation, i.e., r1r2, r1|r2, and r∗1 are regular expressions. We denote the language
containing every string over Σ that is defined by a regular expression r with L(r).

It is a classical result that the languages defined by a regular expressions are equivalent
to the languages that are expressible by Nondeterministic Finite Automata (NFAs). We
define an NFA A as a 5-tuple (Σ, Q, δ, s0, F ), where Σ is the alphabet, Q a set of states,
δ : Q×Σ×Q a transition relation, s0 ∈ Q a start state, and F ⊆ Q the accepting states.
We usually express the size of an NFA in terms of its states, i.e., |Q|. More particular, in
our context it is important that:

• A regular expressions r can be transformed into a (ε-free) NFA in O(|r| log |r|) time
[35], where |r| denotes the length of r.

• Let A1 and A2 be NFAs. We are able to generate an NFA A that recognizes
the intersection of languages recognized by A1 and A2, L(A) = L(A1)⋃L(A2), in
polynomial time such that A is polynomial in the size of A1 and A2.

A run of A is a sequence of states that agrees to the transition relation of A. An
accepting run of A, write θ, is a run that starts in s0 and ends in a state from F .





Part I

Sequential Context
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3
Conjunctive Queries

A conjunctive query is a very simple query that, despite its limited expressiveness, allows
to formulate every day queries. Moreover, the language of conjunctive queries forms the
basis of several mayor query languages, making it the subject of considerable research.
In this chapter we study the complexity of the conjunctive queries and an important
restriction, the acyclic conjunctive queries, in a traditional, sequential setting.

3.1 Syntax and Semantics
Conjunctive queries appear in several forms. One such form, closely related to the syntax
used for conjunctive regular path queries in the next chapter, is given below. An extended
overview can be found in [2]. For historical reasons we will only consider the relational
case for now.

Definition 3.1: Let R be a database schema. A conjunctive query (CQ) over R is an
expression of the form

ans(z̄)←
∧

1≤i≤m
Ri(x̄i),

where m ≥ 0, R1, . . . , Rm relation names in R and z̄, x̄1, . . . , x̄m tuples of variables and
constants that have appropriate arities. Every variable in z̄ has to appear at least once
in x̄1, . . . , x̄m.

Example: Let Parent(X1, X2) and Male(Y ) be database relations. It is easy to formu-
late a conjunctive query that asks for the grandfather relation:

ans(x, z)← Parent(x, y) ∧ Parent(y, z) ∧Male(z).

We call ans(z̄) the head of the query and ∧1≤i≤mRi(x̄i) the body of the query. A
conjunctive query is a Boolean conjunctive query (BCQ) if its head has arity 0.

A valuation ϑ over a set V of variables is a total function from V to the set dom of
constants. This function can be extended with the identity of dom and further extended
to tuples in the natural fashion (i.e., ϑ(x̄) = (ϑ(x1), . . . , ϑ(xk)) where x̄ = (x1, . . . , xk)).

11
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Definition 3.2: Let q be a conjunctive query over R of the form ans(z̄)← R1(x̄1)∧· · ·∧
Rm(x̄m) and I an instance over R. The image of q over I is defined as follows:

q(I) = {ϑ(z̄) | ϑ a valuation over the set of variables in q
en ϑ(x̄i) ∈ I(Ri), for all i ∈ [1,m]}.

The active domain of an instance I or a query q is the finite subset of dom that
contains every element of dom occurring in I or q.

One of the reasons why the language of CQs is so popular in literature is that its
containment and equivalence problem are decidable (np-complete [17] to be precise), in
contrary to more expressive languages such as SQL. Containment and equivalence are
especially useful in the context of query optimization.

3.2 Data Complexity

It is not hard to see that a conjunctive query over a database instance can be evaluated
in a logarithmic amount of space in the size of the input instance [2]. We only have to
iterate the possible values of body atoms by using pointers to the corresponding elements
in the input instance. Consequently, CQ-eval(q) ∈ logspace. It turns out, however,
that we can further restrict this complexity result to ac0.

Theorem 3.1: CQ-eval(q) ∈ ac0 [2].

Proof: Let R = {R1, . . . Rk} be a relational schema, q a fixed query over R, I a database
instance over R, and t̄ a tuple compatible with q.

Assume J to be the maximal instance over R with active domain the union of the
active domain of I and q. Let n be the size of J. Construct an input gate for each pair
〈R, s〉, where R(x̄) is an atom in the body of q and s̄ is a tuple consisting of constants from
the active domain of I and q. We assume s̄ to have the same arity as x̄. Also construct
the output gate associated to 〈ans, t̄〉.

Next, we build the Boolean circuit network from output to input. Connect the output
gate to a newly added or-gate. This or gate will connect the distinct configurations of
existentially quantified variables in the body of q. Connect to this or-gate a set of newly
added distinct and-gates, where each and-gate is associated to a single configuration of
existentially quantified variables compatible to t̄. Every and-gate is connected to the
associated input gates. An example construction is illustrated in Figure 3.1.

The depth of the resulting circuit is fixed. The circuit size (i.e., the number of gates)
is polynomial in the size of the input. It is not hard to see that this circuit can be
constructed by a TM on input 1n in logspace. �

Theorem 3.1 is not only applicable to conjunctive queries; in fact, the evaluation
problem for the entire domain calculus is in ac0 [2].
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〈R1, (a, a)〉 〈R1, (a, b)〉 〈R1, (b, a)〉

and and

or

〈ans, (a)〉

Figure 3.1: Example circuit for query ans(x)← R1(x, y)∧R1(y, x) over database schema
R = {R1}, domain {a,b} and tuple t = (a).

3.3 Combined Complexity

In [17] it is proven that every Boolean conjunctive query is logspace complete in np with
respect to combined complexity, but it is easy to generalize this proof to the language of
(not necessary boolean) conjunctive queries.

Theorem 3.2: CQ-eval is logspace complete in np.

Proof: Let q be an arbitrary CQ, I a compatible instance, and t̄ a tuple compatible to
q. A witness for the recognition problem t̄ ∈ q(I) is a valuation ϑ such that ϑ(z̄) = t̄ and
ϑ(x̄i) ∈ I(Ri) for each i ∈ [1,m]. The verification of both conditions clearly is possible in
time polynomial in the size of the input. A valuation is a function that maps precisely
the variables in q on the constants in dom, and thus has a fixed size. Now, it is not hard
to see that there exists a non-deterministic TM that guesses ϑ and checks if ϑ is a witness
for t̄ ∈ q(I) in a polynomial amount of time.

Completeness can be derived via a reduction from k-clique, say 〈k,G〉, which asks fo
the existence of a complete subgraph of size k in graph G. First, assume that G has at
least k edges. This can be verified in a logarithmic amount of space. Second, construct
the instance I over a binary relation R and construct a Boolean query q that represents
a k-clique pattern as below:

ans()← R(x1, x2)∧R(x1, x3)∧ . . . ∧R(x1, xk)
∧R(x2, x3)∧ . . . ∧R(x2, xk)

...
∧R(xk−1, xk).

The construction of instance I requires only a logarithmic amount of space. To achieve
this, iterate through the edges in G by means of a pointer, and construct two tuples
(one for each direction) in I for each edge. The construction of q also requires only a
logarithmic amount of space by means of two pointers of size O(log k). Since we assumed
k to be greater than the number of edges in G O(log k) implies O(logn), where n is the
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size of the input. If |G| < k we return a trivial untrue combination, for example ()← R(a)
and instance R(I) = {}. �

Alternatively, np-completeness follows immediately from the np-completeness of the
containment problem for conjunctive queries combined with the homomorphism theorem
[2] which states that the containment problem q ⊆ q′ for CQs is equivalent to the problem
z̄ ∈ q′(I) where I is the canonical instance of q and ans(z̄) the head-atom of q. In [44]
the completeness is derived via a reduction to 3-color.

3.4 Expression Complexity

Theorem 3.3: CQ-eval(I) is logspace complete in np.

The proof is completely analogues to the one presented for the combined complexity
of CQs in the previous section. Since I is fixed, ϑ(x̄) ∈ I(R) is verifiable in a constant
amount of time.

3.5 Acyclic Conjunctive Queries

In the previous sections, proofs are given for the intractability of the evaluation problem
for conjunctive queries, even when restricted to Boolean conjunctive queries. In this
section we consider an important subclass of CQs where the complexity of the evaluation
problem is tractable.

A cause of the np-completeness of the evaluation problem for Boolean CQs can be
found in the possible exponential size of intermediate results while computing such an
evaluation. However, some conjunctive queries have an order in which the conjunctions
can be computed with only polynomial sized intermediate outputs in the size of the input
and output. Consequently, for Boolean conjunctive queries this implies polynomial sized
intermediate outputs in the size of the input. Informally, a conjunctive query is called
acyclic if such an ordering exists.

There exist several notions that are equivalent to the notion of acyclic queries. The
most important ones for our case are situated in the context of acyclic database schemas.
The term acyclicity is derived from equivalent notions on hypergraphs. We refer to [2, 12]
for a more complete overview of properties.

Property 3.1: A database schema R is acyclic iff R has a join forest.

A join forest of a database schema R is a forest consisting of R as its nodes, where
every edge is labeled by the shared attributes of its adjacent nodes and between every
pair of distinct nodes there exists a path containing only edges that have a label including
the shared attributes. Intuitively a join forest implies the existence of an ordering such
that πX(on1≤i≤m Ri) can be computed with only polynomial sized intermediate instances
relative to the size of the input and output. A join tree is a connected join forest.
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Definition 3.3: Let I be an instance over R = {R1, . . . , Rm}. I is pairwise consistent iff
for each i, j ∈ [1,m] : πX(Ri on Rj) = Ri, where X are the attributes in Ri. I is globally
consistent iff for each i ∈ [1,m] : πX(R1 on . . . on Rm) = Ri where X are the attributes of
Ri.

Property 3.2: A database schema R is acyclic iff every pairwise consistent instance over
R is globally consistent.

From instance I it is possible to compute a pairwise consistent instance I’ by means
of a semijoin program. A semijoin between relation R and S, write R n S, is defined as
πX(R on S), where X is the set of attributes of R. Hence, a semijoin program is a program
that consists of rules of the form Ri := Ri nRj . In a worst-case scenario, the semijoin of
every relation has to be taken with every other relation. Hence, this computation can be
performed in polynomial time. Property 3.2 implies that the resulting I’ in the case of an
acyclic database schema is globally consistent. A semijoin program for R is called a full
reducer if the result of the execution of the program on every instance I over R results in
an equivalent globally consistent instance I’.
Property 3.3: A database schema R is acyclic iff R has a full reducer.

Now we turn to the main theorem of this section by combining Property 3.1 and
Property 3.3.
Theorem 3.4 (Yannakakis [62, 2]): Let R be an acyclic database schema. For every
instance I over R, the expression πX(on1≤i≤m Ri) can be computed in time polynomial
in the size of the input and the output.

Proof: Let I’ be the result of the execution of a full reducer over I and T a join forest
of R. Without loss of generality we assume that T is a join tree. If not, the construction
below can be applied on the individual trees. Throughout this proof, we use R not only
as the relation symbol, but also to refer to the corresponding set of attributes.

Choose a root for T and call it R1. For every subtree Tk from T with Rk 6= R1 as its
root, let Xk = X ∩ (∪{R | R ∈ Tk}) en Zk = Rk ∩Rp where Rp denotes the parent node
of Rk in T . Let J(Rk) = I’(Rk) for each k ∈ [1,m].

Systematically remove each node Rk in T from leaf to root by first removing node Rk
and replacing J(Rp) with J(Rp) on πXkZk

J(Rk).
We prove that when Rk is removed, J(Rk) = πXkRk

(onRl∈Tk
I(Rl)). If Rk is a leaf in the

original T , this immediately follows from the definition of J(Rk). Now assume for Rk that
every child node Ri satisfies this property J(Ri) = πXiRi(onRl∈Ti I’(Rl)) at the moment
before removal. When Rk is removed J(Rk) = I’(Rk) on (onRi child of Rk

πXkZk
J(Ri)).

Moreover, from the induction hypothesis we get Equation (3.1) and Equation (3.2).
J(Rk) = I’(Rk) on (onRi child of Rk

πXkZk
(πXiRi(onRl∈Ti I’(Rl)))) (3.1)

J(Rk) = I’(Rk) on πXkZk
(onRl∈Tk\{Rk} I’(Rl)) = πXkRk

(onRl∈Tk
I’(Rl)) (3.2)

Consequently, when R1 is deleted we get J(R1) = πX(onRl∈T I’(Rl)) = πX(onRl∈T I(Rl)).
Note that the size of every intermediate instance is bounded by |I’|.|πX(on1≤i≤m I(Ri))|

and thus is polynomial in the size of the input and output. �
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3.6 Acyclic Complexity
Theorem 3.5: ACQ-eval is in ptime.

Proof: Let q be an arbitrary ACQ over R, I an arbitrary instance over R and t an
arbitrary tuple compatible with q. We first transform q into a Boolean query q′ by
instantiating each variable in the body of q that appears in z̄ with the corresponding
nodes in t.

To use Theorem 3.4 we transform this Boolean problem. Let R’ be a database schema
where each relation x̄i in the body of q′ has its own relation schema Ri(z̄) where each
constant is replaced by a new variable. We also construct the instance I’ over R’ with
respect to the original I over R, and remove every tuple in I’(Ri) that is not compatible
with its associated relation in the body of q.

Now consider the evaluation problem of q′′ := π∅(on1≤i≤m (Ri)) over I ′ with fixed
database schema R’. This problem is equivalent to the original problem, and R’ is
an acyclic database schema. Since q′′ is a Boolean query, Theorem 3.4 implies that its
evaluation is possible in time polynomial in the size of the input. Consequently ACQ-
eval is possible in time polynomial in the size of the input. �

In particular, boolean acyclic conjunctive queries are complete in logcfl [32]; a
complexity class in between nl and ac1.



4
Conjunctive Regular Path Queries

In the previous chapter we explored the complexity of conjunctive queries in the context
of relation databases. In this chapter we take a look at the complexity of an extension
of the conjunctive queries in the context of graph databases. First, we define conjunctive
queries in the context of graph databases and introduce the language of regular path
queries. Next, we combine both to form the language of conjunctive regular path queries.
The main subject of this chapter is a study of the complexity of conjunctive regular path
queries in a sequential setting.

4.1 Conjunctive Queries on Graph Databases
The language of conjunctive queries itself can be seen as a very simple query language
on graph databases, where E is the only relational schema. A formal, slightly modified
version of Definition 3.1 applied to graph databases is given below.

Definition 4.1: A conjunctive query (CQ) over a finite alphabet Σ is an expression of
the form

ans(z̄)←
∧

1≤i≤m
(xi, ai, yi),

where m ≥ 0, xi, yi are node variables, and ai ∈ Σ.

The evaluation of a CQ q over a directed, Σ-labeled graph database G = (V,E),
written q(G), is defined analogously to the relational case. We define a valuation ϑ over
a set W of node variables as a total function from W to the set V of nodes in G. This
function can be extended to tuples in the natural way.

q(G) := {ϑ(z) | ϑ a valuation such that for every i ∈ [1,m] : ϑ(xi, ai, yi) ∈ E}.

Essentially, Definition 4.1 implies a restriction of Definition 3.1 to queries over a single
ternary relation. Note however that the complexity results from Chapter 3 remain ap-
plicable for this restricted definition of conjunctive queries, including the completeness in
Theorem 3.2.

17
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4.2 Regular Path Queries

An important shortcoming in the expressiveness of CQs over graph databases is the lack
of navigational capabilities. A basic query language that contains just this functionality
is the language of regular path queries.

Definition 4.2: A regular path query (RPQ) over a finite alphabet Σ is an expression of
the form

ans(x, y)← (x, r, y),

where x, y are node variables and r is a regular expression over Σ.

Example: Let G be a Σ-labeled graph and Σ an alphabet, where parent ∈ Σ. Assume
that nodes represent persons and a parent-labeled edge from node u to node v indicates
that v is a parent of u. The ancestor relation can be formulated with a regular path
query:

ans(u, v)← (u, parent∗, v).

Intuitively, the evaluation of a regular path query q over a graph databases G is defined
as the set of node pairs (u, v) such that u and v are connected by a path in G which agrees
to the regular expression r. More formally, let L(r) be the language containing each string
defined by regular expression r. The evaluation of q over Σ-labeled graph G, written q(G),
is defined as follows:

q(G) := {(u, v) ∈ V 2 | there exists a path η from u to v
such that λ(η) ∈ L(r)}.

Although RPQs are considered simple, their evaluation is still hard, especially on
large and unrestricted graphs [40], in contrary to, e.g., path queries on XML trees. Since
the expressions themselves have a huge influence on the evaluation complexity, query
rewriting [16] is an important aspect of the evaluation of RPQs in practice. In this
document, however, we assume that queries are evaluated as is.

4.3 Conjunctive Regular Path Queries

The combination of conjunctive queries and regular path queries leads to a simple but
powerful query language on graph databases, comparable to what conjunctive queries are
in the relational model. The same as for CQs, both the containment and equivalence
problem for RPQs and CRPQs are decidable. In particular, the containment problem for
CRPQs is in expspace [26].
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Definition 4.3: A conjunctive regular path query (CRPQ) over a finite alphabet Σ is an
expression of the form

ans(z̄)←
∧

1≤i≤m
(xi, ri, yi),

where m > 0, every xi and yi are node variables, every ri is a regular expression over Σ,
and every zi in z̄ is an xj or yj .

We call ans(z̄) the head of the query and ∧1≤i≤m(xi, ri, yi) the body of the query. A
conjunctive regular path query is a Boolean conjunctive regular path query (BCRPQ) if
its head has arity 0.
Example: Recall the example of Section 4.2. We can use a CRPQ to express a query
that asks for the relation of persons that have a common ancestor:

ans(u, v)← (u, parent∗, w) ∧ (v, parent∗, w).

The evaluation of conjunctive regular path queries is defined in a similar manner as
the evaluation of CQs and RPQs in the previous sections:

q(G) := {ϑ(z̄) | ϑ a valuation such that for every i ∈ [1,m] there exists a path η
from ϑ(xi) to ϑ(yi) such that λ(η) ∈ L(ri)}.

4.4 Data Complexity

Proposition 4.1: Let q be a CRPQ. CRPQ-eval(q) is nl-complete.

Proof: A witness for v̄ and G with respect to q := ans(z̄)← ∧
1≤i≤m(xi, ri, yi) is a tuple

(u1, . . . , um, u
′
1, . . . , u

′
m, η1, . . . , ηm) where for every i ∈ [1,m]: ui and u′i are nodes in G,

ηi is a path in G from ui to u′i, and every pair (ui, u′i) is compatible to q. Let z be the
jth element of z̄ and z = xi or z = yi, than ui or u′i is the same as the jth element of v̄,
respectively. For each i ∈ [1,m] : λ(ηi) is defined by regular expression ri.

Construct an NFA Ai for every regular expression ri in q. This construction only
depends on q and can thus be done in constant time.

Now, consider a non-deterministic TM that, on input v̄ and G, guesses nodes for
u1, u2, . . . , um, u

′
1, u
′
2, . . . , u

′
m. The number of nodes depends only on q, and therefore is

fixed. Since we only keep pointers to nodes, this is possible with a logarithmic amount
of space. For every ηi assume a pointer to ui and systematically choose nodes that
are connected to this node in G with respect to Ai. Reuse the selected space for each
consequent node. If we reach node u′i start guessing the next path. Otherwise, reject
the input. When we find a path for every path variable, accept the input. Clearly, this
non-deterministic TM requires only a logarithmic amount of space in the size of the input.
Therefore we have proven that CRPQ-eval(q) is in nl.

The completeness is a result of the completeness of path, say 〈G, s, t〉, which asks
for the existence of a path from s tot t in directed graph G. Let Σ be the alphabet of
G. Now it is possible to detect if there exists a path from s to t in G with the CRPQ
ans()← (s,Σ∗, t). �



20 CHAPTER 4. CONJUNCTIVE REGULAR PATH QUERIES

4.5 Combined Complexity
Proposition 4.2: CRPQ-eval is np-complete.

Proof: Let q be a conjunctive regular path query over the finite alphabet Σ, G = (E, V )
a directed Σ-labeled graph, and z̄ a tuple with nodes in G such that |v̄| = |z̄|.

Define a witness for v̄ with respect to q and q(G) as in the proof of Proposition 4.1.
We can construct an NFA Ai based on the regular expression ai, for every i ∈ [1,m] that
accepts the language defined by ai, in polynomial time. We call Qi the set of states in
Ai.

