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Abstract

In this thesis we introduce navigational query languages on graphs. Path queries in
our languages are built over several operators: identity, union, composition, projec-
tion, coprojection, converse, transitive closure, diversity, intersection and difference.
The smallest language we will consider only contains the first 3 operators, while the
largest language contains all operators. For these query languages we will characterize
their complete relative expressive power, i.e., we will compare the expressive power of
languages containing different selections of operators.

In these query languages we will also model boolean queries by associating nonempty
query results with true and empty query results with false. As for path queries, we will
for these boolean queries characterize the complete relative expressive power of our
languages. On the other hand, we will also consider other approaches to model boolean
queries in our languages and characterize their expressive power.
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1
Introduction

Throughout the years a wide variety of query languages have been introduced and
studied extensively. Among them are query languages we have studied thoroughly in our
curriculum, e.g., relational algebra and XPATH. In this thesis we will study navigational
query languages on labeled graphs. These languages are relevant in practice since graph
data is found in RDF and everywhere on the web.

In our navigational query languages we consider a selection of unary and binary
operators which map graphs to graphs. The unary operators are: projection, coprojec-
tion, converse, transitive closure, identity, diversity, and an operation to retrieve edges
with a certain label. On the other hand, the binary operators are: union, intersection,
composition and difference. The semantics of these operators are comparable to the
ones defined on binary relations. The largest language we will consider contains all
operators, while the smallest language only contains identity, union and composition.
Similar to standard database query languages, our queries are built recursively over a
selection of these operators. Furthermore, since these operators map graphs to graphs,
it is clear that queries in our languages map graphs to graphs as well. From now on, we
will refer to these queries as path queries.

A natural question for our new query languages is how one language relates to
another another language in terms of expressive power. For example we want to know
whether adding converse and coprojection to a certain query language allows us to
express more path queries. In Chapter 3 we will develop several techniques which will
be used extensively towards answering this question in Chapter 4.

We will also consider boolean queries, i.e., queries which map graphs to true or false.
We can express these boolean queries using our new query languages by identifying
a nonempty query result with true and an empty result as false. For these kind of
queries the same question arises as for path queries, e.g., we want to know whether
adding diversity and projection to a certain language allows us to express more boolean
queries. In Chapter 5 we will provide an answer to this question.

If a boolean or path query is not expressible in a certain language, it might be pos-
sible that the query is expressible in that language when we only consider unlabeled
input graphs. Hence the expressive power of languages could change when only we

1



2 Chapter 1. Introduction

consider unlabeled graphs and thus also their expressive power relative to other lan-
guages. In Chapter 6 we will show that the relative expressiveness changes between
certain languages at the level of boolean queries on unlabeled graphs.

To express boolean queries in our languages we associated a nonempty query result
with true and an empty result with false. This is the standard method for expressing
boolean queries. We could, however, express boolean queries in a different manner. For
example, we can associate true with empty and false with nonempty. On the other
hand, we could also, for example, associate a boolean query q to every pair of path
queries e1, e2 by setting q(G) = true if and only if e1(G) ⊆ e2(G). In Chapter 7 we will
investigate the (relative) expressive power at the level of boolean queries for these two
methods1 of expressing boolean queries in our languages.

1We will refer to these methods as modalities.



2
Preliminaries

In this chapter we will formally introduce path and boolean queries. We will also
derive some straightforward propositions related to the relative expressive power at the
level of path and boolean queries. These propositions will be used extensively in the
remainder of this thesis. Furthermore, we will also introduce conjunctive queries with
nonequalities.

2.1 Path queries

In this thesis we want to introduce a query language to navigate over graphs. Hence we
first need a formal definition for graphs.

Definition 2.1: Let Λ = {R1, . . . , Rn} be a finite nonempty set of edge labels. A graph
is a relational structure G = (V,G(R1), . . . , G(Rn)), where V is a set of vertices and
G(Ri) ⊆ V × V is a binary relation which contains all edges with label Ri. �

Remark 2.2: Notice that in the classical logic context, G is a structure over the sig-
nature Λ. �

Note that by definition a graph can contain nodes which are not present in any edge
relation. We want that these nodes are absent from our query results, since we only
want to include nodes in our query result to which we can navigate. To achieve this,
we consider an active domain construction similar to the active domain construction for
the relational calculus[Gys12]. Let us define the active domain of a graph G as the set
of all vertices occurring in one of the edge relations of G. More formally,

adom(G) = {m | ∃n,∃R : (m,n) ∈ G(R) ∨ (n,m) ∈ G(R)}.

A path query e is a function, which takes any graph G over Λ as its input and outputs
a binary relation e(G) ⊆ adom(G)× adom(G). On the other hand, a boolean query is a
function which takes any graph G over Λ as its input and outputs either true or false.

3



4 Chapter 2. Preliminaries

In the remainder of this thesis, every language for navigating over graphs contains
expressions build over the following operations: G(R), id , ∅, union (e1 ∪ e2) and com-
position (e1 ◦ e2).

Definition 2.3: Define N to be the most basic algebra for navigating over graphs.
Its expressions are built recursively over G(R), id , ∅, union (e1 ∪ e2) and composition
(e1 ◦ e2), which are defined as follows:

R(G) = G(R);

∅(G) = ∅;
id(G) = {(m,m) | m ∈ adom(G)};

e1 ◦ e2(G) = {(m,n) | ∃p : (m, p) ∈ e1(G) ∧ (p, n) ∈ e2(G)};
e1 ∪ e2(G) = e1(G) ∪ e2(G);

ek(G) = e ◦ . . . ◦ e︸ ︷︷ ︸
k times

(G). �

Remark 2.4: Notice that the expressions in N depend on the given label set Λ where
input graphs are built over, hence we will sometimes write NΛ when the signature is
of importance. If no set of labels is given explicitly, Λ is assumed to be some arbitrary
signature. �

We can extend the basic algebra by adding a selection of the following operations:
diversity (di), converse (e−1), intersection (e1 ∩ e2), difference (e1 \ e2), projections (π1

and π2), coprojections (π1 and π2) and transitive closure (e+). These operations are
defined as follows:

di(G) = {(m,n) | m 6= n ∧m,n ∈ adom(G)};
e−1(G) = {(m,n) | (n,m) ∈ e(G)};

e1 ∩ e2(G) = e1(G) ∩ e2(G);

e1 \ e2(G) = e1(G) \ e2(G);

π1(e)(G) = {(m,m) | m ∈ adom(G) ∧ (∃n)(m,n) ∈ e(G)};
π2(e)(G) = {(m,m) | m ∈ adom(G) ∧ (∃n)(n,m) ∈ e(G)};
π1(e)(G) = {(m,m) | m ∈ adom(G) ∧ ¬(∃n)(m,n) ∈ e(G)};
π2(e)(G) = {(m,m) | m ∈ adom(G) ∧ ¬(∃n)(n,m) ∈ e(G)};

e+(G) =
⋃
k≥1

ek(G).

Usually, we refer to the operations in N as the basic features and the extensions as
the nonbasic features.

If F is a set of nonbasic features, we denote N (F ) as the language obtained by
augmenting all features of F to N .
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Remark 2.5: In this thesis we will not consider extensions which only contain one of
the projections (resp. coprojections). �

Notice that all the operations apart from the transitive closure are defined in a first
order fashion, hence we have the following proposition which will be used several times
throughout this thesis to establish inexpressibility of queries in certain languages.

Proposition 2.6: Let F be a set of nonbasic features such that + 6∈ F . If e ∈ N (F ),
then there exists a first order formula ϕ(x, y) such that (a, b) ∈ e(G) if and only if
G |= ϕ[a, b].

Definition 2.7: A path query q is expressible in a language N (F ), if there exists some
expression e ∈ N (F ) such that e ≡ q, i.e., e(G) = q(G) for every graph G over Λ.

A boolean query q is expressible in N (F ), if there exists some expression e ∈ N (F )
such that for every graph G, q(G) = true if and only if e(G) is nonempty. �

Example 2.8: The query id \ (π2((id \ R+) ◦ (di ∪ id))) expresses the boolean query
connectivity.

The query (R \ id)+ ∩ id expresses whether the input graph has a cycle. �

If every path query expressible in NΛ(F1) is also expressible in NΛ(F2), we will write
NΛ(F1) ≤path NΛ(F2). Analogously, for boolean queries, we will write NΛ(F1) ≤bool

NΛ(F2). Conversely, we will write NΛ(F1) 6≤path NΛ(F2) (resp. 6≤bool) if there exists
some path query (resp. boolean query) expressible NΛ(F1) which is not expressible in
NΛ(F2).

More generally, ifNΛ(F1) ≤path NΛ(F2) for every label set Λ, we will writeN (F1) ≤path

N (F2). Analogously, for boolean queries, we will write N (F1) ≤bool N (F2). Conversely,
if one label set Λ exists such that NΛ(F1) 6≤path NΛ(F2), we will write N (F1) 6≤path

N (F2). Analogously, for boolean queries, we will write N (F1) 6≤bool N (F2).

Proposition 2.9: If N (F1) ≤path N (F2), then N (F1) ≤bool N (F2).

Proof: Suppose that e is a boolean query expressible in N (F1), then there exists an
expression q ∈ N (F1), such that for every graph G, e(G) is true if and only if q(G) is
nonempty. Since q considered as a path query is also expressible in N (F2) by hypothesis,
e is also expressible in N (F2). �

As will be clear later on in this thesis, the converse of the previous proposition is
not necessarily true.

Definition 2.10: A language N (F1) is said to be strongly separable from the language

N (F2) at the level of path queries, written N (F1) ≤path
strong N (F2), if there exists a

path query q expressible in N (F1) and a finite graph G, such that for every expression
e ∈ N (F2), we have q(G) 6= e(G). �
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At the level of boolean queries, we cannot use an analogous definition due to following
argument. Let q be a boolean query expressible in N (F1) and assume that q(G) 6= ∅
for some graph G. Also, assume that for every e ∈ N (F2), e(G) = ∅, in particular
id(G) = ∅. However, since id(G) = ∅ if and only if adom(G) = ∅, q(G) is also empty,
which contradicts our assumption.

Definition 2.11: A language N (F1) is said to be strongly separable from the language
N (F2) at the level of boolean queries, written N (F1) ≤bool

strong N (F2), if there exists two
graphs which can be distinguished by an expression in N (F1), but are indistinguishable
in N (F2). That is, there exists graphs G1 and G2 and a boolean query q expressible in
N (F1), such that q(G1) = true and q(G2) = false, and for every e ∈ N (F2), e(G1) is
nonempty if and only if e(G2) is nonempty. �

2.2 Conjunctive queries

Definition 2.12: An atom is an expression of the form R(x1, . . . , xn) where R is a
relation name and x1, . . . , xn are terms. A term is either a variable or a constant. �

Definition 2.13: A database is a set of atoms which only contain constants (these
atoms are also known as facts). �

Definition 2.14: A conjunctive query with nonequalities is a 3-tupleQ = (H,B,noneq),
where

− The body B is a set of atoms;

− noneq is a set of nonequalities built over variables present in H or B;

− The head H is a tuple of variables. �

Example 2.15: The following two queries are conjunctive queries with nonequalities.

Q1 = ((x, y), {R(x, z), R(z, y)}, {x 6= z, z 6= y})
Q2 = ((x), {R(x, x), R(x, y), R(y, z)}, {x 6= y}) �

For simplicity, we will also use the datalog notation for conjunctive queries, which we
will introduce with an example.

Example 2.16: The queries of Example 2.15 in datalog notation:

Q1(x, y)← R(x, z), R(z, y), x 6= z, z 6= y

Q2(x)← R(x, x), R(x, y), R(y, z), x 6= y �

To define the semantics of conjunctive queries, we first need some machinery to assign
values from a database to variables of a query.
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Definition 2.17: A substitution f from a conjunctive query Q = (H,B,noneq) into a
database D, written f : Q → D, is a function that maps every variable of Q onto the
active domain of D. �

These substitutions can also be applied to atoms by applying f onto its terms, i.e.,
f(R(x1, . . . , xn)) = R(f(x1), . . . , f(xn)). Similarly, one can also apply f to a set of
atoms, by applying f to every atom in that set.

Definition 2.18: A substitution f from a conjunctive query Q = (H,B,noneq) into a
database D is called a matching if it has the following two properties:

− If x 6= y ∈ noneq then f(x) 6= f(y) in D;

− f(B) ⊆ D (The homomorphism property). �

Now, we are ready to define the semantics of conjunctive queries. Suppose that
Q = (H,B,noneq) is a conjunctive query, and suppose that D is a database, then the
result of applying Q to D, denoted by Q(D) is defined as

Q(D) = {f(H) | f is a matching from Q in D}.

A partition π of a set V induces an equivalence class denoted by [x]π for every x ∈ V .
The set of all these equivalence classes is denoted by V/π and is called the quotient of
V by π.

Analogous to the ‘construction’ of V/π, one can, given a partition of the variables of
a conjunctive query with nonequalities Q = (H,B,noneq), construct a ‘quotient’ query
Q/π = (H/π,B/π,noneq/π) by replacing each variable in Q by its equivalence class.

Definition 2.19: Let V be a set of variables and let noneq be a set of nonequalities
over V . We say that a partition π of V is compatible with noneq if x 6= y ∈ noneq
implies [x]π 6= [y]π. �

Definition 2.20: Let Q be a conjunctive query with nonequalities. We call a partition
π of vars(Q) legal for Q if π is compatible with noneq . �

Definition 2.21: A homomorphism f from a conjunctive query Q1 = (H1, B1,noneq1)
to a conjunctive query Q2 = (H2, B2,noneq2), written f : Q1 → Q2, is a function
which maps the variables from Q1 onto variables of Q2 such that f(H1) = H2 and
f(B1) ⊆ B2. �

Note that such a homomorphism also induces a homomorphism of relations from B1 to
B2, which we will denote by f : B1 → B2.

Theorem 2.22: Let Q1 = (H1, B1,noneq1) and Q2 = (H2, B2,noneq2) be conjunctive
queries with nonequalities. Then, Q1 ⊆ Q2 if and only if for every legal partition π for
Q1, there exists a homomorphism h : Q2 → Q1/π.
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Proof: First, we will show the only if direction. Suppose that π is a valid partition of
B1. Since x 7→ [x]π is a matching, we know that H1/π ∈ Q1(B1/π). Furthermore, since
it is given that Q1 ⊆ Q2, we know that H1/π ∈ Q2(B1/π). Thus there exists a matching
f such that f(H2) = H1/π and f(B2) ⊆ B1/π, which by definition is a homomorphism
from Q2 to Q1/π.

Conversely, we will now show the if direction. Let D be a database. If t ∈ Q1(D),
then there exists a matching f of Q1 in D such that f(H1) = t. Now, we choose π
such that [x]π = [y]π if and only if f(x) = f(y). Clearly, π is legal for Q1 since f
agrees with the inequalities of Q1. Furthermore, due to our assumption, there exists
a homomorphism h : Q2 → Q1/π. Let us now define a substitution g : Q1/π → D :
[x]π 7→ f(x). Observe that this function is well defined. We will now show that g ◦ h
is a matching of Q2 in D such that g ◦ h(H2) = t. First, notice that g(H1/π) = f(H1),
hence

g ◦ h(H2) = g(H1/π) = f(H1) = t.

Moreover, g(B1/π) = f(B1), hence

g ◦ h(B2) ⊆ g(B1/π) = f(B1) ⊆ D.

The only thing left to show is that g ◦ h is compatible with noneq2. Suppose that
h(x) = [u]π and that h(y) = [v]π, where u, v ∈ vars(Q1). Then,

x 6= y ∈ noneq2 =⇒ [u]π 6= [v]π

=⇒ f(u) 6= f(v)

=⇒ g([u]π) 6= g([v]π)

=⇒ g ◦ h(x) = g([u]π) 6= g([v]π) = g ◦ h(y)

which concludes our proof. �

In the remainder of this thesis we will only consider conjunctive queries with bodies
which only contain binary relations.

Definition 2.23: The graph of a conjunctive query with nonequalities Q is a graph G
with two sets of edges, a set of directed edges and a set of undirected edges, labelled 6=
(also referred to as 6=-edges). The set of directed edges contains an edge (x, y) for every
atom R(x, y) in the body of Q. Furthermore, for each nonequality x 6= y in Q, we add
a 6=-edge to G. �



3
Separation techniques

The main goal of this thesis is to gain an understanding in the relative expressive power
of certain languages, this at the level of boolean and path queries. To do so, we will try
to separate languages from one another using techniques described in this chapter.

Notice that the contrapositive of Proposition 2.9 tells us that separation on the level
of boolean queries implies separation on the level of path queries. Hence when trying to
establish separation on the level of path queries, we should try to prove theorems which
also establish separation on the level of boolean queries.

In this chapter we will describe some of the techniques used to establish separation.

3.1 Brute-force method

The main technique to establish separation between two languages N (F1) and N (F2),
is to find two graphs G1 and G2, and a query q ∈ N (F1) such that q(G1) is true, q(G2)
is false, and for every q′ ∈ N (F2): q′(G1) = ∅ if and only if q′(G2) = ∅. In other words,
we say that the graphs G1 and G2 are distinguishable in N (F1), but indistinguishable
in N (F2).

Notice that if G is finite, e(G) ⊆ adom(G) × adom(G) is also finite. Furthermore,
there are only a finite number of subsets of adom(G)× adom(G) and hence there exists
only a finite number of nonequivalent expressions when only considering G as input,
i.e., A = {(e(G1), e(G2)) | e ∈ N (F )} is finite. Clearly, G1 and G2 are distinguishable
in N (F ) if and only if there exists a pair in A where the first component is empty and
the second is not empty or vice versa. Hence computing A decides whether G1 and G2

are distinguishable in N (F ). Computing A for a language N (F ) and two graphs G1

and G2 can be done by Algorithm 3.1. Since the size of A is bounded, the algorithm
is guaranteed to halt. However, since the size of A is exponential in the size of G1 and
G2, the algorithm has an exponential worst case running time.

9



10 Chapter 3. Separation techniques

Algorithm 3.1 Brute-Force Algorithm

1: procedure Brute-Force(G1, G2,N (F ))
2: B ← {id(G1), id(G2)}
3: if di ∈ F then
4: B ← B ∪ {di(G1), di(G2)}
5: repeat
6: for all binary operators ⊗ in N (F ) do
7: for all (R1, R2), (S1, S2) ∈ B do
8: B ← B ∪ {(R1 ⊗ S1, R2 ⊗ S2)}
9: for all unary operators ⊕ in N (F ) do

10: for all (R1, R2) ∈ B do
11: B ← B ∪ {(⊕(R1),⊕(R2))}
12: until B remains unchanged
13: if ∃(R1, R2) ∈ B: (R1 = ∅ and R2 6= ∅) or (R1 6= ∅ and R2 = ∅) then
14: return Distinguishable

15: return Indistinguishable

3.2 Bisimulation

As mentioned in the previous section, the brute-force algorithm has an exponential
worst case running time. Hence in some cases, the algorithm will not stop within a
reasonable time. Also, we do not necessarily have that N (F1) 6≤bool N (F2) implies
N (F1) 6≤bool

strong N (F2). Therefore, in some cases we have to resort to other techniques to
establish separation.

Another technique employs the idea that certain sets of expressions ‘behave’ in a
similar manner for certain graphs. We will now formalize this.

Definition 3.1: A marked graph is a triple (G, a, b), where G is a graph and a, b are
nodes in adom(G). �

Definition 3.2: Let k ∈ N and let G1 = (G1, a1, b1) and G2 = (G2, a2, b2) be marked
graphs. We say that G1 is bisimilar to G2 up to k, denoted G1 'k Gk, if the following
3 conditions are satisfied:

− Atoms: a1 = b1 iff a2 = b2; and (a1, b1) ∈ G1(R) iff (a2, b2) ∈ G2(R), for every
R ∈ Λ;

− Forth: if k > 0, then, ∀c1 ∈ adom(G1),∃c2 ∈ adom(G2):

(G1, a1, c1) 'k−1 (G2, a2, c2) and (G1, c1, b1) 'k−1 (G2, c2, b2);

− Back: if k > 0, then, ∀c2 ∈ adom(G2),∃c1 ∈ adom(G1):

(G1, a1, c1) 'k−1 (G2, a2, c2) and (G1, c1, b1) 'k−1 (G2, c2, b2). �
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◦

∪

π2

R
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π1

∩

−1

R

◦

di R

(b) Degree 3

Figure 3.1: Expressions with a different degree.

As we will see later, bisimilar marked graphs behave in a similar way for certain
expressions. To capture the class of such expressions we need the following definition.

Definition 3.3: The degree of an expression e is the maximum depth of nested ap-
plications of composition, transitive closure, projection and coprojection operations in
e. That is, the maximum number of transitive closure, composition, projection and
coprojection applications on a path from the root to a leaf in e’s tree representation.
More formally, we can define the degree inductively as follows,

degr(id) = degr(di) = degr(∅) = degr(R) = 0 for every R ∈ Λ;

degr(e−1
1 ) = degr(e1);

degr(πi(e1)) = degr(πi(e1)) = degr(e+
1 ) = 1 + degr(e1);

degr(e1 ∪ e2) = degr(e1 ∩ e2) = degr(e1 \ e2) = max(degr(e1), degr(e2));

degr(e1 ◦ e2) = max(degr(e1), degr(e2)) + 1.

For a set of nonbasic features F , define N (F )k as the expressions in N (F ) with a
degree of at most k. �

For example, in Figure 3.1a, the tree representation of the query

π1(R) ∪ π2(di ∩ (R ◦R))

is displayed. This expression has degree 2. In Figure 3.1b the tree representation of
query

(π2(R) ∪ di) ◦ π1(R−1 ∩ (di ◦R))

is shown. This expression has degree 3.
As mentioned in the beginning of this section, bisimilar marked graphs up to a certain

degree behave in a similar manner for certain expressions. The following proposition tells
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us exactly how bisimilar graphs up to level k behave for expressions in N (\, di)k. We
also say that expressions in N (\, di) of degree at most k are invariant under bisimulation
up to level k.

Proposition 3.4: Let k be a natural number; let e ∈ N (\, di)k and let G1 = (G1, a1, b1)
and G2 = (G2, a2, b2) be marked graphs. If G1 'k G2, then (a1, b1) ∈ e(G1) ⇐⇒
(a2, b2) ∈ e(G2).

Proof: We will prove this proposition by induction on the structure of e.
Induction Basis:

− Let e = R, with R ∈ Λ. Then,

(a1, b1) ∈ R(G1) ⇐⇒ (a2, b2) ∈ R(G2) (see Definition 3.2)

− Let e = ∅. Then, clearly, ∅(G1) = ∅ = ∅(G2).

− Let e = id . Then,

(a1, b1) ∈ id(G1) ⇐⇒ a1 = b1

⇐⇒ a2 = b2 (see Definition 3.2(Atoms))

⇐⇒ (a2, b2) ∈ id(G2)

− Let e = di . Then,

(a1, b1) ∈ di(G1) ⇐⇒ a1 6= b1

⇐⇒ a2 6= b2 (see Definition 3.2(Atoms))

⇐⇒ (a2, b2) ∈ di(G2)

Induction Hypothesis: Suppose for each subexpression e′ of e that: if G1 'k G2

with k ≥ degree(e′), then (a1, b1) ∈ e′(G1) ⇐⇒ (a2, b2) ∈ e′(G2). Induction Step:
We will now show that our proposition holds for e.

− Let e = e1 ∪ e2 ∈ N (\, di)k. Then,

(a1, b1) ∈ e1 ∪ e2(G1) ⇐⇒ (a1, b1) ∈ e1(G1) ∨ (a1, b1) ∈ e2(G1)

⇐⇒ (a2, b2) ∈ e1(G2) ∨ (a2, b2) ∈ e2(G2) (hypothesis)

⇐⇒ (a2, b2) ∈ e1 ∪ e2(G1)

− Let e = e1 ◦ e2 ∈ N (\, di)k. Then, since composition increases the degree of
expressions, we know that degree(e1), degree(e2) < degree(e) ≤ k, which implies
that degree(e1), degree(e2) ≤ k − 1.

Assume that (a1, b1) ∈ e1 ◦ e2(G1). Then, we know that there exists some p, such
that (a1, p) ∈ e1(G1) and (p, b1) ∈ e2(G1). Furthermore, since G1 'k G2, we
know that for this p, there exists a q, such that (G1, a1, p) 'k−1 (G2, a2, q) and
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(G1, p, b1) 'k−1 (G2, q, b2) (see Definition 3.2(Forth)). According to our hypothesis
this implies that (a2, q) ∈ e1(G2) and (q, b2) ∈ e2(G2), hence (a2, b2) ∈ e1 ◦e2(G2).

Conversely, suppose that (a2, b2) ∈ e1 ◦ e2(G2). Then there exists a q, such that
(a2, q) ∈ e1(G2) and (q, b2) ∈ e2(G2). Furthermore, since G1 'k G2, we know that
for this q, there exists a p such that (G1, a1, p) 'k−1 (G2, a2, q) and (G1, p, b1) 'k−1

(G2, q, b2) (see Definition 3.2(Back)). Using our induction hypothesis, we know
that (a1, p) ∈ e1(G1) and (p, b1) ∈ e2(G1), and hence (a1, b1) ∈ e1 ◦ e2(G1).

− Let e = e1 \ e2(G). Then,

(a1, b1) ∈ e1 \ e2(G) ⇐⇒ (a1, b1) ∈ e1(G1) ∧ (a1, b1) 6∈ e2(G1)

⇐⇒ (a2, b2) ∈ e1(G2) ∧ (a2, b2) 6∈ e2(G2) (hypothesis)

⇐⇒ (a2, b2) ∈ e1 \ e2(G2) �

The previous proposition can now be used to show that certain queries are not
expressible in N (\, di)k.

Proposition 3.5: Let k be a natural number. A boolean query q is not expressible in
N (\, di)k, if there exist two graphs G1 and G2 such that q(G1) is true and q(G2) is
false, and, for each pair (a1, b1) ∈ adom(G1)2, there exists (a2, b2) ∈ adom(G2)2, such
that (G1, a1, b1) 'k (G2, a2, b2).

Proof: Suppose for the sake of contradiction that q is expressible in N (\, di)k. Then,
there exists an e ∈ N (\, di)k that expresses q.

It is given there exists two graphs G1 and G2 such that q(G1) is true and q(G2) is
false. Since q(G1) is true, e(G1) is not empty and thus there exists (a1, b2) ∈ e(G1).
Furthermore, it is also given that for (a1, b1) there exists (a2, b2) ∈ adom(G2)2, such that
(G1, a1, b1) 'k (G2, a2, b2). Now, using Proposition 3.4, we know that (a2, b2) ∈ e(G2),
which implies that e(G2) is not empty and therefore contradicts our assumption. �

Corollary 3.6: A boolean query q is not expressible in N (\, di), if for every natural
number k, there exist two graphs G1 and G2 such that q(G1) is true and q(G2) is false,
and, for each pair (a1, b1) ∈ adom(G1)2, there exists (a2, b2) ∈ adom(G2)2, such that
(G1, a1, b1) 'k (G2, a2, b2).

Proof: Suppose for the sake of contradiction that q is expressible in N (\, di). Then,
there exists an e ∈ N (\, di), that expresses q.

Clearly, e ∈ N (\, di)deg(e). Now, when we apply Proposition 3.5, we obtain a con-
tradiction. �

For more invariance results under bisimulation for other fragments see [FGL+12a].
Remember that intuitively, two marked graphs G1 and G2 are bisimilar up to a

certain level k+ 1 when they behave the same way for expressions in N (\, di)k+1. Then
by the same intuitive reasoning, they also behave in a similar manner for expressions in
N (\, di)k. The following theorem justifies this intuition.
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Lemma 3.7: If (G1, a1, b1) 'k+1 (G2, a2, b2), then (G1, a1, b1) 'k (G2, a2, b2)

Proof: Let (G1, a1, b1) 'k+1 (G2, a2, b2). Then by ‘back’ condition, we know that for
every c2 ∈ adom(G2), there exists c1 ∈ adom(G1), such that (G1, a1, c1) 'k (G2, a2, c2)
and (G1, c1, b1) 'k (G2, c2, b2). Thus in particular for c2 = b2 there exists c1 ∈
adom(G1), such that (G1, a1, c1) 'k (G2, a2, b2) and (G1, c1, b1) 'k (G2, b2, b2). Now
by the atoms condition, c1 = b1 and thus (G1, a1, b1) 'k (G2, a2, b2) as desired. �

3.2.1 Connectivity is not expressible in N (\, di)

In this section we will show that the Connectivity query is not expressible in N (\, di)
to demonstrate the bisimilarity technique explained in Section 3.2. Remember that the
Connectivity query expresses the directed connectivity property of a graph, i.e., it is
the boolean query which outputs true if and only if there is a directed path between
every pair of nodes.

We will first introduce some new notation which will be used extensively in this
section.