When we assume that for every v̄ ∈ q(G) there exists a witness such that the length
of every path of that witness is bounded by M = |V | ×max{|Qi| | i ∈ [1,m]} × |Σ| + 3
it is possible to construct a non-deterministic TM that guesses every possible witness for
v̄ and checks if v̄ ∈ q(G) by validating these witnesses. More precise, this is possible in a
polynomial amount of time.

To prove the assumption, we only need to prove that if a witness exists for v̄, there
also exists a witness for v̄ where every path has length smaller or equal to M . Assume a
witness where at least one path has length greater than M , that is

(u1, . . . , um, u
′
1, . . . , u

′
m, η1, . . . , ηm),

such that ηi = v1a1v2a2 . . . vlalvl+1 where i ∈ [1,m] and l + 1 > M . Let θ be the
accepting run of Ai for ηi where θ(0) is the initial state. Then there exists an i, j ∈ [1,m]
such that vi = vj , ai = aj and θ(i − 1) = θ(j − 1). Clearly, when we replace ηi by
v1a1v2a2 . . . vi−1ai−1vjaj . . . vlalvl−1 the remaining is still a witness for v̄. Repeating this
step yields an algorithm that results in a witness for v̄ where every path has length smaller
than M , which proves the assumption.

The completeness follows directly from the completeness of the conjunctive queries,
which was proven in the previous chapter. �

The proof above is based on the proof in [11] for the combined complexity of an
extended form of CRPQs that allow path variables in the output.

4.6 Expression Complexity

Proposition 4.3: Let G be a directed Σ-labeled graph database. CRPQ-eval(G) is np-
complete.

The proof of Proposition 4.3 is analogous to the proof of Proposition 4.2.

4.7 The Acyclic Case
Analogous to the acyclic case for conjunctive queries as described in Chapter 3, we define
an acyclic conjunctive regular path query (ACRPQ) as a CRPQ where the conjunctive
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part is acyclic. That is, if the graph containing precisely the edges (xi, yi) for i ∈ [1,m]
is acyclic [10].

Proposition 4.4: Let q be an acyclic conjunctive regular path query. ACRPQ-eval(q)
is nl-complete.

A close look at the proof of Proposition 4.1 reveals that the data complexity of CRPQs
does not depend on the conjunctive part of the query, but is straightforwardly related to
the RPQ part. Therefore, it is easy to see that acyclicity has no effect on this result.

Proposition 4.5: ACRPQ-eval is in ptime.

Proof: Let v̄ be a tuple, G a directed Σ-labeled graph database and q a fixed query over
Σ. First, we transform q into a boolean query q′ by replacing the variables of z̄ in the
body of q by the associated nodes in v and replacing the head of the query by ans().

For each regular path query (xi, ri, yi), i ∈ [1,m] construct the associated NFA Ai and
construct an NFA that recognizes the intersection L(Ai)∩L(G). Note that G can be seen
as an automaton. When both xi and yi are variables, assume that every state in G is
an initial and final state. Otherwise, we only consider initial and final states compatible
with xi and yi. The construction is possible in polynomial time.

Now, construct for every regular path query (xi, ri, yi) an instance over the binary re-
lation Ri containing the tuples (vi, v′i) where vi and v′i are connected by a path whose label
is in the language L(ri). The number of relations depends on q only. The construction of
relations Ri is possible in polynomial time.

Finally, we only need to check if there exists an assignment to the node variables
in the body of q′ that is compatible to every regular path query of q′. We do this by
evaluating the conjunctive query q′′ := ans() ← ∧

1≤i≤mRi(xi, yi) over the constructed
instance, where xi and yi are node variables as in q′. q is acyclic by definition, and so is
q′′. Consequently, the evaluation is possible in polynomial time. �

This result remains valid even when we generalize ACRPQs to allow path variables in
the output. The proof above is a based on the proof for the extended case in [11].
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5
MapReduce

MapReduce is a programming model and corresponding computational infrastructure
introduced by Google [19] to simplify the implementation of distributed algorithms on
large-scale clusters of commodity machines. Informally a MapReduce job consists of the
parallel execution of two user defined functions: a map function that maps elements into
buckets and a reduce function that processes the elements inside these buckets. Although
not required, ideally a reducer reduces the number of elements.

MapReduce has become a kind of de facto standard for robust distributed compu-
tations at Google [20], but it has also attracted a lot of attention by other companies
through its popular open source implementation Hadoop [1].

We start this chapter with an in depth description of the MapReduce programming
model and a brief discussion of its computational infrastructure. Next, we discuss several
models and complexity measures for comparing MapReduce algorithms among each other
and for examining their feasibility in practice.

5.1 Programming Model

The description below is based on insights from several existing descriptions; i.e., [19,
39, 3, 29]. We call Uk,Uv ⊆ Σ∗ the key and value domains. The basic building blocks
in a MapReduce computation are binary strings of the form 〈key; value〉 ∈ Uk × Uv.
Input, output, as well as intermediary outputs are multisets of key-value pairs. We will
frequently look at a multiset of key-value pairs with a common key as a special type of
“aggregated” key-value pair of the form 〈k; {v1, v2, . . . , vk}〉 ∈ Uk×P(Uv). Nevertheless,
conceptually we have that

〈k; {v1, v2, . . . , vk}〉 ≡ {〈k, v1〉, 〈k, v2〉, . . . 〈k, vk〉}.

We call a pair of this form that contains every value associated to k a reduce record and
k its reduce key.

A MapReduce step is defined as a tuple (µ, ρ) of two user defined functions map and
reduce. Formally, a map function µ : Uk ×Uv → P(Uk ×Uv) is a function that maps
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a key-value pair on a finite multiset of key-value pairs. A reduce function ρ is a function
that maps a reduce record 〈k; {v1, v2, . . . , vn}〉 on a multiset of key-value pairs 〈k, value〉
where k is the reduce key:

ρ : Uk × P(Uv)→ P(Uk ×Uv) : 〈k; {v1, . . . , vl}〉 7→ {〈k;w1〉, . . . , 〈k;wm〉}.

Both the map and reduce function are stateless; the output only depends on the input
arguments. The empty set is allowed as output.

From a programmer’s viewpoint the execution of a MapReduce job has two phases: a
map phase and a reduce phase. From an infrastructural viewpoint there are three phases:
a map phase, a shuffle phase, and a reduce phase. Although the shuffle phase is completely
hidden from the programmer it is an essential and expensive phase in the execution of a
MapReduce step.

A MapReduce program as defined in [19] is a sequential program in which the pro-
grammer is able to formulate MapReduce jobs that are executed in parallel automatically
by the underlying system. Nevertheless we formalize it, analogously to [39] as a sequence
of MapReduce jobs 〈µ1, ρ1, µ2, ρ2, . . . , µr, ρr〉. Let U0 be a multiset of key-value pairs that
serves as the input to the MapReduce program. The execution of step 1 ≤ i ≤ r goes as
follows:

• map phase: Run map function µi on each 〈k; v〉 ∈ Ui−1. Let

U ′i =
⋃

〈k,v〉∈Ui−1

µi(〈k; v〉)

be the intermediate key-value pairs. During the map phase several processes execute
µi in parallel.

• shuffle phase: The underlying implementation groups the intermediate outputs
per key, write Vk,i = {v | 〈k; v〉 ∈ U ′i}.

• reduce phase: Run each reduce function ρi on reduce record 〈k;Vk,i〉. During
the reduce phase several processes execute ρi in parallel. Let Ui = ⋃

k ρi(〈k;Vk,r〉).
Since the input for an individual reducer can be much larger than the size of its
memory, reducers have access to their input via an iterator.

Finally the execution finishes when the last reducer ρr finishes. We call Ur the output of
the MapReduce program.

An important property of MapReduce is its blocking property; the shuffle phase (and
reduce phase) can only start when the map function has finished on every key-value pair.

In the literature, the instances of the map and reduce function are commonly called
mappers and reducers, though the exact definition differs. Some (e.g., [3, 43, 29]) define a
reducer as a process that runs the reduce function sequentially on several reduce records,
that is, several reduce records are processed by the same reducer. In this definition there
is, however, a correlation between the number of reducers and the number of available
machines. In other words, the number of reducers depends on the implementation and the
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available infrastructure. Therefore it is not a very satisfying definition at the model level.
We prefer the competing definition from [6] and use the term reducer to denote a particular
function instance. In this definition the number of reducers equals the number of reduce
keys and therefore represents a theoretical bound on parallelization rather than a physical
and implementation dependent bound based on the number of available machines. We
use the term reduce worker to refer to the former definition.

Since MapReduce is designed to handle big data it is common, even for the input of a
single reducer, to handle data that is much larger than the available amount of memory
on a single machine. Hence, the input of a reduce instance in the original model [19] as
well as in Hadoop [1] needs to be accessed by an iterator. This is definitely an important
limitation. Ideally, a balanced distribution of data may cause the input of individual
reduce instances to be small enough to enable the load of the entire input stream into
memory and to allow random access to it.

5.2 Computational Infrastructure

The computational infrastructure of MapReduce as described in [19, 20] is somewhat less
important for our purposes, but it is helpful to have a least a basic notion of a what may
happen underneath to understand the choices in the subsequent sections.

MapReduce essentially provides an easy to use and fault-tolerant programming in-
terface to perform parallel computations on files of a special form, that is, multisets of
key-value pairs. It is build on top of a distributed file system such as Google its GFS [27]
or Hadoop its HDFS [1] and therefore is able to store files in a reliable environment by
use of, e.g., replication. The input and output of a MapReduce job consists of sets of files
which are stored into this file system.

The MapReduce infrastructure itself [19] consists of a single master node and several
worker nodes. The input files are fragmented into pieces which are distributed over the
worker nodes. Each fragment is processed by a map worker that parses the fragment and
executes the user defined map function on every single pair in the fragment. The mapper
output is written to local disk and the output is divided in r regions, where every region
represents a reduce worker. The position of every region is communicated to the master
node, which on his turn communicates the position of these regions to the corresponding
reduce workers. Note that these can only start when all mappers are finished. A reduce
worker reads all the intermediate data from its corresponding regions and sorts them on
the intermediate keys (not the values), that is, reduce records are extracted. Next, the
reduce worker executes the user defined reduce function on every reduce record that it
received. The reducer outputs are stored on files in the distributed file system.

Apart from the map and reduce function itself, the implementation in both [19] and
Hadoop [1] allow several other customizations. For example, it is possible to customize the
fragmentation function. Hadoop also allows customization of the group function, which
is used to determine what key-value pairs in a particular reduce worker are processed
together by a reduce function.
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5.3 Relation of MapReduce with Other Models

Driven by practical need, MapReduce has become an important player in parallel comput-
ing, but it has little theoretical foundation yet. The need for sound theoretical foundations
gives rise to a growing interest in relation with the established computational models like
Parallel Random Access Machines (PRAM) and Bulk Synchronous Parallel (BSP) model.
Although these are beyond the scope of this thesis, it is interesting to mention that, for
example, the relation between PRAMS and MapReduce is studied in [39]. In particular,
the simulation of a class of PRAMS in MapReduce is discussed. The relation between
MapReduce and BSP [58] is investigated in [31, 52]. In contrary to PRAMS, which
are generally known to be overly simplistic models of computations, the BSP model is
more inline with modern cluster configurations. Further, in [25], MapReduce is linked
to streaming algorithms, which can be seen as a counter method for processing large
amounts of data.

5.4 Parallel DBMS

Some critique exists in that MapReduce disregards a lot of lessons learned from parallel
DBMS research [21]. A parallel DBMS takes advantage of parallelization and distribu-
tion of data, but retains the traditional relational setting. In general, most agree that
MapReduce should not be seen as a replacing or competing technology to parallel DBMSs,
but rather as a complementary technology, for example, when it comes to processing read
once data or semi-structured data [55].

5.5 Stragglers and Data Skew

Parallel and distributed systems as MapReduce give raise to problems that don’t exist in a
sequential context. Stragglers are one such problem. A straggler is an individual machine
that slows down the entire computation. They are especially important in MapReduce
since computations have to wait for each other at regular times, i.e., in every iteration
before the reduce phase can start. Although stragglers are commonly referred to as a
result of hardware and software failures, which are not the responsibility of the algorithm
designer, algorithms themselves can cause stragglers to occur as well. For example, if
data partitioning relies on the structure of the input data then some reducers may receive
almost the entire dataset where others receive only a few pairs. This is called skew. The
phenomenon of 99% of the reducers that are finished and 1% of the reducers to wait for
is also referred to as “the curse of the last reducer” [57].

In [42] an intensive study of skew in MapReduce is performed with the aim to add
automated skew mitigation to MapReduce. Moreover, they provide an overview of dif-
ferent types of algorithm related skew. A brief overview of the most important types is
listed below.

• Record skew: some pairs may be much larger than others and consequently are much
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harder to process.

• Heterogeneous functions: mappers or reducers may depend heavily on the type of
input pairs for their running time.

• Partition skew: skew caused by mappers who map their output on reducers in an
unbalanced way.

The latter type of skew is also studied in [41]. They try to prevent partition skew by
introducing a MapReduce like model that imposes very strict bounds on the partitioning
of pairs among reducers. More particular, the model requires that the reduce records are
perfectly balanced.

Notwithstanding that skew is an important and non-negligible aspect of MapReduce
algorithms, we have no intention to focus on types of skew and approaches to handle skew
in general. However, we will regularly refer to skew and try to avoid the occurrence of
skew in our algorithms.

5.6 A Canonical Example

A popular problem to illustrate the working of MapReduce is Word Count [19, 3, 31, 6];
that is, given a collection of documents, calculate the number of occurrences for each word
in these documents. Assume that this collection of documents is encoded as multiset of
key-value pairs, where every word, say w, is represented by a key-value pair 〈k,w〉, where
k is an arbitrary key. This problem can be translated into a very simple and effective
MapReduce algorithm: map each pair 〈key, word〉 onto a pair 〈word, 1〉 and let the reduce
function sum the values of pairs that it receives as input, and output the pair 〈word, sum〉.

Note that the proposed algorithm may suffer from data skew. Nevertheless, we can
also hash words uniformly at random and distribute words in a more balanced fashion.
Every reducer then outputs a pair for every word it receives and its partial frequency. A
second MapReduce step is required to compose the final output. In this step, every word
has at most as many pairs as there are reducers in the first step.

Unfortunately, the implementation of MapReduce algorithms for most problems is
much less convenient. Basically, MapReduce only supports the effective execution of
problems which are embarrassingly parallel [45, 6], i.e., problems that are decomposable
into a large number of independent subroutines. In general, when a not embarrassingly
parallel problem is computed with MapReduce, more parallelization incures a higher
communication cost [6].

5.7 The Communication Cost Model

Similar to the sequential context, we are interested in complexity measures for algorithms
in MapReduce. Therefore, in this and consecutive sections we discuss several complexity
measures and cost models on MapReduce algorithms.
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Figure 5.1: Word Count in MapReduce.

Afrati and Ullman [7] use the communication cost, also called data volume cost [5],
to compare the complexity of algorithms in MapReduce and related environments. The
idea is that when tasks are distributed appropriately, the cost of reading data from disk
and communicating it via a network dominates the cost of the actual computation. The
communication cost therefore is taken as an approximation to the complexity of algorithms
in this setting. Moreover, since the amount of data that is exchanged is usually very
large, the time taken to communicate will depend more on the size of the data than
on, for example, network implementation details. These insights lead to the following
definitions:

• The communication cost of a process is the size of the input of this process.

• The total communication cost of an algorithm is the sum of the communication costs
of all processes. It can be seen as a surrogate of renting time [5], for example on a
public cloud.

Consider a MapReduce computation as a directed acyclic graph of processes, where every
edge indicates that the target process relies on the output of the source processes for its
input.

• The elapsed communication cost is defined as the maximum sum of communication
costs of processes in a path in this acyclic graph.

Afrati and Ullman ignore the output cost as it is taken into account as input of the
next operation, or that it is the output of the whole calculation and thus is likely to be
small enough to neglect.

Unfortunately, the less parallelization, the less communication and thus the better the
algorithm will score in the communication cost model. Moreover, since the shuffle phase
causes significant overhead, it is common to constrain the number of MapReduce steps.
Therefore, many algorithms score best with only a single reducer. Hence, appropriate
upper-bounds on the input size for individual reducers are necessary to make this model
meaningful. Furthermore, a restriction on the size of the reduce records may enable
computations to be done in main memory [5].

Further note that the communication cost and elapsed communication cost are defined
in terms of processes (i.e., map and reduce workers) and therefore depend on the imple-
mentation of MapReduce. Clearly, this is not applicable to the total communication
cost.
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5.8 Key and Sequential Complexity

Goel and Munagala [29] give two complexity measures to analyse the performance dif-
ferences between MapReduce algorithms. First, there is the key complexity, which is a
measurement for individual mappers and reducers. This measurement consists of three
parts:

• The maximum size of a key-value pair input to or output by a mapper or reducer;

• The maximum running time for a mapper or reducer;

• The maximum memory used by a single mapper or reducer to process a key-value
pair.

Second, there is the sequential complexity, which is a measurement over all mappers and
reducers. It consists of two parts:

• The size of all inputs and outputs by mappers and reducers;

• The total running time for all mappers and reducers.

Notice that the total amount of memory is not measured. Goel and Munagala argument
that the total memory depends on the number of reduce workers operating at a given
time and thus is a property of the MapReduce deployment rather than of the algorithm.
Therefore, it is omitted as a sequential complexity measure.

The algorithms on which the sequential complexity is illustrated in [29] are one-step
algorithms. Many algorithms in this thesis, however, consist of multiple MapReduce steps.
Hence, the sequential complexity can be viewed as a bound on the complexity of single
MapReduce steps, or as a bound on the complexity of the entire program. In our context,
we use the sequential complexity to denote the complexity of single MapReduce steps as
this gives us a better understanding of the feasibility of an algorithm.

5.9 The MRC Model

In Section 5.6 it was mentioned that, except for embarrassingly parallel algorithms, it is
not clear which algorithms in MapReduce are practically feasible. The MapReduce Class,
MRC [39], is an attempt to capture this notion into a formal model.

Clearly, from a practical point of view it is not feasible to assume an infinite supply
of machines or memory. Moreover, since MapReduce is especially used to process big
data, even a linear number of machines or a linear amount of memory in the size of the
input generally is infeasible to assume. TheMRC model is based on the assumption that
we have only a sublinear number of machines and a sublinear amount of memory per
machine. To be precise,MRC provides a set of bounds on the MapReduce programming
model that guarantee that every algorithm can be executed with a sublinear number of
machines each with a sublinear amount of space.
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Definition 5.1: Fix an ε > 0. A MapReduce algorithm is inMRCi if:

• It outputs the correct answer with probability at least 3/4.

• Each µ is a randomized map function implemented on a RAM with words of length
O(logn), that uses O(n1−ε) space and time polynomial in n.

• Each ρ is a randomized reduce function implemented on a RAM with
(

logn) length
words, that uses O(n1−ε) space and time polynomial in n.

• The total amount of space used by key-value pairs outputted by map functions in
a single map phase is O(n2−2ε).

• The number of rounds is O(logi n).

Let MRC = ⋃
i≥0MRCi and call DMRC its deterministic variant. The model allows

random access to the reducer input.

The number of reduce keys is not limited, rather the bounds in Definition 5.1 guar-
antee that there exists an implementation of the shuffle phase such that every record is
associated to a machine and no machine receives more than a sublinear amount of in-
put pairs [39]. This guarantee is based on a heuristic called Graham’s algorithm for the
minimum makespan problem [33]. The minimum makespan problem is the problem that
asks, given a number of machines and a set of tasks with associated processing times, to
assign these tasks to machines such that the processing time for machines is balanced. Of
course, in our case we replace time by memory. Assume a sequence of tasks in a given
order. Consecutively map a task on the machine that has the least memory in use. Hence,
before the last task is mapped every machine has at least as much memory in use as the
machine to which the last task is mapped. Consequently, within the asymptotic analysis
it can be proven that Graham’s Greedy algorithm maps no more than the balanced load
plus the maximum load of a single task on a single machine:

total memory
number of machines + max(reduce record) ≤ O(n2−2ε)

Θ(n1−ε) +O(n1−ε).

Therefore, we have that the total amount of memory received by a single machine is
bounded by O(n1−ε).

Unfortunately, if ε is small, the actual number of required machines can be close to
linear. Since n can be very large, n1−ε may still be unreasonably high. Furthermore,
most algorithms implicitly restrict the value of ε towards zero.