Definition 3.8: Let G be an unlabeled graph. Define ~dG(x, y) as the length of the
shortest directed path in G from x to y; if no such path exists, ~dG(x, y) is undefined.
Furthermore, if x = y, then ~dG(x, y) = 0. If it is clear in which graph G we are expressing
the distance we will omit the G subscript. �

Note that in the definition above ~dG(x, y) is not necessarily equal to ~dG(y, x), i.e., ~dG is
not the symmetric distance.

Definition 3.9: Let G be an unlabeled graph. We say that (x, y) ∈ adom(G)2 is k-far
in G, if ~d(x, y) > 2k. Conversely, (x, y) ∈ adom(G)2 is k-close if it is not k-far and there
is a path from x to y. �

Intuitively, we use this terminology because queries with a degree of at most k cannot
distinguish a pair of vertices that lie too far from one another (farther than 2k) and a
pair of vertices where the distance is undefined.

Before we begin our proof we have to define a family of graphs which will be used
extensively in our proof. Let n be an even natural number greater than 1. Define An
to be the unlabeled graph with n vertices structured as displayed in Figure 3.2a and
define Bn as the unlabeled graph with n vertices structured as displayed in Figure 3.2b,
where both of Bn’s connected components have exactly n/2 vertices.

The following lemma is mandatory for the proof of Lemma 3.11. Intuitively, it tells
us that, no matter the positions of vertices a and b in An, we can always pick a vertex
c, such that both (a, c) and (c, b) are far enough (k-far).

Lemma 3.10: Let k be a natural number and let n > 2 ·2k+1. For every pair of vertices
a1, b1 in An, there exists a vertex c1 in An, such that both (a1, c1) and (c1, b1) are k-far.

Proof: We will split our proof up in several cases:
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(a) Structure of graph An. (b) Structure of graph Bn.

Figure 3.2: Graphs used to establish inexpressibility of connectivity in N (\, di).

− If (a1, b1) is k-close, then we pick c1 such that ~d(a1, c1) = 2k + 1. Let us now
calculate ~d(c1, b1).

~d(c1, b1) = n− ~d(b1, c1)

> 2 · 2k+1 − (2k + 1) (since n > 2 · 2k+1 and ~d(b1, c1) ≤ 2k + 1)

= 2k+1 + 2k − 1

> 2k + 1

Thus, both (a1, c1) and (c1, b1) are k-far as desired.

− If (a1, b1) is k-far and the successor of b1 is not a1, then we pick c1 such that a1 is
the successor of c1. Now, ~d(c1, b1) = 1 + ~d(a1, b1) > 2k + 1, thus (c1, b1) is k-far.
Furthermore, ~d(a1, c1) > ~d(a1, b1) > 2k, hence (a1, c1) is k-far.

On the other hand, if the successor of b1 is a1, then we pick c1 such that ~d(a1, c1) =
2k + 1. Let us now calculate ~d(c1, b1).

~d(c1, b1) = ~d(a1, b1)− ~d(a1, c1)

= n− 1− (2k + 1)

> 2 · 2k+1 − 2k − 2

> 2k

Thus, both (a1, c1) and (c1, b1) are k-far. �

In the proof of the next lemma, we say that a vertex c is in between a and b if it is
located on the shortest directed path from a to b. Conversely, we say that a vertex c is
not in between a and b if it is on the shortest directed path from b to a.

Lemma 3.11: Let k be a natural number and let n be an even natural number such
that n > 2 · 2k.

(a) If (a1, b1) is k-close in An and a2, b2 ∈ Bn are located on the same connected
component of Bn such that ~d(a1, b1) = ~d(a2, b2), then (An, a1, b1) 'k (Bn, a2, b2);
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(b) If (a1, b1) is k-far in An and (a2, b2) is k-far in Bn, then (An, a1, b1) 'k (Bn, a2, b2);

(c) If (a1, b1) is k-far in An and a2, b2 ∈ Bn are located on different connected compo-
nents of Bn, then (An, a1, b1) 'k (Bn, a2, b2).

Proof: We will prove all three statements by induction on k simultaneously.
Induction Basis: Let k = 0. Then n > 2 · 20 = 2. Furthermore, since k = 0, we only
have to check the ‘atoms’ condition for bisimilarity.

(a) First, we will show that a1 = b2 iff a2 = b2.

a1 = b1 ⇐⇒ ~d(a1, b1) = 0

⇐⇒ ~d(a2, b2) = 0

⇐⇒ a2 = b2

Now, we will show that (a1, b1) ∈ An iff (a2, b2) ∈ Bn.

(a1, b1) ∈ An ⇐⇒ ~d(a1, b1) = 1

⇐⇒ ~d(a2, b2) = 1

⇐⇒ (a2, b2) ∈ Bn

(b) Since (a1, b1) and (a2, b2) are both k-far, we know that a1 6= b1 and a2 6= b2.
Furthermore, both ~d(a1, b1) and ~d(a1, b1) are strictly greater then 1, which implies
that (a1, b1) 6∈ An and (a2, b2) 6∈ Bn.

(c) Since (a1, b1) is k-far in An, we know that a1 6= a2 and (a1, b1) 6∈ An. Furthermore,
it is clear that a2 6= b2 and that (a2, b2) 6∈ Bn.

Induction Hypothesis: Suppose that our lemma holds for k.
Induction Step: We have to prove that our lemma holds for k+1. The atoms condition
is verified in exactly the same way as in the proof of the induction basis, thus we only
have to show that the ‘forth’ and ‘back’ conditions hold. First, we will show that ‘forth’
holds for (a), (b) and (c). To this end let c1 ∈ adom(An).
(a) We will split our proof up into several cases.

− Suppose that (a1, c1) is k-far in An and (c1, b1) is k-close in An. Let us pick
c2 on Bn such that ~d(c2, b2) = ~d(c1, b1). Then, when we apply our induction
hypothesis(a), it is clear that (An, c1, b1) 'k (Bn, c2, b2).

To prove that (An, a1, c1) 'k (Bn, a2, c2), it suffices to show that (a2, c2) is k-far
in Bn (hypothesis(b)). We will consider two cases, each depending on the relative
position of c1 compared to a1. If c1 is in between a1 and b2, then ~d(a2, c2) =
~d(a1, c1), and thus (a2, c2) is k-far, which according to induction hypothesis(b)
implies that (An, a1, c1) 'k (Bn, a2, c2).
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On the other hand, if c1 does not lie between a1 and b1, then 0 < ~d(c1, a1) ≤ 2k.
Remember that the connected component in Bn of a2 and b2 contains n/2 > 2k+1

vertices. Now,

~d(a2, c2) = n/2− ~d(c2, a2)

= n/2− ~d(c1, a1)

≥ n/2− 2k

> 2k+1 − 2k

= 2k.

− If (a1, c1) is k-close in An and (c1, b1) is k-far, then the proof is analogous to the
previous case, just swap the roles of a1 and b1.

− Suppose that (a1, c1) and (c1, b1) are both k-close. Then, c1 is situated in between
a1 and b1. If we choose c2 on Bn in between a2 and b2 such that ~d(a1, c1) = ~d(a2, c2)
and ~d(c1, b1) = ~d(c2, b2), then we can apply our induction hypothesis(a), which
implies that (An, a1, c1) 'k (Bn, a2, c2) and (An, c1, b1) 'k (Bn, c2, b2).

− Suppose that (a1, c1) and (c1, b1) are both k-far. Now, if we pick c2 on the other
connected component than the component of a2 and b2, we can apply our induction
hypothesis(c), which tells us that (An, a1, c1) 'k (Bn, a2, c2) and (An, c1, b1) 'k
(Bn, c2, b2).

(b) First, notice that ~d(a1, b1) > 2k+1 = 2k + 2k, hence both (a1, c1) and (c1, b1) cannot
be k-close simultaneously.

− Suppose that (a1, c1) is k-far and (c1, b1) is k-close. Clearly, then c1 is in between a1

and b1. Now, let us pick c2 in Bn, such that ~d(c1, b1) = ~d(c2, b2). Our hypothesis(a)
now tells us that (An, c1, b1) 'k (Bn, c2, b2).

Furthermore, since (a1, c1) is k-far and since a2 and c2 are located on the same
connected component, we need to show that (a2, c2) is also k-far, this, to be able
to apply our induction hypothesis(b). Thus, we need to calculate ~d(a2, c2).

~d(a2, c2) = ~d(a2, b2)− ~d(c2, b2)

> 2k+1 − 2k (since c2 is in between a2 and b2)

= 2k

Thus, (a2, c2) is k-far in B2 and hence (An, a1, c1) 'k (Bn, a2, c2).

− If (a1, c1) is k-close and (c1, b1) is k-far, then the proof is analogous to the previous
case.

− Suppose that both (a1, c1) and (c1, b1) are k-far. Then, if we pick c2 to be on
the other connected component than the component of a2 and b2, we can, accord-
ing to our induction hypothesis(c), conclude that (An, a1, c1) 'k (Bn, a2, c2) and
(An, c1, b1) 'k (Bn, c2, b2).
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(c) Again, ~d(a1, c1) and ~d(c1, b1) cannot be k-close simultaneously.

− Suppose that (a1, c1) is k-far and (c1, b1) is k-close. Now, let us choose c2 on
the connected component of b2 such that ~d(c1, b1) = ~d(c2, b2). Clearly, if we apply
our induction hypothesis(a), then we can conclude that (An, c1, b1) 'k (Bn, c2, b2).
Moreover, since a2 is located on a different connected component than b2, we know
that c2 is also on a different component than a2, which according to our induction
hypothesis(c) implies that (An, a1, c1) 'k (Bn, a2, c2).

− If (a1, c1) is k-close and (c1, b1) is k-far, then the proof is analogous to the previous
case.

− Suppose that both (a1, c1) and (c1, b1) are k-far. Then, we choose c2 on the same
connected component as a2 such that (a2, c2) is k-far. Now, due to our induction
hypothesis(b), we know that (An, a1, c1) 'k (Bn, a2, c2). Furthermore, since a2

and b2 are located on different connected components, c2 and b2 are located on
different components. Hence (An, c1, b1) 'k (Bn, c2, b2) (hypothesis(c)).

Let us now show that the ‘back’ condition holds for (a), (b) and (c). This, however,
will be slightly more tricky and will require a more thorough analysis since c2 can be
picked on a different connected component than the component of both a2 and b2. Now
let c2 ∈ adom(Bn).
(a) We will split our proof up into two cases:

− If c2 is located on the same connected as a2 and b2, then again we have to split
our proof up into two cases considering the relative position of c2 compared to a1

and b2.

– Suppose that ~d(a2, c2) is k-far and ~d(c2, b2) is k-close. Now, we pick c1 in An
such that ~d(c1, b1) = ~d(c2, b2). Hence (An, c1, b1) 'k (Bn, c2, b2) by our induc-
tion hypothesis(a). To prove that (An, a1, c1) 'k (Bn, a2, c2), by induction
hypothesis(b), it suffices to show that (a1, c1) is k-far in An. To do so, we will
consider two cases, each depending on the relative position of c2 compared to
a2. If c2 is in between a2 and b2, then because ~d(a1, b1) = ~d(a2, b2), we know
that ~d(a1, c1) = ~d(a2, c2), hence (An, a1, c1) 'k (Bn, a2, c2) (hypothesis(b)).

On the other hand, if c2 is not located between a2 and b2, then 0 < ~d(c2, a2) ≤
2k. We will now calculate ~d(a1, c1). Remember that An has n > 2 · 2k+1

vertices. Now,

~d(a1, c1) = n− ~d(c1, a1)

= n− ~d(c2, a2)

> 2 · 2k+1 − ~d(c2, a2)

≥ 2 · 2k+1 − 2k

> 2k.
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– If (a2, c2) is k-close and (c2, b2) is k-far or if (a2, c2) and (c2, b2) are both
k-close, then the proof is analogous to the previous case.

– If both (a2, c2) and (c2, b2) are k-far, then we pick c2 such that both (a1, c1)
and (c1, b1) are k-far, this c2 exists due to Lemma 3.10. Now, our induction
hypothesis(b) implies that (An, a1, c1) 'k (Bn, a2, c2) and (An, c1, b1) 'k
(Bn, c2, b2).

− If c2 is not located on the same connected component as a2 and b2, then, we
choose c1 ∈ An, such that (a1, c1) is k-far and (c1, b1) is k-far; this c1 exists due
to Lemma 3.10. Now, using our induction hypothesis(c) we can conclude that
(An, a1, c1) 'k (Bn, a2, c2) and (An, c1, b1) 'k (Bn, c2, b2).

(b) Again, we will split our proof up into several cases:

− If c2 is located on the same connected component as a2 and b2, then clearly both
(a2, c2) and (c2, b2) cannot be k-close simultaneously.

– Suppose that (a2, c2) is k-far and (c2, b2) is k-far. If the successor of b1 does
not equal a1, then, we pick c1 as the successor vertex of b1. Clearly, both
(a1, c1) and (c1, b1) are k-far. Now, when we apply our induction hypothe-
sis(b), we know that (An, a1, c1) 'k (Bn, a2, c2).

On the other hand, if the successor of b1 does equal to a1, then ~d(a1, b1) =
2 ·n−1 > 2 ·2k+1−1. If we pick c1 in between a1 and b1, such that ~d(a1, c1) =
2k+1−1, then, clearly, (a1, c1) is k-far. Now, ~d(c1, b1) = ~d(a1, b1)− ~d(a1, c1) >
2 · 2k+1 − 2k+1 = 2k+1, hence (c1, b1) is k-far.

– Suppose that (a2, c2) is k-far and (c2, b2) is k-close. If we choose c1, such
that ~d(c1, b1) = ~d(c2, b2), then since (a1, b1) is k-far, (a1, c1) is k-far. Now,
our induction hypothesis(a,b) tells us that (An, c1, b1) 'k (Bn, c2, b2) and
(An, a1, c1) 'k (Bn, a2, c2).

− If c2 is not located on the same connected component as a2 and b2, then we pick
c1 on An in such a way that both ~d(a1, c1) and ~d(c1, b1) are k-far, this c1 exists
due to Lemma 3.10. Now, our induction hypothesis(c) implies that (An, a1, c1) 'k
(Bn, a2, c2) and (An, c1, b1) 'k (Bn, c2, b2).

(c) We have to consider several cases, each of which depend on the relative position of
c2 compared to a2 or b2. We will assume that c2 belongs to the same component as a2;
the proof when c2 belongs to the same component as b2 is completely analogous.

− If (a2, c2) is k-close, then we pick c1 on An, such that ~d(a1, c1) = ~d(a2, c2). Now,
since (a1, b1) is k-far, ~d(c1, b1) > 2k. Our induction hypothesis(a,c) now tells us
that (An, a1, c1) 'k (Bn, a2, c2) and (An, c1, b1) 'k (Bn, c2, b2).

− If (a2, c2) is k-far, then we pick c1 on An such that both (a1, c1) and (c1, b1)
are k-far, this c1 exists due to Lemma 3.10. Now, our induction hypothesis(b,c)
implies that (An, a1, c1) 'k (Bn, a2, c2) and (An, c1, b1) 'k (Bn, c2, b2). �
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Armed with the previous lemma we are now ready to show that the Connectivity
query is not expressible in N (\, di).

Theorem 3.12: Connectivity is not expressible in N (\, di).

Proof: Assume for the sake of contradiction that Connectivity is expressible in
N (\, di). Then, there exists a query q ∈ N (\, di) such that for any graph G, q(G) = true
if G is connected and q(G) is false otherwise.

Now, let k be a natural number and let n > 2 · 2k be an even number. Clearly,
q(An) = true and q(Bn) = false. Also, suppose that (a1, b1) ∈ adom(An)2. We will split
our proof up into two cases:

− If (a1, b1) is k-far in An, then, we pick a2 and b2 in B2 such that they are located on
different connected components. Now, Lemma 3.11(c) tells us that (An, a1, b1) 'k
(Bn, a2, b2);

− If (a1, b1) is k-close in An, then, we pick a2 and b2 in B2 such that ~d(a1, b1) =
(a2, b2). Now, Lemma 3.11(a) implies that (An, a1, b1) 'k (Bn, a2, b2).

Since the two cases above cover all tuples in adom(An)2, Corollary 3.6 contradicts
our assumption, and hence q is not expressible in N (\, di). �



4
Separation of Path Queries

In the preliminaries we established that separation on the level of boolean queries implies
separation on the level of path queries (Proposition 2.9). Hence it is conspicuous that we
establish boolean separation in the intermediary results towards the characterization of
≤path. We will, however, not start with the full characterization of ≤bool because of the
following reasons: not all path separation results are implied by boolean separation, the
additional theory required to establish the main theorems for ≤bool is more intricate, and
some proofs of separation results for ≤bool require separation results for ≤path. Hence
why we will first devote a chapter to the characterization of ≤path.

4.1 Interdependencies between features

We will start this section by showing that several features can be defined utilizing other
features.

π1(e)(G) = {(m,m) | m ∈ adom(G) ∧ ¬¬(∃n)((m,n) ∈ e(G))} = π1(π1(e))(G)

= {(m,n) | ∃p : (m, p) ∈ e(G) ∧ (n, p) ∈ e(G) ∧m = n} = (e ◦ e−1) ∩ id(G)

= {(m,n) | (m, p) ∈ e(G) ∧ (p, n) ∈ id ∪ di(G) ∧m = n} = (e ◦ (id ∪ di)) ∩ id(G)

π2(e)(G) = {(m,m) | m ∈ adom(G) ∧ ¬¬(∃n)((n,m) ∈ e(G))} = π2(π2(e))(G)

= {(m,n) | ∃p : (p,m) ∈ e(G) ∧ (p, n) ∈ e(G) ∧m = n} = (e−1 ◦ e) ∩ id(G)

π1(e)(G) = {(m,n) | ¬(∃p)((m, p) ∈ e(G)) ∧m = n} = id \ π1(e)(G)

π2(e)(G) = {(m,n) | ¬(∃p)((p,m) ∈ e(G)) ∧m = n} = id \ π2(e)(G)

e1 ∩ e2(G) = e1 \ (e1 \ e2)(G)

Clearly, these interdependencies should be taken into account when talking about
separation of path queries, e.g., if \ ∈ F , then, we surely know that we can express
expressions utilizing the ∩ operator. Hence it is useful to consider the set of features

21
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which can be derived from the features in F by repeatedly applying the interdependen-
cies introduced above.

Definition 4.1: Define F as the set of features obtained by augmenting F with all
nonbasic features that can be expressed in N (F ) utilizing the above interdependencies
repeatedly. �

Example 4.2: Two examples related to the previous definition:

{π} = {π, π}
{\, di} = {\, di ,∩, π, π} �

Intuitively, it is clear that if all features in F1 can be derived from features in F2,
i.e., F1 ⊆ F2, then all path queries expressible in N (F1) are also expressible in N (F2).
The following theorem justifies this intuition.

Proposition 4.3: If F1 ⊆ F2, then N (F1) ≤path N (F2).

Proof: For every nonbasic feature in F1 that is not in F2, there exists a query in
N (F2) that is equivalent. Therefore, every expression e ∈ N (F1) can be transformed
into an equivalent expression e′ ∈ N (F2) by substituting the lacking features with their
equivalent expressions in N (F2). �

Surprisingly, the converse of the proposition above holds as well. Hence we have the
following theorem.

Theorem 4.4: N (F1) ≤path N (F2) if and only if F1 ⊆ F1.

The proof of the only if direction of this theorem is very long and intricate, and will
thus be split into several propositions and lemmas for clarity. To this end, we will first
establish separation for languages in the following four classes:

C = {N (F ) | ∩ 6∈ F ,+ 6∈ F} (Section 4.2)

C[∩] = {N (F ) | ∩ ∈ F ,+ 6∈ F} (Section 4.3)

C[+] = {N (F ) | ∩ 6∈ F ,+ ∈ F} (Section 4.4)

C[∩,+] = {N (F ) | ∩ ∈ F ,+ ∈ F} (Section 4.4)

4.2 Languages without ∩ and without +

In this section we will prove Theorem 4.4 for languages in C. To this end, we will
first prove several propositions which are sometimes stronger than necessary for later
purposes.

Proposition 4.5 (Primitivity of di): Let F1 and F2 be sets of nonbasic features. If
di ∈ F1 and di 6∈ F2, then N (F1) 6≤bool

strong N (F2).
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Proof: The graphs in Figure 4.1a are distinguishable in N (F1) by di . On the other
hand, these graphs are indistinguishable in N (F2). This result can be verified using the
brute-force method discussed in Section 3.1. �

Proposition 4.6 (Primitivity of π): Let F1 and F2 be sets of nonbasic features. If
π ∈ F1, π 6∈ F2 and \ 6∈ F2, then N (F1) 6≤bool

strong N (F2);

Proof: The graphs in Figure 4.1b are distinguishable in N (F1) by π2. On the other
hand, these graphs are indistinguishable in N (F2). Again this result can be verified by
the brute-force method. Notice that these graphs are distinguishable by id \ R, hence
why we require that \ is not present in F2. �

Proposition 4.7 (Primitivity of −1): Let F1 and F2 be sets of nonbasic features. If
−1 ∈ F1 and −1 6∈ F2, then N (F1) 6≤path

strong N (F2).

Proof: Let G be the graph in Figure 4.1c. We can compute all the possible query
results for queries in N (F2) in a similar manner as the brute-force method discussed
in Section 3.1. Utilizing this technique we can verify that G−1 cannot be computed in
N (F2). �

(a)

(b)

(c)

Figure 4.1: Graphs used to establish separation in Proposition 4.5, Proposition 4.6 and
Proposition 4.7.

Proposition 4.8 (Primitivity of π): Let F1 and F2 be sets of nonbasic features. If
π ∈ F1 and F2 ⊆ {−1, di ,+ }, then N (F1) 6≤bool N (F2).

The proof of this proposition is technical and will be split into several lemmas in Sec-
tion 4.2.1.

Now we are ready to prove Theorem 4.4 for languages in C.
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Proposition 4.9: Let N (F1) and N (F2) in C. Then, F1 6⊂ F2 implies N (F1) 6≤path

N (F2).

Proof: First, suppose that π ∈ F2. Then, F1 6⊆ F2 if and only if F1 ∩ {di ,−1} 6⊆
F2 ∩ {di ,−1}. Hence we have the following possible scenarios: di ∈ F1 and di 6∈ F2;
or −1 ∈ F1 and −1 6∈ F2. If di ∈ F1 and di 6∈ F2, then N (F1) 6≤path N (F2) due to
Proposition 4.5. Otherwise, we achieved the result due to Proposition 4.7.

Now, suppose that π 6∈ F2. Then, F2 = F2. Thus, F1 6⊆ F2 if and only if
F1 6⊆ F2. Hence there has to exists some x ∈ F1 such that x 6∈ F2. Furthermore,
since F1 ⊆ {di , π, π,−1 } and F2 ⊆ {di , π,−1}, either Proposition 4.5, Proposition 4.6,
Proposition 4.7 or Proposition 4.8 gives us the required result. Notice that we cannot
apply either proposition directly since Proposition 4.5, Proposition 4.6, Proposition 4.7
and Proposition 4.8 use F1 instead of F1. However, this is no issue since F1 ⊆ F1. �

4.2.1 Proof of Proposition 4.8.

Towards the proof of this proposition, we first need several technical propositions and
lemmas.

First, notice that the result of a path query is a binary relation, hence we can
obviously interpret it as an unlabeled graph. This insight will be exploited in the proof
of the following lemma, which we will need several times throughout this thesis.

Lemma 4.10: Let G be a graph and let n = |adom(G)|. For every path query e,

e+(G) =

n⋃
i=1

ei(G).

Proof: It is sufficient to show that for (a, b) ∈ em with m > n, there exists an l ≤ n,
such that (a, b) ∈ el. We will prove this by induction on m.
Induction Basis: Let m = n+ 1. If (a, b) ∈ en+1(G), then there exists a path of n+ 2
vertices, p1, . . . , pn+2 ∈ adom(G), such that,

− p1 = a, and pn+2 = b;

− ∀1 ≤ i < n+ 2: (pi, pi+1) ∈ e(G).

Since there are only n different vertices in adom(G), we know there exists i and j, where
i 6= j, such that pi = pj (Pigeonhole principle). Clearly, the path along the vertices
pi+1, . . . , pj is redundant and can be removed from the path to create a shorter path
from a to b. Furthermore, at least one vertex is removed from the path, thus, the new
path from a to b consists of at most n + 1 vertices, which contains at most n edges,
hence there exists l ≤ n, such that (a, b) ∈ el(G). Figure 4.2 provides a graphical
representation of this proof, where the red path is the path along pi+1, . . . , pj . Clearly,
this red path can be removed without breaking the path from p1 to pn+2.
Induction Hypothesis: Let m = k. Assume that if (c, d) ∈ ek, then there exists
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Figure 4.2: Graphical sketch of the proof of lemma 4.10. The red path can obviously be
removed without breaking the path from the left hand node to the right hand node.

l ≤ n, such that (a, b) ∈ el.
Induction Step: Let m = k + 1. Remember that ek+1(G) = ek ◦ e(G). Notice that

(a, b) ∈ ek+1(G) =⇒ ∃p : (a, p) ∈ ek ∧ (p, b) ∈ e(G)

=⇒ (a, p) ∈ el with l ≤ n ∧ (p, b) ∈ e(G) (hypothesis)

=⇒ (a, b) ∈ el+1.

If l < n we are done, if not, we can apply our induction basis. �

In a graph theoretic context, the previous lemma tells us that every path from a node
x to a node y in a graph can be reduced to a simple path from x to y.

Definition 4.11: Let n be a natural number and let e be an expression in N (−1, di ,+ ).
The set expandn(e) of expressions in N (−1, di) without union is defined inductively as
follows:

expandn(R) := R, for any R ∈ Λ

expandn(id) := id

expandn(di) := di

expandn(e−1
1 ) := {e−1 | e ∈ expandn(e1)}

expandn(e1 ∪ e2) := expandn(e1) ∪ expandn(e2)

expandn(e1 ◦ e2) := {e′1 ◦ e′2 | e′1 ∈ expandn(e1) ∧ e′2 ∈ expandn(e2)}

expandn(e+
1 ) := {

⋃
(expandn(e1))k | k = 1, . . . , n} �

Intuitively, the following lemma tells us that if we only consider input graphs with
a predetermined size bound, expressions with transitive closure can be simplified to
equivalent expressions without transitive closure. It also tells us that all the union
operations in an expression can be pulled out to the ‘top’ of the expression without
changing the expression.
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Lemma 4.12: Let n be a natural number; let G be a graph with |adom(G)| ≤ n and let
e be an expression in N (−1, di ,+ ). Then, e(G) =

⋃
e′∈expandn(e) e

′(G).

Proof: We will prove this lemma by structural induction on e.
Induction Basis: Let e = R with R ∈ Λ. Then,⋃

e′∈expandn(R)

e′(G) =
⋃

e′∈{R}

e′(G)

= R(G).

For e = id(G) and e = di(G) the proof is exactly the same.
Induction Hypothesis: Assume that our lemma holds for e1, e2 ∈ N (−1, di) without
union.
Induction Step:

− Let e = e1 ∪ e2. Then,

e1 ∪ e2(G) = e1(G) ∪ e2(G)

=
⋃
e′∈expandn(e1) e

′(G) ∪
⋃
e′∈expandn(e2) e

′(G) (hypothesis)

=
⋃
e′∈expandn(e1∪e2) e

′(G)

− Let e = e−1
1 . Then,

e−1
1 (G) = {(a, b) | (b, a) ∈ e1(G)}

= {(a, b) | (b, a) ∈
⋃
e′∈expandn(e1) e

′(G)} (hypothesis)

=
⋃
e′∈expandn(e1) e

′−1(G)

=
⋃
e′∈expandn(e−1

1 ) e
′(G)

− Let e = e1 ◦ e2. Then,

e1 ◦ e2(G) = {(a, b) | ∃p : (a, p) ∈ e1(G) ∧ (p, b) ∈ e2(G)}
= {(a, b) | ∃p : (a, p) ∈

⋃
e′∈expandn(e1) e

′(G)

∧ (p, b) ∈
⋃
e′∈expandn(e2) e

′(G)} (hypothesis)

= {(a, b) | ∃p, ∃e′1 ∈ expandn(e1),

∃e′2 ∈ expandn(e2): (a, p) ∈ e′1(G) ∧ (p, b) ∈ e′2(G)}
= {(a, b) | ∃e′1 ∈ expandn(e1), ∃e′2 ∈ expandn(e2): (a, b) ∈ e′1 ◦ e′2}
=
⋃
e′∈expandn(e1◦e2) e

′(G)
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− Let e = e+
1 . Then,

e+
1 (G) =

n⋃
i=1

ei1(G) (see Lemma 4.10)

=
n⋃
i=1

 ⋃
e′∈expandn(e1)

e′(G)

i

(hypothesis)

=

n⋃
i=1

 ⋃
e′∈expandn(e1)i

e′(G)


=

⋃
e′∈expandn(e+1 )

e′(G) �

The previous theorem gave us an equivalent expression for every e ∈ N (−1, di ,+ )
in terms of expandn(e) if the size of the input graphs is bounded by a predetermined
constant. If we lift this restriction, there is still a relation between the expressions in
expandn(e) and e.