The polynomial bound on the processing time for individual mappers and reducers
may seem rather high, but similar as in the communication cost model, inMRC the focus
is on communication rather than on the time taken by the actual computations. Another
issue is that it is a hard task to design algorithms for MapReduce, and it often requires
intensive use of advanced probability theory (e.g. uniform hash functions and Chernoff
bounds). In Section 5.12 a technique is described to simplify the design of algorithms in
MRC.
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In terms of the communication cost model [7], as was defined in Section 5.7, we have
that in every MRC algorithm the communication cost is bounded by O(n1−ε) and the
total communication of a each MapReduce step is bounded by O(n2−2ε). Note that
in MRC the total communication cost is bounded explicitly, while the communication
cost is bounded implicitly by the guarantees about the shuffle phase. Analogous to the
communication cost the elapsed communication cost of an algorithm inMRC is bounded
by O(r.n1−ε), where r is the number of rounds.

In terms of key complexity, the size of key-value pairs in an algorithm that is inMRC
is trivially bounded by O(n1−ε), the time is polynomial, and the memory is bounded
by O(n1−ε). The Sequential complexity of each MapReduce step is likewise bounded by
O(n2−2ε) for size and takes a polynomial amount of time. Although not taken into account
by the sequential complexity, in the MRC setting the total memory is also bounded by
O(n2−2ε).

5.10 Generalizations of MRC

It may be argued that the n1−ε bound on the size of reduce records and the n2−2ε bound
on the total size are rather arbitrary chosen and should not be imposed at model level.
Therefore [31] and [53] propose a kind of generalized model where concrete bounds are
replaced by parameters. In [31] a parameter is used to constrain the memory of individual
mappers and reducers. In [53] both the size of individual mappers and reducers, and the
total size are parameterized. In this section we describe the model of [53].

Informally, an MR-algorithm is a MapReduce algorithm where the available amount
of space in every round is specified by the parameters m and M rather than n1−ε and
n2−2ε.

Definition 5.2: Let P be a MapReduce algorithm and n the size of the input. Call mk,i

the size of the input and amount of workspace (excluding the space taken by the output)
used by reducer k (on a RAM) in round i of P . P is called an MR-algorithm, write
MR(m,M), if for each k, i we have that mk,i ∈ O(m) and in every round i we have that∑
k∈Uk mk,i ∈ O(M). The final output has to fit in O(M). Each reducer is required to

run in polynomial time in n.

As usual, the size of the output of individual reducers is not explicitly restricted. Also
note that this model takes into account that the final output does not necessarily has to
be small, the only requirement is that it fits in the global amount of available space.

Further, [53] makes a distinction between the output of a reducer that is intended
as the input for the next round and the output which is part of the final output of the
algorithm and may be excluded from the computation prematurely. Formally, a reducer
k in round i transforms its input Vk,i into a multiset of key-value pairs Wk,i+1 and a
multiset of key-value pairs Oi. Wk,i+1 serves as input for the next round, Oi is part of
the final output. The final output itself is now defined as ⋃i≥1Oi.
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Clearly this model is closely related to the MRC model in [39]. Moreover, if m ∈
O(n1−ε) and M ∈ O(n2−2ε) for a fixed ε > 1 then MR(m,M) fits in theMRC bounds
(with exception of the polylogaritmic number of rounds).

5.11 Replication Rate and Reduce-Record Size
Many problems and algorithms do not fit so well in the MapReduce model as, for ex-
ample, the canonical Word-Count problem that we described in Section 5.6. Generally,
when the amount of parallelization increases, the communication cost increases as well.
Therefore, in this section, we take a look at the replication rate, that is, the overhead
in communication cost compared with the input size. Formally, the replication rate is
defined as below [6]:

Rr =
r∑
i=1

mi

|I|
,

where r is the number of reducers and for every i ∈ [1, r], mi is the size of the reduce
record associated to reducer i.

Example: Recall the Word-Count algorithm from section Section 5.6, where every word
is mapped on a tuple 〈word; 1〉 and every reducer counts the values of the pairs that it
receives. Since every input pair is mapped on exactly one pair, it follows that ∑r

i=1mi =
|I|. Hence, Rr = 1 for this algorithm.

The replication rate of the join algorithm in Section 6.2 is an example where Rr > 1.
Let m be an upper bound on the size of the reduce records. In [6] a recipe is provided

to find lower bounds on the replication rate for a problem, where the amount of memory
for reducers is bounded bym. Since problems can have multiple mapper implementations,
or mapping schemas, we have to take all of these into account. However, only schemas
that satisfy the following conditions should be considered:

• the input size of every reducer is bounded by m; and

• for every output pair there is a reducer that receives as input the required pairs to
be able to generate that particular output pair.

Now, the recipe goes as follows:

• find an upper bound on the number of outputs that a reducer with input size m
can generate, write g(m);

• count the total number of inputs and outputs, |I| and |O| respectively.

When there are r reducers, the reduce-record size is bounded by m, and, consequently,
the output size for reducers is bounded by g(m), it follows that:

r∑
i=1

g(mi) ≥ |O|. (5.1)



CHAPTER 5. MAPREDUCE 35

Next, we have to manipulate Equation (5.1) to find a lower bound on the replication
rate. However, it turns out that, when g(mi)/mi is monotonically increasing in mi, we
can use the fact that mi ≤ m to find one such lower bound [6]:

r∑
i=1

mi
g(m)
m
≥

r∑
i=1

mi
g(mi)
mi

≥
r∑
i=1

g(mi) ≥ |O|. (5.2)

In particular, Equation (5.2) leads to the following result:

Rr =
r∑
i=1

mi

|I|
≥ m.|O|
g(m).|I| .

This technique is used in Section 6.5 to provide a lower bound on the replication rate
for joins.

5.12 MRC Parallelizable Functions

In order to prove that an algorithm is in MRC we can think of it as a composition of
subroutines. In general, however, even for these subroutines the MRC bounds are not
trivial to meet. Many times we need to go into a lot of superfluous detail while designing
MapReduce algorithms to make sure they fit in the MRC bounds. Especially to avoid
overloading of individual reducers.

In this respect [39] introduces the so calledMRC-parallelizable functions. Intuitively,
an MRC-parallelizable function is a function that can be executed in two MapReduce
steps, such that the function can be solved within the MRC-bounds. In other words,
when some conditions are met, we may assume that there exists a MapReduce algorithm
that implements the desired function such that it fits in theMRC bounds.

Definition 5.3: A function f on a set S is MRC-parallelizable if there are functions g
and h such that:

• for any partition {T1, T2, . . . , Tk} of S, where ⋃1≤i≤k Ti = S and Ti ∩ Tj = ∅ for
each i 6= j in [1, k], we have f(S) = h(g(T1), g(T2), . . . , g(Tk));

• functions g and h can be expressed in O(logn) bits; and

• functions g and h can be computed in polynomial time in the size of S and every
output of g can be expressed in O(logn) bits.

This definition gives rise to an interesting lemma which generalizes the essence of this
definition to families ofMRC-parallelizable functions on subsets of the same universe.
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Lemma 5.1 (Functions lemma [39]): Consider a universe U of size n and a collection
S = {S1, S2, . . . , Sk} of subsets of U , where Si ⊂ U , Σk

i=1|Si| ≤ n2−2ε and k ≤ n2−3ε.
Let F = {f1, f2, . . . , fk} be a collection ofMRC-parallelizable functions. Then the output
f1(S1), . . . , f2(S2), . . . , fk(Sk) can be computed using O(n1−ε) reducers each with O(n1−ε)
space.

We first give the MapReduce algorithm for such a subroutine and then prove that it
fits in theMRC bounds. Assume that we have R = n1−ε reducers grouped in blocks of
size B = nε. This implies that we have t = n1−2ε blocks of reducers.

As input we assume for each i ∈ [1, k] and each u ∈ Si a pair of the form 〈i;u〉. We also
consider the functions gi and hi as part of the input. Further we assume hash1, hash2 :
[1, k]→ [1, t] to be uniform hash functions.

In the first step, map each 〈i;u〉 on 〈r; (u; i)〉, where r is a reducer, uniformly chosen
from the block hash1(i). We map each function gi and hi on every reducer in the block
hash1(i). Each reducer runs gi on the fragments Tj ⊆ Si that it receives and outputs the
record 〈r; (gi(Tj), i, hi)〉.

In the next step, map every reducer output onto a pair 〈hash2(i); (gi(Tj), hi)〉. The
reducers in this step receive every partial result gi(Ti) for certain i ∈ [1, k] and the
corresponding functions hi. Consequently, every reducer computes the final output,

〈r;hi(gi(T1), gi(T2), . . . , gi(TB)),

for each i that it received.
Since it is a classical result that logk n = o(nε) for every ε > 0, we have that, for

sublinear bounds of the form n1−ε, the soft-O and big oh notation can be interchanged.

Lemma 5.2: For each ε > 0 we have that there exists a ε′ > 0 such that Õ(n1−ε) is in
O(n1−ε′).

Proof: Let ε be an arbitrary number such that ε > 0. By definition we have that Õ(n1−ε)
is a shorthand for O(n1−ε logk n) for some k.

Let ε be an arbitrary number such that ε > ε′ > 0 (note that there always exists such
an ε′), and let δ = ε − ε′. Clearly, δ > 0. As we stated earlier, in asymptotic analysis
n1−ε logk n is bounded by n1−εnδ. Therefore we have that Õ(n1−ε) is in O(n1−ε′). �

The correctness of this MapReduce algorithm is easy to verify from the definition of
MRC-parallelizable functions. Next, we show that it fits in theMRC bounds.

Clearly, every mapper ander reducer takes only a polynomial amount of time. The
total number of mapper outputs in the first step is bounded by O(n2−2ε + logn.nε) and
in the second step is bounded by O(logn.nε.n2−3ε). Next, we prove that no reducer gets
overloaded in the first and second step. Although we left out a formal proof for the space
bounds, analogous arguments can be used for space.
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Lemma 5.3: Each reducer in the first step has Õ(n1−ε) elements mapped on it with high
probability.

Proof: Since fragments are mapped uniformly at random on particular reducers in a
block, it suffices to prove that every block receives at most Õ(n) elements with high
probability.

First, group subsets based on their size. Let Gj := {Si ∈ S | 2j−1 < |Si| ≤ 2j}.
Since |Si| is bounded by n, we have logn groups. Define the volume of group Gj as
Vj := |Gj |.2j , which is the maximum number of pairs that can occur in group Gj .

Even if we map every group that has a volume which is smaller or equal than n logn
on the same block of reducers, we do not violate any input restriction. This statement is
true since we have at most logn groups and thus at most O(n log2 n) pairs.

In the remainder of the proof we focus on groups where Vj > n logn. From the
definition of Gj and Vj we derive that Gj has between n logn/2j and 2n logn/2j elements.
Fix a block of reducers. Let Xi be a variable that has value 1 if Si ∈ Gj maps on the fixed
block of reducers and 0 otherwise. Since there are n1−2ε blocks, the chance of Si ∈ Gj to
map on that particular block is n2ε−1. Let X be the number of subsets in Gj that map on
the fixed block of reducers, that is X = Σ{i | Si∈Gj}Xi. These variables are independent of
eachother. The expectation µ of X is 2n2ε logn/2j . When we apply the Chernoff bound
from Section 2.5 where δ = n1−2ε, we find that:

2−(1+δ)µ = n−21−j(n2ε+n) (5.3)
≤ n−2(n2ε−1+1) (5.4)

≤ 1
n2 . (5.5)

Equation (5.4) follows from the fact that j is at most logn. Equation (5.5) is a result of
n2ε−1 being greater than zero.

The chance that the fixed reducer will get too much content from any group G is
bounded by O(logn/n2). The chance that any reducer gets too much content from any
group is bounded by O(n2ε logn/n3). Since ε < 1 we have O(logn/n). �

Lemma 5.4: With high probability each reducer in step two receives at most n1−ε values
of gi.

Proof: hash2 is universal and maps every set on a fixed reducer of a block. The sum
of fragmented outputs Σj |gi(Fj)| for certain i is bounded by nε. logn by the number of
reducers per block and the definition ofMRC-parallelizable functions.

By expectation the number of sets mapped on a particular block is k/t. If k < t then
every set can be mapped on its own block. If k ≥ t we have k/t ≤ n2−3ε/n1−2ε = n1−ε.
Therefore, by expectation, the size of the input for each block is bounded by Õ(n1−ε).

We now prove that the size of the input for every reducer (i.e. every block) is at most
Õ(n1−ε) with high probability.

Pr[X > (1 + logn)k
t

] < 2−(1+logn) k
t ≤ 1

n
.
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Since there are n1−2ε blocks, the probability that any block gets overloaded is bounded
by O(1/n2ε). �

Example: Let s = a1a2 . . . an be a string of characters from Σ. The kth frequency moment
of s is defined as ∑a∈Σ |Sa|k, where |Sa| represents the number of occurrences of a in s.
Let f1(S) = |S|k and f2(S) = (∑x∈S x). Hence,∑

a∈Σ
|Sa|k = f2({f1(Sa)|a ∈ Σ}).

Let {T1, T2, . . . , Tk} be an arbitrary partitioning of Sa. Let g(T ) = |T | and

h(x1, x2, . . . , xk) = |
∑
i=1
|k.

Hence, f1 is anMRC-parallelizable function. Similar, for any partitioning {T1, T2, . . . , Tm}
of {fa1 , fa2 , . . . , fan} we have g(T ) = ∑

x∈T x and

h(x1, x2, . . . , xm) =
m∑
i=1

xi.

Hence, f2 is anMRC-parallelizable function. Therefore, from the functions lemma follows
that the kth frequency moment can be computed inMRC.



6
Conjunctive Queries in
MapReduce

In Chapter 3, the complexity of conjunctive queries is described in a sequential setting. In
this chapter we discuss approaches for the evaluation of conjunctive queries in MapReduce.
Essentially, a conjunctive query consists of join operations and a projection. It is, however,
a common critique to MapReduce that it does not deal well with the popular join operation
[51, 13, 43, 50], though a fundamental operator in conjunctive queries. Therefore, we first
discuss two strategies to compute full two-way joins in MapReduce and eventually discuss
briefly the generalization to multi-way joins.

6.1 Data-Centered Join
Before going into detail on particular join algorithms, note that MapReduce only allows
a single multiset of key-value pairs as its input, and that the join operator by definition
expects two input relations as its input. Fortunately, it is easy to simulate the effect of
having multiple input arguments by adding a origin reference to the value of each key-value
pair. Therefore, a join between relation R and S can be simulated on the MapReduce
framework by taking as input the union of all the tuples from R and S, where each tuple
has an additional value that refers to the relation R or S respectively.

One of the most natural algorithms to perform a full join S(X,Y ) on T (Y,Z) in
MapReduce is partitioning the tuples based on the join-keys and joining the resulting
fragments in parallel [7, 13, 43]. We call this algorithm data-centered since its fragmenta-
tion is entirely based on the input instances, in contrary to the reducer-centered approach
in Section 6.2. In the literature, this algorithm is also referred to as the repartition join
[13].

Let S and T be relation schemas. As input to the MapReduce program assume for
each tuple from S and T a key-value pair where the value field contains both the tuple
and a reference to its origin table (i.e., S or T ). Next, map every key-value pair onto a
pair with key the value of the join attributes of S and T . This algorithm is illustrated
in Figure 6.1. Note that, since MapReduce only performs a sort on the keys, the reduce
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X Y
1 a
2 b
1 b

Y Z
b 3
b 4
c 5
c 6

S
T

(a) Example relations.

key (b, 3,t)
key (b, 4,t)

key (1, a, s)
key (2, b, s)

...
...

(b) The MapReduce input.

key (1, b, s)
key (2, b, s)

b (1, b, s)
b (2, b, s)

...
...

key (b, 3,t)
key (b, 4,t)

b (b, 3,t)
b (b, 4,t)

...
...

µ : b (1, b, s)
b (2, b, s)
b (b, 3,t)
b (b, 4,t)

b (1, b, 3, s on t)
b (1, b, 4, s on t)
b (2, b, 3, s on t)
b (2, b, 4, s on t)

ρ :

(c) The map and reduce function.

Figure 6.1: Data-centered join in MapReduce.

function has to buffer both the partition of S and the partition of T to be able to perform
the join. Moreover, when the data is skewed, the input size of an individual reducer can
be very large and it may be impossible to keep both fragments in memory.

Practical Improvements

Several practical improvements to the previously described approach exist based on im-
plementation features of MapReduce and Hadoop [13, 43]. One such improvement is
described in [13]. In essence it is the repartition algorithm as described before, but in-
stead of performing a sort based only on the join key, a sort is performed on both the
join key and the relation name. Therefore, the reducer will have to keep only one of the
fragments in memory and will be able to stream the other. Although MapReduce does
not perform a sort on values explicitly, it is possible to simulate this effect by exploiting
some customizable functions.

We use the same input encoding as before. The map function maps every key-value
pair onto a pair where the key is based on both the join key and the relation name.
Consequently, the shuffle phase will perform a sort based on both arguments. By defining
a customized partitioning function which is only based on the join key, we are able to
overcome the fragmentation of tuples with the same join key, which would naturally occur.
We need another customized function to group the reducer inputs based only on the join
key, to ensure that both tuples of R and tuples of S that have the same join key will be
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processed together as input to the reduce function.
This algorithm depends on the ability to customize the fragmentation and grouping

function. From a theoretical perspective, the worst-case complexity is the same as the
general approach above.

Complexity

Let n be the sum of |S| and |T |, without loss of generality assume that |S| ≤ |T |. An
important observation is that the shuffle overhead in this algorithm is very low since this
approach requires only a single MapReduce step and the replication rate is 1. On the
other hand, it relies entirely on the structure of the input data for the distribution of its
intermediate pairs among reducers. Hence, it is a very inflexible approach.

In general, the size measures of key and sequential complexity take into account both
the size of the input and output. Since it is typical for a join operator to have an output
that is larger than its input, in what follows we make a distinction between input size
and output size.
Proposition 6.1: The data-centered join can be computed in a single step.

• Key complexity: the input size and amount of space are bounded by O(|S|+ |T |);
the output size is bounded by O(|S on T |); and the running time is bounded by
O(|S||T |).

• Sequential complexity: the same bounds apply.

Proof: Clearly, since every input pair is mapped on a single reducer, the total commu-
nication cost (or sequential input size) is bounded by O(|S|+ |T |). The sequential output
size, however, may be much larger and is bounded by O(|S on T |). Since we need to
compare every input tuple from S to every input tuple from T , the sequential time to
compute this algorithm is bounded by O(|S||T |).

As noted before, the distribution of input tuples to particular reducers depends entirely
on the input data. Therefore, in the worst-case scenario, every tuple has the same value
for its join attribute, and consequently, a single reducer has to do all the work. Therefore,
the key input size, output size and time equal the sequential input size, output size and
time, that is, they are bounded to O(|S| + |T |), O(|S on T |), and O(|S||T |) respectively.
Since the entire input of a reducer has to be buffered, there is no need to differentiate
between streamed or batched input. Hence, the key memory of this algorithm is bounded
by O(|S|+ |T |). �

The improved data-centered algorithm may be more feasible in practice, but yields no
improvements from a theoretical perspective. Although we need to buffer nothing but the
smallest relation, we have no guarantees about the relative size of S and T . Therefore,
the key complexity of the improved repartition algorithm is still O(|S|+ |T |) for the input
size, O(|S on T |) for output size, and O(|S|.|T |) for time. For streamed inputs, the key
memory is decreased to O(|S|), but may still be as high as n/2. An equivalent analysis
can be performed for the sequential complexity, i.e., O(|S|.|T |) for time, O(|S|) for input
size, and O(|S on T |) for output size.



42 CHAPTER 6. CONJUNCTIVE QUERIES IN MAPREDUCE

6.2 Reducer-Centered Join

A disadvantage in the previously described algorithm is that data is partitioned based on
the structure of the data itself. A more interesting approach would be to partition the
input in a way that is independent of the input’s structure.

If one of the relations is much smaller than the other relation, say |S| � |T |, it easy
to achieve an independent fragmentation by performing a broadcast join and mapping
the smallest relation to every reducer. Although the total communication cost increases,
we have the opportunity to split the larger relation in a more balanced way in order to
overcome reducer overloading.

A fundamentally different approach to perform joins and crossproducts in MapReduce
than the data-centered approach, for the case when S is not much smaller than T , is
proposed in [50]. They introduce the notion of max-reducer-input and max-reducer-output
to denote the maximum input size and output size for reducers, which is used to evaluate
the performance of join algorithms. The goal of the proposed algorithm is to balance the
output size of reducers and optimize the input size based on the size of the output.

The main concept is to consider the join matrix, where each row represents a tuple from
one relation and every column represents a tuple from the other relation. Consequently,
the matrix represents the cross product S × T , and every cell represents a tuple in this
cross product. In terms of a join we can see a cell as a potential entry in the join S on T .
Essentially, we try to map regions on this matrix such that every region has approximately
the same size and the associated number of rows and columns is near optimal. An example
join matrix and reducer mapping is illustrated in Figure 6.2(a).

The algorithm to perform the join will consist of R reducers, where every reducer is
associated to a particular region. Although we are not really interested in cross products,
this method provides some interesting upper bounds. Nonetheless these bounds do not
guarantee a balanced number of output tuples for joins in general. In practice, this
algorithm may still suffer from data skew up to a certain amount (i.e., restricted by the
upper bounds). Furthermore, it is not obvious how to replace |S|.|T | with |S on T | in
the following propositions. Note that, in this algorithm, the optimal choice for R is the
number of available machines. Therefore, the number of reduce keys and the number of
reduce workers coincides by assumption.

Proposition 6.2 ([50]): Let S and T be relations and R > 0. If |S| < |T |/R then the
join matrix can be covered such that every region has O(|S|.|T |/R) cells and the sum of
rows and columns is bounded by O(|S|+ |T |/R).

Proof: If |S| < |T |/R then divide the matrix into R regions by fragmenting the tuples
of T into R equal sized partitions. Clearly, the surface of every region has size |S|.|T |/R
and the number of columns and rows for each region is |S|+ |T |/R. �

An example of this mapping is illustrated in Figure 6.2(b). Next, a proof is given for
upper bounds for the complement result.
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Proposition 6.3 ([50]): Let S and T be relations and R > 0. If |T |/R ≤ |S| ≤ |T | then
its join matrix can be covered such that every region has O(|S|.|T |/R) cells and the sum
of rows and columns is bounded by O(

√
|S|.|T |/R).

Proof: Let cS and cT be as below:

cS =

 |S|√
|S||T |
R


cT =

 |T |√
|S||T |
R


Here, cS and cT represent the number of optimal squares that fit in the size of S and T
respectively. When we map regions of height and width

√
|S||T |/R onto the join matrix

starting at the upper left, however, it is likely that at the bottom and upper right of
the matrix there are some cells uncovered. This situation is illustrated in Figure 6.2(c).
Clearly, the number of uncovered rows and columns is less than

√
|S||T |/R, and therefore

we are able to cover these cells by increasing the height and width of the existing R
regions by a factor that is not higher than 1 + 1/min{cS , cT }. Since cS , cT ≥ 1, as
demonstrated by Equations (6.1) and (6.2), this factor is at most 2. Consequently, when
|T |/R ≤ |S| ≤ |T |, the number of columns and rows for each region is bounded by
4
√
|S||T |/R and the number of cells in each region is bounded by 4|S||T |/R.

cS =

 |S|√
|S||T |
R

 ≥
 |S|√

|T |2
R

=

 |S|
|T |√
R

 ≥ ⌊ |S||T |
R

⌋
≥ 1 (6.1)

cT =

 |T |√
|S||T |
R

 ≥ ⌊ |T |√
|S|2

⌋
=
⌊ |T |
|S|

⌋
≥ 1 (6.2)

�

Remark that a reducer has to receive at least
√
c tuples to be able to generate c output

tuples [50]. Therefore, the result above is rather tight.
The above insights give rise to a MapReduce algorithm where every reducer receives

key-value pairs based on the precomputed regions of the join-matrix. Unfortunately, it
would require a lot of effort to associate every key-value pair to a particular column or row
in advance. Therefore, [50] proposes a randomized alternative in which the regions are
computed in advance based on the size of S and T , but the key-value pairs are associated
to a particular row or column uniformly at random by the mappers.

Since tuples are mapped uniformly at random on particular reducers, it can be verified
that significant variations on the number of tuples mapped on a particular reducer are
very unlikely. This can be done by an application of the Chernoff Bound as in [50].

Propositions 6.2 and 6.3 provide upper bounds on the input and output size for indi-
vidual reducers. Hence, we have the following complexity results:
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T

S

(a)

T

S

(b)

T

S

(c)

Figure 6.2: Illustration of region mappings on join matrices.

Proposition 6.4: Let S, T be relations such that |S| ≥ |T |/R. The reducer-centered
approach computes the join |S on T | in a single MapReduce step.

• key complexity: The input size is bounded by O(
√
|S||T |/R). The output size,

running time, and space are bounded by O(|S||T |/R).

• sequential complexity: the total input size is bounded by O(
√
R|S||T |). The

output size is bounded by O(|S on T |). The running time is bounded by O(|S||T |).

Replication Rate

First, we analyze the complexity of the reducer-centered join for the case |S| < |T |/R.
As in the data-centered join, only a single MapReduce step is required, but now, the
replication rate is bounded by 2.

Proposition 6.5: For the reducer-centered approach, when |S| < |T |/R, we have that
Rr < 2.

Proof: From |S| < |T |/|R| and Proposition 6.2, we have that:

Rr =
R(|S|+ |T |

R )
|S|+ |T | <

2|T |
|T |
≤ 2. (6.3)

�

Concerning key complexity, we have that the input size, as well as reducer memory, is
bounded by O(|S|+|T |/R). The output size and running time is bounded by O(|S||T |/R).
The sequential complexity is O(R|S|+ |T |) for input size, O(|S on T |) for output size, and
O(|S||T |) for time.

For the case |S| ≥ |T |/R, a single MapReduce step suffices, but the replication rate is
less convenient.

Proposition 6.6: When |S| ≥ |T |/R, the replication rate of the reducer-centered ap-
proach is bounded by 4

√
R.
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Proof: If |T |/|R| ≤ |S| then it follows from Proposition 6.3 that the replication rate
equals the leftmost expression of Equation (6.4):

4R
√
|T ||S|
R

|S|+ |T | ≤
R
√
|n|2
R

n
≤ 4
√
R (6.4)

�

Replication rate is often expressed as a function of the available amount of memory per
reducer [6]. Therefore, we rewrite this expression. Let m be the amount of space that is
available for individual reducers. For the algorithm to work correctly, m and R should
agree to Equation (6.5), or equivalent, to Equation (6.6).

m ≥ 4

√
|S||T |
R

(6.5)

R ≥ 16|S||T |
m2 (6.6)

Since we don’t need more than 16|S||T |/m2 space, it is safe to assume that R equals
this expression, and hence, to replace the R in Equation (6.4) by the right most expression
in Equation (6.6). Therefore we have the following corollary.

Corollary 6.1: When |S| ≥ |T |/R, the replication rate of the reducer-centered approach
is bounded by 16

√
|S||T |/m, where m denotes the available size for individual reducers.

6.3 A Hybrid Approach
The data-centered approach is a very efficient approach if the frequencies of join attributes
are not skewed and are small enough to let every reduce record fit in a single machine. The
reducer-centered approach yields an overhead in communication cost, but is guaranteed
to utilize parallelization independent from the input dataset; therefore, it is able to handle
even those datasets that are highly skewed or contain join attributes with a high frequency.
In this section, we take a look at a hybride approach for performing two-way joins that
combines both approaches.

Assume that every tuple contains frequency information (i.e., instead of tuples 〈k, (a, b)〉
we have tuples 〈k, (a : f, b)〉, where a is a join key and f is its frequency). Based on this
information, the map function can decide if the data-centered approach or the reducer-
centered approach is preferred. In fact, we split the computation in two separated parts:
the low-frequency tuples are joined in a data-centered approach, and the high-frequency
tuples are joined in the reducer-centered approach. The main improvement is that by
discarding the low-frequency tuples from the join-matrix, the overhead of the reducer-
centered approach is reduced.

However, an important aspect of this new approach is that frequency information has
to be available. On the one hand, the problem of counting frequencies is equivalent to the
word count problem, which is an embarrassingly parallel problem. But on the other hand,
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a merge between the frequencies and the input set should take place; in other words, a
two-way join between the frequency relation and the input relations. Therefore, even
when the frequency relation is small (i.e., the number of distinct join values is small)
computing frequencies for purpose alone leads to a huge overhead in running time.

6.4 Joins in MRC

The data-centered approach does not fit in the MRC bounds. Nevertheless, it may be
reasonable to assume that the cardinality of join keys is restricted in practice.

First note that it is a property of the join operation that its output may be much
larger than its input. Therefore the analysis below states on two assumptions:

• there is enough space to store the entire output, which may be as high as O(n2);
and

• reducers are able to stream there output pairs.

Note that the first assumption is not a necessity to fit inMRC since there are no explicit
bounds on the size of reducer outputs and the approaches described earlier require only
a single MapReduce step.

Property 6.1: Let S and T be relations such that the number of tuples that match an
arbitrary value for the join attributes is bounded by O(n1−ε). Then, S on T is computable
inMRC0 with the data-centered join algorithm.

Proof: Clearly, every reducer receives at most O(n1−ε) input pairs and the total number
of mapper outputs is bounded by O(n). Therefore, it takes at most O(n2−2ε) time to
compute the output for a single reducer. Although the output of a reducer may be high,
there is no need to keep track of the produced tuples, and hence, streaming the output
tuples makes this algorithm fit inMRC0. �

The reducer-centered join algorithm looks more promising. Indeed, we are able to
compute a simple join with the reducer-centered approach inMRC0 without restrictions
on the input.

Proposition 6.7: Let S and T be relations. S on T is computable in MRC0 with the
reducer-centered join algorithm.

Proof: Let R = n2ε, where 1/3 ≥ ε > 0. Consequently R ∈ O(n1−ε). We prove that the
reducer-centered join algorithm fits in the MRC0 bounds by breaking the problem into
two distinct cases.

When |S| < |T |/R every reducer receives at most O(|S| + |T |/R) input pairs. Con-
sequently, the input of every reducer is bounded by O(n/R), which is O(n1−2ε). The time
to compute the output is at most O(n2/R2). The total size of mapper outputs is bounded
by O((|S| + |T |/R).R) and thus bounded by O(n). Since we assume that it is possible
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to stream the output of a reducer, the amount of space equals the size of the input and
hence, for S < |T |/R, this proves the proposition.

When |T |/R ≤ |S| ≤ |T | we have that the size of reducer inputs is bounded by
O(
√
|S||T |/R) and consequently by O(n1−ε). The total number of mapper pairs is

bounded by O(
√
|S||T |/R.R) and since ε ≤ 1/3 we have that O(n1+ε) is in O(n2−2ε).

The time for a reducer to compute its output is bounded by O(n2/R). The amount of
required space again is equal to the size of the input. �

6.5 Lower Bound on Replication Rate
Given a set of size m containing tuples from S and T , the output of a join of these tuples
is at most m2/4. That is, the worst-case situation is that we have m/2 tuples of S and
equally much tuples from T , where every tuple has the same value for its join attribute.
In terms of the recipe from Section 5.11 we have g(m) = m2/4.

The input size is bounded by |S| + |T | and the output size is bounded by |S on T |.
Therefore, we have that: ∑

i

g(mi) ≥ |S on T |,

and by use of the trick in Section 5.11 that:

Rr =
∑
imi

|S|+ |T | ≥
4|S on T |

m(|S|+ |T |) .

Clearly, the trivial bound Rr ≥ 1 should be considered as well.

6.6 The Projection Operator
In the previous sections we described two approaches for computing full two-way joins,
i.e., queries of the form ans(x, y, z) ← S(x, y) ∧ (y, z). It is easy to add a projection
to these types of queries by computing the projection for each reducer output before
emitting the output tuples. Moreover, the addition of a projection has no influence on
the previously described complexity results.

6.7 Multi-way Joins
An intuitive generalization of two-way joins is the iterative implementation of multi-way
joins, e.g., R on S on T by first computing R on S and then computing the join of the
result of R on S and T . Unfortunately, this approach yields a very high complexity. In
the first place, it takes m MapReduce steps, where m is the number of relations to join.
Further, as we have seen in Chapter 3, the intermediate results of a multi-way join can
become very large when compared to the actual output. The following proposition gives
rough upper bounds on the complexity of this approach.
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Proposition 6.8: Let T1, T2, . . . , Tm be relations. The iterative implementation of two-
way joins to compute T1 on T2 on . . . on Tm can be done in m− 1 steps.

• Key complexity: the input size is bounded by O(
√
|T1||T2| . . . |Tm|/R); the output

size, running time and space are bounded by O(|T1||T2| . . . |Tm|/R).

• Sequential complexity: the input size is bounded by O(
√
R|T1||T2| . . . |Tm|); the

output size and running time are bounded by |T1||T2| . . . |Tm|.

The output size of the last step, of course, equals |T1 on T2 on . . . on Tm|, but the
(sequential) inputs and outputs in the intermediate steps may be much larger than that.
However, for simplicity we assumed that no (intermediate) relation is significantly smaller
(as in |S| < |T |/R) or larger than the relation to join with.

In [7] Afrati and Ullman extend the fragmentation join algorithm to a ternary join
algorithm in one step. Take R(A,B) on S(B,C) on T (C,D), and assume tuples of S as
reduce key. Hence, every tuple of S is mapped on a particular reduce bucket. Tuples
(a, b) ∈ R are mapped on several buckets, i.e., every bucket that is associated to a tuple
(b, ∗). On the other hand, tuples of (b, c) ∈ T are mapped on every bucket that is
associated to a tuple (∗, c). Clearly, in practice the number of reducers is much less than
the number of possible tuples in S, and therefore, hash functions should be used to map
tuples on particular reducers. Moreover, the number of hash buckets for each attribute
can be customized to further tighten the communication cost. In [7] the optimization of
this approach is discussed in detail.

In the context of log processing [13] we are typically interested in the join between one
very large relation and several small relations. Take for example L(A,B,C) on S(A,D) on
R(B,E), where L is large and S and R are small. A variation on the broadcast join can
be utilized for this type of joins, by broadcasting the smaller tables to every reducer and
distributing the larger table in several fragments.

Inspired from [50], in [63] a generalization of the reducer-centered join for multi-way
joins is considered based on the cross-product conceptualization of multiple relations, i.e.,
a multidimensional matrix.



7
Undirected s-t Connectivity

The evaluation of RPQs is only briefly described in the literature. Hence, to gain a better
understanding of graph problems in MapReduce, we take a look at a related problem.
Undirected s-t-connectivity (STCON) is a very simple graph problem that has already
been studied in the MapReduce context [18, 39, 54]. In this chapter, we give an overview
of the results and algorithms for the STCON problem to allow a better understanding of
graph problems in general, in MapReduce, and to get a step closer to the evaluation of
RPQs and CRPQs.

7.1 Problem Definition

Definition 7.1: Let G = (V,E) be an undirected graph and s, t ∈ V . s-t-connectivity
〈G, s, t〉 is the decision problem that asks if there is a path between s and t.

The s-t-connectivity problem is very related to the problem of finding connected com-
ponents. In fact, when the connected components are known, STCON is reduced to the
question if s and t are in the same connected component.

Definition 7.2: Let G = (V,E) be an undirected graph. Finding connected components
is the problem that asks for a partitioning {T1, T2, . . . , Tk} of V such that (Ti, {(u, v) ∈
E | u, v ∈ Ti}) is a connected graph for i ∈ [1, k], and there is no u ∈ Ti, v ∈ Tj such that
(u, v) ∈ E, where i 6= j.

To decide if 〈G, s, t〉 ∈ STCON , it suffices to find the connected components of G and
to check if both s and t are in the same partition. This approach is utilized in [18] and [39].
Unfortunately, both algorithms require a linear number of rounds in the diameter of G.
More recently, [54] studied the problem of finding connected components in MapReduce
in a logarithmic number of rounds.

49
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7.2 Finding Connected Components
In this section we describe the algorithm for the connected components problem that is
described in [18]. A similar algorithm is proposed in [54], called the hash-min algorithm,
which in its turn is partially credited to [38]. In this algorithm, every node is expected to
have a label that represents a zone. Initially, every node has a distinct label indicating
its own distinct zone. In every round, node labels are compared to each other based on
edge relations and updated accordingly. At the end of the algorithm, every node in a
connected component has the same label, which indicates that hey are in the same zone.

The MapReduce model used in [18] allows reducers to generate key-value pairs that
have a key which differs from the reduce key, wherefore map functions are somewhat
superfluous. However, the original MapReduce definition in [19] does not allow this
practice. Therefore, we present a slightly modified version of this algorithm below. For
clarity, the algorithm is illustrated in Figure 7.1.

Consider both the set of edges and the set of nodes as input elements. Each edge
consists of two nodes and each node in V has an associated label (or zone). Furthermore,
assume the existence of an ordering π on node labels. Initially all nodes have distinct
labels, e.g., their identity. Formally, the input of the MapReduce algorithm is a set of
key-value pairs of the form1:

〈k1, e1〉, . . . 〈km, em〉, 〈km+1, (v1,v1)〉, . . . , 〈km+l, (vl,vl)〉.

In the first step (Figure 7.1(c)), map every edge 〈k; e〉 on two key-value pairs: 〈v; e〉
and 〈u; e〉; one for each end node of e. Map every node pair 〈k; (v,v)〉 on the pair 〈v; v〉.
Consequently, the edges and nodes are binned per node, and the reducer associated to
node v receives every edge adjacent to v and its associated label v. The reduce function
generates for each edge e that it receives an output pair of the form 〈v; (e,v)〉, where v is
the node associated to the reducer, i.e., an end node of e.

In the second step (Figure 7.1(d)), map every reducer output of the previous step
〈v; (e,v)〉 onto a pair 〈e,v〉 with the edge itself as the key. Consequently, every reduce
record contains two labeled edges. The reduce function checks which label is the lowest
according to π and outputs a pair 〈e, (z, z∗)〉 where z ≥ z∗. Intuitively, z∗ is proposed as
a replacement for the old zone represented by z.

In the third step (Figure 7.1(e)) map every pair 〈e; (z, z∗)〉 onto a pair of the form
〈z; z∗〉 and map every pair 〈v; z〉 onto a pair 〈z; v〉. Intuitively, buckets receive (several)
update proposals for their associated zone and the nodes that are associated to this
(original) zone. The reduce function computes which of the proposed labels is the lowest
in π and outputs for each node v a pair 〈z; (v, z∗)〉, where z∗ is the replacement for z.

We have to repeat these steps until convergence occurs. Call this algorithm stcon1.

1For clarity, labels are written in small caps to distinguish between node-ids and node-labels.
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u v w

xyz

(a) The example graph.

key (u,u)
key (v,v)

key (u, y)
key (z, u)

...
...

(b) The MapReduce input. We as-
sume π to be the alphabetical order-
ing.

key (u, y)

key (u, z)

u (u, y)
y (u, y)
u (u, z)
z (u, z)

...
...

key (u,u)
key (y,y)

u u
y y

...
...

µ1 : u u
u (u, y)
u (u, z)

u ((u, y),u)
u ((u, z),u)

ρ1 :

(c) The map and reduce function of the first step.

u ((u, y),u)
y ((u, y),y)
u ((u, z),u)

(u, y) u
(u, y) y
(u, z) u

...
...

µ2 : (u, y) u
(u, y) y

(u, y) (y,u)

ρ2 :

(d) The map and reduce function of the second step.

(u, y) (y,u)
(z, u) (z,u)

y u
z u

...
...

y y
u u

y y

u u

...
...

µ3 : z z

z u
z y

z (z,u)

ρ3 :

(e) The map and reduce function of the third step.

Figure 7.1: A visualization of the stcon1 algorithm.
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Proposition 7.1: Let G = (V,E) be an undirected graph, let d be the diameter of G, and
∆ an upper bound on the degree of G. stcon1(G) runs in O(d) steps.

• Key complexity: the input and output as well as the running time are bounded by
O(|V |); the size is bounded by O(∆).

• Sequential complexity: the input and output size are bounded by O(|E| + |V |);
the running time is bounded by O(|E|+ |V |).

Proof: During the algorithm every node has exactly one zone associated to it. Therefore,
the number of zones is fixed throughout the algorithm and bounded by O(|V |).

In the first step, every bin contains a node and every adjacent edge. Therefore,
the key input and output are bounded by O(∆). In the second step, the input and
output is constant. Note that zone comparisons, after the first step, are not restricted to
comparisons between labels of adjacent edges. Therefore, in the third step, the input and
output are bounded by O(|V |). Clearly, the running times of the mappers and reducers
are directly related to the input sizes. Hence, the running time for mappers and reducers
is bounded by O(|V |). Since buffering of the input is only necessary for the first map
phase (due to the unknown ordering), the size is bounded by O(∆) when assuming stream
inputs.

The total input and output size of the first reduce phase is 2|E|+ |V |, of the second
step is 2|E| and in the third step is |E| + |V |. Hence, the total input and output size
is bounded by O(|E| + |V |). Since the running time is directly correlated with the size
of the input, and every edge appears twice, the total running time in the first step is
bounded by O(|E|+ |V |). The running time in the third step depends on the number of
zone comparisons, which is no more than E. Hence, the total running time of a single
round is bounded by O(|E|+ |V |).