Lemma 4.13: Let n be a natural number and let e ∈ N (−1, di ,+ ). For every expression
e′ ∈ expandn(e), e′ ⊆ e, i.e., for every graph G, e′(G) ⊆ e(G).

Proof: We will prove this lemma by structural induction.
Induction Basis: For e = di, id or R with R ∈ Λ, we know that expandn(e) only
contains 1 expression, e itself, thus e′ = e.
Induction Hypothesis: Assume that for each subexpression of e our lemma is true.
Induction Step:

− Let e = e−1
1 ∈ N (−1, di ,+ ). Then,

e′ ∈ expandn(e−1
1 ) =⇒ e′−1 ∈ expandn(e1)

=⇒ e′−1 ⊆ e1 (hypothesis)

=⇒ e′ ⊆ e−1
1 .

− Let e = e1 ∪ e2 ∈ N (−1, di ,+ ). Then,

e′ ∈ expandn(e1 ∪ e2) =⇒ e′ ∈ expandn(e1) ∨ e′ ∈ expandn(e2)

=⇒ e′ ⊆ e1 ∨ e′ ⊆ e2 (hypothesis)

=⇒ e′ ⊆ e1 ∪ e2.

The last step follows from the fact that both e1 and e2 are contained within e1∪e2.
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− Let e = e1 ◦ e2 ∈ N (−1, di ,+ ). Then,

e′ ∈ expandn(e1 ◦ e2) =⇒ ∃e′1 ∈ expandn(e1), e′2 ∈ expandn(e2) : e′ = e′1 ◦ e′2
=⇒ e′1 ⊆ e1 ∧ e′2 ⊆ e2 (hypothesis)

=⇒ e′1 ◦ e′2 ⊆ e1 ◦ e2.

− Let e = e+
1 ∈ N (−1, di ,+ ). Then,

e′ ∈ expandn(e+
1 ) =⇒ ∃1 ≤ k ≤ n : e′ ∈ expandn(e1)k

=⇒ e′ = e′1 ◦ . . . ◦ e′k (with e′i ∈ expandn(e1))

=⇒ ∀1 ≤ i ≤ k : e′i ⊆ e1 (hypothesis)

=⇒ e′1 ◦ . . . ◦ e′k ⊆ ek1 ⊆ e+
1 . �

In the proof of Proposition 4.8 we argue for the sake of contradiction that ifN (F1) ≤bool

N (F2), we can construct a nontrivial endomorphism on the BZZZ pattern displayed in
Figure 4.3. The following lemma tells us that this contradicts our assumption as BZZZ
has no nontrivial endomorphisms.

Lemma 4.14: The BZZZ pattern has no nontrivial endomorphism.

Proof: Let f be an endomorphism of QZZZ . First, we will show that f(a) = a by
contradiction. Define [x, y] as the set of vertices along all the directed paths from x to
y. The including/excluding semantics of this notation are defined in the same way as
the interval notation on the real numbers.

− Since there exists a directed path starting in a of length 6 (the path from a to g),
there must also exist such a path starting in f(a). The only vertices in BZZZ from
which a path of length 6 starts are a and j. We will now show by contradiction that
f(a) = a. Suppose for the sake of contradiction that f(a) = j. Then, f(g) = k,
and thus f(p) = l. Furthermore, since f is a homomorphism and (j, g) ∈ BZZZ , it
is clear that (f(j), f(g)) ∈ BZZZ , which implies that f(j) = l. But, there starts a
path of length 6 in j, hence there also has to start a path of length 6 in l. However,
no such path exists.

− Suppose that f(a) = h or i. Similarly, there has to be a path of length 6 in BZZZ
from f(a) to another vertex in BZZZ . However, again, no such path exists.

− Suppose that f(a) = j. Then, f(g) = k, and thus f(p) = l. Furthermore, since
(j, g) ∈ BZZZ and f is a homomorphism, (f(j), f(g)) = (f(j), k) ∈ BZZZ , which
implies that f(j) = l. But, there starts a path of length 6 in j, hence there also
starts a path of length 6 in f(j). This path, however, does not exist.

Let us now prove that for every x, f(x) = x.
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− First, we will show that for every x ∈ [d, g] : f(x) = x. Clearly, (f(a), f(d)) =
(a, f(d)) ∈ BZZZ , since (a, d) ∈ BZZZ and since f is a homomorphism. Hence the
only possibilities for f(d) are b, c and d. Moreover, since there starts a path of
length 5 in d, there also has to start a path of length 5 in f(d), which is impossible
for both b and c. Now, clearly for f not to violate the homomorphism condition,
every element in [d, g] is fixed by f .

− To show that for every x ∈ [b, e]: f(x) = x; we only have to show that f(b) = b.
Since f is a homomorphism and f(a) = a, we know that f(b) equals b, c or d. First,
notice that showing f(b) 6= c is completely analogous to the previous case. We
will now show that f(b) 6= d. Suppose for the sake of contradiction that f(b) = d,
then f(e) = p and thus f(h) = q. But, then there has to exist a path of length 5
starting in q. However, no such path exists in BZZZ .

− As in the previous case, to show that for every x ∈ [c,m]: f(x) = x, we only have
to show that f(c) = c. Suppose for the sake of contradiction that f(c) 6= c, then
f(c) equals b or d. If f(c) = d, then f(m) = q and thus f(i) = z. But, then
there has to start a path of length 4 starting in z. However, no such path exists,
contradiction. On the other hand, if f(c) = b, then f(m) = s and thus f(i) = r.
Moreover, since a directed path of length 4 starts in i and since f preserves such
paths, there also has to start a directed path of length 4 in r, but no such path
exists.

− Now, we will show that f(h) = h, f(i) = i and f(j) = j. Due to the previous
cases,

(f(h), f(e)) = (f(h), e) and (f(j), f(g)) = (f(j), g), (f(i), f(m)) and (f(i),m)

hence (f(h), e), (f(j), g), (f(i),m) ∈ BZZZ (since f is a homomorphism). Thus,
f(j) equals j or p, f(i) equals i or t and f(h) equals h or r. Since there starts a
path of length 5 in h, there also has to start a path of length 5 in f(h). Hence
f(h) 6= r, since no such path exists starting in r. The same argument can be used
to show that f(i) 6= t and f(j) 6= p, since there start no paths of length 4 in t and
no paths of length 6 in p, hence f(i) 6= t and f(j) 6= p.

Now since f(h) = h, f(i) = i and f(j) = j and since f is a homomorphism, every
element in [h, n], [i, o] and [j, k] is fixed by f . �

The following lemma states that the BZZZ pattern can also be recognized with an
expression not using the inverse operation.

Lemma 4.15: π1(Rk ◦R−1 ◦Rk) is equivalent to π1(Rk ◦ π2(π1(Rk) ◦R)).
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Figure 4.3: Graph with BZZZ pattern

Proof: Let e1 = π1(Rk ◦ R−1 ◦ Rk) and e2 = π1(Rk ◦ π2(π1(Rk) ◦ R)). We will first
show that e1 ⊆ e2. Let G be an arbitrary graph. Then,

(a, a) ∈ e1(G) =⇒ ∃b : (a, b) ∈ Rk ◦R−1 ◦Rk

=⇒ ∃c, d : (a, c) ∈ Rk, (d, c) ∈ R and (d, b) ∈ Rk

=⇒ (d, d) ∈ π1(Rk)

=⇒ (d, c) ∈ π1(Rk) ◦R
=⇒ (c, c) ∈ π2(π1(Rk) ◦R)

=⇒ (a, c) ∈ Rk ◦ π2(π1(Rk) ◦R)

=⇒ (a, a) ∈ π1(Rk ◦ π2(π1(Rk) ◦R)).

Conversely, let us show that e2 ⊆ e1.

(a, a) ∈ e2 =⇒ ∃b : (a, b) ∈ Rk ◦ π2(π1(Rk) ◦R)

=⇒ ∃x : (a, x) ∈ Rk and (x, b) ∈ π2(π1(Rk) ◦R)

=⇒ x = b ∧ ∃y : (y, b) ∈ π1(Rk) ◦R
=⇒ (a, b) ∈ Rk ∧ (y, b) ∈ R ∧ ∃z : (y, z) ∈ Rk

=⇒ (a, z) ∈ Rk ◦R−1 ◦Rk

=⇒ (a, a) ∈ π1(Rk ◦R−1 ◦Rk) �

In the proof of Proposition 4.8 we will use conjunctive queries. To support this,
we will first need to be able to translate expressions without union in N (−1, di) to
conjunctive queries. The following theorem tells that we are able to do so. Moreover,
the translations have a very special format.

Lemma 4.16: If e ∈ N (−1, di) without union, then there exists an equivalent conjunc-
tive query Q = (H(x, y), B,noneq) with nonequalities whose graph forms a linear chain
from x to y. If we would ignore the direction of the R-edges and the edge labels, the
graph looks as follows.
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x y

Importantly, notice that no vertices in this graph contain self edges.

Proof: We will prove this by structural induction on e.
Induction Basis:

− Let e = R. Then, Q = H(x, y)← R(x, y). The graph of Q looks as follows,

x y

which clearly has the required form;

− Let e = id . Then, Q = H(x, x), where Q simply has no atoms in its body. The
graph of Q is just a single vertex and thus has the required form;

− Let e = di . Then, Q = H(x, y)← x 6= y. The graph of Q looks as follows,

x y
6=

where the edge between x and y is a di -edge.

Induction Hypothesis: Suppose that for e1, e2 ∈ N (−1, di) without union there ex-
ists conjunctive queries with nonequalities Q1 = (H1(x1, y1), B1,noneq1) and Q2 =
(H2(x2, y2), B2,noneq2) such that e1 ≡ Q1 and e2 ≡ Q2. Furthermore, the graphs of Q1

and Q2 are of the required form.
Induction Basis:

− Let e = e1 ◦ e2. Now, let B′1 (resp. noneq ′1 and H ′1) equal B1 (resp. noneq1

and H1) where every occurrence of y1 is replaced with a fixed new variable not
yet present in Q1 and Q2. Let us denote this new variable with k. Furthermore,
let B′2 (resp. noneq ′2 and H ′2) equal B2 (resp. noneq2 and H2) where every
occurrence of x2 is replaced with the same variable k. Furthermore, let Q =
(H(x1, y2), B′1∪B′2,noneq ′1∪noneq ′2). We will now show that Q is equivalent to e.
First, we will show that e ⊆ Q. To this end, let G be an arbitrary graph. Then,

(a, b) ∈ e(G) =⇒ ∃p : (a, p) ∈ e1(G) ∧ (p, b) ∈ e2(G)

=⇒ ∃p : (a, p) ∈ Q1(G) ∧ (p, b) ∈ Q2(G) (hypothesis)

=⇒ ∃ matchings f : Q1 → G and g : Q2 → G

where f(x1) = a, f(y1) = p, g(x2) = p and g(y2) = b.
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Now, we will try to find a matching f∗ : Q1 → G, such that f∗(x1, y2) = (a, b).
Let us define f∗ as follows

f∗(x) =


f(x), if x ∈ vars(B′1) ∪ vars(H ′1) \ {k}
g(x), if x ∈ vars(B′2) ∪ vars(H ′2) \ {k}
f(y1), if x = k.

Now, we have to show that f∗ is a matching. To this end we will first show that
f∗(B′1 ∪B′2) ⊆ G.

f∗(B′1 ∪B′2) = f∗(B′1) ∪ f∗(B′2) = f(B1) ∪ g(B2) ⊆ G

To prove that f∗ is compatible with the nonequalities, we will split our proof up
into the following cases.

– If x 6= y ∈ noneq ′1, where x and y are not equal to k, then x 6= y ∈ noneq1

and thus f∗(x) = f(x) 6= f(y) = f∗(y);

– If x 6= y ∈ noneq ′2, where x and y are not equal to k, then x 6= y ∈ noneq2

and thus f∗(x) = g(x) 6= g(y) 6= f∗(y);

– Suppose that x = k and x 6= y ∈ noneq ′1, then y1 6= y ∈ noneq1 and thus
f∗(x) = f(y1) 6= f(y) = f∗(y). On the other hand if y = k, the proof is
completely analogous;

– Again, suppose that x = k and x 6= y ∈ noneq ′2, then x2 6= y ∈ noneq2. Now,
f∗(x) = f∗(k) = f(y1) = g(x2) 6= g(y) = f∗(y). On the other hand if y = k,
the proof is analogous.

Thus f∗ is a matching for Q, which implies that (a, b) ∈ Q(G) and thus e ⊆ Q.

Conversely, we will show that Q ⊆ e. If (a, b) ∈ Q(G), then there exists a matching
f : Q → G. Now, consider the two substitutions g : Q1 → G and h : Q2 → G
which are defined as follows.

g(x) =

{
f(x), if x ∈ vars(Q1) \ {y1}
p, if x = y1

h(x) =

{
f(x), if x ∈ vars(Q2) \ {x1}
p, if x = x2

Clearly, both g(B1) and h(B2) are a subsets of G. Furthermore, for analogous
reasons as in the proof for e ⊆ Q, g is compatible with noneq1 and h is compatible
with noneq2. Therefore, g is a matching for Q1 and h is a matching for Q2, which
implies that (a, p) ∈ Q1(G) and (p, b) ∈ Q2. However, this implies that

(a, p) ∈ Q1(G) ∧ (p, b) ∈ Q2 =⇒ (a, p) ∈ e1(G) ∧ (p, b) ∈ e2(G) (hypothesis)

=⇒ (a, b) ∈ e1 ◦ e2(G)

Thus, Q ⊆ e. Now, we will show that Q’s graph has the required form. Due to
our induction hypothesis we know for both Q1 and Q2 there exists a graph of the
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required form. In our construction of Q, y1 and x2 are both replaced by the same
variable k. Thus to obtain the graph of Q we combine the graphs of Q1 and Q2

and ‘merge’ the vertices representing y1 and x2, and label it k. For an illustration,
see the graph right below.

x1 y1

k
x2 y2

− Let e = e−1
1 . We define Q = (H(y1, x1), B1,noneq1), where B1 is the body of Q1

and noneq1 is the set of nonequalities of Q1. Clearly, e ≡ Q and the graph of Q
equals the graph of Q1 where the vertices representing x1 and y1 are swapped.
For an illustration see the graph right below, where the vertex labels in black are
from the graph of Q1 and the red vertex labels are from the graph of Q.

x1 y1

y1 x1
�

Notice that every vertex in graph of the constructed query Q in Lemma 4.16 has at
most two outgoing edges. This insight will be very important in the proof of Proposi-
tion 4.8.

Define QZZZ as the conjunctive query without nonequalities (HZZZ , BZZZ ,noneq)
where BZZZ is the graph displayed in Figure 4.3 and where noneq = ∅. Clearly, QZZZ
recognizes the BZZZ pattern.

Proof (of Proposition 4.8): Let π ∈ F1. Proposition 4.3 tells us that N (π) ≤bool

N (F1), hence it will suffice to show that N (π) 6≤bool N (−1, di ,+ ), as this implies that
N (F1) 6≤bool N (−1, di ,+ ) and moreover N (F1) 6≤bool N (F2), which is exactly what we
want to prove.

The query QZZZ which recognizes the BZZZ pattern can be expressed in N (−1, π)
by the query

π1(R4 ◦R−1 ◦R4) ◦ π1(R5 ◦R−1 ◦R5) ◦ π1(R6 ◦R−1 ◦R6)

which according to Lemma 4.15 is equivalent with the following query in N (π)

π1(R4 ◦ π2(π1(R4) ◦R)) ◦ π1(R5 ◦ π2(π1(R5) ◦R)) ◦ π1(R6 ◦ π2(π1(R6) ◦R)).

Now, suppose that there exists some query Q ∈ N (−1, di ,+ ) which is equivalent to
QZZZ . Hence Q also recognizes the BZZZ pattern and thus Q(BZZZ) 6= ∅. Utilizing
Lemma 4.12 we know that Q(BZZZ) = ∪e∈expandn(Q)e(BZZZ) 6= ∅ (where n = |BZZZ |)
and thus there exists e ∈ expandn(Q) such that e(BZZZ) 6= ∅.

Furthermore, expandn(Q) consists of expressions in N (−1, di) without union, and
thus there exists a conjunctive query with nonequalities Qe = (He, Be,noneqe) as in
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Lemma 4.16 which is equivalent to e. Therefore, Qe(BZZZ) is also nonempty and thus
there exists a matching f : Be → BZZZ which by definition is a homomorphism.

By Lemma 4.13 we know that e ⊆ Q and since Q ⊆ QZZZ , we know that e ⊆ QZZZ .
Moreover, since the trivial partition π is compatible with every set of nonequalities,
we know there exists a homomorphism h : BZZZ → Be/π ∼= Be due to Theorem 2.22.
Remember that in the graph of Qe every vertex has at most two outgoing edges (see
Lemma 4.16), in particular h(a), where a is the left most vertex labelled ‘a’ in Fig-
ure 4.3. Note that homomorphisms preserve edges and thus (h(a), h(b)), (h(a), h(c))
and (h(a), h(d)) are edges in Be. Therefore, two of b, c and d have the same image
under h, which implies that h is not injective, hence f ◦ h is not bijective and thus
cannot be the trivial map. However, notice that f ◦ h is an endomorphism of BZZZ ,
which according to the above is nontrivial and hence contradicts Lemma 4.14. �

4.3 Languages with ∩ and without +

In this section, we will prove Theorem 4.4 restricted to languages in C[∩], i.e., the class of
languages with ∩ and without +. First, however, we need two preliminary propositions,
which are more general than needed for later purposes.

Proposition 4.17 (Primitivity of \): Let F1 and F2 be sets of nonbasic features. If
\ ∈ F1 and \ 6∈ F2, then N (F1) 6≤bool

strong N (F2).

Proof: The graphs in Figure 4.4a are distinguishable in N (F1) by R2 \ (id ∪ R). On
the other hand, they are indistinguishable in N (F2). This last result can be verified
with the brute-force method described in Section 3.1. �

Proposition 4.18 (Primitivity of π): Let F1 and F2 be sets of nonbasic features. If
π ∈ F1 and F2 ⊆ {\,∩,+ }, then N (F1) 6≤bool

strong N (F2).

Proof: The brute-force algorithm tells us that the graphs in Figure 4.4b are indistin-
guishable in N (F2). They are however distinguishable in N (F1) by π1(R2)◦R◦π(R2).�

Now we are ready to prove Theorem 4.4 restricted to languages in C[∩]. The proof
will be a thorough case analysis.

Proposition 4.19: Let N (F1) and N (F2) be in C[∩]. If F1 6⊂ F2, then N (F1) 6≤path

N (F2).

Proof: By definition ∩ ∈ F1 and ∩ ∈ F2 since both N (F1) and N (F2) are in C[∩].
Hence, F1 6⊆ F2 if and only if there exists x ∈ {π, π, di ,−1, \} such that x ∈ F1 and x 6∈
F2. We will consider every such x and show that one of Proposition 4.5, Proposition 4.6,
Proposition 4.7, Proposition 4.8, Proposition 4.17 or Proposition 4.18 implies our result.

− x = di : Proposition 4.5 gives us the desired result;

− x = −1: Proposition 4.7 proves what was asked;
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(a)

(b)

Figure 4.4: Graphs used to establish separation in Proposition 4.17, Proposition 4.18
and Proposition 5.10.

− x = \: Proposition 4.17 proves our proposition in this case;

− x = π. Then, π 6∈ F2 if and only if di ,−1, π, π 6∈ F2. Hence F2 ⊆ {∩, \}. Now, we
can apply Proposition 4.18, which proves the result;

− x = π. Then,

π 6∈ F2 ⇐⇒ \ 6∈ F2 ∨ (\ ∈ F2 ∧ π 6∈ F2).

If \ 6∈ F2, we can apply Proposition 4.6 to prove our result.

On the other hand, if \ ∈ F2, then we cannot apply Proposition 4.6. As said
above, now π cannot be in F2. Now note that

\ ∈ F2 ∧ π 6∈ F2 ⇐⇒ di 6∈ F2 ∧ −1 6∈ F2

which implies F2 ⊆ {∩, \} since F2 ⊆ {∩, π, π, di ,−1, \}. Furthermore, π ∈ F1

since π ∈ F1. Hence, we can apply Proposition 4.18, which proves the result. �

4.4 Languages without ∩ and with + or languages with ∩
and with +

In this section we will prove Theorem 4.4 for languages in C[+]. To this end, we first
need the following definition.

Definition 4.20: The transitive closure depth (TC-depth) of a query q ∈ N (F ) is
the maximum number of transitive closures on a path from root to a leaf in q’s tree
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∪

−1

R

∪

R π2

+

di

(a) TC-depth 1

+

−1

∪

π2

R

+

di R

(b) TC-depth 2

Figure 4.5: Expressions with different a TC-depth.

representation. More formally

degr(id) = degr(di) = degr(∅) = degr(R) = 0 for every R ∈ Λ;

degr(πi(e1)) = degr(πi(e1)) = degr(e−1
1 ) = degr(e1);

degr(e1 ◦ e2) = degr(e1 ∪ e2) = degr(e1 ∩ e2) = degr(e1 \ e2) = max(degr(e1), degr(e2));

degr(e+
1 ) = 1 + degr(e1). �

For example, in Figure 4.5a the tree representation of an expression with TC-depth
1 is displayed. In Figure 4.5b an expression with TC-depth 2 is shown.

The following proposition tells us that if every expression in N (F1) is also expressible
in N (F2), then adding transitive closure to both languages leaves this relation in tact.

Proposition 4.21: Let N (F1) and N (F2) be arbitrary languages. Then, N (F1) ≤path

N (F2) implies N (F1 ∪ {+}) ≤path N (F2 ∪ {+}).

Proof: In this proof we will explicitly ‘exploit’ the set of edge labels over which input
graphs are constructed. To this end, let Λ be an arbitrary set of edge labels and let
NΛ(F1) and NΛ(F2) be arbitrary languages. We will show that if N (F1) ≤path N (F2)
and if e is expressible in NΛ(F1 ∪ {+}) then e is also expressible in NΛ(F2 ∪ {+}) (∗).
We will do so by induction on the transitive closure depth.
Induction Basis: If TC-DEPTH(e) = 0, then e ∈ NΛ(F1). Hence e is also expressible
in NΛ(F2) by hypothesis. But since NΛ(F2) ⊂ NΛ(F2 ∪{+}) it follows directly that e is
also expressible in N (F2 ∪ {+}).
Induction Hypothesis: Suppose that (∗) is true if TC-DEPTH(e) < n (n > 0).
Induction Step: Suppose that TC-DEPTH(e) = n. In the tree representation of e,
we will identify the top level transitive closure application on every path from the root
to a leaf, i.e., every transitive closure application which is closest to the root on such a
path. Every subtree starting in an identified transitive closure also represents a query,
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e1

+
   +

e2

   
Re1

Re2

e e0

Figure 4.6: Graphical representation of the proof of Proposition 4.21

let us call these queries e+
1 , . . . , e

+
k , where e1, . . . , ek are the expression starting under

the identified transitive closures. Now, we will construct a new expression e′ from e by
replacing e+

1 , . . . , e
+
k in e with Re1 , . . . , Rek respectively, where Re1 , . . . , Rek are labels

not yet present in Λ. Since e′ contains labels not present in Λ we have to construct a
new set of edge labels Λ′ = Λ∪{Re1 , . . . , Re2}. Clearly, e′ does not contain the transitive
closure operator, hence e′ ∈ NΛ′(F1). Figure 4.6 illustrates this process; the paths from
the root to the displayed transitive closures are transitive closure free, hence they are
identified transitive closure operators.

By hypothesis e′ is expressible in NΛ′(F2) and therefore there exists q ∈ NΛ′(F2),
such that e′ ≡ q.

Furthermore, for every i, TC-DEPTH(ei) < n, hence we can apply our induction
hypothesis, which implies that there exists e′i ∈ N (F2∪{+}) for every i = 1, . . . , k, such
that e′i ≡ ei.

Now, if we replace Rei in q with e′+i , we obtain an expression q′ ∈ NΛ(F2 ∪ {+})
which is equivalent to e. �

Note that the proof of the previous theorem does not depend on the semantics of the
transitive closure, hence it can be generalized to any nonbasic feature. We do, however,
not need this generalization.

Surprisingly, the converse of the previous (non generalized) proposition also holds
for languages both in C or both in C[∩]. To show this result, we first need the following
lemma.

Lemma 4.22: Let N (F1) and N (F2) languages. Then, N (F1) 6≤bool
strong N (F2) implies

N (F1 ∪ {+}) 6≤bool
strong N (F2 ∪ {+}).

Proof: Suppose that N (F1) 6≤bool
strong N (F2). Then, by definition there exists a query

q ∈ N (F1) and two finite graphs G1 and G2 such that q(G1) = ∅, q(G2) 6= ∅, and for
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every e ∈ N (F2), e(G1) and e(G2) are both empty or nonempty simultaneously. We will
now show that N (F1 ∪ {+}) 6≤bool

strong N (F2 ∪ {+}). Notice that q ∈ N (F1 ∪ {+}) since
q ∈ N (F1). Now, suppose that e′ is an arbitrary expression in N (F2 ∪ {+}). The main
goal of the proof is to find an expression e′′ ∈ N (F2) which is equivalent to e′ on the
input graphs G1 and G2. Hence then e′′ cannot distinguish G1 from G2 which is exactly
what we want to prove. To this end, remember that Lemma 4.10 tells us that if we
only consider graphs whose active domain size is bounded by a fixed n, we can compute
the transitive closure of those graphs with the expression ∪ni=1R

i. Furthermore, since
the output of a query is a graph in particular, an analogue result holds for queries.
Therefore, if we replace each occurrence of the transitive closure operator f+ in the
query e′ with ∪ni=1f

i (where n = max(|G1|, |G2|)), we obtain a new query e′′ ∈ N (F2),
which is equivalent to e′′ for input graphs G1 and G2. �

Proposition 4.23: Let N (F1) and N (F2) both in C or both in C[∩]. Then, N (F1 ∪
{+}) ≤path N (F2 ∪ {+}) implies N (F1) ≤path N (F2).

Proof: We will prove this proposition by contraposition. To this end, assume that
N (F1) 6≤path N (F2). Since Proposition 4.5, Proposition 4.6, Proposition 4.7 and Propo-
sition 4.8 (also Proposition 4.17 and Proposition 4.18 if the languages are in C[∩]) cover

all cases such that N (F1) 6≤path N (F2) — either N (F1) 6≤path
strong N (F2), N (F1) 6≤bool

strong

N (F2) or N (F1) 6≤bool N (F2) hold.

First, let us suppose that N (F1) 6≤bool
strong N (F2). Then, Lemma 4.22 tells us that

N (F1 ∪ {+}) 6≤bool
strong N (F2 ∪ {+}), which implies that N (F1) 6≤path N (F2) as desired.

On the other hand suppose that N (F1) 6≤path
strong N (F2). Then, there exists a query

q ∈ N (F1) and a finite graph G such that for every e ∈ N (F2), e(G) 6= q(G). Also, note
that by definition q ∈ N (F1 ∪ {+}). Now, suppose that e′ is an arbitrary expression
in N (F2 ∪ {+}). As in the previous case, e′ can be transformed into an expression
e′′ ∈ N (F2), such that e′(G) = e′′(G), hence e′(G) 6= q(G).

The only case left to consider is the case where N (F1) 6≤bool N (F2). Here, π ∈ F1

and F2 ⊆ {−1, di}. Therefore, π ∈ F1 ∪ {+} and F2 ∪ {+} ⊆ {−1, di ,+}. Hence, we can
use Proposition 4.8, which implies N (F1 ∪ {+}) 6≤bool N (F2 ∪ {+}). �

Theorem 4.4 for languages both in C[+] or both in C[+,∩] is now a direct corollary
to the previous proposition.

Corollary 4.24: Let N (F1) and N (F2) be both in C[+] or both in C[∩,+]. If F1 * F2,
then N (F1) 6≤path N (F2).

Proof: By definition + ∈ F1 and + ∈ F2 since N (F1) and N (F2) both are in C[+] or
both in C[+,∩]. Hence, F1\{+} * F2 \ {+}. Moreover, N (F1\{+}) and N (F2\{+}) are
both in C or both in C[∩], and thus N (F1 \ {+}) 6≤path N (F2 \ {+}) by Proposition 4.9
in the former and by Proposition 4.19 the latter scenario. Now Proposition 4.23 implies
that N (F1) 6≤path N (F2) as desired. �
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Figure 4.7: Graphs used to establish separation in Proposition 4.25(a).

4.5 Cross-relationships between C, C[∩], C[+] and C[∩, +]

Now that we have established Theorem 4.4 for languages in the same classes, we have
to link all those results together. Thus, in this section we will show that Theorem 4.4
also holds for languages over different classes. To this end, we first need some technical
propositions and lemmas.

Proposition 4.25: Let F1 and F2 be sets of nonbasic features. If ∩ ∈ F1 and ∩ 6∈ F2,
then N (F1) 6≤bool

strong N (F2).

Proof: The graphs in Figure 4.7 are distinguishable in N (F1) by R2 ∩ id . They
are, however, not distinguishable in N (F2); this result was acquired by the brute-force
method introduced in Section 3.1. �

We will now cite a well known theorem, which we will need to separate languages
N (F1) and N (F2) such that + ∈ F1 and + 6∈ F2. For a proof see for example [AF90].

Theorem 4.26: There is exists no expression ϕ(x, y) in first order logic such that for
all binary relations R and for all a, b ∈ adom(R): R |= ϕ[a, b] if and only if there is a
path from a to b in R.

We will use this fact to show that the boolean query S ◦R+ ◦T 6= ∅ is not expressible
in first order logic.

Lemma 4.27: Let S, R and T be edge labels. Then the boolean query S ◦ R+ ◦ T 6= ∅
is not expressible in first order logic.

Proof: Suppose for the sake of contradiction that ψ is the first order sentence over the
vocabulary {R,S, T} that expresses S ◦R+ ◦ T 6= ∅. Now, define ϕ as follows: let ϕ be
ψ and replace every occurrence of S(u, v) with u = x ∧ v = x and every occurrence of
T (u′, v′) with u′ = y ∧ v′ = y, where x and y are variables not yet present in ψ. Notice
that ϕ is a first order formula with two free variables over the vocabulary {R}.

We will now show that for every binary relation R and for every a, b ∈ adom(R) :

R |= ϕ[a, b] ⇐⇒ {R,S = {(a, a)}, T = {(b, b)}} |= ψ.

To this end let R be a binary relation, let a, b ∈ adom(R), let S = {(a, a)} and let
T = {(b, b)}. Now, substituting every occurrence S(u, v) in ψ with u = a ∧ v = a, and
every occurrence T (u′, v′) in ψ with u′ = b ∧ v′ = b, we get ϕ[a, b]. However, since

S(u, v) ⇐⇒ u = a ∧ v = a

T (u′, v′) ⇐⇒ u′ = b ∧ v′ = b
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and since the remainder of the sentence remains unaltered, the truth values of ψ[a, b]
and ϕ are equal.

Now, we will show that ϕ(x, y) expresses the reachability query. To this end, let R
be some binary relation, let a, b ∈ adom(R), let S = {(a, a)} and T = {(b, b)}. Then,

There exists a path from a to b in R ⇐⇒ (a, b) ∈ R+

⇐⇒ S ◦R+ ◦ T 6= ∅
⇐⇒ {R,S, T} |= ψ

⇐⇒ R |= ϕ[a, b]

which contradicts Theorem 4.26, and therefore no such ψ can exist. �

It is a well known fact that transitive closure is not expressible in first order logic
([AU79, Gys12]). Furthermore remember that Proposition 2.6 tells us that every ex-
pression in a language not containing transitive closure can be expressed in first order
logic. Therefore, it should not come as a surprise that languages with transitive closure
have more expressive power than languages without transitive closure for unrestricted
input graphs. The following proposition confirms this intuition.

Proposition 4.28 (Primitivity of +): Let F1 and F2 be sets of nonbasic features. If
+ ∈ F1 and + 6∈ F2, then N (F1) 6≤bool

strong N (F2).

Proof: All queries expressible in N (F2) are also expressible in first order logic by
Proposition 2.6. However, S ◦ R+ ◦ T is a query expressible in N (F1) which is not
expressible in first order logic due to Lemma 4.27. Thus, we have found an expression
in N (F1) which is not expressible in N (F2). Hence N (F1) 6≤bool

strong N (F2) as desired. �

Now we are ready to prove Theorem 4.4 for languages over different classes.

Proposition 4.29: Let N (F1) and N (F2) be in different classes among C, C[∩], C[+]
or C[∩,+]. If F1 * F2, then N (F1) 6≤path N (F2).

Proof: We will consider combinations of languages among different classes. To this
end, we will consider all valid combinations one by one.

Let N (F1) be in C and let N (F2) be in an arbitrary other class (not C). Clearly,
F1 * F2 if and only if F1 * F2 \ {+, \,∩}. Hence at least one of π, π, di ,−1 is present in
F1 but missing in F2. We will now consider a few scenarios:

− If that feature is di or −1, either Proposition 4.5 or Proposition 4.7 gives us the
desired result.

− Suppose that π is in F1, but missing in F2. If ∩ ∈ F2, then −1, di , π 6∈ F2 and
thus, F2 ⊆ {\,∩,+}. Now, Proposition 4.18 can be applied, which proves what
was asked.

On the other hand, if ∩ 6∈ F2, then \, π 6∈ F2. Hence, F2 ⊆ {−1, di ,+} and thus
Proposition 4.8 can be applied, which gives us the desired result.
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− Suppose that π is present in F1, but lacking in F2. Then, at least one of π or \
is missing in F2. If \ is missing, we can apply Proposition 4.6. If not, then π is
missing in F2. Since π ∈ F1, the previous case covers what has to be proven.

Let N (F1) be in C[+] and let N (F2) be in N [∩,+]. Then, F1 * F2 if and only if
F1 \ {+} * F2 \ {+, \,∩}. From now on, the proof is exactly the same as the previous
case.

Let N (F1) be in C[∩] and let N (F2) be in N [∩,+]. If \ ∈ F1 and \ 6∈ F2, we can
apply Proposition 4.17. On the other hand if \ is present or lacking in both F1 and F2

simultaneously, then F1 * F2 if and only if F1 \ {\,∩} * F2 \ {\,∩,+}. Here, the proof
of case 1 can be used to prove the required result.

In the other not yet considered valid scenarios for N (F1) and N (F2), either ∩ ∈ F1

and ∩ 6∈ F2; or + ∈ F1 and + 6∈ F2. In the first scenario we can apply Proposition 4.25,
in the latter case we can apply Proposition 4.28, which imply our result. �

4.6 Proof of Theorem 4.4

Since Proposition 4.3 proves the if direction, the only thing left to prove is the only if
direction of Theorem 4.4. To this end consider its contrapositive, i.e., we want to show
that F1 6⊆ F2 implies N (F1) 6≤path N (F2) for arbitrary sets of nonbasic features F1 and
F2. Throughout Sections 4.2, 4.3 and 4.4 we established separation for languages within
the same classes. Furthermore, in Section 4.5 we established separation for languages
over different classes.

Now, let us recite these results. In Proposition 4.9 we established path separation
for languages in C. This yields the Hasse diagram displayed in Figure 4.8a, where there
is a directed path from N (F1) to N (F2) if and only if N (F1) ≤path N (F2). Note that
the boxed features represent the minimal set of nonbasic features from which the other
features can be derived by the appropriate interdependencies discusses in Section 4.1.

We established path separation for languages in C[∩] in Proposition 4.19, which
yields the Hasse diagram displayed in Figure 4.8b.

Corollary 4.24 tells us that adding + as a primitive to every language (i.e., as a boxed
feature) in the Hasse diagram of ≤path for C yields the Hasse diagram for ≤path of C[+].
Doing the same with the Hasse diagram of ≤path for C[∩] yields the Hasse diagram for
≤path of C[∩,+].

Proposition 4.29 ties all these results together, yielding Theorem 4.4. We can obtain
the Hasse diagram for general path queries from the Hasse diagrams of ≤path for C, C[∩],
C[+] and C[∩,+] by adding inclusion arrows.
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N N (
−1

)

N (
−1
, di )N (di )

N (π ) N (
−1
, π )

N (
−1
, di, π )N (di, π )

N (π , π) N (
−1
, π , π)

N (
−1
, di, π , π)N (di, π , π)

(a) For C.

N (∩, π ) N (∩,−1
, π)

N (∩,−1
, di , π)N (∩, di , π)

N (∩, π , π) N (∩,−1
, π , π)

N (∩,−1
, di, π , π)N (∩, di, π , π)

N (\, π ,∩, π) = N (\, π ,∩, π) N (\,−1
,∩, π, π)

N (\,−1
, di ,∩, π, π)N (\, di ,∩, π, π)

N (∩)

N (\ ,∩)

(b) For C[∩].

Figure 4.8: Hasse diagrams of ≤path characterization. The Hasse diagram of ≤path for
C[+] (resp. C[∩,+]) can be obtained by adding + as a boxed feature to every language
in the Hasse diagram for C (resp. C[∩]).



5
Separation of Boolean Queries

In the previous chapter we characterized ≤path. In this chapter we will do the same
for ≤bool. To this end, remember that N (F1) ≤path N (F2) implies N (F1) ≤bool N (F2),
hence we can reuse some results of the previous chapter. The converse, however, is not
true as we will see later. Therefore, we have to reexamine the pair of languages where
N (F1) 6≤path N (F2) to conclude whether N (F1) 6≤bool N (F2).

First, however, we need a few technical preliminaries. The following proposition tells
us that for every expression, we can push all the −1 applications to the edge labels in
a certain way to yield an equivalent expression. This result will simplify certain proofs.
The result, however, is interesting in its own right.

Lemma 5.1: Let F be a set of nonbasic features such that −1 ∈ F . For every e ∈ N (F ),
there exists a query e′ ∈ N (F ) such that e′ ≡ e and −1 is only applied to edge labels.

Proof: We will prove this proposition by induction on the size of e.
Induction Basis: If e ∈ {R, id , di} we have nothing to prove.
Induction Hypothesis: Assume that our proposition is true for any expression e′ that
has size less than n.
Induction Step: We will now show that our proposition holds for expressions with
size e = n.

− e = e1∆e2, where ∆ is ∩ or ∪. Then, (e1∆e2)−1 ≡ e−1
1 ∆e−1

2 . Our induction
hypothesis tells us that there exists e′1, e

′
2 ∈ N (F ) such that −1 is only applied to

the edge labels and e′1 ≡ e−1
1 and e′2 ≡ e−1

2 . Clearly this property also holds for
e′1∆e′2 ≡ e

−1
1 ∆e−1

2 .

− e = e1 ◦ e2. We will prove that (e1 ◦ e2)−1 ≡ e−1
2 ◦ e

−1
1 . Let G be some arbitrary

43
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graph. Then,

(m,n) ∈ (e1 ◦ e2)−1(G) =⇒ (n,m) ∈ e1 ◦ e2(G)

=⇒ ∃k : (n, k) ∈ e1(G) ∧ (k,m) ∈ e2(G)

=⇒ (k, n) ∈ e−1
1 (G) ∧ (m, k) ∈ e−1

2 (G)

=⇒ (m,n) ∈ e−1
2 ◦ e

−1
1 (G).

On the other hand,

(m,n) ∈ e−1
2 ◦ e

−1
1 (G) =⇒ ∃k : (m, k) ∈ e−1

2 (G) ∧ (k, n) ∈ e−1
1 (G)

=⇒ (k,m) ∈ e2(G) ∧ (n, k) ∈ e1(G)

=⇒ (n,m) ∈ e1 ◦ e2(G)

=⇒ (m,n) ∈ (e1 ◦ e2)−1(G).

By our induction hypothesis there exists e′1, e
′
2 ∈ N (F ) such that −1 is only applied

to edge labels, e′1 ≡ e−1
1 and e′2 ≡ e−1

2 . Hence e′2 ◦ e′1 ≡ e−1
2 ◦ e

−1
1 holds the same

property.

− e = e1 \ e2. First, we will prove that (e1 \ e2)−1 ≡ e−1
1 \ e

−1
2 . Then,

(m,n) ∈ (e1 \ e2)−1(G) ⇐⇒ (n,m) ∈ e1 \ e2(G)

⇐⇒ (n,m) ∈ e1(G) ∧ ¬∃(n,m) ∈ e2(G)

⇐⇒ (m,n) ∈ e−1
1 (G) ∧ ¬∃(m,n) ∈ e−1

2 (G)

⇐⇒ (m,n) ∈ e−1
1 \ e

−1
2 (G).

By our induction hypothesis there exist e′1, e
′
2 ∈ N (F ) that have the desired prop-

erty such that e′1 ≡ e−1
1 and e′2 ≡ e−1

2 . Hence e′1 \ e′2 ≡ e−1
1 \ e

−1
2 has the desired

property.

− e = πi(e1) or πi(e1). Clearly, πi(e1)−1 ≡ πi(e1) (resp. πi(e1)−1 ≡ πi(e1)). Again,
by our induction hypothesis there exists e′1 ∈ N (F ) which has the desired property
such that e1 ≡ e′1.

− e = e+
1 . For every graph G the following holds.

(e+
1 )−1(G) = (e+

1 (G))−1

= (∪i≥1e
i
1(G))−1

≡ ∪i≥1(ei1(G)−1)

≡ ∪i≥1(e−1
1 )i(G)

Hence (e+
1 )−1 ≡ (e−1

1 )+. Now, by our induction hypothesis, there exists e′1 equiv-
alent to e−1

1 , such that −1 is only applied to edge labels in e′1. �
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Before we continue to the first separation result in this chapter for boolean queries,
we need two lemmas which depict query equivalences which will be used frequently.

Lemma 5.2: Let e1 and e2 be arbitrary expressions. Then,

id \ (e1 ∪ e2) ≡ (id \ e1) ◦ (id \ e2).

Proof: Let G be some arbitrary graph. Then,

(m,m) ∈ id \ (e1 ∪ e2)(G) ⇐⇒ (m,m) 6∈ e1(G) ∪ e2(G)

⇐⇒ (m,m) 6∈ e1(G) ∧ (m,m) 6∈ e2(G)

⇐⇒ (m,m) ∈ id \ e1(G) ∧ (m,m) ∈ id \ e2(G)

⇐⇒ (m,m) ∈ (id \ e1) ◦ (id \ e2)(G). �

Lemma 5.3: Let e1 and e2 be arbitrary expressions. Then,

id \ (e1 ◦ e2) ≡ (id \ e1) ∪ (id \ e2).

Proof: Let G be some arbitrary graph. Then,

(m,m) ∈ id \ (e1 ◦ e2)(G) ⇐⇒ (m,m) 6∈ e1(G) ◦ e2(G)

⇐⇒ (m,m) 6∈ e1(G) ∨ (m,m) 6∈ e2(G)

⇐⇒ (m,m) ∈ (id \ e1) ∪ (id \ e2)(G). �

The following lemma will be key to show that under certain conditions −1 does not
add expressive power for boolean queries.

Lemma 5.4: Let F be a set of nonbasic features such that ∩ 6∈ F and + 6∈ F . For any
e ∈ N (F ∪ {−1, π}) the following holds:

− πi(e) is expressible in N (F ∪ {π});

− If π ∈ F , then πi(e) is expressible in N (F ).

Proof: We will prove this proposition by induction on the size of e.
Induction Basis:

− e ∈ {id , di , R}. Clearly πi(e) ∈ N (F ∪{π}). Also, by definition πi(e) is expressible
in N (F ).

− e = R−1. By definition of π, it is clear that π1(R−1) ≡ π2(R) and π2(R−1) ≡
π1(R). Hence πi(e) is expressible in N (F ∪ {π}). On the other hand,

π1(R−1) ≡ id \ π1(R−1) ≡ id \ π2(R) ≡ π2(R).

For analogous reasons, π2(R−1) ≡ π1(R), and hence πi(e) is expressible in N (F ).
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Induction Hypothesis: Assume that our proposition is true for any expression e′ of
size less than n.
Induction Step: We will show that our proposition holds for any expression e of size
n.

− e = πj(e1). Applying a projection operation on top of an expression whose result
only contains self edges leaves the expression result invariant. Thus πi(πj(e1)) ≡
πj(e1), and hence by our induction hypothesis πi(e) is expressible in N (F ∪ {π}).

On the other hand, πi(πj(e1)) ≡ id \ πi(πj(e1)) ≡ id \ πj(e1) ≡ πj(e1). Now, by
our induction hypothesis, πj(e1) is expressible in N (F ), hence πi(e) as well.

− e = πj(e1). Note that in this case π ∈ F . Using the argument in the previous
case, πi(πj(e1)) ≡ πj(e1). By our induction hypothesis, πj(e1) is expressible in
N (F ), and hence it is also expressible in N (F ∪ {π}).

On the other hand note that

πi(πj(e1)) ≡ πi(id \ πj(e1)) ≡ id \ πi(id \ πj(e1)) ≡ id \ (id \ πj(e1)) ≡ πj(e1).

Now, our hypothesis tells us that πj(e1) is expressible inN (F∪{π}). Furthermore,
the presence of π in F implies π ∈ F , and thus F∪{π} ⊆ F . Moreover Theorem 4.4
tells us that N (F ∪ {π}) ≤path N (F ) and hence πj(e1) is expressible in N (F ).

− e = e1∪e2. Clearly πi(e1∪e2) ≡ πi(e1)∪πi(e2). Now, by our induction hypothesis,
both πi(e1) and πi(e2) are expressible in N (F ∪ {π}), hence πi(e1) ∪ πi(e2) ≡
πi(e1 ∪ e2) is also expressible in N (F ∪ {π}).

On the other hand,

πi(e1 ∪ e2) ≡ id \ πi(e1 ∪ e2)

≡ id \ (πi(e1) ∪ πi(e2))

≡ (id \ πi(e1)) ◦ (id \ πi(e2)) (see Lemma 5.2)

≡ πi(e1) ◦ πi(e2).

Now, our induction hypothesis tells us that both πi(e1) and πi(e2) are expressible
in N (F ), and hence πi(e1) ∪ πi(e2) ≡ πi(e1 ∪ e2) is also expressible in N (F ).

− e = e1 ◦ e2. First, we will consider π1(e) and π1(e). To this end, let n be the
first node in the preorder of the syntax tree of e which is not an application of the
composition operator. Now, let e3 be the expression rooted in n and let e4 be the
composition of all the right rooted subexpressions from the parent of n up to the
root (in that order). Due to the associativity of the composition operator, e3 ◦ e4

is equivalent to e1 ◦ e2. Hence it will suffice to prove our proposition for e3 ◦ e4.
Notice that by construction e3 is not a composition application, hence why we
chose to continue with e3 ◦ e4. We will now go over all possibilities for e3.
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– e3 ∈ {R, di , id}. First, we will prove that π1(e3 ◦ e4) ≡ π1(e3 ◦ π1(e4)). Let
G be some arbitrary graph. Then,

(m,m) ∈ π1(e3 ◦ e4)(G) =⇒ ∃n : (m,n) ∈ e3 ◦ e4(G)

=⇒ ∃k : (m, k) ∈ e3(G) ∧ (k, n) ∈ e4(G)

=⇒ (k, k) ∈ π1(e4)(G)

=⇒ (m, k) ∈ e3 ◦ π1(e4)(G)

=⇒ (m,m) ∈ π1(e3 ◦ π1(e4))(G)

(m,m) ∈ π1(e3 ◦ π1(e4))(G) =⇒ ∃n : (m,n) ∈ e3 ◦ π1(e4)(G)

=⇒ (m,n) ∈ e3(G) ∧ (n, n) ∈ e4(G)

=⇒ (m,n) ∈ e3 ◦ e4(G)

=⇒ (m,m) ∈ π1(e3 ◦ e4)(G).

By our induction hypothesis, π1(e4) is expressible in N (F ∪ {π}). Further-
more, e3 ◦ π1(e4) is expressible in N (F ∪ {π}) since e3 ∈ N (F ) and thus
π1(e3 ◦ π1(e4)) is also expressible in N (F ∪ {π}).
On the other hand,

π1(e3 ◦ e4) ≡ id \ π1(e3 ◦ e4) ≡ id \ π1(e3 ◦ π1(e4)) ≡ π1(e3 ◦ π1(e4)).

Now, our induction hypothesis tells us that π1(e4) is expressible in N (F ∪
{π}). However, the presence of π in F implies that N (F ∪ {π}) ≤path N (F )
and thus π1(e4) is expressible in N (F ). Therefore, e3 ◦ π1(e4) is expressible
in N (F ) and hence π1(e3 ◦ π1(e4)) as well.

– e3 = R−1. We will first show that π1(R−1 ◦ e4) ≡ π2(π1(e4) ◦ R). Let G be
an arbitrary graph. Then,

(m,m) ∈ π1(R−1 ◦ e4)(G) =⇒ ∃n : (m,n) ∈ R−1 ◦ e4(G)

=⇒ ∃k : (k,m) ∈ R(G) ∧ (k, n) ∈ e4(G)

=⇒ (k, k) ∈ π1(e4)(G)

=⇒ (k,m) ∈ π1(e4) ◦R(G)

=⇒ (m,m) ∈ π2(π1(e4) ◦R)(G)

(m,m) ∈ π2(π1(e4) ◦R)(G) =⇒ ∃n : (n,m) ∈ π1(e4) ◦R(G)

=⇒ (n, n) ∈ π1(e4)(G) ∧ (n,m) ∈ R(G)

=⇒ ∃k : (n, k) ∈ e4(G) ∧ (m,n) ∈ R−1(G)

=⇒ (m, k) ∈ R−1 ◦ e4(G)

=⇒ (m,m) ∈ π1(R−1 ◦ e4)(G).
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By our induction hypothesis, π1(e4) is expressible in N (F ∪ {π}), and hence
π1(e4) ◦R is expressible in N (F ∪ {π}). Therefore, π2(π1(e2) ◦R) ≡ π1(e) is
also expressible in N (F ∪ {π}).
On the other hand,

π1(R−1 ◦ e4) ≡ id \ π1(R−1 ◦ e4) ≡ id \ π2(π1(e4) ◦R) ≡ π2(π1(e4) ◦R).

Our induction hypothesis tells us that π1(e4) is expressible in N (F ∪ {π}).
Therefore, π1(π1(e4) ◦ R) is expressible in N (F ∪ {π}). But, since π ∈ F , it
follows directly from Theorem 4.4 that N (F ∪ {π}) ≤path N (F ) and hence
π2(π1(e4) ◦R) is also expressible in N (F ).

– e3 = πj(e5). First, we will show that π1(πj(e5) ◦ e4) ≡ πj(e5) ◦ π1(e4). Let G
be some arbitrary graph. Then,

(m,m) ∈ π1(πj(e5) ◦ e4)(G) =⇒ ∃n : (m,n) ∈ πj(e5) ◦ e4(G)

=⇒ (m,m) ∈ πj(e5)(G) ∧ (m,n) ∈ e4(G)

=⇒ (m,m) ∈ πj(e5) ◦ π1(e4)(G)

(m,m) ∈ πj(e5) ◦ π1(e4)(G) =⇒ (m,m) ∈ πj(e5)(G) ∧ (m,m) ∈ π1(e4)(G)

=⇒ ∃n : (m,n) ∈ (e4)(G)

=⇒ (m,n) ∈ πj(e5) ◦ e4(G)

=⇒ (m,m) ∈ π1(πj(e5) ◦ e4)(G).

Our induction hypothesis tells us that πj(e5) and π1(e4) are expressible in
N (F ∪ {π}), and hence πj(e5) ◦ π1(e4) as well.

On the other hand,

π1(πj(e5) ◦ e4) ≡ id \ π1(πj(e5) ◦ e4))

≡ id \ (πj(e5) ◦ π1(e4)) (see the previous case)

≡ (id \ πj(e5)) ∪ (id \ π1(e4)) (see Lemma 5.3)

≡ πj(e5) ∪ π1(e4).

Our induction hypothesis tells us that πj(e5) and π1(e4) are both expressible
in N (F ), and hence πj(e5) ∪ π1(e4) as well.

– e3 = πj(e5). By a similar argument as in the previous case, π1(πj(e5) ◦
e4) ≡ πj(e5) ◦ π1(e4). Now, our induction hypothesis tells us that πj(e5) is
expressible in N (F ) and that π1(e4) is expressible in N (F ∪ {π}). Hence
πj(e5) ◦ π1(e4) is also expressible in N (F ∪ {π}).
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On the other hand,

π1(πj(e5) ◦ e4) ≡ id \ π1(πj(e5) ◦ e4)

≡ id \ (πj(e5) ◦ π1(e4))

≡ (id \ πj(e5)) ∪ (id \ π1(e4)) (see Lemma 5.3)

≡ (id \ (id \ πj(e5)) ∪ π1(e4)

≡ πj(e5) ∪ π1(e4).

By our induction hypothesis, πj(e5) is expressible in N (F ∪ {π}) and π1(e4)
is expressible in N (F ). Moreover, the presence of π in F implies that
N (F ∪ {π}) ≤path N (F ) due to Theorem 4.4 and thus πj(e5) ∪ π1(e4) is
also expressible in N (F ).

– e3 = e5 ∪ e6. Clearly, (e5 ∪ e6) ◦ e4 ≡ (e5 ◦ e4) ∪ (e6 ◦ e4). Hence,

π1((e5 ∪ e6) ◦ e4) ≡ π1((e5 ◦ e4) ∪ (e6 ◦ e4)).

Furthermore, we already know that

π1((e5 ◦ e4) ∪ (e6 ◦ e4)) ≡ π1(e5 ◦ e4) ∪ π1(e6 ◦ e4).

Now, our induction hypothesis tells us that both π1(e5 ◦ e4) and π1(e6 ◦ e4)
are expressible in N (F ∪ {π}), and hence π1(e5 ◦ e4) ∪ π1(e6 ◦ e4) as well.

On the other hand,

π1((e5 ∪ e6) ◦ e4) ≡ π1((e5 ◦ e4) ∪ (e6 ◦ e4))

≡ id \ π1((e5 ◦ e4) ∪ (e6 ◦ e4))

≡ id \ (π1(e5 ◦ e4) ∪ π1(e6 ◦ e4))

≡ (id \ π1(e5 ◦ e4)) ◦ (id \ π1(e6 ◦ e4)) (see Lemma 5.2)

≡ π1(e5 ◦ e4) ◦ π1(e6 ◦ e4).

Since our induction hypothesis tells us that both π1(e5 ◦ e4) and π2(e6 ◦ e4)
are expressible in N (F ), their composition is also expressible in N (F ).

For π2 and π2 we will take a slightly different approach. Let n be the first node in
the reverse preorder that is not an application of the composition operator. Now,
let e3 be the expression rooted in n and let e4 be the composition of all left rooted
expressions from the parent of n up to the root (in that order). Again, by the
associativity of the composition operation, e1 ◦ e2 is equivalent to e4 ◦ e3. We will
now consider all possibilities for e3.
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– e3 ∈ {R, di , id}. First, we will prove that π2(e4 ◦ e3) ≡ π2(π2(e4) ◦ e3). Let
G be some arbitrary graph. Then,

(m,m) ∈ π2(e4 ◦ e3)(G) =⇒ ∃n : (n,m) ∈ e4 ◦ e3(G)

=⇒ ∃k : (n, k) ∈ e4(G) ∧ (k,m) ∈ e3(G)

=⇒ (k, k) ∈ π2(e4)(G)

=⇒ (k,m) ∈ π2(e4) ◦ e3(G)

=⇒ (m,m) ∈ π2(π2(e4) ◦ e3)(G)

(m,m) ∈ π2(π2(e4) ◦ e3)(G) =⇒ ∃n : (n,m) ∈ π2(e4) ◦ e3(G)

=⇒ (n, n) ∈ π2(e4)(G) ∧ (n,m) ∈ e3(G)

=⇒ ∃k : (k, n) ∈ e4(G)

=⇒ ∃(k,m) ∈ e4 ◦ e3(G)

=⇒ (m,m) ∈ π2(e4 ◦ e3)(G).

Our induction hypothesis tells us that π2(e4) is expressible in N (F ), hence
π2(e4)◦e3 is expressible in N (F ∪{π}) (since e3 ∈ N (F )) and thus π2(π2(e4)◦
e3) as well.

On the other hand,

π2(e4 ◦ e3) ≡ id \ π2(e4 ◦ e3) ≡ id \ π2(π2(e4) ◦ e3) ≡ π2(π2(e4) ◦ e3).

Now, our induction hypothesis tells us that π2(e4) is expressible in N (F ∪
{π}). However, since N (F ∪ {π}) ≤path N (F ), π2(e4) is expressible in
N (F ). Thus, since e3 ∈ N (F ), π2(e4) ◦ e3 is expressible in N (F ). Therefore,
π2(π2(e4) ◦ e3) is also expressible in N (F ).

– e3 = R−1. First, notice that

π2(e4 ◦R−1) ≡ π2(π2(e4) ◦R−1) ≡ π2(R ◦ π2(e4)).

Now, since R ∈ N (F ) and since π2(e4) is expressible in N (F ∪ {π}), our
induction hypothesis tells us that R ◦ π2(e4) is expressible in N (F ∪ {π}),
and hence π2(R ◦ π2(e4)) as well.