Depending on the structure of the graph and the label ordering π, this algorithm can
take up to as many iterations as there are nodes in the largest connected component.
Therefore, the worst-case number of rounds is O(|V |). �

There is no straightforward method to check if the termination condition has actually
been reached. To deal with this, we can either keep track of the number of iterations
and stop after d or |V | steps, where d is the diameter of the input graph, or let every
reducer of the third step output if a zone has changed or not. These values can be binned
and reduced to a single value ‘stop’ or ‘continue’ that can be used by the coordinating
application.

Note that the zone relation occurs as input in the first step and the third step of every
iteration. Although it is modified in the third step, it is not in the first. In the second
it not used at all. By strictly following the formal definition, as given in Section 5.1, the
entire zone set has to be passed from the first step, through the second step, to the third
step. In practice, however, there is no need to involve these data in the second step.
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7.3 Finding Connected Components in MRC

Clearly, the algorithm in Section 7.2 is not inMRC. There are two main issues:

• If there are nodes with a high degree, the input size of individual reducers in step
one is not guaranteed to be sublinear in the size of the input.

• The same problem occurs for the input sizes of the reducers in step three: if partic-
ular zones receive a lot of updates, the number of updates is not guaranteed to be
sublinear.

In the first step of the algorithm we used the end nodes to map edges into particular
buckets. Unfortunately, if a node has many edges, the size of an individual bucket can be
as high as O(n), where n = |V |. An alternative to this approach is to associate blocks of
buckets to each end node and map every end node uniformly at random on a particular
bucket inside the associated block. Assuming blocks of size nε, we have that every reduce
record has an expected size of at most O(n1−ε). Since the reduce function only marks
edges with zones, the only requirement to let this new approach work is that the zone
labels itself are sent to every bucket in the block of associated nodes. Hereby, increasing
the communication cost to O(n1+ε).

In the last MapReduce step we used the zones as keys in the mapper outputs. Again,
if many zone proposals for a particular node exist, the reduce records can be very large.
Therefore, we introduce blocks of nε buckets for each node and map every zone proposal
on the block associated to its target node and uniformly at random on a particular bucket.
To merge the zone proposals and guarantee that every node has a unique zone proposal, we
add a MapReduce step in which every remaining zone proposal is mapped on a particular
bucket based on its node and the reduce function merges the input proposals to a single,
smallest proposal. The size of the reduce records in the third step now is bounded by
O(n1−ε) by assumption. In the newly added step the total number of mapper outputs
is still bounded by the number of nodes, but the size of particular reduce records is
guaranteed to fit in O(nε).

Instead of mapping the nodes on buckets based on their zone label in step three,
we skip this action to step five, where every node is mapped uniformly at random on a
bucket in the associated block (every block consists of nε buckets) and we map the zone
proposals, which are bounded to nε per zone, on every bucket in the particular zone.
Therefore, we have a communication cost of O(n1+ε).

Proposition 7.2: The adapted algorithm for finding connected components requires at
most O(n1−ε) space per reducer, and the total size is bounded by O(n1−ε), where ε > 0
and fixed.

Note that the first step of this algorithm actually is a data-centered join between
R(U, V ) and S(V,L), where R is the directed variant of E (i.e., every edge from E is
represented twice in R; once for each direction) and S is the node-zone relation. Con-
sequently, this step suffers from the same problems as the data-centered join in Section 6.1.
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Therefore, instead of a mapping edges randomly on a set of reducers, the reducer-centered
join (Section 6.4) could be used instead.

In [39] an algorithm for the undirected s-t-connectivity problem is described forMRC
that runs in a logarithmic number of rounds. Let G = (V,E) be an undirected graph and
µ an arbitrary order on the nodes. Define Γ(v) as the set of neighbour nodes of v and its
extension Γ(S), where S ⊆ V is a set of nodes, that represents the neighbours nodes of
nodes in S that are not in S itself. Further, Γ′(v) is the set Γ({u | λ(u) = v}), i.e., the
set of nodes that are neighbours of nodes with label v.

• Initially, every node v ∈ V is active and λ(v) = v.

• For i := 1 . . .O(log |V |) do

– Call each node a leader with probability 1/2.
– For every active non-leader node w find the smallest node w∗ ∈ Γ′(w).
– If Γ′(w) is not empty, mark w passive and relabel each node with label w to

label w∗.

• Output true if s and t have the same label, false otherwise.

In [39] a proof is given that the algorithm reaches its converged state after a logarithmic
number of rounds, with high probability. The proof is mainly based on the fact that nodes
get marked passive with a constant factor. Furthermore, at any point if two nodes have
the same label then they are in the same component.

Unfortunately, it seems that this algorithm actually has a rather high error rate and,
although it has similarities with [18], the implementation in MapReduce is not very clear.

Proposition 7.3: The algorithm described has an error rate that is above 1/4 for graphs
containing a chain of c nodes, where c is at least 4, and converges to 1 when c increases.

Proof: First, remark that the label of a zone can only change if the node that is identified
with that label is active. Moreover, a node with label v, where node v is passive, will
have v as its label in the converged state.

In the first round every node is active and has a unique label (e.g. its identity).
We assume that every node has at least one neighbor. Each node is called ‘leader’ with
probability 1/2 and consequently each node is called ‘follower‘ with probability 1/2. If a
node is selected as a follower, we have a chance of 1/2 that its neighbor with smallest label
is also selected as a ‘follower’. Therefore, in the first round every node has a chance of
1/4 to change its label (and get marked passive) such that node v is also marked passive.

Now take a graph G that contains a chain with c nodes. We call one of the end nodes
s and the other end node t. By construction we have that every node in the chain has
at least one neighbour and every node in the component has to get the same label to be
able to conclude that s and t are connected. Consequently, if at least two nodes run into
the situation as described before, the algorithm will inevitable erroneously decide that s
and t are unconnected.
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The chance that no node runs into this situation in the first round is (3/4)c. The
chance that only one node runs into it is c.1/4 (3/4)c−1. Every other scenario inevitably
leads to an erroneous result. Therefore, the chance that the result is erroneous is at least
as great as one minus the sum of the changes for the first two scenarios:

1−
(3

4

)c
− c.14

(3
4

)c−1
. �

In particular, given the formula in the proof of Proposition 7.3, when c = 4 we have a
chance bounded below by 0.26171875; when c = 7, we already have 0.55505371; when c
is, say 100, this chance approaches 1 very close.

7.4 Finding Connected Components in Logarithmic Rounds
For the previous algorithm we unfortunately have no bound on the number of rounds
which is tighter than O(d), where d is the diameter of the input graph. In [54] several
approaches to identify the connected components in a graph are discussed, including two
approaches that require only a logarithmic number of rounds with high probability. In
this section we give the hash-greater-to-min algorithm, which according to [54] has the
best theoretical bounds.

Associate a set Dv to every node v. Initially Dv = {v}. Iteratively repeat the following
three steps:

• For every node v, send the smallest node in Dv to every neighbour node and send
Dv to v.

• Repeat the previous step. If a new minimum is known in this or the previous step,
send it to the current minimum 2.

• For every node v compute the set D≥v = {u | u ∈ Dv and u ≥ v}. Send D≥v to the
smallest node, say vmin, in Dv and send vmin to every u ∈ D≥v.

Conceptually, the hash-greater-to-min algorithm constructs a topology on top of G
based on the sets Dv. Let GDv be a directed graph where V are the nodes, and the set
of edges is defined by {(v, u) | u ∈ Dv}. Initially, every node in GDv is an unconnected
component with a directed edge to itself. In the first and second step, however, nodes
are spread among neighbours in G. In the third step, many nodes are aware of a node
that is smaller than itself. We call the minimal nodes in these sets the local minima of
GDv . In the third round, every node v sends D≥v to its local minimum and sends the
local minimum to itself. When the sets Dv converge, we have a situation where every
connected component has a global minimum m that has an edge to every other node in
the connected component, and every node has an edge to its minimum. The concept

2The communication of the minimum is not mentioned in [54], but seems necessary to be able to
conclude the proof of Proposition 7.6
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behind the hash-greater-to-min algorithm is that halfway through the algorithm there are
several local minima and clusters around these minima. Assume a cluster with minima
m. In the first step of the algorithm m is spread from the outer nodes of the cluster to
neighbours in other clusters. Let v be such a neighbour. In the second step - if m is the
smallest node that v received - m is communicated to the current local minimum m′ of v.
In the third step - m is the smallest received node by m′ and m < m′ - the entire cluster
of m′ is communicated to m.

In MapReduce terms, as input we assume for each node v ∈ V a pair 〈k; (v,Γ(v), {v})〉
where k is an arbitrary key.

First, map every pair 〈v; (Γ(v), Dv)〉 onto a pair 〈v; (Γ(v), Dv)〉 and a pair 〈u; {vmin}〉
for every u ∈ Dv, where vmin is the smallest node in Dv. Every reducer receives Dv,Γ(v)
and some minimal nodes form neighbours, and therefore is able to output the pair
〈v; (Γ(v), D′v)〉 where D′v = Dv∪{vmin} and vmin is the smallest node among the proposals
that it received. The map and reduce function from the second step are the same as in
the first step. Finally, in the third step, map every pair of the form 〈v; (Γ(v), Dv)〉 on a
pair 〈vmin;Dv〉, where vmin is the smallest node in Dv, and on pairs 〈v; (Γ(v), vmin)〉 and
〈u; vmin〉 for every u ∈ Dv. The reduce function computes as output a pair 〈v; (Γ(v), D′v)〉
where D′v = ⋃

Di
v for each Di

v that it received.
In analogy to [54], we define the set GTk(m) as the set of all nodes v for which

m = minDv in round k and the set Mk = {m ∈ V | ∃v ∈ V, v ∈ GTk(m)}. We write
GT (m) and M to denote the sets GTk(m) and Mk after convergence.

Proposition 7.4 (Correctness): Let G = (V,E) be an undirected graph, D ⊆ 2V the
set of connected components in G, d an upper bound on the diameter of each connec-
ted component, and π an ordering on the nodes in V . After at most dd/2e rounds,⋃
m∈Mk

GT (m) = D.

Proof: Let Γ : V → 2V be the neighbour relation, that is, Γ(v) = {u|{v, u} ∈ E}
for every v ∈ V . We define the reflexive neighbour relation Γ∗ as the relation such
that Γ∗(v) = Γ(v) ∪ {v} for every v. Extend both Γ and Γ∗ to sets of nodes, that is
Γ(S) = ⋃

v∈S Γ(v) and Γ ∗ (S) = ⋃
v∈S Γ∗(v). As a shorthand let Γ∗i (v) = (Γ∗ ◦ Γ∗i−1)(v)

where Γ∗0(v) = Γ∗(v), that is, the set of every node at a distance of at most i edges from
v, including v itself.

Take an arbitrary, nonempty, connected component in D ∈ D, and call m the smallest
node in D according to π. Clearly, after the first step we have that m ∈ Dv for every
v ∈ Γ∗(m). After the second step, we have that m ∈ Dv for every v ∈ Γ∗2(m). Therefore,
after the third step we have that Γ∗2(m) ⊆ Dm and m ∈ Dv for every v ∈ Γ∗2(m). In other
words, Dm contains every node v from which there exists a path from m to v that has a
length of at most two edges. Moreover, m ∈ Dv for every node v at a distance of at most
two edges from m. Remark that since m is the smallest node in D, every node in Dm

stays in Dm during the iteration.
Assume that Γ∗i ⊆ Dm and m ∈ Dv for every v ∈ Γ∗i . In the first step of this

round, m is communicated to every node u ∈ Γ∗i+1 and in the second step, m is further
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communicated to every node u ∈ Γ∗i+2. Finally, in the third step, we have that Γ∗i+2 ⊆ Dm

and m ∈ Dv for every v ∈ Γ∗i+2.
Since d is the longest path between nodes that can occur, eventually, after dd/2e

rounds, there is an m ∈ V for every D ∈ D such that D = Dm and Dv = {m} for every
other node v ∈ D \ {m}. �

Proposition 7.5 (Communication Cost): For each step, the total communication cost
is bounded by O(|E|+ |V |).

Proof: In the first step, we have as input for every node v a set Dv = {v} and the
neighbours of each v. Clearly, ∑vDv = |V |, the total sum of neighbours is bounded by
2|E|. Therefore, since a local minimum is sent to each neighbour, the total sum of mapper
outputs in the first step is bounded by |V | + 4|E|. Every node adds only the smallest
received node to its set Dv, that is, ∑vDv ≤ 2|V |. Therefore, the total communication
cost in the second step is 2|V | + 4|E|. Again, only the smallest node is added to Dv.
Therefore, we have 3|V | + 2|E| as the total size of stored sets Dv and edges after the
second step. Next, the set D≥v is computed. Since both received nodes should be smaller
than v (otherwise they are ignored), we have that ∑vD≥v = |V |. Therefore, the total
communication cost in the third step is 2|V | + 2|E|. Remark that this result consists of
|V | nodes stored in local minima, and |V | nodes that are smaller than the node on which
they are stored.

In round i, we assume that the input has size 2|V |+ 2|E|, |V | nodes that are greater
than the node where they are stored, |V | nodes that are smaller, i.e., the local minima,
and |E| edges. Analogously to the initial case, 2|V |+ 4|E| is an upper bound on the com-
munication in the first step, and 3|V |+4|E| is an upper bound on the total communication
in the second step. Thereafter we have that the total sum of Dv for every v is 4|V |, but
only |V | of these nodes are lower than the node v on which they are stored. From the
remark at the end of the initial round (and this round) we have that D≥v contains at
most |V | nodes. Therefore, the total communication in this step, as well as ∑v |Dv| after
this step, is bounded by 2|V |+ 2|E|, where |V | nodes are smaller than the node on which
they are stored. �

In Proposition 7.4 we already proved that the proposed algorithm is correct and fin-
ishes in at most d rounds, but in practice, as we prove below, the number of required
rounds is only logarithmic.

Proposition 7.6 (Number of Rounds): The algorithm runs in a logarithmic number
of rounds with high probability.

Proof: Let GMk
be the graph defined by (Mk, {(m,m′) ∈Mk ×Mk | ∃v ∈ GTk(m), v′ ∈

GTk(m′), (v, v′) ∈ E}). In other words, we assume GMk
to be the graph of local minima,

where there exists a connection between two local minima m,m′ if there exists an edge
in the input graph such that one node has m as its minimum and the other has m′ as
its minimum. Clearly, if m ∈ Mk has no neighbors in GMk

, GTk(m) is a connected
component in G disconnected from other components.
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Assume that m has an edge to m′ in GMk
and m > m′. In the first step of hash-

greater-to-min m′ is communicated to a node that has m as its minimum (from v′ to v).
In the next step, m is communicated to m′. Finally, in the third step, m will send to m′
the set GTk(m).

Call MCk the set of nodes defined by {m ∈ GMk
| ∃m′, (m,m′) ∈ GMk

}, i.e., the
nodes of GMk

that have an outgoing edge in GMk
. Without loss of generality assume that

|MCk| = l and the nodes are labeled with 1, 2, . . . , l. The probability that a set GTk(m)
will have as minimum a node m′ ∈ {l/2, l} after the next round is 1/4, since, m itself has
to be in {1/2, l} and m′ has to be in {1/2, l}. Therefore, the chance that the set GTk(m)
has m′ ∈ {1, l/2} as its minimum in the next round is 3/4. In general, the expected
number of minima in the next round is 3l/4.

Since, in every round the number of minima decreases with a constant factor, we can
conclude that the total number of required rounds is expected to be 3 logn. �

Note on Key Complexity

When the graph contains nodes that have many edges, when the graph has only a few
connected components, or when the connected components are highly skewed in their
size, some reducers may need a lot of memory to store the received data. Therefore, as
is, the algoritme is not very scalable. This is also concluded in [54].

Instead of mapping every node on a particular reducer, we can spread nodes on a
block of reducers uniformly at random. Assume that we have r′ reducers for each node
and that the content of Dv for a node v is spreaded among r′ pairs. Every pair has a
key (v, i), where v is a node, and i denotes a particular reducer for that node. More
precise, we have pairs of the form 〈(v, i); (Di

v, N
i(v), vmin)〉 such that ⋃i∈[1,r′]D

i
v = Dv

and Di
v ∩Dj

v = ∅ for every i 6= j. The set N i(v) has an analogous meaning to Di
v for the

edges of v. Furthermore, we assume that vmin is the minimum of Dv. The first step is
replaced by a mapper that maps these pairs on itself and a message containing vmin that
is sent to a random reducer of every neighbour. The reduce function accepts only the
received minimum, outputs the pair containing Di

v itself, and sends its local minimum to
reducer (v, 1). In the next step, the map function is the identity and the reduce function
maps the received local minimum pairs onto a pair containing the global minimum for v,
addressed to every reducer of v. Finally, we need a map and reduce function that compute
the new Di

v for each v and i, containing the global minimum for v. The second step of
the original is replaced the same way.

The third step is replaced by a map function that computes Di
≥v based on Di

v and
output a tuple containing its neighbours and minimum addressed to (v, i) itself, Di

≥v
addressed to (vmin, i), where i is randomly chosen, and vmin is sent to a single reducer for
every node in Di

≥v. Then, two additional steps are required to compute the minimal nodes
for each Dv and distribute them among the reducers for node v. These are analogous to
the described changes for step one and two.



8
MapReduce Extensions and
Alternatives

Despite the popularity of MapReduce, several problems exist that are difficult to com-
pute in the default MapReduce environment. Examples are: joins, recursion, and graph
algorithms, as we have seen in Chapters 6 and 7. Several extensions and generalizations
are developed with the aim to overcome one or more of these issues. In this chapter, we
give a description of some MapReduce variations that seem important to mention in our
setting.

8.1 Pregel
The main issue when computing problems related to large graphs in a sequence of MapReduce
steps is that, in each step, the entire graph has to be communicated over the network;
meaning a lot of unnecessary communication of static data. Therefore, MapReduce is not
a very satisfying model in the context of graph algorithms. Pregel is Google’s own altern-
ative to MapReduce for computing with large graphs [47]. It is a programming paradigm
for Bulk Synchronous Parallel (BSP) processing [58], that consists of several components
each assigned with a particular part of the graph whereupon tasks are executed in parallel
within super steps. Each computation is performed on a particular node and its direct
environment; i.e., the outgoing edges and target-node ids. Every node has a value that
can be modified during a computation. Furthermore, messages can be sent from one node
to the other (based on node ids) and are received at the target node at the beginning
of the next step. Every iterative step consists of the parallel execution of a user defined
computation on every node from the graph.

The description of Pregel in [47] is rather informal. Therefore, we provide a more
formal description below. As input, assume a directed graph G = (V,E) and a set D that
contains for each node v a value Dv. We define a communication message as a pair of
the form 〈k;m〉, where k is a node identifier and m is the content of the message, which
can be anything. Let Mv be the set of messages to node v. Initially, Mv = {} for every
node v. Let f be a user defined computation function that maps a set of messages and

59
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the data associated to a node onto another set of messages and modified data:

f : (v, Sv, Dv,Mv)→ (D′v,M ′v).

Here, Sv represents the scope of the computation and contains the ids of the outgoing
nodes for v.

Each step in Pregel consists of the following two phases:

• computation phase: f(v, Sv, Dv,Mv) → (D′v,M ′v) is computed for every node
v ∈ V that is marked as active. Several instances of f are executed in parallel.
After this step we have that Dv ← D′v for each node v.

• communication phase: for each v ∈ V : Mv ← {〈v;m〉 ∈M ′u | u ∈ V }, i.e., every
message in M ′v is sent to the appropriate destination.

Aside to communication from one node to the other, computations can request oper-
ations on the topology of the graph (i.e., removing and adding nodes and edges). Fur-
thermore, f can utilize an aggregation mechanism. Every node can send a value m to an
aggregate function, say agg, which combines the received values based on an associative,
commutative summation:

z =
⊕

(agg(m)).

The result of the aggregator is sent to every node in the next step. This mechanism
can be used to keep every node informed about a property of the graph, e.g., its total
number of nodes. Pregel also has a combiner function that can be used to group or merge
messages send from within different scopes on a particular machine, reducing the real
communication cost between machines.

From a logical point of view Pregel has a lot of similarities with MapReduce. In fact,
the core of Pregel can be seen as a MapReduce program where the map function is fixed
and bins every node, its state, and its outgoing edges. The computation is similar to the
reduce phase and is performed on each bin. Communication between nodes are additional
pairs outputed by the reducer and mapped into the destination bin.

Example: As an example of a computation in Pregel, consider the PageRank prob-
lem [14]. Let G be a graph representing pages and directed links between these pages.
PageRank is the problem that asks to assign a score of importance to every page in G
based on the scores of pages that are linked to it. Initially, every node has the same
score. We denote the score of v with Dv.score. The pagerank is calculated by iteratively
repeating the following equation:

Dv.score = (1− damp)
|V |

+ damp ∗
∑

(u,v)∈E

Du.score

dego(u) .