On the other hand,

π2(e4 ◦R−1) ≡ id \ π2(e4 ◦R−1) ≡ id \ π2(R ◦ π2(e4)) ≡ π2(R ◦ π2(e4)).

Therefore, since π2(e4) is expressible in N (F ∪{π}) by our induction hypoth-
esis and since N (F ∪ {π}) ≤path N (F ), π2(R ◦ π2(e4)) is also expressible in
N (F ).
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– e3 = πj(e5). First, we will show that π2(e4 ◦ πj(e5)) ≡ π2(e4) ◦ πj(e5). Let G
be some arbitrary graph. Then,

(m,m) ∈ π2(e4 ◦ πj(e5))(G) =⇒ ∃n : (n,m) ∈ e4 ◦ πj(e5)(G)

=⇒ (n,m) ∈ e4(G) ∧ (m,m) ∈ πj(e5)(G)

=⇒ (m,m) ∈ π2(e4)(G)

=⇒ (m,m) ∈ π2(e4) ◦ πj(e5)(G)

(m,m) ∈ π2(e4) ◦ πj(e5)(G) =⇒ (m,m) ∈ π2(e4)(G) ∧ (m,m) ∈ πj(e5)(G)

=⇒ ∃n : (n,m) ∈ e4(G)

=⇒ (n,m) ∈ e4 ◦ πj(e5)(G)

=⇒ (m,m) ∈ π2(e4 ◦ πj(e5))(G).

By our induction hypothesis, π2(e4) and πj(e5) are expressible in N (F ∪{π}),
and hence π2(e4) ◦ πj(e5) as well.

On the other hand,

π2(e4 ◦ πj(e5)) ≡ id \ π2(e4 ◦ πj(e5))

≡ id \ (π2(e4) ◦ πj(e5))

≡ (id \ π2(e4)) ∪ (id \ πj(e5)) (Lemma 5.3)

≡ π2(e4) ∪ πj(e5).

Our induction hypothesis tells us that both π2(e4) and πj(e5) are expressible
in N (F ), and hence their union as well.

– e3 = πj(e5). Using a similar argument as in the previous case, π2(e4 ◦
πj(e5)) ≡ π2(e4)◦πj(e5). Now, by our induction hypothesis, π2(e4) is express-
ible inN (F∪{π}) and πj(e5) is expressible inN (F ), and hence π2(e4)◦πj(e5)
is expressible in N (F ∪ {π}).
On the other hand,

π2(e4 ◦ πj(e5)) ≡ id \ π2(e4 ◦ πj(e4))

≡ id \ (π2(e4) ◦ πj(e5))

≡ (id \ π2(e4)) ∪ (id \ πj(e5)) (Lemma 5.3)

≡ π2(e4) ∪ (id \ (id \ πj(e5)))

≡ π2(e4) ∪ πj(e5).

Our induction hypothesis tells us that π2(e4) is expressible in N (F ) and that
πj(e5) is expressible in N (F ∪ {π}). However, since π ∈ F , Theorem 4.4
implies that N (F ∪ {π}) ≤path N (F ). Hence πj(e5) is expressible in N (F ),
and therefore π2(e4) ∪ πj(e5) is also expressible in N (F ).
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– e3 = e5∪e6. Obviously, π2(e4◦(e5∪e6)) ≡ π2((e4◦e5)∪(e4◦e6)). Furthermore,
we already know that π2((e4 ◦ e5)∪ (e4 ◦ e6)) ≡ π2(e4 ◦ e5)∪π2(e4 ◦ e6). Now,
by our induction hypothesis, both π2(e4 ◦ e5) and π2(e4 ◦ e6) are expressible
in N (F ), and hence their union as well.

On the other hand,

π2(e4 ◦ (e5 ∪ e6)) ≡ π2((e4 ◦ e5) ∪ (e4 ◦ e6))

≡ id \ π2((e4 ◦ e5) ∪ (e4 ◦ e6))

≡ id \ (π2(e4 ◦ e5) ∪ π2(e4 ◦ e6))

≡ π2(e4 ◦ e5) ◦ π2(e4 ◦ e6). (see Lemma 5.2)

Our induction hypothesis now tells us that both π2(e4 ◦ e5) and π2(e4 ◦ e6)
are expressible in N (F ), and hence their composition as well. �

An important corollary of the previous lemma is that unless languages contain ∩
or +, the expressive power of the language remains unaltered after including −1 if π is
present.

Proposition 5.5 (Collapse of −1): Let F be a set of nonbasic features such that ∩ 6∈
F and + 6∈ F . Then, N (F ∪ {−1}) ≤bool N (F ∪ {π}).

Proof: Let e be an expression in N (F ∪ {−1}). By Lemma 5.4, π1(e) is expressible in
N (F∪{π}). However, notice that for every graph G, e(G) 6= ∅ if and only if π(e)(G) 6= ∅,
which proves the result. �

Towards the characterization of ≤bool we will introduce some notation to support
the collapse of −1 mentioned in the previous proposition.

For a set of nonbasic features F , define F̃ as follows.

F̃ =

{
F ∪ {−1}, if π ∈ N (F ),∩ 6∈ F and + 6∈ F
F , otherwise

With this new notation we are ready to supply the first separation result for ≤bool.

Proposition 5.6: Let F1 and F2 be sets of nonbasic features. Then, F1 ⊆ F̃2 implies
that N (F1) ≤bool N (F2).

Proof: First, notice that we have two cases, either F̃2 = F2, or F̃2 = F2 ∪ {−1}. In

the first case, F1 ⊆ F̃2 = F2. Hence we can apply Proposition 4.3, which tells us that
N (F1) ≤path N (F2), which implies N (F1) ≤bool N (F2).

Let us now consider the latter case. To this end assume that F̃2 = F2∪{−1}. By the

definition of F̃2, π ∈ F2,∩ 6∈ F2 and + 6∈ F2. Since ∩ 6∈ F2, we know that adding −1 to
F2 does not introduce new features in F2 other than itself, hence F2∪{−1} = F2 ∪ {−1}.
Now, since F1 ⊆ F̃2 = F2∪{−1} = F2 ∪ {−1}, we can apply Proposition 4.3, which tells us
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that N (F1) ≤path N (F2∪{−1}). Moreover, N (F1) ≤path N (F2∪{−1}) since F2∪{−1} ⊆
F2 ∪ {−1}, and hence N (F1) ≤bool N (F2 ∪ {−1}). Now, Proposition 5.5 implies that
N (F2∪{−1}) ≤bool N (F2∪{π}) = N (F2). However, since F2 ⊆ F2, Theorem 4.4 tells us
that N (F2) = N (F2), and hence N (F2 ∪ {−1}) ≤bool N (F2 ∪ {π}) = N (F2). Therefore,
by transitivity, N (F1) ≤bool N (F2) as desired. �

The goal is thus to obtain an ‘if and only if’ characterization of ≤bool as we did for
≤path in Chapter 4. Unfortunately, the converse of the previous theorem does not hold,

since for example N (−1) ≤bool N (+, π), but {−1} * {̃+, π} = {+, π}. This problem
arises because the previous proposition does not consider transitivity on the left hand
side, i.e., it does not consider N (−1) ≤bool N (π) ≤bool N (π,+). Thus the tilde notation
we introduced before is not rich enough. To this end, we will introduce another notation
which we will need alongside the tilde notation. For a set of nonbasic features F define
F̂ as follows.

F̂ =

{
(F \ {−1}) ∪ {π}, if −1 ∈ F ,∩ 6∈ F and + 6∈ F
F, otherwise

Using this notation we obtain a result similar to Proposition 5.6.

Proposition 5.7: Let F1 and F2 be sets of nonbasic features. If F̂1 ⊆ F2, then N (F1) ≤bool

N (F2).

Proof: We have two cases, either F̂1 = F1 or F̂1 = (F1 \ {+}) ∪ {π}. In the former
case, observe that F1 ⊆ F2. Therefore, Proposition 4.3 can be applied, which tells us
that N (F1) ≤path N (F2), and thus N (F1) ≤bool N (F2).

Now let us consider the latter case. By definition we know that ∩ and + are not
present in F1. Therefore, N (F1) ≤bool N (F̂1) by Proposition 5.5. Furthermore, since

F̂1 ⊆ F2, we can apply Proposition 4.3, which implies that N (F̂1) ≤path N (F2) and

hence also that N (F̂1) ≤bool N (F2). Now, by transitivity, N (F1) ≤bool N (F2) as
desired. �

The above proposition solves the transitivity problem of Proposition 5.6. Unfortunately,
however, the converse again does not hold, see the following counter example: clearly

N (di ,−1) ≤bool N (di ,−1,+), but ̂{di ,−1} = {di , π} * {di ,−1,+} = {di ,−1,+}. Also, it
does not consider the collapse of −1 on the righthand size when both languages are not
in C.

It appears that if N (F1) ≤bool N (F2), the converse of Proposition 5.6 or Proposi-
tion 5.7 holds. Thus we get the following theorem.

Theorem 5.8: Let F1 and F2 be sets of nonbasic features. Then, F1 ⊆ F̃2 or F̂1 ⊆ F2

if and only if N (F1) ≤bool N (F2).

Towards the proof of the if direction, we will use an approach similar to how we estab-
lished the characterization of ≤path. Thus, we will first characterize ≤bool for languages
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in the same classes

C = {N (F ) | ∩ 6∈ F ,+ 6∈ F} (Section 4.2)

C[∩] = {N (F ) | ∩ ∈ F ,+ 6∈ F} (Section 5.2)

C[+] = {N (F ) | ∩ 6∈ F ,+ ∈ F} (Section 5.3)

C[∩,+] = {N (F ) | ∩ ∈ F ,+ ∈ F} (Section 5.4)

and then we will characterize ≤bool for languages over different classes in Section 5.5.
As we will see later, the converse of Proposition 5.7 does hold when F1 and F2 are

in the same class. Thus, for languages within the same class we obtain the following
less complicated theorem.

Theorem 5.9: Let N (F1) and N (F2) be languages in the same class. Then, F1 ⊆ F̃2

if and only if N (F1) ≤bool N (F2).

We will first prove Theorem 5.9 holds.

5.1 Languages without ∩ and without +

In this section we will characterize ≤bool for languages in C, i.e., Theorem 5.9 restricted
to C. To achieve this, we first need the following lemma.

Proposition 5.10 (Primitivity of −1): Let F be a set of nonbasic features. If −1 ∈
F , then N (F ) 6≤bool

strong N (di ,+).

Proof: The graphs in Figure 4.4b are distinguishable in N (F ) by R2 ◦R−1 ◦R2. They
are, however, not distinguishable in N (di ,+). This result was established by the brute
force method described in Section 3.1. �

We are now ready to prove Theorem 5.9 restricted to C.

Proposition 5.11: Let N (F1) and N (F2) be languages in C. If F1 6⊆ F̃2, then N (F1) 6≤bool

N (F2).

Proof: First, note that F1 ∪ F2 ⊆ {−1, π, π, di} since N (F1) and N (F2) are in C. We
will consider two ‘major’ cases: π ∈ N (F2) and π 6∈ N (F2). First we will consider

π ∈ N (F2). In this case F̃2 = N (F2) ∪ {−1} since ∩,+ 6∈ F2 by definition. Since

F1 6⊆ F̃2, either π or di is in F1, but missing in F̃2 and thus also missing in F2. If di is
missing, then Proposition 4.5 proves the result. On the other hand if π is missing, then
Proposition 4.6 proves the desired result.

Now, we will consider the case where π 6∈ F2. Here, π 6∈ F2 and F1 6⊆ F̃2 = F2.
Hence either one of di ,−1, π, π is in F1 but missing in F2.

− π ∈ F1 and π 6∈ F2. Then, F2 ⊆ {−1, di} and hence Proposition 4.8 can be applied,
which proves the result.
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− −1 ∈ F1 and −1 6∈ F2. Now, F2 ⊆ {di} and thus Proposition 5.10 proves what was
asked.

− di ∈ F1 and di 6∈ F2. In this case Proposition 4.5 can be applied.

− π ∈ F1 and π 6∈ F2. Here, Proposition 4.6 can be applied. �

5.2 Languages with ∩ and without +

In this section we will prove Theorem 5.9 for languages in C[∩]. To achieve this, we will
first construct a new bisimulation technique.

Definition 5.12: Let G1 en G2 be graphs, let k be a natural number and let Ẑ =
(Z1, . . . , Zk) be a tuple of relations, where Zi ⊆ adom(G1)2 × adom(G2)2 for i ∈
{0, . . . , k}. We say that Ẑ is a bisimulation up to k from G1 to G2 if the following
conditions are satisfied:

− Atoms: Assume that (a1, b1, a2, b2) ∈ Zi. a1 = b1 iff a2 = b2; and (a1, b1) ∈ G1(R)
iff (a2, b2) ∈ G2(R) for every R ∈ Λ;

− Forth: Assume that (a1, b1, a2, b2) ∈ Zi where i > 0. For every c1 ∈ adom(G1),
there exists c2 ∈ adom(G2) such that (a1, c1, a2, c2) ∈ Zi−1 and (c1, b1, c2, b2) ∈
Zi−1;

− Back: Assume that (a1, b1, a2, b2) ∈ Zi where i > 0. For every c2 ∈ adom(G2),
there exists c1 ∈ adom(G1) such that (a1, c1, a2, c2) ∈ Zi−1 and (c1, b1, c2, b2) ∈
Zi−1. �

For two tuples of relations Ẑ = (Z1, . . . , Zk) and Ŵ = (W1, . . . ,Wk) of the same

length, denote with Ẑ∪Ŵ the pairwise union of Ẑ and Ŵ , i.e., Ẑ∪Ŵ = (Z1∪W1, . . . , Zk∪
Wk). It appears that the union of two bisimulations is again a bisimulation.

Lemma 5.13: If Ẑ and Ŵ are bisimulations from G1 to G2 up to level k, then so is
(Ẑ ∪ Ŵ ).

Proof: We will first verify the ‘atoms’ condition. Suppose that (a1, b1, a2, b2) ∈ Zi∪Wi.
Then (a1, b1, a2, b2) ∈ Zi or (a1, b1, a2, b2) ∈Wi. Thus the atoms condition holds.

For the ‘forth’ condition, we can use a similar argument. If i > 0 and (a1, b1, a2, b2) ∈
Zi ∪Wi, then (a1, b1, a2, b2) ∈ Zi or (a1, b1, a2, b2) ∈ Wi. Without loss of generalization
we can assume that (a1, b1, a2, b2) ∈ Zi. Now, for every c1 ∈ adom(G1), there exists
c2 ∈ adom(G2) such that (a1, c1, a2, c2) ∈ Zi−1 and (c1, b1, c2, b2) ∈ Zi−1 for all i, since
Ẑ is a bisimulation from G1 to G2 up to level k. Therefore, (a1, c1, a2, c2) ∈ Zi−1∪Wi−1

and (c1, b1, c2, b2) ∈ Zi−1 ∪Wi−1, since Zi−1 ⊆ Zi−1 ∪Wi−1, which proves the ‘forth’
condition.

The proof for the ‘back’ condition is completely analogous to the proof for the ‘forth’
condition. �
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With the following two lemmas we will show that this new bisimulation notion is
‘equivalent’ with the bisimilarity notion described in Section 3.2. First we will show
that if a tuple (a1, b1, a2, b2) is present in Zk of a bisimulation Ẑ from G1 to G2, then
also (G1, a1, b1) 'k (G2, a2, b2).

Proposition 5.14: If there exists a bisimulation Ẑ from G1 to G2 up to at least level
k such that (a1, b1, a2, b2) ∈ Zk, then (G1, a1, b1) 'k (G2, a2, b2).

Proof: We will prove this proposition by induction on k.
Induction Basis: Let k = 0. If (a1, b1, a2, b2) ∈ Z0, then by the ‘atoms’ condition of
the bisimulation a1 = b1 if and only if a2 = b2; and (a1, b1) ∈ G1(R) iff (a2, b2) ∈ G2(R)
for every R ∈ Λ, which is exactly the ‘atoms’ condition for bisimilarity. Therefore, since
k = 0, this is the only condition that has to be satisfied, and hence (G1, a1, b1) '0

(G2, a2, b2).
Induction Hypothesis: Suppose that our proposition holds for k = n, i.e., if there
exists a bisimulation Ẑ from G1 to G2, such that (a1, b1, a2, b2) ∈ Zn, then (G1, a1, b1) 'n
(G2, a2, b2).
Induction step: We will now show that our proposition also holds for k = n + 1.
Suppose that (a1, b1, a2, b2) ∈ Zn+1. Then, using a similar argument as in our induction
basis, the atoms condition for bisimilarity holds, since the argument does not depend
on k.

So all that is left to verify is the ‘forth’ and ‘back’ conditions for bisimilarity. We will
only consider the former, since the proof for the ‘back’ condition is analogous. Now,
for every c1 ∈ adom(G1), there exists c2 ∈ adom(G2), such that (a1, c1, a2, c2) ∈ Zn
and (c1, b1, c2, b2) ∈ Zn, since (a1, b1, a2, b2) ∈ Zn+1, and n + 1 > 0. When we apply
our induction hypothesis we get that (G1, a1, c1) 'n (G2, a2, c2) and (G1, c1, b1) 'n
(G2, c2, b2), which is exactly the ‘forth’ condition, and thus concludes our proof. �

The converse of the previous proposition also holds. Hence the bisimulation and the
bisimilarity notation are equivalent.

Proposition 5.15: If (G1, a1, b1) 'k (G2, a2, b2), then there exists a bisimulation Ẑ
from G1 to G2 up to at least level k such that (a1, b1, a2, b2) ∈ Zk.

Proof: We will prove this proposition by induction on k.
Induction Basis: If (G1, a1, b1) '0 (G2, a2, b2), then the atoms condition holds, i.e.,
a1 = b1 if and only if a2 = b2; and (a1, b1) ∈ G1(R) if and only if (a2, b2) ∈ G2(R) for
every R ∈ Λ. Hence Z = {Z0 = {(a1, b1, a2, b2)}} is a bisimulation from G1 to G2 such
that (a1, b1, a2, b2) ∈ Z0.
Induction Hypothesis: Suppose that our proposition holds for k = n, that is if
(G1, a1, b1) 'n (G2, a2, b2), then there exists a bisimulation Ẑ from G1 to G2 such that
(a1, b1, a2, b2) ∈ Zn.
Induction Step: We will now show that our proposition holds for k = n + 1. To
this end, assume that (G1, a1, b1) 'n (G2, a2, b2). Then, by definition, for every c1 ∈
adom(G1), there exists c2 ∈ adom(G2), such that (G1, a1, c1) 'n (G2, a2, c2) and
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(G1, c1, b1) 'n (G2, c2, b2). Therefore, by our induction hypothesis there exists two

bisimulations Ẑ and Ŵ from G1 to G2, such that (a1, c1, a2, c2) ∈ Zn and (c1, b1, c2, b2) ∈
Zn. Now, by Lemma 5.13 Ẑ ∪ Ŵ is a bisimulation from G1 to G2 up to level n. Fur-
thermore, setting the n+ 1’th component to {(a1, b1, a2, b2)} yields a bisimulation from
G1 to G2 up to level n+ 1 by construction, such that (a1, b1, a2, b2) ∈ Zn+1 as desired.�

If two tuples of relations Ẑ = (Z1, . . . , Zk) and Ŵ = (W1, . . . ,Wk) have the same

length, we say that Ẑ ⊆ Ŵ , if Zi ⊆ Wi for all i ∈ {1, . . . , k}. Using this notation, the
set of all bisimulations from G1 to G2 up to level k form a partially ordered set. The
following proposition tells us that this partial order has a unique maximal element.

Proposition 5.16: Let G1 and G2 be two finite graphs and let k be a natural num-
ber. There is a unique maximal bisimulation from G1 to G2 up to k, denoted by
Sim(G1, G2, k).

Proof: The union of all bisimulations from G1 to G2 up to level k is a maximal
bisimulation. Notice that since G1 and G2 are finite, there are only a finite number of
bisimulations from G1 to G2 up to level k, and hence there is only one such maximal
bisimulation from G1 to G2 up to level k. �

It appears that the maximal bisimulation from G1 to G2 up to level k has a mono-
tonically decreasing structure. This property will be useful later on.

Lemma 5.17: The maximal bisimulation Ẑ = Sim(G1, G2, k) up to level k from G1 to
G2 is monotonically decreasing, i.e., Zi ⊇ Zi+1 for i ∈ {0, . . . , k − 1}.

Proof: Let (a1, b1, a2, b2) ∈ Zi+1. Proposition 5.14 implies that (G1, a1, b1) 'i+1

(G2, a2, b2), since Ẑ is a bisimulation up to level i + 1. Now, Lemma 3.7 tells us that
(G1, a1, b1) 'i (G2, a2, b2), which by Proposition 5.15 implies the existence of a bisimu-

lation Ŵ from G1 to G2 such that (a1, b1, a2, b2) ∈ Wi. Moreover, since Sim(G1, G2, k)
is the unique maximal bisimulation from G1 to G2 up to k, it is clear that Wi ⊆ Zi and
thus (a1, b1, a2, b2) ∈ Zi as desired. �

Later we will have to compute the maximal bisimulation from G1 to G2 up to a
certain level k. We will do this by refining an already existing bisimultation from G1 to
G2 up to level k − 1 to one of level k.

Definition 5.18: Let G1 and G2 be graphs, let k be a natural number, and let Z ⊆
adom(G1)2 × adom(G2)2. Define Refine(Z) as the set Z ′ of tuples (a1, b1, a2, b2) ∈ Z
that satisfy the following conditions:

− Forth: For every c1 ∈ adom(G1), there exists c2 ∈ adom(G2), such that

(a1, c1, a2, c2) ∈ Z and (c1, b1, c2, b2) ∈ Z.
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− Back: For every c2 ∈ adom(G2), there exists c1 ∈ adom(G1), such that

(a1, c1, a2, c2) ∈ Z and (c1, b1, c2, b2) ∈ Z. �

The following proposition tells us that the refine operation does exactly what it is
supposed to, i.e., it refines an already existing bisimultation up to one level higher. It
also tells us that the refine operation preserves maximality.

Lemma 5.19: Let Ẑ be a bisimulation from G1 to G2 up to level k, let Zk+1 =
Refine(Zk) and let T = (Z,Zk+1). Then,

(a) T is a bisimulation from G1 to G2 up to k + 1;

(b) Suppose that G1 and G2 are finite. If Ẑ is the maximal bisimulation from G1 to G2

up to level k, then T is the maximal bisimulation from G1 to G2 up to level k + 1.

Proof: The proof of (a) follows directly from the construction of Refine(Z).
To show (b), let Ẑ ′ = {Z ′1, . . . , Z ′k+1} be the maximal bisimulation from G1 to G2

up to level k + 1. We will show that Ẑ ′ ⊆ T . Note that by construction of T , the
first k components of T equal Ẑ. Furthermore, since Ẑ is a maximal bisimulation
up to level k, Z ′i ⊆ Zi for all 0 ≤ i ≤ k. Thus the only thing left to show is that

Z ′k+1 ⊆ Zk+1. By Lemma 5.17, Ẑ ′ is monotonically decreasing — which together with
the previous argument implies that Z ′k+1 ⊆ Z ′k ⊆ Zk. Moreover, by definition of the
refine operation, Z ′k+1 ⊆ Refine(Z ′k). Now, since the refine operation is monotone,
Refine(Z ′k) ⊆ Refine(Zk), and hence Z ′k+1 ⊆ Refine(Zk) = Zk+1. �

We will now utilize the new bisimulation notion to show that it is decidable whether
two marked graphs are bisimilar up to any level.

Theorem 5.20: It is decidable in polynomial time whether two marked finite graphs
(G1, a1, b1) and (G2, a2, b2) are bisimilar up to k for every natural number k.

Proof: Let Z0 be the set of all tuples (a1, b1, a2, b2) ∈ adom(G1)2 × adom(G2)2 which
satisfy the bisimulation atoms condition. Note that this is the maximum bisimulation
from G1 to G2 up to level 0. Now, for every natural number k > 0 define by induction
Zk := Refine(Zk−1). By Lemma 5.19, Ẑk = (Z1, . . . , Zk) is the maximal bisimulation
from G1 to G2 up to level k. Now remember that Lemma 5.17 tells us that Ẑ is monoton-
ically decreasing, hence Zk−1 ⊇ Zk. Therefore, since G1 and G2 are finite, there exists
l, such that for every n ≥ l, Zn = Zl. Note that l ≤ max(|adom(G1)|, |adom(G2)|)4,
since the refine operator removes only one tuple in the worst case scenario and since
there are at most max(|adom(G1)|, |adom(G2)|)4 such tuples.

Now, by the preceding argument, if (a1, b1, a2, b2) ∈ Zl, then (a1, b1, a2, b2) ∈ Zn
for every n ≥ l. Moreover, Proposition 5.14 and Proposition 5.15 tells us that this is
equivalent to: if (G1, a1, b1) 'l (G2, a2, b2), then (G1, a1, b1) 'n (G2, a2, b2) for every
n ≥ l. Thus deciding whether (G1, a1, b1) and (G2, a2, b2) are bisimilar up to k for every
k reduces to computing Zk until the bisimulation stabilizes.
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Figure 5.1: Graphs used to establish separation in Proposition 5.21

Since computing a single refine operator can be done in polynomial time and since
the procedure only has to compute a polynomial number of such operators — the time
complexity of this procedure is polynomial in the size of G1 and G2. �

We can now use the previous proposition to decide whether the graphs in Figure 5.1
are indistinguishable — we will need this to prove the following proposition.

Proposition 5.21 (Primitivity of −1): Let F1 and F2 be sets of nonbasic features
such that + is not present in both F1 and F2. If −1 ∈ F1, ∩ ∈ F1 and −1 6∈ F2, then
N (F1) 6≤bool

strong N (F2).

Proof: The boolean query q expressed by (R2 ◦R−1 ◦R)∩R distinguishes the graphs
G1 and G2 displayed in Figure 5.1. Thus G1 and G2 are distinguishable in N (F1). On
the other hand, using the algorithm described in Theorem 5.20, we can verify that for
every (a1, b1) ∈ adom(G1)2, there exists (a2, b2) ∈ adom(G2)2, such that (G1, a1, b1) 'k
(G2, a2, b2) for every k. Hence for every k we have found two graphs G′1 = G1 and
G′2 = G2, such that for every (a1, b1) ∈ adom(G1)2, there exists (a2, b2) ∈ adom(G2)2

such that (G1, a1, b1) 'k (G2, a2, b2). Therefore by Corollary 3.6, q is not expressible
in N (\, di). Furthermore, since F2 ⊆ {π, π,∩, \, di} = {\, di}, Theorem 4.4 implies
that N (F2) ≤path N (di , \) and hence also N (F2) ≤bool N (di , \). Now, by transitivity,
N (F1) 6≤bool

strong N (F2) as desired. �

We are now ready to prove that Theorem 5.8 holds for languages in C[∩].

Proposition 5.22: Let N (F1) and N (F2) be in C[∩]. If F1 6⊂ F̃2, then N (F1) 6≤bool
strong

N (F2).

Proof: Since N (F1) and N (F2) both are in C[∩], ∩ is present in both F1 and F2, and

thus F̃2 = F2. Hence, F1 6⊆ F2 if and only if there exists x ∈ {π, π, di ,−1, \} such
that x ∈ F1 and x 6∈ F2. We will go over every possibility for x and show that one
of Proposition 4.5, Proposition 4.6, Proposition 4.7, Proposition 4.8, Proposition 4.17,
Proposition 4.18 or Proposition 5.21 can be applied, which then directly implies our
proposition.

− x = di : Proposition 4.5 gives us the desired result;

− x = −1: Proposition 5.21 proves what was asked;

− x = \: Proposition 4.17 proves our proposition in this case;
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− x = π: Then, π 6∈ F2 if and only if di ,−1, π, π 6∈ F2, and hence F2 ⊆ {∩, \}. Now
we can apply Proposition 4.18 which proves the result;

− x = π. Notice that by the interdependencies described at the beginning of Chap-
ter 4

π 6∈ F2 ⇐⇒ \ 6∈ F2 ∨ (\ ∈ F2 ∧ π 6∈ F2). (5.1)

If \ 6∈ F2, we can apply Proposition 4.6 to prove our result.

On the other hand if \ ∈ F2, then we cannot apply Proposition 4.6 — hence we
need another strategy. First note that by equation (5.1) π cannot be present in
F2. Moreover,

\ ∈ F2 ∧ π 6∈ F2 =⇒ di 6∈ F2 ∧ −1 6∈ F2.

Hence, F2 ⊆ {∩, \}, since F2 ⊆ {∩, π, π, di ,−1, \}. Furthermore, since π ∈ F1,
π ∈ F1, and hence we can apply Proposition 4.18, which proves the result. �

Notice that the proof of the proposition above is similar to the proof of Proposition 4.19.
The proof only differs in the case where x = −1 — this is due to the fact that unlike
all the other cases, we only established path separation when x = −1, which as we saw
earlier, does not necessarily imply boolean separation. Also, note that we established
strong boolean separation in every step of the proof — hence we get the following
corollary which does not necessarily holds in general.

Corollary 5.23: Let N (F1) and N (F2) be in C[∩]. Then, N (F1) ≤bool N (F1) if and
only if N (F1) ≤bool

strong N (F2).

Remark 5.24: Note that for languages in C[∩], F̃2 = F2. Hence Theorem 4.4, Propo-
sition 5.6 and Proposition 5.22 tell us that the characterizations of ≤path and ≤bool for
languages in C[∩] coincide. �

5.3 Languages without ∩ and with +

In this section we will characterize ≤bool for languages in C[+], i.e., Theorem 5.9 re-
stricted to C[+].

We will now prove a proposition which will be key in the separation result for
languages in C[+].

Proposition 5.25 (Primitivity of −1): Let F1 and F2 be sets of nonbasic features.
If 1 ∈ F1,

+ ∈ F1, and −1 6∈ F2, then N (F1) 6≤bool N (F2).

The proof of this proposition is technical and will be split into several lemmas in Sec-
tion 5.3.1.

Armed with the previous lemma and the results from the prior sections and chapters,
we are now ready to prove Theorem 5.8 for languages in C[+].
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Proposition 5.26: Let N (F1) and N (F2) be languages in C[+]. If F1 * F̃2, then
N (F1) 6≤bool N (F2).

Proof: Notice that F̃2 = F2, since + ∈ F2. Now, first suppose that π ∈ F2. Then,
F1 6⊆ F̃2 = F2 if and only if F1 ∩ {di ,−1} 6⊆ F2 ∩ {di ,−1}. Hence we have the following
two scenarios: di ∈ F1 and di 6∈ F2; −1 ∈ F1 and −1 6∈ F2. If di ∈ F1 and di 6∈ F2,
then N (F1) 6≤bool

strong N (F2) due to Proposition 4.5. In the latter case we can apply

Proposition 5.25 which tells us that N (F1) 6≤bool N (F2).

Now suppose that π 6∈ F2, then F2 = F2. Hence, F1 6⊆ F2 if and only if F1 6⊆ F2.
Therefore, there has to exists some x ∈ F1 such that x 6∈ F2. Since F1 ⊆ {di , π, π,−1,+}
and F2 ⊆ {di , π,−1,+}, either Proposition 4.5, Proposition 4.6, Proposition 4.8 or
Proposition 5.25 gives us the required result. Notice that we cannot apply those propo-
sitions directly since they use F1 instead of F1. However, here this is no issue since
F1 ⊆ F1. �

5.3.1 Proof of Proposition 5.25

First we will try to find a tight bound on the degree of Rn. To this end, we will examine
the tree structure of Rn. First we will need two preliminary lemmas on trees.

Lemma 5.27: A complete binary tree with 2n+1 − 1 nodes has depth n.

Proof: We will prove this by strong induction on n.
Induction Basis: When n = 0, the tree has only 1 node, and thus has depth 0.
Induction Hypothesis: Suppose that for k < n, a complete binary tree with 2k+1− 1
nodes has depth k.
Induction Basis: We will now show that our lemma holds for complete binary trees
of depth n. To this end, let T be a complete binary tree with 2n+1 − 1 nodes. Since
T is complete it has two subtrees of size 2n − 1 rooted in the root node of T . By our
induction hypothesis either subtree has depth n − 1. Therefore, since T has one level
more level than either subtree, it has depth n as desired. �

Lemma 5.28: A binary tree T with n nodes where every node is added in breadth first
fashion has a depth of at most dlog2 ne.

Proof: Suppose that m is the natural number such that 2m < n ≤ 2m+1. Since the
nodes of T are added in a depth first fashion — the levels of T are filled up, except
possibly the last level. Therefore, T has at most as many levels as a complete binary tree
with 2m+2 − 1 nodes, which according to Lemma 5.27 has depth m + 1 = log2(2m+1).
Our lemma now follows from the fact that dlog2 ne = log2 2m+1. �

Now we will show that the previous lemma provides a bound on the degree of Rn.
Recall from Definition 3.3 that N (F )d denotes the set of expressions in N (F ) with a
degree of at most d.
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Corollary 5.29: Let n be a natural number, and let R be a relation. The expression
Rn is equivalent to an expression in Ndlog2 ne.

Proof: We will construct a new expression e ∈ N equivalent to Rn by constructing
its tree representation — we do so as follows: add n transitive closure operations in a
breadth first fashion and then add two R labelled nodes to the leaf nodes labelled ◦.
This expression clearly is equivalent to Rn since the composition operation is associative.
By Lemma 5.28 this tree has at most depth dlog2 ne. The depth of this tree obviously
equals the degree of e since the root of this tree is a composition application and the
last level of this tree only contains R labelled nodes. Thus we have found an expression
in N equivalent to Rn with a degree of at most dlog2 ne. �

We will now introduce some definitions which will be used until the remainder of
this section. Let m be a multiple of 4, let Gm1 be the graph at the top of Figure 5.2
and Gm2 be the graph at the bottom. It is important to note that those graphs have the
displayed form only when m ∈ N is a multiple of 4. Hence why we assume that m is a
multiple of 4.

We say that a tuple (x, y) ∈ adom(G1)×adom(G2) is valid if the following conditions
hold:

− x ∈ {yi, wi, ti}, then y ∈ {ui, vi, w′i};

− x = x1, then y = x′1;

− x = x2, then y = x′2;

− x = z1, then y = z′1;

− x = z2, then y = z′2;

Furthermore, we say that a quadruple (a1, b1, a2, b2) ∈ adom(G1)2× adom(G2)2 is valid
if the following holds:

(a) (a1, a2) and (b1, b2) are valid;

(b) (a1, b1) ∈ G1 if and only if (a2, b2) ∈ G2; and a1 = b1 if and only if a2 = b2 (atoms);

(c) (a1, b1, a2, b2) = (x2, y2, x
′
2, b2), then b2 = u2;

(d) (a1, b1, a2, b2) = (x2, b1, x
′
2, u2), then b2 = y2;

Intuitively a valid quadruple is a potential candidate for a bisimilarity between Gm1 and
Gm2 .

We will say that a node x ∈ adom(Gm1 ) is “’Y left” if x ∈ {x1, x2} or x = yi with
0 ≤ i ≤ m/2 + 1. Furthermore we will say that x is Y right if x ∈ {z1, z2} or x = yi
with m/2 + 1 < i ≤ m+ 1. Analogously we will say that x is W (resp. T ) left if x = wi
(resp. x = ti) where 0 ≤ i ≤ m/2 + 1 and W (resp. T ) right if m/2 + 1 < i ≤ m + 1.
For nodes in adom(Gm2 ) we will use an analogous left and right notion for U, V and W ′.
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Let us now define a function f with as domain the valid tuples.

f : (d, e) 7→



m/2, d = yi left and e = ui

i− 1, d = yi left and (e = vi or e = w′i)

m+ 1− i, d = yi right and (e = ui or e = w′i)

m/2, d = yi right and e = vi

i− 1, d = wi left and e = ui

m/2, d = wi left and (e = vi or e = w′i)

m/2, d = wi right and (e = ui or e = w′i)

m+ 1− i, d = wi right and e = vi

i− 1, d = ti left and e = ui

m/2, d = ti left and (e = vi or e = w′i)

m/2, d = ti right and (e = ui or e = w′i)

m+ 1− i, d = ti right and e = vi

m/2, d = zi and e = z′i
m/2, d = xi and e = x′i

Later we will show that the maximum degree of bisimilarity for a valid quadruple
(a1, b1, a2, b2) is min(f(a1, a2), f(b1, b2)). Hence f(x, y) can can be seen as a potential
bound on the number of rounds in the bisimilarity game one is allowed to play.

Towards a proof of this fact, we first need a few technical lemmas. By inspecting
Figure 5.2 it is clear that for every c1 ∈ adom(Gm1 ), we can find a c2 ∈ adom(Gm2 ) such
that (c1, c2) is valid, and (a1, c1, a2, c2) and (c1, b1, c2, b2) satisfy the atoms condition if
(a1, b1, a2, b2) is valid, f(a1, a2) > 0 and f(b1, b2) > 0. The following lemma justifies
this intuition.

Lemma 5.30: If (c1, b1, c2, b2) is valid, f(a1, a2) > 0 and f(b1, b2) > 0, then for every
c1 ∈ adom(Gm1 ), there exists c2 ∈ adom(Gm2 ) such that (c1, b2) is valid, and (a1, c1, a2, c2)
and (c1, b1, c2, b2) satisfy the atoms condition.

Proof: Let c1 ∈ adom(G1). We will split out proof up into several cases.

− Suppose that (a1, c1) is an edge, then we pick c2 in the same column1 as c1 such
that (a2, c2) is an edge. This is clearly possible if a1 6= ym+1, since in that case
any node in the column of a2 has the same outdegree as a1. On the other hand,
if a1 = ym+1, then a2 = vm+1 since f(a1, a2) > 0. Thus there is room to pick c2.
Hence (c1, c2) is valid and (a1, c1, a2, c2) satisfies the atoms condition.

We will now show that (c1, b1, c2, b2) is valid. If (c1, b1) is also an edge, then c1

has indegree and outdegree 1. Hence c1 ∈ {x2, y1, z2}. Let us now consider each
such c1.

1We say that two nodes are in the same column if they are displayed in the same column in Figure 5.2.
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– If c1 = x2, then c2 = x′2, a1 = x1 and b1 = y1. Now, a2 = x′1 since
(a1, b1, a2, b2) is valid. Furthermore, b2 = u1 since f(b1, b2) > 0. Thus (c2, b2)
is also an edge as desired;

– If c1 = y1, then c2 = u1, a1 = x2 and b1 = y2. Now, a2 = x′2 since
(a1, b1, a2, b2) is valid. Furthermore, b2 = u2, since (x2, y2, x

′
2, b2) is only

valid when b2 = u2 by definition. Thus (c2, b2) is also an edge as desired;

– If c1 = z2, then c2 = z′2, a1 = ym+1 and b2 = z1. Now, b2 = z′1 since
(a1, b1, a2, b2) is valid. Furthermore, a2 = vm+1 since f(a1, a2) > 0. Thus
(c2, b2) is also an edge as desired.

On the other hand, if (c2, b2) is an edge, then c2 has indegree and outdegree 1 and
hence c2 ∈ {x′2, u1, z2}. Let us now consider each such c2.

– If c2 = x′2, then c1 = x2, a2 = x′1 and b2 = u1, and thus a1 = x1 since
(a1, b1, a2, b2) is valid. Furthermore, b1 = y1 since f(b1, b2) > 0. Thus (c1, b1)
is also an edge as desired;

– If c2 = u1, then c1 = y1, a2 = x′2 and b1 = u2, and thus a1 = x2 since
(a1, b1, a2, b2) is valid. Furthermore, b2 = u2, since (x2, y2, x

′
2, b2) is only

valid when b2 = u2 by definition. Thus (c1, b1) is also an edge as desired;

– If c2 = z′2, then c1 = z2, a2 = vm+1 and b2 = z′1, and thus b2 = z1 since
(a1, b1, a2, b2) is valid. Furthermore, a2 = ym+1 since f(a1, a2) > 0. Thus
(c1, b1) is also an edge as desired.

Also, note that

c1 = b1 ⇐⇒ (a1, b1) is an edge

⇐⇒ (a2, b2) is an edge (since (a1, b1, a2, b2) is valid)

⇐⇒ b2 = c2 (since b2 and c2 are in the same column)

Hence (c1, b1, c2, b2) satisfies the atoms condition.

− Suppose that (c1, b1) is an edge and (a1, b1) is not an edge. Suppose that we pick
c2 such that (c2, b2) is an edge.

This is clearly possible if b1 6= y1, since in this case any node in the column of
b2 has the same indegree as b1. On the other hand, if b1 = y1, then b2 = u1

since f(b1, b2) > 0. Thus there is room to pick c2. Hence (c1, c2) is valid and
(c1, b1, c2, b2) satisfies the atoms condition.

We will now show that (a1, c1, a2, c2) satisfies the atoms condition. First, we will
show that (a2, c2) is not an edge. To this end, suppose that (a2, b2) is an edge.
Then c2 has indegree and outdegree 1 and hence c2 ∈ {x′2, u1, z2}. Let us now
consider each such c2.

– If c2 = x′2, then c1 = x2 and a2 = x′1, and thus a1 = x1 since (a1, b1, a2, b2) is
valid. Hence (a1, c1) is an edge which contradicts our assumption.
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– If c2 = u1, then c1 = y1 and a2 = x′2 and thus a1 = x2 since (a1, b1, a2, b2) is
valid. Thus (a1, c1) is also an edge which contradicts our assumption

– If c2 = z′2, then c1 = z2 and a2 = vm+1, and thus a2 = ym+1 since f(a1, a2) >
0. Thus (a1, c1) is also an edge which contradicts our assumption.

Hence (a2, c2) is not an edge. Furthermore, note that

a1 = c1 ⇐⇒ (a1, b1) is an edge

⇐⇒ (a2, b2) is an edge (since (a1, b1, a2, b2) is valid)

⇐⇒ a2 = c2 (since a2 and c2 are in the same column)

Thus (a1, c1, a2, c2) satisfies the atoms condition as desired.

− Suppose that a1 = c1 = b1, then we pick c2 = a2. By construction (c1, c2)
is valid. Furthermore, notice that now c2 = b2, because a2 = b2 due to the
validity of (a1, b1, a2, b2). Hence the atoms condition holds for (a1, c1, a2, c2) and
(c1, b1, c2, b2).

− Assume that a1 = c1 and that (c1, b1) is not an edge. Then we pick c2 such
that c2 = a2. Since a1 is in the same column as a2, c1 is in the same column as
c2. Hence by construction (c1, c2) is valid and (a1, c1, a2, c2) satisfies the atoms
condition.

We will now show that (c1, b1, c2, b2) satisfies the atoms condition. First notice
that (c2, b2) is not an edge since

(c1, b1) is not an edge =⇒ (a1, b1) is not an edge

=⇒ (a2, b2) is not an edge (since (a1, b1, a2, b2) is valid)

=⇒ (c2, b2) is not an edge (since a2 = c2)

Furthermore, note that c1 = b1 if and only if c2 = b2 since

c1 = b1 ⇐⇒ a1 = b1 (since a1 = c1)

⇐⇒ a2 = b2 (since (a1, b1, a2, b2) is valid)

⇐⇒ c2 = b2 (since a2 = c2)

Hence (c1, b1, c2, b2) satisfies the atoms condition.

− The case where (a1, c1) is not an edge and c1 = b1 is analogous to the previous
case.

− Assume that (a1, c1) and (c1, b1) are not edges, and assume that a1 6= c1 and
b1 6= c1. First we will consider every c1 ∈ {x1, x2, z1, z2}.

– Suppose c1 = x1. Then x2 6= b1 6= x1 and a1 6= x1, and thus x′2 6= b2 6= x′1
and a1 6= x′1 due to the validity of (a1, b1, a2, b2). Hence the atoms condition
for (a1, c1, a2, c2) and (c1, b1, c2, b2) is satisfied.
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– Suppose c1 = x2. Then x2 6= b1 6= y1 and x1 6= a1 6= x2, and thus x′2 6= b1 and
x1 6= a1 6= x2 due to the validity of (a1, b1, a2, b2). Furthermore, b2 6= u1 since
f(b1, b2) > 0. Hence the atoms condition for (a1, c1, a2, c2) and (c1, b1, c2, b2)
is satisfied.

– Suppose c1 = z1. Then b1 6= z1 and z2 6= a1 6= z1, and thus b1 6= z′1 and
z′2 6= a1 6= z′1. Hence the atoms condition for (a1, c1, a2, c2) and (c1, b1, c2, b2)
is satisfied.

– Suppose c1 = z2. Then z2 6= b1 6= z1 and ym+1 6= a1 6= z2, and thus
z′2 6= a1 and z′2 6= b1 6= z′1 due to the validity of (a1, b1, a2, b2). Furthermore,
a1 6= vm+1 since f(a1, a2) > 0. Hence the atoms condition for (a1, c1, a2, c2)
and (c1, b1, c2, b2) is satisfied.

On the other hand, if c1 6∈ {x1, x2, z1, z2}, then we pick c2 on the chain not
containing a2 and b2. Notice that this is possible since there are 3 chains. Then
clearly (a1, c1) and (c2, b2) are not edges, a2 6= c2 and c2 6= b2. Hence the atoms
condition for (a1, c1, a2, c2) and (c1, b1, c2, b2) is satisfied. �

Intuitively, the lemma above still holds when we switch the roles of c1 and c2.

Lemma 5.31: If (c1, b1, c2, b2) is valid, f(a1, a2) > 0 and f(b1, b2) > 0, then for every
c2 ∈ adom(Gm2 ), there exists c1 ∈ adom(Gm1 ) such that (c1, c2) is valid, and (a1, c1, a2, c2)
and (c1, b1, c2, b2) satisfy the atoms condition.

Notice that in the proof of Lemma 5.30 we only inspected the graph locally, i.e., we
only inspected neighborhoods with radius 2 of valid node pairs (x, y) in Gm1 and Gm2 .
Hence the proof of the previous lemma is analogous to the proof of Lemma 5.30, since
the lefthand side (resp. righthand) of Gm1 is completely the same as the lefthand (resp.
righthand) side Gm2 .

Again by inspecting Figure 5.2 it is clear that for every c1 ∈ adom(Gm1 ), we can find
a c2 ∈ adom(Gm2 ) such that (a1, c1, a2, c2) and (c1, b1, c2, b2) are potential candidates
to continue our game, if (a1, b1, a2, b2) is valid, f(a1, a2) > 0 and f(b1, b2) > 1. The
following lemma justifies this intuition.

Lemma 5.32: If (a1, b1, a2, b2) is valid, f(a1, a2) > 0 and f(b1, b2) > 1, then for every
c1 ∈ adom(Gm1 ), there exists c2 ∈ adom(Gm2 ) such that (a1, c1, a2, c2) and (c1, b1, c2, b2)
are valid.

Proof: Let c1 ∈ adom(G1). Note that since f(b1, b2) > 1, b1 = y2 if and only if
b2 = u2. Hence conditions c and d for the validity of (c1, b1, c2, b2) hold for what-
ever c2 we pick such that (c1, c2) is valid. Hence we only need to find a c2 such that
(c1, c2) is valid, (c1, b1, c2, b2) satisfies the atoms condition and (a1, c1, a2, c2) is valid.
Lemma 5.30 tells us that there exists c2 such that (a1, c1, a2, c2) and (c1, b1, c2, b2) sat-
isfy the atoms condition. Furthermore, by the previous argument (c1, b1, c2, b2) is valid.
Now, if (a1, c1, a2, c2) is valid we are done.
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On the other hand, suppose that (a1, c1, a2, c2) is not valid. Then condition c or d
for the validity of (a1, c1, a2, c2) is not satisfied, since the atoms condition is trivially
satisfied. To this end suppose that condition c is not satisfied, then (a1, c1, a2, c2) =
(x2, y2, x

′
2, c2) where c2 6= u2. We will now show that picking c2 = u2 does not

break the atoms condition for (a1, c1, a2, c2) and (c1, b1, c2, b2). Since (a1, c1, a2, c2) =
(x2, y2, x

′
2, u2), we know that (a1, c1, a2, c2) is valid. Let us now show that (c1, b1, c2, b2)

satisfies the atoms condition. First note that (c1, b1) and (c2, b2) cannot be edges since
the outdegree of c1 and c2 is 0. Furthermore, note that

c1 = b1 ⇐⇒ b1 = y2

⇐⇒ b2 = u2 (since f(b1, b2) > 1)

⇐⇒ c2 = b2. (since c2 = u2)

Hence the atoms condition for (c1, b1, c2, b2) is satisfied, and thus (c1, b1, c2, b2) is valid
since d is satisfied trivially. On the other hand, suppose that condition d is not satisfied,
then (a1, c1, a2, c2) = (x2, z, x

′
2, u2) where c1 6= y2. We will now show that we can pick a

new c2 such that (a1, c1, a2, c2) and (c1, b1, c2, b2) are valid. First note that every node
in the column of c1 has outdegree 0, thus (c1, b1) and (c2, b2) are not edges for whatever
new c2 we pick. Hence we only need to pick a new c2 that satisfies: b1 = c1 if and
only b2 = c2. To this end suppose that b1 = c1. Then b1 6= y2, and hence b2 6= u2

since f(b1, b2) > 1. Thus if we now pick c2 = b2, then (c1, b1, c2, b2) satisfies the atoms
condition, and thus (c1, b1, c2, b2) is valid. Also, (a1, c1, a2, c2) is valid, since condition
c is trivially satisfied and (a1, c1, a2, c2) = (x2, c1, x

′
2, c2) where c1 6= y2 and c2 6= u2.

On the other hand if b1 6= c1, then we pick c2 such that u2 6= c2 6= b2, note that this
is possible since there are 3 chains. Then (c1, b1, c2, b2) satisfies the atoms condition by
construction and thus (c1, b1, c2, b2) is valid. Furthermore, (a1, c1, a2, c2) is valid since
condition c is satisfied by construction and condition d is trivially satisfied. �

Intuitively, the previous lemma still holds when we switch the roles of c1 and c2.

Lemma 5.33: If (a1, b1, a2, b2) is valid, f(a1, a2) > 0 and f(b1, b2) > 1, then for every
c2 ∈ adom(Gm2 ), there exists c1 ∈ adom(Gm1 ) such that (a1, c1, a2, c2) and (c1, b1, c2, b2)
are valid.

For the same reasons why the proof of Lemma 5.30 was analogous to the proof of
Lemma 5.31, the proof of the previous lemma is analogous to the proof of Lemma 5.32.

When we start our bisimulation game on Gm1 and Gm2 in (a1, b1, a2, b2), we will show
later that we are allowed to play min(f(a1, a2), f(b1, b2)) rounds. The following lemma
will be the key in the proof of this fact.

Lemma 5.34: If (a1, b1, a2, b2) is valid and f(a1, a2) = f(b1, b2) = m/2, then for every
c1 ∈ adom(Gm1 ), there exists c2 ∈ adom(Gm2 ) such that (a1, c1, a2, c2) and (c1, b1, c2, b2)
are valid, and f(c1, c2) ≥ m/2− 1.
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Proof: Let c1 ∈ adom(G1). Note that if we pick a c2 such that f(c1, c2) ≥ m/2 − 1,
then conditions c and d for the validity of (a1, c1, a2, c2) and (c1, b1, c2, b2) are satisfied
trivially, hence we only have to check the atoms conditions. We will split our proof
up into several cases. First suppose that (a1, c1) is an edge. Now, by Lemma 5.32
there exists c2 such that (a1, c1, a2, b2) and (c1, b1, c2, b2) are valid. Furthermore, since
(a1, c1, a2, b2) is valid, (a2, c2) is an edge. We will now show that f(c1, c2) ≥ m/2 − 1.
First note f(a1, a2) only equals m/2 when a1 is Y left and a2 is U left; a1 is W left and
a2 is W ′ left; a1 is W left and a2 is V left; a1 is T left and a2 is W ′ left; a1 is T left
and a2 is V left; a1 is Y right and a2 is V right; a1 is W right and a2 is W ′ right; a1 is
W right and a2 is U right; a1 is T right and a2 is W ′ right; or a1 is T right and a2 is U
right. We will now consider each such scenario.

− Suppose that a1 ∈ {ym
2

+1, tm
2

+1, wm
2

+1}. Then clearly f(c1, c2) = m/2 − 1 since
(a1, c1) and (a2, c2) are edges.

− Suppose that the column of a1 is not m/2 + 1, a1 is Y left and a2 is U left.
Then c1 is Y left and c2 is U left since (a1, a2) and (a2, c2) are edges, and thus
f(c1, c2) = m/2 as desired.

− Suppose that the column of a1 is not m/2 + 1. The cases where a1 is W left and
a2 is W ′ left; a1 is W left and a2 is V left; a1 is T left and a2 is W ′ left; and a1 is
T left and a2 is V left are analogous to the previous scenario.

− If a1 is Y right and a2 is V right, then c1 is Y right and c2 is V right since (a1, c1)
and (a2, c2) are edges. Hence f(c1, c2) = m/2.

− The cases where a1 is W right and a2 is W ′ right; a1 is W right and a2 is U right;
a1 is T right and a2 is W ′ right; and a1 is T right and a2 is U right are analogous
to the previous scenario.

The case where (c1, b1) is an edge is analogous to the previous case.
Suppose that a1 = c1. By Lemma 5.32 there exists c2 such that (a1, c1, a2, b2) and

(c1, b1, c2, b2) are valid. Hence a2 = c2. Furthermore, f(c1, c2) = f(a1, a2) = m/2 as
desired.

The case where c1 = b1 is analogous to the previous case.
Now suppose that (a1, c1) and (c1, b1) are not edges, a1 6= a1 and c1 6= b1. If c1 6∈

then we pick c2 according to the following strategy:

c1 = yi ∧ 0 ≤ i ≤ m/2 + 1 =⇒ c2 = ui

c1 = yi ∧m/2 + 1 ≤ i ≤ m+ 1 =⇒ c2 = vi

c1 = wi =⇒ c2 = w′i

c1 = ti ∧ 0 ≤ i ≤ m/2 + 1 =⇒ c2 = vi

c1 = ti ∧m/2 + 1 < i ≤ m+ 1 =⇒ c2 = ui

Clearly f(c1, c2) = m/2. Hence, if (a1, c1, a2, c2) and (c1, b1, c2, b2) are valid we are
finished. Now suppose that (a1, c1, a2, c2) is not valid (the case where (c1, b2, c2, b2) is
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not valid is analogous). Suppose that (a2, c2) is an edge. We will now consider every
possible scenario for c1.

− Suppose that c1 = ym
2

. By Lemma 5.32 there exists a new c2 such that (a1, c1, a2, c2)
and (c1, b1, c2, b2) are valid. Furthermore f(c1, c2) ≥ m/2− 1 as desired.

− The cases where c1 = ym
2

, c1 = wm
2

, c1 = tm
2

, c1 = ym
2

+2, c1 = wm
2

+2 and
c1 = tm

2
+2 are analogous to the previous case.

− Suppose that c1 is Y left and c1 6= ym
2
−1. Then c2 = ui where i < m/2− 1. Hence

a2 = uj where j ≤ m/2 − 1 since (a2, c2) is an edge. Now since f(a1, a2) = m/2,
a1 is Y left. Hence (a1, c1) is an edge, which contradicts our hypothesis. Thus
this scenario cannot occur.

− Suppose that c1 is Y right and c1 6= vm
2

+2. Then c2 = vi where i > m/2 + 2.
Hence a2 = vj where j ≥ m/2 + 2. Now since f(a1, a2) = m/2, a1 is Y right, and
thus (a1, c1) is an edge, which contradicts our hypothesis. Therefore, this scenario
cannot occur.

− Suppose that c1 is W left and c1 6= wm
2
−1. Then c2 = w′i where i < m/2. Hence

a2 = w′j where j ≤ m/2 − 1. Now since f(a1, a2) = m/2, a1 is T left. Now, we
pick our new c2 = vi on V , then (a1, c1, a2, c2) is valid. We will now show that
(c1, b1, c2, b2) is valid. Suppose for the sake of contradiction that c2 = b2. Then,
notice that

c2 = b2 =⇒ b2 = vi

=⇒ b1 = wi ∨ b1 = ti (since f(b1, b2) = m/2 and i < m/2)

If b1 = wi, then b1 = c1, which contradicts the fact that b1 6= c1. On the other
hand, if b1 = ti, then (a1, b1) is an edge since a1 is also on T , a1 is in the column
next to c1 and a1 has at least outdegree 1. But then (a2, b2) is an edge since
(a1, b1, a2, b2) is valid, and thus b2 = w′i (the old position of c2), which contradicts
the fact that c2 = b2. Hence c2 6= b2.

We will now show that (c2, b2) cannot be an edge. For the sake of contradiction
suppose that (c2, b2) is an edge. Then c2 has indegree and outdegree 1. Hence
c2 = {x2, y1}, which contradicts the fact that c2 is W left. Thus (c1, b1, a2, b2) is
valid since c2 6= b2 and (c2, b2) is not an edge.

− The case where c1 is T left and c1 6= tm
2
−1 is analogous to the previous case.

− Suppose that c1 is W right and c1 6= wm
2

+2. Then c2 = w′i where i > m/2 + 2.