The constant damp represents a damping score and is usually set to 0.85.
A Pregel algorithm for computing PageRank, based on [47], is presented in Al-

gorithm 8.1.



CHAPTER 8. MAPREDUCE EXTENSIONS AND ALTERNATIVES 61

Algorithm 8.1: PageRank in Pregel.
Compute (v, Sv, Dv,Mv):

if current superstep ≥ 1 then
sum = 0;
foreach message m in Mv do

sum += m.value;
Dv.score = 1−damp

|V | + damp∗sum;
end
if current superstep < 30 then

foreach neighbour u do
emit 〈u, Dv .score

dego(v) 〉;
end
else

vote to halt;
end

8.2 Distributed GraphLab

GraphLab is another variation of MapReduce that, similar to Pregel, focuses on graph
computations. GraphLab is especially designed for running machine learning and data
mining algorithms, initially in a multicore shared memory setting [45], but also for distrib-
uted environments [46]. The main difference with Pregel is that it is not a synchronous
(in terms of super steps) message-passing system, but an asynchronous distributed shared
memory abstraction [30]. It is not possible to send messages directly to other nodes.
Scopes contain both the ‘core’ node, its incoming and outgoing edges, and its neighbour
nodes and their respective states. Hence, overlap exists between the scopes of neighbour
nodes.

Let G = (V,E) be a directed graph, and D a set of data values associated to nodes and
edges. We write Dv and Dv→u to denote the set of data associated to node v and edge
(u, v) respectively. A GraphLab algorithm is defined by a user defined update function
f that, given a node v and its scope Sv, is able to modify the data related to Sv and
output a set of nodes. The scope of a node v, write Sv, consists of v itself, its neighbour
nodes and adjacent edges, and the associated values. Formally, the update function has
the following signature:

f : (v, Sv)→ (Sv, T ).

Let G = (V,E) be the input graph, D the set of data values, and T ⊆ V a set of
nodes. While T is not empty, for each v ∈ T :

• computation phase: (S′v, Tv) = f(v, Sv). Let T = (T \ {v}) ∪ Tv and Sv =
S′v. Several instances of f are computed in parallel, asynchronously. There are
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no guarantees about the ordering of nodes in T other than that every node will
eventually be computed.

GrapLab relies on a customizable scheduler for task assignments and consistency guar-
antees. Since scopes contain overlap, there are three relevant consistency models:

• full consistency: the computation function is executed in parallel on nodes without
common neighbours. Hence, there is no scope overlap between parallel computa-
tions.

• edge consistency: a common neighbour is allowed, but common neighbours are not
computed in parallel.

• node consistency: the only guarantee is that the computation function is executed
only once on a node at the same time.

In general, the more strict the consistency level, the less parallelization can be utilized.
To keep track of global information, it is possible to run a synchronization process

in the background similar to the aggregation feature in Pregel. In GraphLab the syn-
chronization process is defined by a map and finalize function, which are formalized as
follows:

finalize(
⊕
v∈V

map(Sv)).

The map function is associative and commutative, the finalize function can be used to, for
example, normalize the result. The result of the synchronization process is a global value
that is accessible by the update function. Again, it is up to the programmer to determine
the consistency level for this value, i.e., guaranteed consistency or tolerated inconsistency.
Similar to the scheduling consistency models, consistency may cause additional delay.

An important difference between Pregel and GrabLab is that nodes in Pregel, are
able to communicate with each other independent of the topology of the graph, while in
GrabLab only communication between adjacent nodes is possible by utilizing scope over-
lap; Pregel uses a message passing system, while GraphLab uses a shared state strategy.

Example: Take the PageRank problem from the previous section. We associate a state
D(v,u) with every edge (v, u) ∈ E. D(v,u) represents the weight of the edge according
to the score of v. In other words, D(v,u).weight = 1/dego(v). We also assume a state
Dv(v, u).old that represents the latest score of v that has been read by u. A GraphLab
implementation 1 is represented in Algorithm 8.2.

8.3 Datalog and Recursion
MapReduce is an acyclic dataflow system that consists of two kinds of tasks which are
executed in parallel in separated rounds. Therefore, a natural generalization of the model

1The implementation of PageRank in GraphLab is based on http://select.cs.cmu.edu/code/
graphlab/doxygen/html/pagerank_example.html

http://select.cs.cmu.edu/code/graphlab/doxygen/html/pagerank_example.html
http://select.cs.cmu.edu/code/graphlab/doxygen/html/pagerank_example.html
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Algorithm 8.2: PageRank in GraphLab.
Update (v, Sv):

sum = 0;
foreach incoming edge e = (u, v) ∈ E do

sum += De.weight∗u.score;
e.old = u.score;

v.score = (1−damp)
|V | + damp∗sum;

foreach outgoing edge e = (v, u) ∈ E do
if too much difference between e.old and v.score then

schedule u;
end

from this point of view is a dataflow system where tasks have a generic, user defined form
[5].

The output of a MapReduce task is delivered to other tasks only after its completion.
Therefore, MapReduce does not support recursion explicitly. In this section we explorer
the implementation of recursive Datalog in a distributed and parallelized environment
similar to MapReduce based on [5]. In particular, we start with a description of the
evaluation of Transitive closure.

8.3.1 Seminaive Evaluation and Derivations

Consider the following Datalog program:

T(x,y) :- E(x,y).
T(x,y) :- E(x,z), T(z,y).

A derivation of a tuple t is a substitution of values for variables in the body of a rule that
makes the head be t [5]. There are several ways to evaluate a sequence of Datalog rules.
Clearly, in the above example every tuple of the EDB (extensional database) predicate
E is conveyed to T . The evaluation of the second rule, however, requires an iterative
strategy. The naive approach would be to join every tuple in E with every known tuple
of T , resulting in a huge number of redundant derivations. The seminaive approach [2, 5]
is based on the naive approach, but only considers substitutions of the body predicates
where at least one of the EDB tuples is derived in the previous round. Hence, avoiding
redundant derivations.

In this chapter the seminaive approach takes an important role in that the complexity
of parallel Datalog algorithms will be compared to it. The evaluation of our example
program using seminaive evaluation is formalized in Algorithm 8.3. In our context The-
orem 8.1 is of particular importance.

Theorem 8.1 ([5]): The number of times a tuple t is produced during seminaive evalu-
ation is equal to the number of derivations of t.
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Algorithm 8.3: Example of seminaive evaluation.
T0 := ∆0 := E;
i := 0;
repeat

i := i+ 1;
Ti := Ti−1 ∪∆i−1;
∆′i := E(x, z) on ∆i−1(z, y);
∆i := ∆′i \ Ti;

until ∆i = ∅;

8.3.2 Nonlineair TC

A fundamental problem in the context of Datalog is the computation of the transitive
closure of a directed graph [8]. In this section we discuss several approaches to perform
transitive closure in the generalized MapReduce environment as described above. First
note that there are several ways to formulate the transitive closure algorithm. The most
common approaches are the nonlinear, left- and right-linear programs as described below:

• nonlinear TC:

T(x,y) :- E(x,y).
T(x,y) :- T(x,z), T(z,y).

• left-linear TC:

T(x,y) :- E(x,y).
T(x,y) :- E(x,z), T(z,y).

• right-linear TC:

T(x,y) :- E(x,y).
T(x,y) :- T(x,z), E(z,y).

Since it is a property of the linear approach to detect every path only once, in a se-
quential environment it is common to prefer a linear approach. In a parallel environment,
however, it is common to tolerate an overhead in communication cost in return for a
decrease in the number of rounds. Therefore, in a MapReduce-like environment we are
tempted to prefer a nonlinear approach.

Implementation

In [5, 4] two new tasks are introduced: a join task and a duplicate-elimination task, which
are executed in parallel on a set of distributed machines. Furthermore, they assume the
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existence of a hash function g from tuples in T on a duplicate-elimination task and a hash
function h from tuples in N on join tasks. Initially, every tuple (a, b) ∈ E is sent to a
particular duplicate-elimination task g(a, b). The duplicate-elimination task first checks
if the received tuple (a, b) is not stored already. If not then it stores (a, b) and sends a
copy to the join tasks associated to h(a) and h(b) respectively. Clearly, each join task
receives a tuple (a, b) if the task is associated to a or b. It stores (a, b) and checks if there
exists a tuple (b, c) or (c, a) and sends the newly constructed tuples (a, c) and (c, b) to the
particular duplicate elimination tasks based on g.

Proposition 8.1 ([5]): The total cost of nonlinear TC is linear in the number of deriv-
ations.

Proof: Assume that we have nodes a, b, c such that there exists a path from a to b and
from b to c. Consequently, there exists a derivation such that a, b and c substitute for
x, y and z respectively. The join task h(b) will receive (a, b) as well as (b, c) and therefore
eventually construct the tuple (a, c) and communicate it to the duplicate elimination
task g(a, c). No other task receives both (a, b) and (b, c), therefore this derivation can
only be made by the join task h(b). The duplicate-elimination task prevents sending the
same tuples to a join task again and, consequently, prevents that a same derivation is
done multiple times. Clearly, the maximum number of tuples that is communicated for
a particular derivation is three and. Hence, the number of tuples that are communicated
is bounded by 3n, where n is the total number of derivations. �

duplicate-elimination

join

Figure 8.1: Implementation of nonlinear TC.

Figure 8.1 represents a schema of the implementation of nonlinear TC as described
above. The boxes represent a collection of processes that are responsible for a certain
task. Note that although the schema is cyclic the data flow is not.

8.3.3 Recursive Doubling

Linear algorithms have the unique-decomposition property, that is, every path is detected
only once. The traditional nonlinear TC, however, may also derive a same path multiple
times. Nevertheless, there exist more complex nonlinear TC algorithms that combine the
best of both worlds, i.e., non-linear algorithms that detect every path only once. One such
algorithm is called recursive doubling [5] and is described in Algorithm 8.4. Basically, P
is an intensional predicate that keeps track of the pairs of nodes where there exists a path
of length between 0 and 2i−1, Q keeps track of the pairs of nodes where the smallest path
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Algorithm 8.4: Recursive Doubling.
Input: V,E
Output: transitive closure of E
Q0 := E;
P0 := {(x, x)|x ∈ V };
i := 0;
repeat

i := i+ 1;
Pi(x, y) := πx,y(Qi−1(x, z) on Pi−1(z, y));
Pi := Pi ∪ Pi−1 ;
Qi(x, y) := πx,y(Qi−1(x, z) on Qi−1(z, y));
Qi := Qi \ Pi ;

until Qi = ∅;

has length 2i. Other nonlinear transitive closure algorithms exist that have the unique-
decomposition property. In [8] a study is performed on transitive closure algorithms based
on length partitioning. It concludes that these algorithms are incomparable to each other,
i.e., it depends on the particular situation which of the approaches gives the best result.

Implementation

The implementation of recursive doubling is slightly more difficult than the implementa-
tion of the traditional nonlinear approach. In particular, it requires two collections of join
and duplicate elimination tasks; one that is responsible for P and one that is respons-
ible for Q. Moreover, the join tasks of P are responsible for the line πx,y(Qi−1(x, z) on
Pi−1(z, y)), whereas the duplicate elimination tasks are responsible for Pi∪Pi−1. The join
tasks associated to Q are responsible for πx,y(Qi−1(x, z) on Qi−1(z, y)) and the duplicate
elimination tasks for Qi \ Pi.

A schema of the cluster implementation is given in Figure 8.2. Every box represents
a cluster of processes that is responsible for the specific task.

duplicate elimination P

join P

duplicate elimination Q

join Q

Figure 8.2: Implementation of Recursive Doubling.
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8.3.4 Generalization to Datalog

Informally, this approach can be generalized to arbitrary Datalog programs by considering
a collection of join and duplicate elimination tasks for every rule body. Subsequently, the
derivations made by these tasks are send to the task collections associated to rule bodies
that contain the derived predicate. In the case of multi-way joins this task becomes
considerably harder than in the two-way join case [7].

8.4 Real-World Graph Structures

A lot of research has been conducted on the structure of real-world graphs. Some prop-
erties that occur regularly are [28]:

• small-world property: the average distance between nodes is short;

• network transitivity: two nodes that have a common neighbour are more likely to
are neighbours themselves;

• community structures: the occurrence of groups of densely connected nodes; and

• power-law degree distributions: a graph typically consists of many low-degree nodes
and a small number of high-degree nodes.

Pregel and GraphLab perform best when the input graph is sparse and communication
occurs mainly over edges [47]. Unfortunately, many natural graphs are not sparse, or, to
be precise, there always are some nodes that are connected to almost every other node
(e.g., popular persons in social media, or search engines on the web). The internet graph,
for example, agrees to a power-law distribution and consists of star patterns [30]: although
most nodes have small out degrees, some nodes are connected to almost any other node.

Formally, a power-law degree distribution [22] is a distribution where the chance of a
node to have a degree of d is d−α up to a constant factor, where α is a positive constant.
In symbols, we write:

Pr[d] ∝ d−α.

A high α indicates a low density graph and a large number of nodes with a low degree.
A low α on its turn indicates a dense graph and many nodes with a high degree.

Partitioning such a graph is not an easy task, and since the running time of a vertex
program is usually directly correlated to the number of edges, Pregel and GraphLab have
highly-skewed running times and space requirements for this type of graphs.

8.5 PowerGraph

Pregel and GraphLab are vertex programs, which means that computations are performed
on nodes and corresponding scopes. The main difference is that a scope in Pregel only
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contains the outgoing edges and neighbour-node ids, while scopes in GraphLab contain in-
coming and outgoing edges. Furthermore, interaction between computations is performed
through message passing in Pregel, and through shared states in GraphLab.

However, scopes based on adjacent edges are highly sensitive to data skew. Huge
star-like motives, as described in Section 8.4 may not even fit in the memory of a single
machine. Therefore, both abstractions are infeasible for many natural graphs. Hence,
Pregel and GraphLab perform best when the input graph is sparse and communication
occurs mainly over edges [47].

PowerGraph [30] is very similar to GraphLab, but addresses these challenges by pulling
apart the computation phase in three separated phases: gather, apply, and scatter; called
the GAS model. Instead of executing the computation phase on the adjacent edges as a
whole, the scatter function is executed on every adjacent edge separately. The results of
these functions are merged based on an associative, commutative summation:

Σ←
⊕

v∈Γ(u)
gather(Du, D(u,v), Dv).

The apply function takes the core functionality of the computation function and is able
to update the state of the central node based on the result of the gather phase:

Dnew
u ← apply(Du,Σ).

Finally, the scatter function is similar to the gather function, but enables the user to
update edge states after the apply phase:

D(u,v) ← scatter(Dnew
u , D(u,v), Dv).

PowerGraph provides two executions of the GAS model: a bulk synchronous execution
and an asynchronous execution. In the bulk synchronous execution, the gather, apply,
and scatter function are executed synchronously in minor steps. The computations as a
whole are executed in supersteps. In the asynchronous execution, resources are utilized
as soon as they become available.

Example: Again, we implement the PageRank problem. A PowerGraph implementation
of PageRank, based on [30], is represented in Algorithm 8.5.

8.6 Other Extensions
Aside to GraphLab and Pregel there exist several other extensions and generalizations
of MapReduce. In this section we give a brief overview of alternative programming
paradigms, but there exist many more.

Dryad [36] is a programming model by Microsoft that shares with MapReduce that
computations have the form of an acyclic dataflow system and that the mapping on phys-
ical machines is done automatically. Nevertheless, computation tasks can take any form
and are not restricted to map or reduce tasks. An important issue in both MapReduce and
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Algorithm 8.5: PageRank in PowerGraph.
Gather (Du, D(u,v), Dv):

return Dv
dego(v) ;

sum (a,b):
return a+ b;

Apply (Du, acc):
score = 1−damp

|V | + damp ∗ acc;
Du.delta = score−Du.score

dego(u) ;
Du.score = score;

Scatter (Du, D(u,v), Dv):
if (|Du.delta| too big) then

schedule v;
end
return Du.delta;

Dryad is that many applications require the iterative execution of one or more MapReduce
steps. This causes a lot of overhead communication, especially when it comes to static
data. Furthermore, reaching a fixpoint state is a common termination condition that may
require an additional MapReduce step, implying additional overhead. Haloop [15] is a
MapReduce extension that introduces caching of invariant data and reducer outputs to
improve the execution of certain iterative algorithms.

Pig [51] is a system that is build on top of Hadoop and offers the ability to program-
mers to write MapReduce algorithms via Pig Latin. Pig Latin is a high-level language,
somewhere between SQL and low-level MapReduce, that provides the ability to write
code that is much more maintainable. Pig itself is the system that translates Pig Latin
algorithms into physical MapReduce plans.

8.7 Note on Complexity Measures
The complexity of algorithms in Pregel can be expressed similarly to the complexity in
MapReduce. The main difference is in the fact that in Pregel the graph itself persists
in the distributed file system. Therefore it does not contribute to the communication
cost. Furthermore, Pregel has no shuffle phase and messages are send directly to their
destination based on node ids.

GraphLab has similarities with Pregel, but scopes contain overlap. Therefore, the
communication cost is less clear. For example, although a computation may be performed
on the same node as the main content of its scope, some edges or nodes may need to be
transfered or synchronized between machines.





9
Regular Path Queries in
MapReduce

We introduced the regular path queries in Chapter 4 as a very simple navigational lan-
guage for graphs. Although RPQs have several interesting properties and are certainly
simple compared to the full graph query languages that are typically used today, the
evaluation problem for RPQs on large graphs is still an intensive task.

The aim of this chapter is to study the evaluation of regular path queries in MapReduce
and similar environments. First, we give some algorithms for the evaluation of RPQs that
are already studied in the context of distributed computing. Next, we present algorithms
and complexity bounds for the evaluation of RPQs in MapReduce that, to the best of our
knowledge, are not yet studied in literature.

9.1 Distributed Regular Expressions

The evaluation of regular expressions in MapReduce and similar environments is rather
new, but the evaluation of regular expression in a distributed shared nothing environment
is not [56]. In a general distributed setting, where the graph is partitioned in large
components on the available machines, it is possible to partially evaluate path queries
on individual components locally. Hence, a partial result can be obtained without any
communication between components.

v1

v2

v3

u1

u3

a

b

a

c

a

Machine A

u1

u3

u2v3

b

b
a

Machine B

Figure 9.1: Example of a distributed graph.
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v3

v2 u1

u3

Figure 9.2: Example of an accessibility graph.

Example: Given the distributed graph from Figure 9.1, where filled nodes represent local
nodes, open nodes represent virtual nodes, and dotted edges are inter-machine edges.
Now, consider the query q : (x, y) ← (x, a+, y). We are able to compute parts of q(G)
locally. In particular we are able to derive (v2, v1), (v2, v3), and (v2, u3) on machine A,
and (u1, v3) on machine B.

The only paths that remain hidden within this approach are paths covering edges in
multiple components. Therefore, after the partial evaluation of the individual compon-
ents, the missing paths have to be computed via a coordinating machine [56, 23]. To
limit the communication cost to find these missing paths, techniques such as the use of
an accessibility graph, containing border nodes and inter-partition paths, can be utilized
[56].

Example: Recall the previous example. An accessibility graph could take the form of
the graph in Figure 9.2. Every machine sends its relevant part of the accessibility graph
to the coordinating machine, where these parts are assembled. Afterwards, the relevant
parts are sent back to the machines.

Clearly, there is no need to send information about the edges (v2, v3) or (v3, u3) to
machine B, while the information about the edge (u1, v3) is required to make machine
A able to derive the path from u1 to u3. This kind of insights are reflected by the
accessibility graph. Note that edge (v2, v3) of the accessibility graph can be eliminated
by the coordinating machine, since it is not involved in any inter-machine path.

In [24] a similar technique is utilized for the evaluation of regular reachability queries
on node-labeled graphs. However, the definition of RPQs in [24] differs to ours. Graphs
are node-labeled graphs instead of edge-labeled graphs. Here, a path label is defined as
the concatenation of labels from the sequence of nodes in the path (excluding the start
and end node). Therefore, they also use a variant of NFAs for the evaluation of regular
expressions, called query automata, which are in fact node-labeled directed graphs with
two special nodes: a start node and an end node. The nodes are called states, similar as in
NFAs. The conversion from a regular expression to a query automaton can be performed
in a similar way as the conversion from regular expression to NFA.