Hence a2 = w′j where j ≥ m/2 + 2. Now since f(a1, a2) = m/2 and (a2, c2) is
an edge, a1 is T right. Let us now pick our new c2 = u′i on U . Clearly, then
(a1, c1, a2, c2) is valid. We will now show that (c1, b1, c2, b2) is valid. Notice that

c2 = b2 =⇒ b2 = ui

=⇒ b1 = wi ∨ b1 = ti (since f(b1, b2) = m/2 and i > m/2 + 2)



70 Chapter 5. Separation of Boolean Queries

If b1 = wi, then b1 = c1, which contradicts the fact that b1 6= c1. On the other
hand, if b1 = ti, then (a1, b1) is an edge since a1 is also on ti, a1 is in the column
next to c1 and a1 has at least outdegree 1. But then (a2, b2) is an edge since
(a1, b1, a2, b2) is valid, and thus b2 = w′i (the old position of c2). This contradicts
the fact that c2 = b2 since c2 = ui. Hence c2 6= b2.

We will now show that (c2, b2) cannot be an edge. For the sake of contradiction
suppose that (c2, b2) is an edge. Then c2 has indegree and outdegree 1. Hence
c2 = {x2, y1}, which contradicts the fact that c2 is W left. Thus (c1, b1, a2, b2) is
valid since c2 6= b2 and (c2, b2) is not an edge.

− The case where c2 is T right is analogous to the precious case.

On the other hand, suppose that a2 = c2. Again we will consider every scenario for c1.

− Suppose that c1 = ym
2

. By Lemma 5.32 there exists a new c2 such that (a1, c1, a2, c2)
and (c1, b1, c2, b2) are valid. Furthermore f(c1, c2) ≥ m/2− 1 as desired.

− The cases where c1 = ym
2

, c1 = wm
2

, c1 = tm
2

, c1 = ym
2

+2, c1 = wm
2

+2 and
c1 = tm

2
+2 are analogous to the previous case.

− Suppose that c1 is Y left and c1 6= ym
2
−1. Then c1 = yi and c2 = a2 = ui where

i < m/2 − 1. Hence a1 = yi since f(a1, a2) = m/2, and thus a1 = c1, which
contradicts our assumption that a1 6= c1. Thus this scenario cannot occur.

− Suppose that c1 is Y right and c1 6= ym
2

+2. Then c1 = yi and c2 = a2 = vi where
i > m/2 + 2. Hence a1 = yi since f(a1, a2) = m/2, and thus a1 = c1, which
contradicts our assumption that a1 6= c1. Thus this scenario cannot occur.

− Suppose that c1 is W left and c1 6= wm
2
−1. Then c1 = wi and c2 = a2 = w′i where

i < m/2 − 1. First note that a1 cannot be on W since a1 6= c1 and since c1 is
on W . Furthermore, since f(a1, a2) = m/2 and since i < m/2− 1, we know that
a1 = ti. Let us now pick a new c2 = vi on V . Then clearly (a1, c1, a2, c2) is valid.
We will now show that (c1, b1, c2, b2) is valid. We will first show that c2 6= b2.
Suppose for the sake of contradiction that c2 = b2. Notice that

c2 = b2 =⇒ b2 = w′i

=⇒ b1 = wi ∨ b1 = ti (since f(b1, b2) = m/2 and i > m/2 + 2)

If b1 = wi, then b1 = c1, which contradicts the assumption that b1 6= c1. On
the other hand, if b1 = ti, then a1 = b1 since a1 = ti. But then a2 = b2 since
(a1, b1, a2, b2) is valid, and thus b2 = w′i (the old position of c2). This contradicts
the fact that b2 = c2 since c2 = vi

Now we will show that (c2, b2) is not an edge. Suppose for the sake of contradiction
that (c2, b2) is an edge. Since (c1, b1) is not an edge and f(b1, b2) > 1 > 0, we
know that b1 is on T . Therefore (a1, b1) is an edge since a1 is on T and b1 is in the
column next to a1. But then (a2, b2) is an edge since (a1, b1, a2, b2) is valid, which
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implies that b2 is on W and thus contradicts our assumption. Hence (c2, b2) is not
an edge and thus (c1, b1, c2, b2) is valid.

− The case where c1 is W right and c1 6= wm
2

+2; c1 is T left and c1 6= tm
2
−1; and c1

is T right and c1 6= tm
2

+2 are analogous. �

An analogous lemma holds when we switch the roles of c1 and c2.

Lemma 5.35: If (a1, b1, a2, b2) is valid and f(a1, a2) = f(a1, a2) = m/2, then for every
c1 ∈ adom(Gm1 ), there exists c2 ∈ adom(Gm2 ) such that (a1, c1, a2, c2) and (c1, b1, c2, b2)
are valid, and f(c1, c2) ≥ m/2− 1.

Notice that the value of f(a1, a2) only depends on how a1 and a2 relate to one another
on one side of the graph (the left or righthand side). Hence the proof of the previous
lemma is analogous to the proof of Lemma 5.34 since Gm1 and Gm2 look completely the
same on the lefthand (resp. righthand) side.

Intuitively, Lemma 5.34 tells us that f(a1, a2) and f(b1, b2) provide an upper bound
on the amount of rounds in game if f(a1, b1) = f(b1, b2) = m/2. The following lemma
tells us that this is also true when one of f(a1, a2) and f(b1, b2) is less than m/2.

Lemma 5.36: If (a1, b1, a2, b2) is valid, f(a1, a2) > 0, f(b1, b2) > 1, and one of f(a1, a2)
and f(b1, b1) is strictly less than m/2, then for every c1 ∈ adom(Gm1 ) there exists
c2 ∈ adom(Gm2 ) such that (a1, c1, a2, c2) and (c1, b1, c2, b2) are valid, and f(c1, c2) ≥
min(f(a1, a2), f(b1, b2))− 1.

Proof: Let c1 ∈ adom(G1). Then we pick c2 in the following way:

c1 = yi ∧ 0 ≤ i ≤ m/2 + 1 =⇒ c2 = ui

c1 = yi ∧m/2 + 1 ≤ i ≤ m+ 1 =⇒ c2 = vi

c1 = wi =⇒ c2 = w′i

c1 = ti ∧ 0 ≤ i ≤ m/2 + 1 =⇒ c2 = vi

c1 = ti ∧m/2 + 1 < i ≤ m+ 1 =⇒ c2 = ui

If (a1, c1, a2, c2) and (c1, b1, c2, b2) are valid, we are finished since f(c1, c2) = m/2 ≥
f(a1, a2) ≥ min(f(a1, a2), f(b1, b2))−1. On the other hand, if (a1, c1, a2, c2) or (c1, b!, c2, b2)
is invalid, then notice that c1 6=∈ {x1, x2, z1, z2}. Hence from here we can assume that
c1 6=∈ {x1, x2, z2, z2}. Also note that only the atoms condition for (a1, c1, a2, c2) and
(c1, b1, c2, b2) can be violated since conditions c and d are satisfied by construction. We
will now split our proof up into several cases.

− Suppose that (a1, c1, a2, c2) is invalid and f(a1, a2) < m/2. First, note that
f(a1, a2) = i − 1 if i ≤ m/2 + 1 and that f(a1, a2) = m + 1 − i if i > m/2 + 1,
where i is the column2 of a1. Now, since (a1, c1, a2, c2) is invalid, we know that

2We say that i is the column of a node x if x ∈ {yi, wi, ti, ui, vi, w
′
i}.
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the column of c1 is i − 1, i or i + 1. Hence whatever new c2 we pick, f(c1, c2) ≥
i− 2 = f(a1, a2)− 1 ≥ min(f(a1, a2), f(b1, b2))− 1 if i ≤ m/2 + 1 and f(c1, c2) ≥
m + 1 − (i + 1) = f(a1, a2) − 1 ≥ min(f(a1, a2), f(b1, b2)) − 1 if i > m/2 + 1.
By Lemma 5.32 there exists a new c2 such that (a1, c1, a2, c2) and (c1, b1, c2, b2).
Furthermore, by the previous argument f(c1, c2) ≥ min(f(a1, a2), f(b1, b2))− 1 as
desired.

− Suppose that (c1, b1, c2, b2) is invalid and that f(b1, b1) < m/2. First, note that
f(b1, b2) = i − 1 if i ≤ m/2 + 1 and that f(b1, b2) = m + 1 − i if i > m/2 + 1,
where i is the column of b1. Now, since (c1, b1, c2, b2) is invalid, we know that
the column of c1 is i − 1, i or i + 1. Hence whatever new c2 we pick, f(c1, c2) ≥
i− 2 = f(b1, b2)− 1 ≥ min(f(a1, a2), f(b1, b2))− 1 if i ≤ m/2 + 1 and f(c1, c2) ≥
m + 1 − (i + 1) = f(b1, b2) − 1 ≥ min(f(a1, a2), f(b1, b2)) − 1 if i > m/2 + 1. By
Lemma 5.32 there exists a new c2 such that (a1, c1, a2, c2) and (c1, b1, c2, b2) are
valid as desired.

− Now suppose that (a1, c1, a2, c2) is invalid, (c1, b1, c2, b2) is valid, f(a1, a2) = m/2
and f(b1, b2) < m/2. If there is a c2 such that (c1, c2) is valid and (c1, b1, c2, b2) is
invalid, we can apply the previous case since the proof does not depend on what
c2 actually is. So from here we can assume that (c1, b1, c2, b2) is valid if (c1, c2) is
valid. We will now consider every possible c1.

– If c1 = ym
2

, then whatever new c2 we pick, f(c1, c2) = m/2− 1 ≥ f(a1, a2) ≥
min(f(a1, a2), f(b1, b2))− 1. By Lemma 5.32 there exists a new c2 such that
(a1, c1, a2, c2) and (c1, b1, c2, b2) are valid as desired.

– The cases where c1 = ym
2

, c1 = wm
2

, c1 = tm
2

, c1 = ym
2

+2, c1 = wm
2

+2 and
c1 = tm

2
+2 are analogous to the previous case.

– If c1 is Y left and c1 6= ym
2

, then c2 is on U . Now since the atoms condition
of (a1, c1, a2, c2) is not satisfied, either a1 is on Y and a2 is not on U or a1 is
not on Y and a2 is on U . This however contradicts the fact that a1 is Y if
and only if a2 is on U since the column of a1 is less than m/2 + 1 and since
f(a1, a2) = m/2.

– If c1 is Y right and c1 6= ym
2

+2, then c2 is on V . Now since the atoms condition
of (a1, c1, a2, c2) is not satisfied, either a1 is on Y and a2 is not on V or a1 is
not on Y and a2 is on V . This however contradicts the fact that a1 is on Y
if and only if a2 is on V , since the column of a1 is greater than m/2 + 1 and
since f(a1, a2) = m/2.

– Suppose that c1 is W left and c1 6= wm
2

. Then c2 is on W ′. If a1 = c1, then
we pick c2 = a2, notice then that f(c1, c2) = f(a1, a2) = m/2.

On the other hand, suppose that (a1, c1) is an edge, then we pick c2 in
the same column as c1 such that (a2, c2) is an edge. This is possible since
f(a1, a2) > 0. Notice now that f(c1, c2) = f(a1, a2) = m/2.

Now suppose that a1 6= c1 or (a2, c2) is not an edge. First, note that a1 is
on W or T and a2 is on W ′ or V since f(a1, a2) = m/2, (a1, c1, a2, c2) is not
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valid and the column of a1 is greater than m/2 + 1. Let us now pick c2 in
the same column as c2 on W ′ if a2 is on V and on V otherwise. Clearly then
(a1, c1, a2, c2) is valid and f(c1, c2) = m/2.

– The case where c1 is T left and c1 6= tm
2

+2 is analogous to the previous case.

– Suppose that c1 is W right and c1 6= wm
2

+2. Then c2 is on W ′. If a1 = c1,
then we pick c2 = a2, notice then that f(c1, c2) = f(a1, a2) = m/2.

On the other hand, if (a1, c1) is an edge, then we pick c2 in the same column
as c1 such that (a2, c2) is an edge. This is possible since f(a1, a2) > 0. Notice
now that f(c1, c2) = f(a1, a2) = m/2.

Now suppose that a1 6= c1 or (a2, c2) is not an edge. First, note that a1 is
on W or T and a2 is on W ′ or U since f(a1, a2) = m/2, (a1, c1, a2, c2) is not
valid and the column of a1 is greater than m/2 + 1. Let us now we pick c2

in the same column as c1 on W ′ if a2 is on U and on U otherwise. Clearly
then (a1, c1, a2, c2) is valid and f(c1, c2) = m/2.

– The case where c1 is T right and c1 6= tm
2

+2 is analogous to the previous case.

− The case where (c1, b1, c2, b2) is invalid, (a1, c1, a2, c2) is valid, f(b1, b2) = m/2 and
f(a1, a2) < m/2 is analogous to the precious case. �

An analogous lemma holds when we switch the roles of c1 and c2.

Lemma 5.37: If (a1, b1, a2, b2) is valid, f(a1, a2) > 0, f(b1, b2) > 1, and either one
of f(a1, a2), f(b1, b1) is less than m/2, then for every c2 ∈ adom(Gm2 ) there exists
c1 ∈ adom(Gm1 ) such that (a1, c1, a2, c2) and (c1, b1, c2, b2) are valid, and f(c1, c2) ≥
min(f(a1, a2), f(b1, b2))− 1.

For the same reasons why the proof of Lemma 5.35 was analogous to the proof of
Lemma 5.34, the proof of the previous lemma is analogous to the proof of Lemma 5.36.

Combining Lemma 5.34 and Lemma 5.36 we get the following corollary.

Corollary 5.38: If (a1, b1, a2, b2) is valid, f(a1, a2) > 0 and f(b1, b2) > 1, then for ev-
ery c1 ∈ adom(Gm1 ) there exists c2 ∈ adom(Gm2 ) such that (a1, c1, a2, c2) and (c1, b1, c2, b2)
are valid, and f(c1, c2) ≥ min(f(a1, a2), f(b1, b2))− 1.

We will see later that this corollary directly implies the forth condition for a bisimulation
game starting in (a1, b1, a2, b2).

Analogously, combining Lemma 5.35 and Lemma 5.37 we get the following corollary.

Corollary 5.39: If (a1, b1, a2, b2) is valid, f(a1, a2) > 0 and f(b1, b2) > 1, then for ev-
ery c2 ∈ adom(Gm2 ) there exists c1 ∈ adom(Gm1 ) such that (a1, c1, a2, c2) and (c1, b1, c2, b2)
are valid, and f(c1, c2) ≥ min(f(a1, a2), f(b1, b2))− 1.
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In the proof of the next lemma we will see that this corollary directly implies the back
condition for a bisimulation game starting in (a1, b1, a2, b2).

Armed with the precious two corollaries we are finally ready to show that for a valid
(a1, b1, a2, b2) we are allowed to play a bisimulation game of at most min(f(a1, a2), f(b1, b2))
rounds.

Lemma 5.40: Let s be a natural number and let m be a natural number divisible by 4.
If (a1, b1, a2, b2) ∈ adom(Gm1 )2 × adom(Gm2 )2 is valid and s ≤ min(f(a1, a2), f(b1, b2)),
then (Gm1 , a1, b1) 's (Gm2 , a2, b2).

Proof: We prove this lemma by induction on s.
Induction Basis: Let s = 0. Then, (Gm1 , a1, b1) 's (Gm2 , a2, b2) since the atoms condi-
tion is implied by the validity of (a1, b1, a2, b2).
Induction Hypothesis: Suppose that our lemma holds for s− 1.
Induction Step: We will now show that our lemma holds for s > 0. To this end let
(a1, b1, a2, b2) ∈ adom(Gm1 )2×adom(Gm2 )2 be valid such that s ≤ min(f(a1, a2), f(b1, b2)).
If s = 0 our result follows from our induction hypothesis.

On the other hand, suppose that s > 0. If f(b1, b2) = 1, then Lemma 5.30 implies
that for every c1 ∈ adom(Gm1 ) there exists c2 ∈ adom(Gm2 ) such that (a1, c1, a2, c2) and
(c1, b2, c2, b2) satisfy the atoms condition. This, however, is equivalent to (Gm1 , a1, c1) '0

(Gm2 , a2, c2) and (Gm1 , c1, b1) '0 (Gm2 , c2, b2). Hence the forth condition holds. Further-
more, Lemma 5.31 implies that for every c2 ∈ adom(Gm2 ) there exists c1 ∈ adom(Gm1 )
such that (a1, c1, a2, c2) and (c1, b2, c2, b2) satisfy the atoms condition. Again this is
equivalent to (Gm1 , a1, c1) '0 (Gm2 , a2, c2) and (Gm1 , c1, b1) '0 (Gm2 , c2, b2). Hence the
back condition holds. Now (Gm1 , a1, b1) '1 (Gm2 , a2, b2) since the forth and back condi-
tions hold.

Now suppose that f(a1, a2) > 0 and f(b1, b2) > 1. We will first show that the forth
condition holds. Suppose that c1 ∈ adom(Gm1 ). Then by Corollary 5.38 there exists
c2 ∈ adom(Gm2 ) such that both (a1, c1, a2, c2) and (c1, b1, c2, b2) are valid and f(c1, c2) ≥
min(f(a1, a2), f(b1, b2)) − 1. Furthermore, since s − 1 ≤ min(f(a1, a2), f(b1, b2)) − 1,
we have f(c1, c2) ≥ s − 1, and thus s − 1 ≤ min(f(c1, c2), f(a1, a2)) and s − 1 ≤
min(f(c1, c2), f(b1, b2)). Now we can apply our induction hypothesis, which tells us
that (G1, a1, c1) 's−1 (G2, a2, c2) and (G1, c1, b1) 's−1 (G2, c2, b2) as desired.

Let us now focus on the back condition. Suppose that c2 ∈ adom(Gm2 ). Then by
Corollary 5.39 there exists c1 ∈ adom(Gm1 ) such that both (a1, c1, a2, c2) and (c1, b1, c2, b2)
are valid and f(c1, c2) ≥ min(f(a1, a2), f(b1, b2)) − 1. Furthermore, since s − 1 ≤
min(f(a1, a2), f(b1, b2))− 1, f(c1, c2) ≥ s− 1, and thus s− 1 ≤ min(f(c1, c2), f(a1, a2))
and s−1 ≤ min(f(c1, c2), f(b1, b2)). Now we can apply our induction hypothesis, which
tells us that (G1, a1, c1) 's−1 (G2, a2, c2) and (G1, c1, b1) 's−1 (G2, c2, b2) as desired.
Now (G1, a1, b1) 's (G2, a2, b2) since the forth and back conditions hold, which con-
cludes our proof. �

The following corollary is at the heart of the proof of Proposition 5.25. Intuitively
it states that for every (a1, b1) we can find (a2, b2) such that we can play a bisimulation
game of m/2− 1 rounds.
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Corollary 5.41: For every (a1, b1) ∈ adom(Gm1 ) there exists (a2, b2) ∈ adom(Gm2 ) such
that (G1, a1, b1) 'm/2−1 (G2, a2, b2).

Proof: First if (a1, b1) = (ym/2+1, ym/2+2), then we pick (a2, b2) = (um/2+1, um/2+2).
In this case (a1, b1, a2, b2) is valid, f(a1, a2) = m/2 and f(b1, b2) = m+ 1− (m/2 + 2) =
m/2− 1 and thus (G1, a1, b1) 'm/2−1 (G2, a2, b2) due to Lemma 5.40.

If (a1, b1) 6= (ym/2+1, ym/2+2) then we use the following strategy:

a1 = yi ∧ 0 ≤ i ≤ m/2 + 1 =⇒ a2 ∈ U
a1 = yi ∧m/2 + 1 ≤ i ≤ m+ 1 =⇒ a2 ∈ V

a1 ∈W =⇒ c2 ∈W ′

a1 = ti ∧ 0 ≤ i ≤ m/2 + 1 =⇒ a2 ∈ V
a1 = ti ∧m/2 + 1 < i ≤ m+ 1 =⇒ a2 ∈ U

We use the same strategy for b1. Clearly in this case (a1, b1, a2, b2) is valid, and
f(a1, a2) = f(b1, b2) = m/2. Now (G1, a1, b1) 'm/2−1 (G2, a2, b2) due to Lemma 5.40. �

Using the previous corollary we can finally prove Proposition 5.25.

Proof (of Proposition 5.25): First observe that N (−1,+) ≤bool N (F1). Hence it
suffices to prove that N (−1,+) 6≤bool N (F2). Furthermore, since F2 ⊆ {\, di ,+}, it
follows from Theorem 5.8 that N (F2) ≤path N (\, di ,+) and therefore also N (F2) ≤bool

N (\, di ,+). Thus it is sufficient to show that N (−1,+) 6≤bool N (\, di ,+).

To this end consider the boolean query q expressed by R2 ◦ (R ◦R−1)+ ◦R2. We will
show that this query is not expressible in N (\, di ,+).

Now, assume for the same of contradiction that q is expressible by a query e ∈
N (\, di ,+). Furthermore, define Gn as the class of graphs with an active domain of size
at most n. Remember that Lemma 4.10 tells us that when we only consider graphs in Gn,
expressions of the form f+ are equivalent with the expression ∪ni=1f

i. Now let d be the
degree of e. Define en as the expression e where every subexpression of the form f+ in e is
replaced with ∪ni=1f

i where f i is constructed as in Corollary 5.29. By the same corollary,
f i has degree degree(f) + dlog2 ie ≤ degree(f) + dlog2 ne. Now, since in the worst case
scenario every operation which contributes to the degree of e is a transitive closure
application, en has at most degree ddlog2 ne. Now, notice that e and en are equivalent
on graphs in Gn by Lemma 4.10. Also, if k = |adom(Gm2 )| = |adom(Gm1 )| = 3m + 7,
then

k

6
− 3 =

3m+ 7

6
− 18

6
=

3m− 11

6
=
m

2
− 11

6
≤ m

2
− 1.

Furthermore there exists some l′ ∈ N such that for every l ≥ l′ : ddlog2 le ≤ l
6 − 3
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since

0 ≤ lim
k→+∞

ddlog2 ke
k
6 − 3

= d lim
k→+∞

dlog2 ke
k
6 − 3

≤ d lim
k→+∞

log2 k + 1
k
6 − 3

= d

(
lim

k→+∞

log2 k
k
6 − 3

+ lim
k→+∞

1
k
6 − 3

)

= d

(
lim

k→+∞

log2 k
k
6 − 3

+ 0

)

= d lim
k→+∞

1
loge(2)k

1
6

(L’Hôpital’s rule[AE09])

= d lim
k→+∞

6

loge(2)k
= d · 0 = 0

Hence there exists a natural number m divisible by 4 such that ddlog2(3m+7)e ≤ 3m+7
6 −

3. Moreover, e3m+7 ∈ N (di , \)m/2−1 since degr(e3m+7) ≤ ddlog2(3m+7)e ≤ 3m+7
6 −3 ≤

m/2− 1. Furthermore, notice that e3m+7(Gm1 ) 6= ∅ and e3m+7(Gm2 ) = ∅, since q(Gm1 ) =
true, q(Gm2 ) = false and |adom(Gm1 )| = |adom(Gm2 )| = 3m + 7. Also, Corollary 5.41
tells us that for every (a1, b1) ∈ adom(Gm1 )2 there exists (a2, b2) ∈ adom(Gm2 ) such
that (G1, a1, b1) 'm/2−1 (G2, a2, b2). This, however, implies that the boolean query
expressed by e3m+7 is not expressible in N (di , \)m/2−1 due to Proposition 3.5, which
contradicts the existence of e3m+7. Hence q is not expressible in N (di , \,+)d and since
d was arbitrary it is not expressible in N (di , \,+) either. �

5.4 Languages with ∩ and with +

In this section we will prove Theorem 5.9 restricted to languages in C[∩,+]. To this end,
we will first show that the boolean counterpart of Proposition 4.21 and Lemma 4.22
hold for languages in C[∩].

Proposition 5.42: Let N (F1) and N (F2) be languages in C[∩]. Then, N (F1∪{+}) ≤bool

N (F2 ∪ {+}) if and only if N (F1) ≤bool N (F2).

Proof: We will first show the ‘if’ direction. By Remark 5.24 ≤bool coincides with ≤path

for languages in C[∩]. Hence, N (F1) ≤path N (F2), since N (F1) and N (F2) are both
languages of C[∩] and N (F1) ≤bool N (F2). Now by Proposition 4.21 N (F1 ∪{+}) ≤path

N (F2 ∪ {+}), which implies N (F1 ∪ {+}) ≤bool N (F2 ∪ {+}).
For the ‘only if’ direction we will show that N (F1) 6≤bool N (F2) implies N (F1 ∪

{+}) 6≤bool N (F2 ∪ {+}). To this end assume that N (F1) 6≤bool N (F2). Corollary 5.23
tells us that this implies that N (F1) 6≤bool

strong N (F2). The result now follows directly
from Lemma 4.22. �
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Figure 5.2: Graphs Gm1 (top) and Gm2 (bottom) used to establish boolean separation in
the proof of Proposition 5.25.

Theorem 5.8 for languages in C[+] is directly implied by previous proposition.

Corollary 5.43: Let N (F1) and N (F2) be languages in C[∩,+]. Then, F1 * F̃2 implies
N (F1) 6≤bool N (F2).

Proof: Notice that both N (F1 \{+}) and N (F2 \{+}) are languages in C[∩]. Further-
more, since + is present in both F1 and F2,

F1 ⊆ F̃2 ⇐⇒ F1 \ {+} ⊆ F̃2 \ {+} = F2 \ {+} = F2 \ {+} = ˜F2 \ {+}.

Hence N (F1 \ {+}) 6≤bool N (F2 \ {+}) by Proposition 5.22, which by Proposition 5.42
implies that N (F1) 6≤bool N (F2) as desired. �

For languages in C[∩] and C[+] we already noticed that ≤bool coincided with ≤path;
the previous corollary together with Proposition 5.6 tells us that this observation also
holds for languages in C[∩,+].

5.5 Cross-relationships between C, C[∩], C[+] and C[∩, +]

In the previous sections we have proven Theorem 5.9. As mentioned before, that theorem
does not yet cover languages over different classes. In this section we will close this final
gap. First, however, we need the following proposition.

Proposition 5.44 (Primitivity of −1): Let F1 and F2 be sets of nonbasic features.
If −1 ∈ F1, and F2 ⊆ {\,∩,+}, then N (F1) 6≤bool

strong N (F2).

Proof: The graphs in Figure 4.4b are distinguishable in N (F1) by the query R2◦R−1◦
R2. By the brute force method described in Section 3.1 they are indistinguishable in
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N (F2), which implies that the boolean query R2 ◦ R−1 ◦ R2 6= ∅ is not expressible in
N (F2). �

We are now ready to provide a separation result for languages among different classes.

Proposition 5.45: Let N (F1) and N (F2) be in different classes among C, C[∩], C[+] or

C[∩,+]. If F̂1 * F2 and F1 * F̃2 then N (F1) 6≤bool N (F2).

Proof: We will consider all combinations of languages among different classes one by
one.

Let N (F1) be in C and let N (F2) be in an arbitrary other class (not C). Notice

that F̃2 = F2, since at least one of + or ∩ is present F2. Also, note that by definition
F1 ⊆ {π, π,−1, di}. Hence F1 * F̃2 = F2 if and only if F1 * F2 \ {+, \,∩}. Therefore if
F1 * F2, one feature x ∈ {π, π,−1, di} is present in F1 but missing in F2 \ {+, \,∩}. We
will now consider each such possibility.

− x = π. First notice that π cannot be present in F2. Now, if ∩ ∈ F2, then
π, di ,−1 6∈ F2 and thus F2 ⊆ {+,∩, \}. Hence Proposition 4.18 can be applied
which proves the result.

On the other hand, if ∩ 6∈ F2, then \ 6∈ F2, and hence F2 ⊆ {di ,−1,+}. The result
now follows directly from Proposition 4.8.

− x = π. First notice that since π ∈ F1, π ∈ F1. Now, if \ 6∈ F2, then the result
follows directly from Proposition 4.6. On the other hand if \ ∈ F2, then π 6∈ F2.
The result now follows from the case where x = π, which we have already proven
in the previous case.

− x = di . Here Proposition 4.5 can be applied which proves the result.

− x = −1. In this case it will not suffice to only consider F1 * F̃2. Since −1 is present

in F1 and N (F1) ∈ C, F̂1 = (F1 \ {−1})∪ {π}. It is also given that F̂1 * F2. Thus

there exits a feature y ∈ F̂1 which is not present in F2. Notice that this feature is
not −1. Now, if y 6= π, then y = π or y = di . Since in this case y is also present
in F1, but not in F2, the result follows from one of the previous cases.

On the other hand, if y = π, then by the interdependencies discussed at the
beginning of Section 4.1

π,−1 6∈ F2 ∧ ∩ ∈ F2 =⇒ di , π 6∈ F2 =⇒ F2 ⊆ {∩, \,+}

and also

π,−1 6∈ F2 ∧ ∩ 6∈ F2 =⇒ \, π 6∈ F2 =⇒ F2 ⊆ {di ,+}.

Hence either Proposition 5.10 or Proposition 5.44 can be applied which concludes
our proof in this case.
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Let N (F1) be in C[∩] and N (F2) be in C[∩,+]. If \ ∈ F1 and \ 6∈ F2, we can apply
Proposition 4.17. Otherwise, clearly, F1 * F2 if and only if F1 \ {\,∩} * F2 \ {\,∩,+}.
Hence one of π, π, di ,−1 is present in F1, but lacking in F2. If that feature is di , π or π
we can use the proof of case 1. On the other hand, if that feature is −1 we can apply
Proposition 5.21, since ∩ is present in F1.