Without going into much detail, [24] uses partial evaluation by computing, in parallel
on the local fragments, which nodes can reach t satisfying the regular expression r by
associating a vector to each node, where every cell of the vector represents a state. Clearly,
for t itself, a cell has value true for every state that has the same label as t; false otherwise.
Every node that can reach t via a local path has a value true for its reachable states. If
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an arbitrary node v has an incoming edge from a node located on another site, and does
not know if that other node can reach t, a variable is used to denote that a state is
reachable iff the value for that state associated to v is true. When these computations are
finished, every state sends its meaningful vectors (i.e., vectors with none-false values that
have outgoing edges on external sites, and the vector associated to s) to a coordinator
site. This coordinator site assembles the dependency relations and evaluates the resulting
conjunction to construct the query answer. This strategy leads to the following bounds:

Theorem 9.1 ([24]): Regular reachability queries can be evaluated in O(|Fm||Q|2 +
|Q|2|Vf |2) time, by visiting each site once, and with the total network traffic inO(|Q|2|Vf |2),
where Fm is the largest fragment of the input graph and |Vf | is the total number of nodes
(including virtual nodes) in the graph fragment.

A translation from this algorithm to MapReduce is given in [24] as well. They assume
MR-pairs that contain entire fragments of the input graph and the query automaton.
Hence, the map function handles the partial evaluation and maps its result on a single
reducer, that takes the roll of the coordinating site. This reducer finishes the computation
by combining the partial results into the query answer.

Edge Labeled Graphs

Based on the reachability algorithm in [24], we describe a similar approach for edge labeled
graphs. Basically, a precomputation is performed to partition the input graph G into
fragments and combine every fragment with the regular expression in a MapReduce pair.
The first map step computes locally on each fragment the reachable table for every node,
as was done in Algorithm 9.2. In a sequential environment, this algorithm is performed
in time polynomial in the size of the fragment. Afterwards, it is easy to create vectors,
similar to what is done in [24].

The vector created for node s and the vectors associated with nodes having ingoing
edges from nodes on external sites are sent to a particular reducer. Every vector has a
size of at most O(|Of ||Q|), where Of is an upper bound on the number of virtual nodes
in a fragment.

The total number of nodes with incoming edges from external nodes is no more than
the total number of virtual nodes. Hence, this number is bounded by O(m|Of |), where m
is the number of fragments. For every of these nodes, including s, a vector is sent to the
coordinating reducer. The total communication cost is thus bounded by O(m|Of |2|Q|).
Assuming that O(m|Of |2|Q|) fits in a single machine’s memory, this algorithm can be
performed in a constant number of steps.

Issues

Although this approach seems interesting at first, some issues arise. For example, the
input pairs are very large and the efficiency of this approach strongly depends on the
ability to partition the graph. In particular, densely connected components should be
grouped together on a single machine and the number of inter-machine edges should be
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low. Graph partitioning, however, is an np-hard problem. Further, this approach seems
to undo much of the spirit of MapReduce programming and does not fit properly into the
abstraction. Therefore, we do not consider this method any further.

9.2 RPQs in Datalog
In Section 8.3, the evaluation of Datalog rules in a distributed environment was discussed,
which yields another strategy to evaluating regular path queries. It is easy to translate a
regular expression into a Datalog program by following the subsequent rules below. Let
E be the extensional database (EDB) predicate associated to the edge relation and a ∈ Σ.

ε : O(x,x) :- .
a : O(x,z) :- E(x,a,z).

Let R and S be regular expressions and R and S be the intensional database (IDB)
predicates associated to R and S respectively.

R∗ : O(x,x) :- .
O(x,z) :- R(x,z).
O(x,z) :- O(x,y),O(y,z).

R|S : O(x,z) :- R(x,z).
O(x,z) :- S(x,z).

RS : O(x,z) :- R(x,y), S(y,z).

Example: An illustration of this construction is provided based on the example expres-
sion (a|b)∗c∗. First, the expression is translated into a Datalog program by following the
previously given ruleset:

D(x,z) :- A(x,z).
D(x,z) :- B(x,z).
E(x,x) :- .
E(x,z) :- D(x,z).
E(x,z) :- E(x,y), E(y,z).
F(x,x) :- .
F(x,z) :- C(x,z).
F(x,z) :- F(x,y), F(y,z).
G(x,z) :- E(x,y), F(y,z).

Note that A,B, and C are the EDB predicates associated to a, b, and c respectively,
and G is the output predicate. The implementation of the R∗ construction is similar to
the implementation of transitive closure, which is discussed in Section 8.3. Therefore,
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Figure 9.3: Implementation of (a|b)∗c∗. Boxes represent collections of tasks and arrows
represent the dataflow.

the recursive doubling approach can be utilized. The Datalog construction of the union
operator R|S is nothing but an overall predicate that contains tuples of both the predicates
related to R and S. Therefore, it suffices to view both tuples of R and S as part of the
output, and if necessary, to provide these as input to a parent operation.

The direct translation of this Datalog program into a distributed algorithm leads to a
collection of tasks connected as in Figure 9.3. Note that boxes represent sets of machines,
and that the assignment of inputs to particular machines is based on hash functions.

We mention this method for a sake of completeness, as CRPQs are contained in the
expressiveness of Datalog. However, this technique is not related to MapReduce and we
have no convenient complexity measures for it.

9.3 Regular Reachability in MR

Let Σ be a finite alphabet, G = (V,E) a Σ labeled directed graph, and q a regular path
query over Σ of the form ans(x, y) ← (x, r, y), where x and y are node variables and r
is a regular expression over Σ. Let Ar = (Q,Σ, δ, s0, F ) be the NFA associated to r. For
notational simplicity, we extend δ to a transition relation on strings δ : Q × Σ∗ → P(Q)
such that

δ(si, a1a2 . . . am) =
⋃

sk∈δ(si,a1)
δ(sk, a2a3 . . . am).

Intuitively, δ(s1, a1a2 . . . , an) contains every state that is reachable from state s, by con-
suming the entire string a1a2 . . . an.
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Similar to the s-t-connectivity problem, we focus on regular reachability (or RPQ
recognition), i.e., the decision problem that asks, given G, q, and s, t ∈ V , if there exists
a path η from s to t such that λ(η) ∈ L(r), where r is the regular expression associated
to q.

The RPQ recognition problem is closely related to the s-t-reachability problem, but
only paths that have an accepting run in Ar are considered. To detect if there exists a
valid path from s to t, we conduct a breadth-first search from s to t, meanwhile keeping
track of the states in Ar. Assume that every node v has a set of states Dv associated to
it, initially the empty set. Let Ds = {(s0)}. Repeat the following steps:

• If Dt ∩ F 6= ∅, then conclude that (s, t) ∈ q(G) and stop the iterations.

• Otherwise, combine the knowledge in Dv with the knowledge about the outgoing
edges and the transition relation of Ar to communicate to neighbours of v in which
states it is reachable from node s.

The algorithm is presented in Algorithm 9.1. Recall that we used Ev→∗ to denote the set
of outgoing edges of v.

Algorithm 9.1: RPQ recognition.
Input: 〈k; (v,Dv, Ev→∗)〉 for every v ∈ V , where Dv := ∅
Output: 〈k; (v,Dv, Ev→∗)〉 for every v ∈ V , where Dv is converged
repeat

Map:
foreach active si ∈ Dv do

foreach (v, a, w) ∈ Ev→∗ do
foreach sj ∈ δ(si, a) do

emit 〈w; (sj)〉;
emit 〈v; (v,Dv, Ev→∗)〉;

Reduce:
Let M be the set of received states;
Dv ← Dv ∪M ;
mark every new state active;

until nothing changes;

Since the size of Dv is bounded by O(Q) and it can only grow throughout the iterative
steps, it is easy to see that Dv, for every v will eventually converge to a fixed state. An
upper bound on the complexity of this approach is given by Proposition 9.1.

Proposition 9.1: Let G be a graph and ∆ an upper bound on the degree for each node
in G. The RPQ recognition problem can be solved in O(|E||Q|) steps.

• Key complexity: the amount of space per node is bounded by O(|Q| + ∆); the
input and output size are bounded by O(∆|Q|); and the running time is bounded by
O(∆|Q|2).
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• Sequential complexity: the total input and output size in a single step is bounded
by O(max{|E|, |V |}|Q|); and the total running time in a single step is bounded by
O(∆|Q|2|V |).

Proof: If (s, t) ∈ q(G) there is a path η in G from s to t such that λ(η) ∈ L(Ar).
Therefore if (s, t) ∈ q(G) we are guaranteed to find a path when our algorithm runs long
enough. Moreover, since the maximum length of the minimal path for every node and
state combination is |Q||E| we are able to decide that (s, t) 6∈ q(G) after |Q||E| steps.

Let v be an arbitrary node in G. There are at most Q states from which s is able to
reach v. Therefore, the size ofDv is bounded byO(|Q|). Since there is only communication
between neighbour nodes, in a worst-case scenario every node sends every state to every
outgoing neighbour. Hence, the input size of a node is at most |Q| times the number of
the incoming neighbours, and the cost for storing the adjacent edges.

A reducer adds every node node that it receives in Dv. This is done in time O(|Q|2).
The mapper is executed in time O(|Q|2|Ev→∗|). Hence, the latter dominates the cost for
a single mapper or reducer.

In a worst-case scenario every node receives every state from every neighbour. The
total sum of state sizes is at most O(|V ||Q|). Therefore, the worst-case input and output
size is O(|Q|max{|E|, |V |}). The total running time is the sum of the running times
associated to individual nodes. Hence, O(∆|Q|2|V |). �

In the case that there is a path from s to t that matches the given regular expression,
we can tighten the number of steps that is required by Algorithm 9.1 to the size of the
smallest matching path.

Proposition 9.2: Let η be the shortest path in G between s and t such that λ(η) ∈ r,
where q is an RPQ and r its regular expression. The number of steps required to solve
the RPQ recognition problem 〈G, q, s, t〉 is bounded by O(|η|).

Proof: Every path of length k is detected after k steps. Hence, for s, t ∈ V , such that
there is a path η from s to t in G, the number of steps to detected η is O(|η|). �

Reducing the output of Algorithm 9.1 to a yes/no answer can be done with a very
simple single-step MapReduce algorithm that maps every v ∈ V \ {t} on the empty set,
while for t, we generate a pair 〈k; (s ∈ Dt)〉. The reduce step can be skipped. Instead
of monitoring convergence, which is a difficult task in MapReduce, it suffices to stop the
algorithm after |E||Q| consecutive rounds.

9.4 RPQ Evaluation in Logarithmic Rounds
Although the memory bounds in Section 9.3 are promising, the number of MapReduce
steps is rather high. Ideally, a smaller number of rounds should be obtained. Therefore,
an alternative approach is examined in this section using a pointer-doubling technique.
Unfortunately, in this approach the communication cost increases dramatically, and in fact
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Algorithm 9.2: RPQ evaluation in logarithmic rounds.
Input: 〈v;Dv〉 for every v, where Dv := {(v, s0, v, s0)}
Output: 〈v;Dv〉 for every v, where Dv converged.
repeat

Map:
Let i be the current step number;
foreach (u, s, u′, s′, l) ∈ Dv such that l = 2i−1 do

foreach z = (w′, t′, w, t, l′) ∈ Dv do
if u′ = w, u = v, and s′ = t then

emit 〈u; (u, s, w, t, l + l′)〉;
emit 〈w; (u, s, w, t, l + l′)〉;

end
emit 〈v; (v,Dv)〉;

Reduce:
Let M = {m1,m2, . . . ,mk} be the received messages;
Let Dv be the received state;
Remove every tuple in M that has a representative in Dv (disregarding the
lengths);
Dv ← Dv ∪M ;
emit 〈v;Dv〉;

until nothing changes;

the evaluation problem can be solved without additional cost. Therefore, the logarithmic
extension of this algorithm is discussed in the context of the evaluation problem for RPQs.

As discussed previously, a linear number of rounds in the size of the input is not
satisfying. Therefore, in this section a variation of Algorithm 9.1 is described where the
number of rounds is only logarithmic in the size of the input. Informally, we use a pointer
doubling technique to speedup the convergence process at the expense of an increased
communication overhead. More particular Algorithm 9.1 is extended to keep track of not
only the nodes that can reach the associated node, but also the set of nodes that are
reachable from this node and their associated states. Therefore, our algorithm is able to
derive paths of length n in log(n) steps.

Formally, Dv now is a set containing tuples of the form (u, s, u′, s′, l), where u, u′ ∈ V ,
s, s′ ∈ Q, and l a positive integer. The meaning of a tuple (u, s, u′, s′, l) in Dv is that from
node u, starting in state s, there is a path in the input graph to node u′ such that there is
a matching run that reaches state s′. As before, s′ is not necessarily an accepting state.
Furthermore, l represents the length of the path. The complete algorithm is described in
Algorithm 9.2. The initialization step is represented in Algorithm 9.3.

Although we keep track of the length of paths to filter redundant combinations when
generating new paths, this was mainly done for readability; a boolean would equally well
suffice. Therefore, we neglect the logarithmic cost of l in the analysis.
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Proposition 9.3: Let G = (V,E) be the input graph, ∆ an upper bound on the degree of
the nodes in G, and q an RPQ. After O(log(|Q||E|)) steps of Algorithm 9.2, it holds that

q(G) =
⋃
v∈G
{(u, v) | (u, s0, u

′, s′) ∈ Dv and s′ ∈ F}.

• Key complexity: the amount of space is bounded by O(|V ||Q|2 + ∆); the input
and output size for single mappers and reducers is bounded by O(|V |2|Q|2); and the
running time is bounded by O(|V |4|Q|4).

• Sequential complexity: the total input and output size is bounded by O(|V |3|Q|2);
the total running time is bounded by O(|V |5|Q|4).

Proof: After the initial phase, every node has an associated set Dv containing tuples
that represent paths of length one such that v is either a source or target node. Moreover,
every path is associated with pairs of states that represent valid runs from one end node
to the other.

Assume that in step i > 1, Dv contains every pair of nodes that represents a path of
length at most 2i−1, such that v is the source or target node and the associated states
represent a valid run from one end node to the other. In the map phase, every path of
length 2i−1 in Dv is extended with its matching paths in Dv to derive new paths of length
at most 2i. Clearly, every path of length 2i−1 + k that agrees to the transition function is
derived, where k is a number between 1 and 2i−1. The newly derived paths are sent to the
corresponding end nodes. Hence, in the next phase every node has a tuple corresponding
to every valid path of length up to 2i in its set Dv.

Note that there are some paths that are not derived in v, more particular paths where
v is not the 2i−1 + 1th node. Nevertheless, every path of length between 2i−1 + 1 and 2i
has a node at position 2i−1 + 1 that will derive this path in step i.

The longest possible path is bounded by O(|Q||E|). Hence, after O(log(|E||Q|))
rounds every accepting tuple of nodes in q(G) is detected.

The size of the state Dv associated to an arbitrary node v is bounded by O(|V ||Q|2 +
|E∗→v ∪ Ev→∗|). Every node v outputs at most O(|V ||Q|2) size of messages to every
other node and receives at most O(|V ||Q|2) size from every other node. In a worst-case
scenario, every tuple in the state of a node is compared to every tuple received by that
node. Hence, the running time is bounded by O(|V |4|Q|4).

The total size of node states is bounded by O(|V |2|Q|2 + |E|). Since every node may
send |V |2|Q|2 size of message, the total amount of messages received or send by nodes is
bounded by O(|V |3|Q|2). The worst-case total running time is bounded is bounded by
O(|V |5|Q|4). �

Although the shuffle overhead has been decreased by lowering the number of rounds,
the communication cost has been increased. Note that the worst-case number of pairs
detected after convergence is at most |V |2|Q|2 (i.e., every node and state combination is
reachable from every other node and state combination). Furthermore, since every node
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Algorithm 9.3: RPQ evaluation in logarithmic rounds: initialization.
Input: V + E
Output: 〈v;Dv〉 for every v.
Map:

foreach v ∈ V do
emit 〈v; v〉;

foreach e = (u, a, u′) ∈ E do
emit 〈u; e〉 emit 〈u′; e〉

Reduce:
Let Dv = {};
foreach (v, a, u) ∈ Ev→∗ do

foreach s′ ∈
⋃
s∈Q δ(s, a) do

Dv ← Dv ∪ {(v, s, u, s′, 1)};
foreach (u, a, v) ∈ E∗→v do

foreach s′ ∈
⋃
s∈Q δ(s, a) do

Dv ← Dv ∪ {(u, s, v, s′, 1)};
emit 〈v; (v,Dv)〉;

is responsible for the storage of every node that is reachable from it and for every node
that can reach it, every node requires at most O(|Q||V |) space to store Dv. The main
observations, that explains why the communication cost is much higher, is that:

• several paths may exist between a pair of nodes, and consequently, a particular pair
may be discovered several times.

However, in Algorithm 9.2 at least every distinct path is detected only once.

Proposition 9.4: Every path is derived at most once.

Proof: Let η = v1v2 . . . vm be a path in G. In every step, only paths of length more than
2i−1 are derived. Hence, when η is derived in step i it cannot be derived again in any
later step.

First, let m = 3. Clearly, after the second step, η is derived. More particular, by node
v2, which is the only node that knows the path from v1 to v2 and the path from v2 to v3.

By strong induction it follows that every path is derived only once. Let m > 3 and
let i ∈ Z be the minimal value such that m < 2i−1 holds. Hence, η is derived in the
ith step of the algorithm. Clearly, η is not derived earlier due to its length. Therefore,
there is a node vj in step i such that the concatenation of paths η1 = v1v2 . . . vj and
η2 = vjvj+1 . . . vm leads to η. Since in step i, concatenations are only taken if the first
path has a length of 2i−1, j has to be 2i−1. By induction, η1 and η2 are derived only once.
Hence, they are communicated to both end nodes. Only the pivoting node vj receives
both paths and is able to derive η. �
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Algorithm 9.4: RPQ evaluation in linear rounds.
Input: 〈v; (v,Dv, Ev→∗)〉 for every v, where Dv := {(v, s0)}
Output: 〈v; (v,Dv, Ev→∗)〉 for every v, where Dv converged.
repeat

Map:
foreach active pair (z, s) ∈ Dv do

foreach (v, a, u) ∈ Ev→∗ do
foreach s′ ∈ δ(s, a) do

emit 〈u; (z, s′)〉;
mark (z, s) as passive;

emit 〈v; (v,Dv, Ev→∗)〉;
Reduce:

Let M = {m1,m2, . . . ,mk} be the received messages;
Dv ← Dv ∪M ;
emit 〈v;Dv, Ev→∗〉;

until nothing changes;

9.5 Linear RPQ Evaluation in MR

A linear strategy to find the set of node tuples q(G) (i.e., the evaluation problem for
RPQs) is to materialize the closure of G under r by iteratively deriving paths from every
node to every other node simultaneously until a fixpoint is reached. To achieve this,
assume that every node knows its outgoing neighbours, and associate to every node v a
set Dv that contains tuples of the form (u, s) ∈ V ×Q. To be more precise, (u, s) ∈ Dv if
there exists a path η from node u to node v such that s ∈ δ(s0, λ(η)).

Informally, Algorithm 9.4 traverses the graph edge by edge starting in every node from
the initial state concurrently. A single step initialisation phase is required to transform
the original input graph G into the required input format, and a finalization step can
be used to transform the output into the required output format. To prevent redundant
derivations, tuples are marked passive after they have been used to derive new tuples.
Only active tuples are compared to Dv. The complexity of Algorithm 9.4 is given by
Proposition 9.5.

Proposition 9.5: Let G be the input graph, ∆ an upper bound on the degree of the nodes
in G, and q an RPQ. After O(|E||Q|) steps q(G) = ⋃

v∈G{(u, v) | (u, si) ∈ Dv and si ∈
F}.

• Key complexity: the input and output for single mappers and reducers is bounded
by O(∆|V ||Q|); the amount of space is bounded by O(|V ||Q|+ ∆); and the running
time is bounded by O(∆|V ||Q|).

• Sequential complexity: the total input and output size is bounded by O(|E||V ||Q|);
the sequential running time is bounded by O(|E||V ||Q|).
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Proof: Let s, t ∈ V be an arbitrary pair of nodes such that (s, t) ∈ q(G). In other words,
there exists a path η from s to t such that λ(η) ∈ L(r). Assume η = v0v1 . . . vm where
v0 = s and vm = t. Further, let s0, s1, . . . , sm be a sequence of states in Ar that represents
an accepting run for this path.

Initially, the reducer associated to node v0 computes δ(s0, λ(e)) for every outgoing
edge e. Call this step 0. In particular it computes δ(s0, λ(e1)) where e1 is the edge from
v0 to v1. Therefore, it creates an output tuple 〈v0; (v0, v1, s1〉) that maps on the reducer
associated to node v1. Hence, in the next step, v1 receives a tuple (v0, s1).

In step i, i > 0, the reducer associated to vi receives a tuple (v0, si). Therefore,
it is able to compute a tuple (v0, si+1) based on its outgoing edge to node vi+1 and,
consequently, creates output pair 〈vi; (vi+1, v0, si+1)〉

After step m+ 1, the reducer associated to node vm has the tuple (v0, sm) in its state
Dv and since sm ∈ F , we are able to conclude that there exists a path from v0 to vm that
is accepted by Ar.

The construction of paths starts in every node concurrently in state s0, where after δ
is used to determine subsequent states while traversing the graph. Therefore, at any time
and any v, (u, s) ∈ Dv represents a valid (not necessary accepting) run from node u to
node v. Hence, only valid paths are detected.

Since for every v, Dv has a size of at most O(|V ||Q|), the size of every record associated
to v is bounded byO(|V ||Q|+|Ev→∗|). A reducer associated to node v receives its state and
the set of messages send to v. In a worst-case scenario, a message is received from every
incoming neighbour, containing every node and state combination. Hence, the total input
size for a single reducer is bounded by O(|V||Q| + |Ev→∗| + |E∗→v||V||Q|). Analogous,
the mapper output size for a node v is bounded by O(|V ||Q|+ |Ev→∗|+ |Ev→∗||V ||Q|).

Assuming streaming inputs, the worst-case space requirements for every individual
node are O(|V ||Q|+ |Ev→∗|). Otherwise, the amount of space equals the size of the input.
Clearly, from Algorithm 9.4, it takes at most O(|Dv||Ev→∗|) time to compute the map
function on node v, and an analogous bound can be found for the reduce function. Hence,
the running time for a single map or reduce function is O(∆|V||Q|).

In a worst-case scenario every node sends a message to every neighbour containing
every node and state combination. Therefore, the total communication cost by messages
is bounded by O(|E||V ||Q|). Furthermore, communication caused by passing sets Dv is
bounded by O(|V |2|Q|). Consequently, the total input size for all reducers in a single
step is bounded by O(|V |2|Q|+ |E|+ |E||V ||Q|). Assuming that the input graph has at
least one edge per node, this bound is in O(|E||V ||Q|). We have that the key running
time is bounded by ∑v∈V |Ev→∗||V ||Q|. Hence, the sequential running time is bounded
by O(|E||V ||Q|). �

If RPQs are replaced by boolean RPQs in Proposition 9.5, it suffices to find a single
matching path. Therefore, the number of rounds in the boolean case is bounded by O(|η|),
where η is the shortest path such that λ(η) ∈ L(r).



CHAPTER 9. REGULAR PATH QUERIES IN MAPREDUCE 83

9.6 RPQs in Pregel and GraphLab
First, note that Algorithm 9.1 fits seamlessly in Pregel. Therefore, we can also use this
algorithm for the recognition of RPQs in Pregel. In fact, since nodes, outgoing edges and
states persist, Pregel seems a more appropriate framework to run this algorithm in practice
than MapReduce, where an explicit shuffle phase is involved for all data. However, since
the communication cost is dominated by ‘communication’ pairs, the theoretical complexity
results of Proposition 9.1 remain valid in Pregel.

The evaluation algorithms fit in Pregel as well. Instead of maintaining a state via
static communication from one task to its successor, as in the naive evaluation, Pregel is
able to maintain a state locally, hereby decreasing the communication cost. Though, since
the key complexity bounds on input and output size are dominated by the communication
of non-state related messages, the asymptotic bounds remain. The total input and output
size of the sequential complexity decreases to O(|E||V ||Q|). In practice, many nodes and
edges are partitioned on the same local machine. Hence, the real communication cost
between machines may be much smaller. In particular, if there are c inter-machine edges,
the sequential input and ouput is bounded by O(c|V ||Q|).

The communication cost of the logarithmic approach for evaluating regular path quer-
ies in MapReduce is also dominated by messages between nodes. An important difference
between this approach and the naive approach, however, is that communication is per-
formed not only throughout edges. Furthermore, although the complexity is high, it is
independent from the structure of the input graph. Hence, by using combiners on every
local machine, the input and output size for single mappers and reducers is O(2|Q|2|V |p),
where p is the number of machines. Consequently, the sequential input and output size
are bounded by O(|Q|2|V |2p).

A similar analyses can be performed in GraphLab. Since the only communication in
the linear approaches is between neighbour nodes, the linear algorithms fit in GraphLab as
well. The logarithmic approach can not be simulated in GraphLab in a trivial way since
GraphLab uses shared states and has no mechanism to communicate directly between
nodes that are note connected by an edge.





10
CRPQs in MapReduce

In this chapter algorithms are given for the evaluation of conjunctive regular path quer-
ies in MapReduce. Basically, we combine the knowledge from the previous chapters to
formulate complexity bounds for the evaluation and recognition of CRPQs.

10.1 Full-CRPQ Recognition
Let q be a CRPQ consisting of m− 1 conjunctions and let G be a directed labeled graph.
We define the recognition problem for CRPQs as the problem z̄ ∈ Q(G). For simplicity,
assume that q is a full query. Hence, the recognition problem for CRPQs can be reduced
to the recognition problem for RPQs. Formally, for every RPQ qr check (s, t) ∈ qr(G),
where s, t are the corresponding nodes. In particular we have the following result:

Proposition 10.1: Let q1, q2, . . . qm be regular path queries, G a directed labeled graph,
and ∆ an upper bound on the degree of nodes in G. Let Q be the set of states associated
to the longest regular expression. Regular path recognition can be computed in MapReduce
in O(m|Q||E|) steps.

• Key complexity: the amount of space per node is bounded by O(m|Q| + ∆); the
input and output size is bounded by O(m.∆|Q|); and the running time is bounded
by O(m.∆|Q|2).

• Sequential complexity: the total input and output size in a single step is bounded
by O(m.max{|E|, |V |}|Q|); and the total running time in a single step is bounded
by O(m.∆|Q|2|V |).

Proof: Compute every RPQ concurrently based on the regular reachability algorithm
from Section 9.3. �

When the regular path computations are finished, it is easy to check if every path is
recognized by sending a message from every reducer that finds a path to a coordinating
reducer. If for some RPQ no message is received, decide that t 6∈ q(G), otherwise decide
that t ∈ q(G).

85



86 CHAPTER 10. CRPQS IN MAPREDUCE

10.2 General CRPQ Recognition
Without the fullness restriction, the recognition of CRPQs becomes a lot more difficult.
With the presence of existentially quantified variables it no longer suffices to recognize the
involved regular path queries, rather we have to consider the evaluation of RPQs followed
by a join between the results.

In Chapter 9, mainly two algorithms where given for the evaluation of regular path
queries in MapReduce: a linear approach and a logarithmic approach. Hence, analogous
to Proposition 10.1 upper bounds are provided for the evaluation of multiple RPQs in
parallel, based on Proposition 9.3:

Proposition 10.2: Let q1, q2, . . . qm be regular path queries, G a directed labeled graph,
and ∆ an upper bound on the degree of nodes in G. Let Q be the set of states associated
to the longest regular expression. The evaluation of q1.q2, . . . , qm can be computed in
O(log(|Q||E|)) steps.

• Key complexity: the input and output size are bounded by O(m|V |2|Q|2); the
running time is bounded by O(m|V |4|Q|4); and the space is bounded by O(m|V ||Q|2+
∆).

• Sequential complexity: the total input and output size per step are bounded by
O(m|V |3|Q|2); and the total running time per step is bounded by O(m|V |5|Q|4).

A similar result is gained by using the result of Proposition 9.5:

Proposition 10.3: Let q1, q2, . . . qm be regular path queries, G a directed labeled graph,
and ∆ an upper bound on the degree of nodes in G. Let Q be the set of states associated
to the longest regular expression. The evaluation of q1.q2, . . . , qm can be computed in
O(|Q||E|) steps.

• Key complexity: the input and output size are bounded by O(m.∆|V ||Q|); the
running time is bounded by O(m.∆|V ||Q|); and the space is bounded by O(m|V ||Q|+
∆).

• Sequential complexity: the total input and output size per step; and the running
time per step are bounded by O(m|E||V ||Q|).

There are several possibilities to perform multi-way joins in MapReduce. In particular,
a sequence of two-way joins can be computed based on the data- or reducer-centered
approach from Chapter 6, or the multi-way join can be computed directly by using a
more advanced algorithm; as the one described in Section 6.7. However, when m is large
enough, the key and sequential complexity of the multi-way join subsume the complexity
of computing the RPQs (except for the number of rounds). Bounds on a sequential
multiway join on graphs are given by Proposition 6.8.
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Proposition 10.4: Let G = (V,E) be a graph, and q1(G), q2(G), . . . , qm(G) be relations.
A multiway join between these relations can be computed in O(m) steps.

• Key complexity: the input size is bounded by O(|V |m/
√
R); the output, space, and

running time are bounded by O(|V |2m/R).

• Sequential complexity: the input size is bounded by O(
√
R|V |m); and the output

and running time are bounded by |V |2m.

Proof: For every i ∈ [1,m] : |qi(G)| ∈ O(|V |2). Hence, the proof follows directly from
Proposition 6.8. �

The evaluation of CRPQs is hard. Therefore, in the following sections we also consider
the evaluation problem for restricted classes of CRPQs:

• chain CRPQs; and

• acyclic CRPQs.

An illustration is provided in Figure 10.1.

r1 r2 r3
r2

r1

r3

r4

r5

Figure 10.1: Two acyclic CRPQs, the left one is a chain CRPQ.

10.3 Evaluation of Chain CRPQs
A chain CRPQ is a query of the form:

q : z̄ ← (x1, r1, x2) ∧ (x2, r2, x3) ∧ · · · ∧ (xm−1, rm−1, xm).

A chain of RPQs can be seen as an extension of RPQs where internal nodes may be
part of the output. Therefore, the evaluation of chain RPQs seems not very different
to the evaluation of RPQs, except that we have to keep track of nodes that fill in the
non-existentially-quantified variables. Therefore, our strategy consists of the sequential
evaluation of RPQs. In particular, we evaluate a chain CRPQ q by first evaluating the
first RPQ of q, and then evaluating the second RPQ based on the results of the first, and
so on. Unfortunately, except when the query is a boolean query, this strategy does not
take away the need to join the results afterwards.

Again, there are mainly two possibilities to implement this strategy: based on te linear
approach or based on the logarithmic approach for the evaluation of RPQs. Essentially, we
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use the algorithms from Chapter 9, but, instead of initializing every node as a potential
start node, only the nodes that are valid end nodes in the previous RPQ result are
considered.

For example, take Algorithm 9.2 (i.e., the logarithmic RPQ evaluation), instead of
initializing every node v with set Dv = {(v, s0, v, s0)} we only initialize a selected set
of nodes in this way. Let qi be a regular path query and qi(G) be the result of qi over
G. In the initialization step for the evaluation of qi+1, where i + 1 > 1: for every
v ∈ {v | (u, v) ∈ qi(G)} set Dv = {(v, s0, v, s0)} and for every other node u set Du = {}.
After each computation of a regular expression, we introduce a MapReduce step that
keeps only the necessary information in the status for each node. Every reducer keeps
a set Di

v that contains the nodes that can reach v from the initial state in a final state.
Hence, in a worst-case scenario every node has at most |V | information from every RPQ
that is already computed.

In Boolean queries there is less need for additional storage capacity in the sense that
we do not need to remember the nodes that we have already visited. It suffices to know
from which nodes the next RPQ can start. In this case, if an end state is reached for the
last expression, the answer for the query is true.

Proposition 10.5: Let G = (V,E) be the input graph and q a Boolean chain CRPQ
containing q1, q2, . . . , qm as its RPQs. Let ∆ be an upper bound on the degree of nodes in
G and |Q| be an upper bound on the number of states associated to regular expressions in
q. The result of the chain can be computed in O(m|log(E)|) steps.

• Key complexity: the amount of space for each node is bounded by O(|V ||Q|2 +∆);
the input and output size for single mappers and reducers is bounded by O(|V |2|Q|2);
and the running time is bounded by O(|V |4|Q|4).

• Sequential complexity: the total input and output size is bounded by O(|V |3|Q|2);
and the total running time is bounded by O(|V |5|Q|4).

Proof: It is easy to prove the proposition by induction of m. When m = 1, these bounds
follow directly from Proposition 9.3. Assume that for m = i the bounds are correct. For
m = i + 1 we have that we can evaluate te first i RPQs within these bounds. We use
the same algorithm to compute the ith RPQ. First, initialize for every v ∈ V the set Dv

based on the paths that are detected for the previous RPQ. After this step, remove the
old states. Again, the bounds of Proposition 9.3 are applicable. �

A similar approach can be used based on the linear RPQ evaluation strategie.

Proposition 10.6: Let G = (V,E) be the input graph and q a Boolean chain CRPQ
containing q1, q2, . . . , qm as its RPQs. Let ∆ be an upper bound on the degree of nodes in
G and |Q| be an upper bound on the number of states associated to regular expressions in
q. The result of the chain CRPQ can be computed in O(m|E||Q|) steps.



CHAPTER 10. CRPQS IN MAPREDUCE 89

• Key complexity: the input and output for single mappers and reducers is bounded
by O(∆|V ||Q|); the amount of space is bounded by O(|V ||Q|+ ∆); and the running
time is bounded by O(∆|V ||Q|).

• Sequential complexity: the total input and output size is bounded by O(|E||V ||Q|);
the sequential running time is bounded by O(|E||V ||Q|).

Proof: The proof is analogous to the proof of Proposition 10.5 �

10.4 Evaluation of Acyclic CRPQs

In analogy to the acyclic case in the sequential setting, we expected that the evaluation
of acyclic CRPQs in a parallel setting is easier then the general case. In particular,
the evaluation of multi-way joins. Like before, first the RPQs are evaluated. To take
advantage from the acyclicity property, we have to generate a set of relations that is
globally consistent. As we have seen in Section 3.5, this can be done by utilizing the
equivalence of pair-wise consistency and global consistency, in the acyclic case, by means
of a full reducer. A full reducer consists of a polynomial number of semijoins. Therefore,
in the next paragraphs we consider the computation of semijoins in MapReduce.

To compute a semijoin SnT , first compute a two-way join S on T , then split the result
in a second MapReduce step. For the join, we can use an algorithm as in Section 6.2. The
split step is illustrated in Algorithm 10.1. Since the join step dominates in communication

Algorithm 10.1: Semijoin split.
Input: 〈k; (v1, v2, u1, u2, S on T )〉 for every (v1, v2, u1, u2) ∈ S on T
Output: 〈k; (v1, v2,S)〉 and 〈k; (u1, u2,T)〉 for every (v1, v2, u1, u2) ∈ S on T
Map:

on receive 〈k; (v1, v2, u1, u2, S on T )〉;
emit 〈v1, v2; (v1, v2, S)〉;
emit 〈u1, u2; (u1, u2, T )〉;

Reduce:
emit the first received pair;
ignore the rest;

cost, the complexity of a semijoin is about the same as taking a join. The following
proposition summarizes the complexity of computing a full reducer. In this section we
assume that joins satisfy the condition of Proposition 6.3.

Proposition 10.7: Let T1, T2, . . . , Tm be a set of relations in an acyclic database schema.
We are able to compute a global consistent set of relations based on T1, T2, . . . , Tm in
O(mk) steps, where k is a constant. Let |Ti|, |Tj | be the size of the two largest relations,
where i, j ∈ [1,m], i 6= j.
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• Key complexity: the input size is bounded by O(
√
|Ti||Tj |/R); the output size,

running time, and space are bounded by O(|Ti||Tj |/R).

• Sequential complexity: the total input size is bounded by O(
√
R|Ti||Tj |) per step;

the output size and running time are bounded by O(|Ti|.|Tj |).

Once the relations are globally consistent, a multi-way join can be performed similar
to Proposition 6.8. But, now the complexity bounds can be formulated in terms of the
size of the output. Note, however, that these bounds are based on Proposition 6.4 and
only apply if the relations (and intermediate relations) involved in a two-way join are
are not significantly smaller then each other. Otherwise, the strategy and bounds of
Proposition 6.2 should be applied, which makes the analysis a lot more complex.

Proposition 10.8: Let T1, T2, . . . , Tm be globally consistent sequence of relations and |T |
an upper bound on the size of these relations. The iterative implementation of two-way
joins to compute T1 on T2 on . . . on Tm can be done in m − 1 steps. Let t = |T1 on T2 on
. . . on Tm−1|.

• Key complexity: the input size is bounded by O(
√
t|Tm|/R); the output size, run-

ning time and space are bounded by O(t|Tm|/R).

• Sequential complexity: the input size is bounded by O(
√
R.t|Tm|); the output size

and running time are bounded by t|Tm|.

Proof: Without loss of generality assume that T1, T2, . . . , Tm is the order based on the
join forest. Now, compute the two-way joins one after the other. The first join takes one
step and clearly agrees to the above bounds, based on Proposition 6.4. Since we have
that the relations are consistent and the join is based on the order implied by the join
forest, we have that the output of every step is always greater or equal to the size of the
instances on which the join is based. Hence, the dominating step is the last one. �



11
Conclusions and Outlook

In the current big data era, in which we are overloaded with huge amounts of data,
there is a large demand for alternatives to traditional querying systems. One of these
alternatives are distributed environments on which huge scale computations are performed
in parallel. MapReduce is the first that offers a simple abstract interface to this kind of
environments in order to perform general computations, and includes automated fault
tolerance. Basically, MapReduce was introduced as an answer to the practical need for
robust distributed systems. Theoretical research in the subject has only recently been
started. Hence, sound theoretical foundations still have to be established. Therefore,
many properties of MapReduce and similar frameworks are still to be discovered.

The large size and irregular shape of the current data landscape let traditional data-
bases and query languages fall short. Therefore, we consider graph databases and con-
junctive regular path queries; graph databases, because they naturally model the semi-
structured data to which we are exposed in many domains nowadays, and CRPQs, be-
cause they combine the most used part of SQL (i.e., conjunctive queries) and navigation
functionality. The latter which is essential in a graph context.

First, we discussed the classical results of CQs, RPQs, and CRPQs in a sequential
context, based on established theoretical research. In particular, we studied the main
complexity results of CQs, RPQs, and CRPQs, as well as the acyclic counterparts, which
are well known to be easier when it comes to combined complexity. This study gave us
basic insights about the hardness of these languages and the traditional evaluation tech-
niques based on automata constructions. Secondly, we provided a study of MapReduce
and its theoretical properties, based on recent work. This study contains a description
of the MapReduce framework, and the main models and complexity measures that are
available today. We also discussed some MapReduce alternatives; on the one hand, to
show that there already exist several alternatives that address some of the problems in
MapReduce, and on the other hand, to illustrate that it is an active topic of research and
there is still much place for improvement. Furthermore, in anticipation of the intended
goal of evaluating CRPQs, we studied algorithms that have already been explored in the
MapReduce literature; i.e., taking joins between relations and solving the undirected s-t-
connectivity problem on graphs. Thirdly, based on the insights obtained from the domain
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study, we combine both parts to provide algorithms and upper bounds on the evaluation
of RPQs and CRPQs in MapReduce.

However, there are also parts of literature that where not covered in this thesis. In
the sequential part, we only discussed the complexity results that seemed important in
our context. Furthermore, we did not consider techniques like query rewriting, although
these are important in practice; rather, we assumed that queries are evaluated as is. The
relations that have already been studied between MapReduce and established models like
PRAM and BSP, or the relation between MapReduce and streaming models, are men-
tioned only briefly, as we did not expect to find directly usable results for our purpose.
We also mentioned only a very small selection of MapReduce alternatives and extensions,
though there exist many more. Furthermore, by a lack of lower bounds we have no in-
formation about the tightness of our bounds on the evaluation of RPQs in MapReduce. In
fact, we suspect that there is still much room for improvement, especially with regard to
key complexity. When it comes to the evaluation of CRPQs, the complexity is dominated
by taking a multi-way join which is a very expensive operation in MapReduce. Experi-
ments could have led to insights in the feasibility of the algorithms in practice. However,
we didn’t had a dataset available that enabled us to make a relevant analysis.

In general, while doing the domain study of MapReduce, it became clear that, al-
though MapReduce is extensively used in practice, for many purposes it is far from per-
fect. MapReduce has many shortcomings, amongst others are the difficulties of computing
joins and handling graph data – which are key operations in our context. MapReduce has
revived the topic of distributed and parallel computations and triggered a wave of abstrac-
tions that try to address the shortcomings of it. Therefore, we think that MapReduce
should not be considered as an end point, but rather as the impetus to further research
into the subject. Abstractions like Pregel, Graphlab, and Powergraph already address
some of MapReduce its shortcomings in graph processing. Hence, we suspect that many
will follow.
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