If N (F1) is in C[+] and N (F2) is in C[∩,+], then F1 * F̃2 = F2 if and only if
F1 \ {+} * F2 \ {+}. Hence one of π, π, di ,−1 is present in F1 but missing in F2. Again,
if this feature is di , π or π we can use the proof of case 1. On the other hand, if that
feature is −1, then we can apply Proposition 5.25, which implies our result, since + ∈ F2.

In any other scenario for N (F1) and N (F2), one of ∩ or + is present in F1, but not
in F2 — hence either Proposition 4.25 in the former or Proposition 4.28 latter scenario
prove our proposition. �

5.6 Proof of Theorem 5.8

Since Proposition 5.6 and Proposition 5.7 combined prove the only if direction of The-
orem 5.8, the only thing left to show is the if direction. To this end consider its contra-
positive, i.e., we want to show that for arbitrary sets of nonbasic features F1 and F2, if
F1 6⊆ F̃2 and F̂1 6⊆ F2, then, N (F1) 6≤bool N (F2). Throughout Sections 5.1, 5.2, 5.3 and
5.4 we established separation for languages within the same classes. However, as men-
tioned before, the characterization of ≤bool is less complicated in this case. Obviously,

N
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Figure 5.3: The Hasse diagram of
≤bool for languages in C.

these results imply that Theorem 5.8 also holds for
languages within the same classes. On the other
hand, we mentioned that for languages over dif-
ferent classes this simplified version does not hold
anymore. However, in Section 5.5 we did show that
separation on the level of boolean queries for lan-
guages in different classes requires an extra con-
dition. Let us now recite these results. Proposi-
tion 5.11 established boolean separation for lan-
guages in C. This yields the Hasse diagram in Fig-
ure 5.3, where there is a directed path from N (F1)
to N (F2) if and only if N (F1) ≤bool N (F2). Note
that the boxed features represent the minimal set
of nonbasic features from which the other features
can be derived by the appropriate interdependen-
cies introduced at the start of Chapter 4.

We established boolean separation for lan-
guages in C[∩] in Proposition 5.22; for languages
in C[+] in Proposition 5.26; and for languages in
C[∩,+] in Corollary 5.43. As mentioned before,
these results mirror the result for ≤path — hence
the Hasse diagrams for ≤bool and ≤path for lan-
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guages in C[∩], C[+] and C[∩,+] are equal. These Hasse diagrams can be found in
Figure 4.8.

Proposition 5.45 ties all these results together, yielding Theorem 5.8. We can obtain
the Hasse diagram for general boolean queries from the Hasse diagrams of ≤bool for C,
C[∩], C[+] and C[∩,+] as follows:

− Add inclusion arrows from the Hasse diagram of ≤bool for C[∩] and C[+] to the
Hasse diagram of ≤bool for C[∩,+];

− Connect the Hasse diagram of C to the Hasse diagram of C[∩] by adding arrows
from N to N (∩), N (π, di ) to N (∩, di , π), from N (π ) to N (∩, π ), N (π, π) to

N (∩, π , π) and N (di , π , π) to N (∩, di , π );

− Connect the diagram of C to the diagram of C[+] by adding an arrow for every
N (F1) in the diagram of C to N (F1 ∪ {+}) in the diagram of C[∩].



6
Queries on Unlabeled Graphs

In the previous two chapters we considered boolean and path separation for boolean
and path queries over graphs which were allowed to have multiple edge labels. We
did, however, supply a lot of separation results whose proofs only relied on unlabeled
graphs, i.e., graphs with a single edge label. In this chapter we will explore which of
the separation results still hold when we only consider unlabeled graphs. We will write
N (F1) ≤path

unl N (F2) (resp. N (F1) ≤bool
unl N (F2)) if every path (resp. boolean) query

expressible on unlabeled graphs in N (F1) is also expressible in N (F2). Conversely,

we will write N (F1) 6≤path
unl N (F2) (resp. N (F1) 6≤bool

unl N (F2)) if there exists a path
(resp. boolean) query expressible in N (F1) which is not expressible N (F2) when only
considering unlabeled input graphs.

Obviously, N (F1) ≤path N (F2) implies N (F1) ≤path
unl N (F2) and N (F1) ≤bool N (F2)

implies N (F1) ≤bool
unl N (F2). For boolean queries, the converse does not necessarily hold,

as we will see later.

Notice that out of all the separation results, only the proof of Proposition 4.28 relies
on multiple edge labels. Therefore all the separation results which do not rely on the
presence of the transitive closure in N (F1) and the lack thereof in N (F2) still hold. In
the remainder of this chapter we will refer to the separation results which do rely this
phenomenon as the separation results involving transitive closure. We can, however,
prove a version of Proposition 4.28 for ≤path

unl .

Proposition 6.1 (Primitivity of +): Let F1 and F2 be sets of nonbasic features. If
+ ∈ F1 and + 6∈ F2, then N (F1) 6≤path

unl N (F2).

Proof: As mentioned before, it is a well known fact that the transitive closure of
binary relations is not expressible in first order logic, see e.g., [AU79, Gys12]. Since
every expression in N (F2) is also expressible in first order logic, it follows directly that
the transitive closure is not expressible in N (F2), which concludes our proof. �

Hence ≤path and ≤path
unl coincide — more formally:

81
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`5

`∗5

Figure 6.1: `5 (top) and `∗5 (bottom).

Proposition 6.2: Let F1 and F2 be sets of nonbasic features. Then, N (F1) ≤path

N (F2) if and only if N (F1) ≤path
unl N (F2).

6.1 Separation of boolean queries

As mentioned before, there are some separation results of ≤bool
unl involving transitive

closure that do coincide with ≤bool. Before we can prove this we need a few techniques
from finite model theory.

Define `n as a linear directed chain with n nodes and define `∗n as the reflexive-
transitive closure of `n, see Figure 6.1 for an example of `4 and `∗4. The graph `∗n is also
called a linear order of size n.

We now cite a well known result involving linear orders, for a proof, see e.g., [AHV95,
Gys12].

Theorem 6.3: The parity query for linear orders is not expressible in first order logic.

We will now use this result to prove that there exist no sentence in first order logic
which expresses whether a graph contains a cycle. Before we do so, however, notice that
we can extract `n from `∗n with the following first order query:

ϕ`(x, y) := x 6= y ∧R(x, y) ∧ ¬(∃z : y 6= z ∧ x 6= z ∧R(x, z) ∧R(z, y))

i.e., `∗n |= ϕ`[x, y] if and only if (x, y) ∈ `n. We will use this first order formula to prove
that the cycle query is not expressible in first order logic.

Proposition 6.4: The boolean query which expresses whether a finite graph contains a
cycle is not expressible in first order logic.

Proof: We will show that the existence of the ‘cycle’ query ψ contradicts Theorem 6.3.
To this end, let `n be a linear chain of size n > 2. We now define a new graph gn as
follows:

− gn contains n nodes, x1, . . . , xn;

− Add an edge from xi to xi+2 for every i ∈ {1, . . . , n− 2}.

Clearly, there is a path from xk to xl if and only if k < l, k and l are both even or both
odd. Thus, gn is a graph consisting of two distinct chains, one starting in x1 and the



6.1 Separation of boolean queries 83

`5

`6

ϕ

g∗5

g∗6

Figure 6.2: The graphs g∗6 (top) and g∗7 (bottom) constructed from `6 (top) and `7
(bottom).

other starting in x2. By the previous observation, the first chain ends in xn and the
second chain ends in xn−1 if and only if n is odd. On the other hand, the first chain
ends in xn−1 and the second chain ends in xn if and only if n is even.

Now define g∗n from gn by adding an edge from xn to x1 (see Figure 6.2 for an
example). If n is odd, there is a cycle in g∗n around x1 by our previous observation. If n
is even, the chain starting in x2 and ending in xn is connected to the chain starting in
x1 and ending in xn−1. Since both chains are disjoint and since both chains share the
same direction, the graph g∗n is isomorphic to `n and hence does not contain a cycle.
Thus g∗n contains a cycle if and only if n is odd.

Let us now define a first order formula ϕ(x, y), such that (a, b) ∈ g∗n if and only if
`n |= ϕ[a, b]. Clearly

ϕ(x, y) = (∃a : R(x, a) ∧R(a, y)) ∨ ((¬∃a : R(a, x)) ∧ ¬∃a : R(y, a)) (6.1)

fulfills this property. Moreover, if we replace all the R(x, y) occurrences in ϕ with
ϕ`(x, y), we get `∗n |= ϕ[a, b] if and only if (a, b) ∈ g∗n.

Now, if we also replace all the R(x, y) occurrences in ψ with ϕ(x, y) to get a new
sentence ϑ we get the following: `∗n |= ϑ if and only if n is odd, which contradicts
Theorem 6.3. �

We can now prove our first separation result of ≤bool
unl for languages involving tran-

sitive closure.

Proposition 6.5: Let F1 and F2 be sets of nonbasic features. If + ∈ F1,∩ ∈ F1 and
+ 6∈ F2, then N (F1) 6≤bool

unl N (F2).

Proof: Notice that the ‘cycle’ query is expressible in N (F1) by the query R+ ∩ id .
On the other hand, the ‘cycle’ query is not expressible N (F2), since the ‘cycle’ query is
not expressible in first order logic by Proposition 6.4 and since every query in N (F2) is
expressible in first order logic due to Proposition 2.6. �

For the second separation result of ≤bool
unl for languages involving transitive closure,

we will need that the boolean query expressed by R2◦(R◦R−1)◦R2 6= ∅ is not expressible
in first order logic. Classically this is done by showing that it is not expressible in FO[k]
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by supplying two graphs and then show that the duplicator has a winning strategy in a
k-round Ehrenfeucht-Fräıssé game played on those two graphs. This, however, is rather
difficult when the structure of the graphs becomes complex. Hence why we will use
another technique from finite model theory, called the Hanf-locality. First, however, we
need a few preliminary definitions.

Definition 6.6: Let G be an unlabeled graph. Define dG(x, y) as the shortest distance
between x and y in G when one considers G as an undirected graph. If there is no such
path define dG(x, y) as infinity. Furthermore, if x = y, then define dG(x, y) as 0. If it is
clear in which graph G we are expressing the distance we will omit the G subscript. �

The goal is to inspect graphs locally, i.e., to consider subgraphs of a particular graph
G around a node a. To this end consider the following definition.

Definition 6.7: Let G be an unlabeled graph, let a ∈ adom(G) and let r be a natural
number. The ball with radius r around a is the set

BG
r (a) = {x ∈ adom(G) | dG(x, a) ≤ r}.

The r-neighborhood of a in G, denoted by NG
r (a), is the tuple (G′, a) where the

graph G′ is defined as follows:

− Its nodes are precisely BG
r (a);

− Its edge relation is G ∩BG
r (a)2. �

We now extend our usual definition of graph isomorphisms to (G, a). We say that
(G, a) and (G′, b) are isomorphic, denoted by (G, a) ∼= (G, b), if there exists a graph
isomorphism f from G to G′ such that f(a) = b.

A lot of winning strategies of the duplicator in an Ehrenfeucht-Fräıssé game are
based on that first order formulas are local, i.e., intuitively they can only ‘select’ nodes
which are at most a fixed number of steps away from the free variables. To formalize
this, we first to have define what it means for graphs to be locally similar.

Definition 6.8: Let G1 and G2 be graphs, and let d be a natural number. We write
G1 �d G2 if there exists a bijection f : adom(G1) → adom(G2) such that for every
c ∈ adom(A): NG1

d (c) ≡ NG2
d (f(c)). �

We will now define what it means for a boolean query to be local.

Definition 6.9 (Hanf-locality): Let q be a boolean query on graphs. We say that q is
Hanf-local if there exists a natural number d such that for every pair of finite unlabeled
graphs G1 and G2 the following holds:

G1 �d G2 =⇒ (q(G1) = true ⇐⇒ q(G2) = true) �

In the motivation for this technique we said that intuitively first order logic is local.
The following theorem justifies this intuition — for a proof see for example [Lib04].



6.1 Separation of boolean queries 85

Theorem 6.10: Any boolean query expressible in first order logic is Hanf-local.

To show that the query expressed by R2 ◦ (R ◦R−1)+ ◦R2 is not expressible in first
order logic we will prove that it is not Hanf-local. To this end, we will first show that
the graphs Gn1 and Gn2 displayed in Figure 6.3 are locally equivalent.

Lemma 6.11: Let Gn1 be the graph at the top and Gn2 at the bottom of Figure 6.3.
Then, Gn1 �n−1 G

n
2 .

Proof: Define f : adom(Gn1 )→ adom(Gn2 ) be defined as follows:

f(c) =



vi, if c = xi where n < i ≤ 2n− 1

ui, if c = yi where n < i ≤ 2n− 1

uj , if c = xj where 1 ≤ j ≤ n
vj , if c = yj where 1 ≤ j ≤ n
a, if c = x

b, if c = y

We will show that N
Gn

1
n−1(c) ∼= N

Gn
2

n−1(f(c)) for all c ∈ adom(Gn1 ), which is exactly
the condition for Gn1 �n−1 G

n
2 . First notice that if c ∈ A = [x1, xn] ∪ [y1, yn] ∪ {x},

then d(c, y) > n − 1 and d(f(c), b) > n − 1. Hence y 6∈ adom(N
Gn

1
n−1(c)) and b 6∈

adom(N
Gn

2
n−1(f(c))). Therefore, when we consider Gn1 without y and Gn2 without b, they

are isomorphic, where the isomorphism between them is defined as follows:

g(w) =


uj , if w = xj where 1 ≤ j ≤ 2n− 1

vj , if w = yj where 1 ≤ j ≤ 2n− 1

a, if w = x

Therefore, g restricted to the appropriate nodes also yields an isomorphism between

N
Gn

1
n−1(c) and N

Gn
2

n−1(f(c)) since in this case f(c) = g(c).

If on the other hand c 6∈ A, then d(c, y) ≤ n − 1 and d(c, x) > n − 1, and

thus y ∈ N
Gn

1
n−1(c) and x 6∈ N

Gn
1

n−1. Hence without considering direction, N
Gn

1
n−1(c) has

one of the following chain forms: xi, . . . , x2n−1, y, y2n−1, . . . , yk or xi, . . . , x2n−1, y or
y, y2n−1, . . . , yk, where c is in the middle of these chains. We will only consider the
first chain form as the proof for the other chains are analogous. Since f in a sense

‘mirrors’ c around the horizontal dotted line, N
Gn

2
n−1(f(c)) has the following chain form:

vi, . . . , v2n−1, b, u2n−1, . . . , uk when we do not consider the direction of the edges. Let

us now define g : N
Gn

1
n−1(c)→ N

Gn
2

n−1(f(c)) as follows:

g(w) =


vk, if w = xk

uk, if w = yk

b, if w = y
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x1 x2 xn x2n−2 x2n−1

y1 y2 yn y2n−2 y2n−1

x y

u1 u2 un u2n−2 u2n−1

v1 v2 vn v2n−2 v2n−1

a b

Figure 6.3: Graphs Gn1 (top) and Gn2 (bottom) used to establish separation in Proposi-
tion 6.12.

By inspecting Figure 6.3 and by the definition of g the following properties hold

(xk, xl) ∈ N
Gn

1
n−1(c) ⇐⇒ (g(xk), g(xl)) = (vk, vl) ∈ N

Gn
2

n−1(g(c))

(yk, yl) ∈ N
Gn

1
n−1(c) ⇐⇒ (g(yk), g(yl)) = (uk, ul) ∈ N

Gn
2

n−1(g(c))

(y2n−1, y) ∈ NGn
1

n−1(c) ⇐⇒ (g(y2n−1), g(y)) = (u2n−1, b) ∈ N
Gn

2
n−1(g(c))

(y, x2n−1) ∈ NGn
1

n−1(c) ⇐⇒ (g(y), g(x2n−1)) = (b, v2n−1) ∈ NGn
2

n−1(g(c)).

Therefore, since the equations above cover all the scenarios such that (u, v) ∈ NGn
1

n−1(c),

and all (u′, v′) ∈ NGn
2

n−1(f(c)), g is a graph isomorphism. Furthermore, g(c) = f(c) by

definition of g, hence N
Gn

1
n−1(c) ∼= N

Gn
2

n−1(f(c)) as desired. �

Utilizing the fact that queries in first order logic are Hanf-local, we can now prove
that boolean query expressed by R2 ◦ (R ◦ R−1)+ ◦ R2 is not expressible in languages
without transitive closure.

Proposition 6.12: Let F be a set of non basic features such that + 6∈ F . Then, the
boolean query R2 ◦ (R ◦R−1)+ ◦R2 6= ∅ is not expressible in N (F ).

Proof: Suppose that the boolean query q expressed by R2 ◦ (R ◦ R−1)+ ◦ R2 6= ∅ is
expressible in N (F ). Then certainly, it is also expressible in first order logic. Hence q
is Hanf-local and thus by definition, there has to exists a natural number d such that
for every finite graphs A and B, if A �d B, then q agrees on A and B. However, our
previous proposition tells us that Gd+1

1 �d G
d+1
2 , but q(Gd+1

1 ) is true and q(Gd+1
2 ) is

false, which contradicts that q is Hanf-local. �

We are now ready to prove the second separation result of ≤bool
unl for languages in-

volving transitive closure.
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Proposition 6.13: Let F1 and F2 be sets of nonbasic features. If + ∈ F1,
−1 ∈ F1 and

+ 6∈ F2, then N (F1) 6≤bool
unl N (F2).

Proof: Proposition 6.12 tells us that the boolean query R2 ◦ (R ◦ R−1)+ ◦ R2 6= ∅ is
not expressible in first order logic. Hence it is also not expressible in N (F2), since every
boolean query expressible in N (F2) is also expressible in first order logic. �

Let us now move on to the third separation result of ≤bool
unl for languages involving

transitive closure. We will first a few preliminary lemmas.

Lemma 6.14: The boolean query “there is a non-sink node from which no sink node1

can be reached” is expressible in N (π,+).

Proof: Let G be an arbitrary graph. A node v is a sink node if there are no outgoing
edges in G, i.e., for every k ∈ adom(G): (v, k) 6∈ R(G). Clearly, this is equivalent to
(v, v) ∈ π1(R)(G). We will now show that π1((R+ ◦π1(R))∪π1(R))(G) 6= if and only if
there is a non-sink node in G from which no sink node can be reached. First, notice the
following: (a, s) ∈ R+ ◦ π1(R)(G) if and only if a reaches the sink node s. Moreover, a
is not a sink node if and only if (a, a) ∈ π1(G). Hence a is a non-sink node from which
no sink node can be reached, if and only if, (a, a) ∈ π1(R+ ◦ π1(R) ∪ π1)(G). �

It appears that the boolean query in the previous lemma is not expressible in first
order logic.

Lemma 6.15: The boolean query “there is a non-sink node from which no sink node
can be reached” is not expressible in first order logic.

Proof: We will show that the existence of a first order sentence ψ boolean query which
expresses the boolean query “there is a non-sink node from which no sink node can be
reach” contradicts Theorem 6.3. Let us for the sake of contradiction assume that such
a sentence ψ exists.

Remember that in the proof of Proposition 6.4 we established that g∗n (see Figure 6.2)
has a cycle if n is even and that g∗n is isomorphic to `n if n is odd. Now, notice that if a
graph has a cycle, it also has a non-sink node from which no sink node can be reached
since there simply are no sink nodes. On the other hand, if a graph is isomorphic to
`n, every non-sink node can reach a sink node. Hence, g∗n contains a non-sink node
from which no sink can be reached if and only if n is even. Hence g∗n |= ϕ if and only
if n is even. Moreover, in the same proof we established that there exists a first order
formula ϕ(x, y) such that `∗n |= ϕ[a, b] if and only if (a, b) ∈ g∗n. Now, if we replace every
occurrence of R(x, y) in ψ with ϕ(x, y), then `∗n |= ψ if and only if n is even, which
contradicts Theorem 6.3 as desired. �

Armed with the previous two lemmas we are ready to prove our third separation
separation result of ≤bool

unl for languages involving transitive closure.

1A sink node in a graph is a node in that graph with outdegree 0.
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Proposition 6.16: Let F be a set of nonbasic features such that π ∈ F and + 6∈ F .
Then, N (F ∪ {+}) 6≤bool

unl N (F ).

Proof: The query boolean query “there is a non-sink node from which no sink node
can be reached” is expressible in N (π,+) by Lemma 6.14 and hence also in N (F ∪{+}).
This query, however, is not expressible in first order logic by Lemma 6.15 and hence not
in N (F ) since every boolean query expressible in N (F ) is also expressible in first order
logic. �

6.1.1 Collapse of boolean expressiveness of certain languages in C[+]

At the end of the previous section we showed that ≤bool and ≤bool
unl coincide for separation

results involving transitive closure when −1, ∩ or π is also present in the left hand
language. In this section we will show that this does not hold in general. Before we can
do this, however, we need several technical lemmas.

Lemma 6.17: Let e be an expression in N (π,+), let G1 and G2 be graphs and let
f be a homomorphism of graphs from G1 to G2. Then, (a, b) ∈ e(G1) implies that
(f(a), f(b)) ∈ e(G2).

Proof: We will prove this proposition by structural induction on e.
Induction Basis: If e = R, then the proposition follows directly from the fact that f
is a homomorphism.
Induction Hypothesis: Suppose that our lemma holds for every subexpression of e.
Induction Step: We will now show that our lemma holds for e.

− e = πi(e1). If (a, a) ∈ π1(e1)(G1), then there exists c such that (a, c) ∈ e1(G1). By
our induction hypothesis, (f(a), f(c)) ∈ e1(G2), which by definition of π1 implies
that (f(a), f(a)) ∈ π1(e1)(G2) as desired. For (a, a) ∈ π2(e1)(G1) the proof is
analogous.

− e = e1 ◦ e2. Suppose that (a, b) ∈ e(G1). Then there exists c such that (a, c) ∈
e1(G1) and (c, b) ∈ e2(G2). Now, by our induction hypothesis (f(a), f(c)) ∈ e1(G2)
and (f(c), f(b)) ∈ e2(G2), and hence (f(a), f(b)) ∈ e(G).

− e = e1 ∪ e2. If (a, b) ∈ e(G1), then (a, b) ∈ e1(G1) or (a, b) ∈ e2(G1). Now, by
our induction hypothesis (f(a), f(b)) ∈ e1(G2) or (f(a), f(b)) ∈ e2(G2), and thus
(f(a), f(b)) ∈ e(G2) as desired. �

It appears that the output graph of a path query in N (π,+) is contained within the
reflexive-transitive closure of the input graph, i.e., the expressions in N (π,+) literally
only navigate over the paths in the input graph. Note that this is not necessarily the
case for arbitrary languages N (F ), e.g., the expression di ∪ id selects every pair of nodes
of an input graph.
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Lemma 6.18: Let e be an expression in N (π,+) and let G be an unlabeled graph. If
(a, b) ∈ e(G), then either a = b or there exists a path from a to b in G.

Proof: We will prove this proposition by structural induction on e.
Induction Basis: Clearly our lemma clearly holds for e = R or e = id.
Induction Hypothesis: Suppose that our lemma holds for every subexpression on e.
Induction Step: We will now show that our lemma holds for e.

− e = π(e1). By the definition of π, π(e′) ⊆ id , and thus if (a, b) ∈ e(G), then a = b.

− e = e1 ◦ e2. By definition of the composition operation, if (a, b) ∈ e(G), then there
exists c such that (a, c) ∈ e1(G) and (c, b) ∈ e2(G). Our hypothesis then tells us
that a = c or there exists a path from a to c in G and that c = b or there exists a
path from c to b in G. Clearly, if there is a path from a to c and from c to b, there
also is a path from a to b. If a = c and c = b, then a = b. On the other hand if
there is a path from a to c and if c = b, there obviously is a path from a to b in
G. In the case where there is a path from c to b and a = c there also clearly is a
path from a to b in G.

− e = e1∪e2. If (a, b) ∈ e(G), then either (a, b) ∈ e1(G) or (a, b) ∈ e2(G). The result
now follows directly from our induction hypothesis. �

We want to show that every boolean query expressible in N (π,+) can be expressed
without transitive closure. It appears that we can mimic every such expression partially
by a chain query, i.e., a query of the form Rm for some m ≥ 1. Remember that `n is a
linear chain with n nodes (see Figure 6.1).

Lemma 6.19: For every expression e in N (π,+), there exists a natural number m such
that, for any unlabeled graph G, e(G) is nonempty whenever Rm(G) is nonempty.

Proof: We will prove this by structural induction on e.
Induction Basis: If e = R or e = id , we set m = 1. In the former the required
condition clearly holds. On the other hand if e = id , then id(G) is only empty when
adom(G) is empty, and hence R1(G) is also nonempty as desired.
Induction Hypothesis: Suppose that our lemma holds for all subexpressions of e.
Induction Step: We will now show that our lemma holds for e.

− e = e1 ∪ e2. By our induction hypothesis there exists m1 and m2 such that e1(G)
is nonempty whenever Rm1(G) is nonempty and e2(G) is nonempty whenever
Rm2(G) is nonempty. Hence setting m to m1 would suffice since e1 ⊆ e1 ∪ e2(G)
is nonempty whenever Rm1(G) is nonempty.

− e = π(e1) or e = e+
1 . Here e(G) is nonempty whenever e1(G) is empty — hence

setting m to the m1 associated with e1 by our induction hypothesis is sufficient.
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− e = e1 ◦ e2. By our induction hypothesis there exists m1 and m2 such that when-
ever Rm1(G) is nonempty, e1(G) is nonempty and similarly, whenever Rm2(G) is
nonempty, e2(G) is nonempty. We will now show that setting m = m1 +m2 does
the job.

By definition Rm1(`m1) is nonempty and Rm2(`m2) nonempty. Hence e1(`m1) and
e2(`m2) are both nonempty by our induction hypothesis. Now let (x1, y1) ∈ e1(`m1)
and let (x2, y2) ∈ e2(`m2). First, let us consider the case where x2 < y1 where the
order is given by the linear chains. Then, let f1 be the canonical injection from `m1

to `m such that the first node in `m1 is mapped to the first node in `m. Similarly,
let f2 be the canonical injection from `m2 to `m such that f2(x2) = f1(y1). We can
define f2 in this way since x2 < y1, i.e., there are a sufficient number of nodes to the
left of f1(y1) to map the nodes in `m2 in front of x2 to `m in a homomorphic fashion.
Now, since f1 and f2 are homomorphisms by definition, Lemma 6.17 implies that
(f1(x1), f1(y1)) ∈ e1(`m) and (f1(y1), f2(y2)) = (f2(x2), f2(y2)) ∈ e2(`m), and
hence (f1(x1), f2(y2)) ∈ e1 ◦ e2(`m). On the other hand, if y1 ≤ x2, we can use a
similar argument. Let f2 be the canonical injection from `m2 to `m such that the
first node in `m2 is mapped to the first node in `m. Furthermore, let f1 be the
canonical injection from `m1 to `m such that f1(y1) = f2(x2). This construction
of f1 is possible since y1 ≤ x2, i.e., there is enough room in front of f2(x2) to map
y1 to f2(x2) such that f1 is a homomorphism from `m1 to `m. Again since f1 and
f2 are homomorphisms, Lemma 6.17 implies that (f1(x1), f1(y1)) ∈ e1(`m) and
(f1(y1), f2(y2)) = (f2(x2), f2(y2)) ∈ e2(`m). Hence (f1(x1), f2(y2)) ∈ e1 ◦ e2(`m).

Now assume that Rm(G) is nonempty. Since Rm is an expression in N there exists
a conjunctive query Q with a body isomorphic to `m which is equivalent to Rm

by Lemma 4.16. Furthermore, since Q(G) is nonempty there exists a matching f
from the body B of Q into G which by definition is a homomorphism. Now let
g be the isomorphism from `m to B, then clearly f ◦ g is a homomorphism from
`m to G. Furthermore, by our previous discussion there exists (a, b) ∈ e1 ◦ e2(`m),
and hence (f ◦ g(a), f ◦ g(b)) ∈ e1 ◦ e2(G) as desired. �

As said before this proposition, Rm only mimics e partially, i.e., it only mimics e
when Rm(G) is nonempty. Note that when Rm(G) is empty, Rm

′
(G) is also empty when

m′ ≥ m. To categorize these graphs we need the following definition.

Definition 6.20: Let m be a natural number. We say that an unlabeled graph G is
m-short if Rm(G) is empty. �

It appears that expressions in N (π,+) on m-short graphs can be mimicked exactly
by an expression in N (π,+).

Proposition 6.21: Let e be an expression in N (π,+) and let m be a natural number.
There exists an expression e′ ∈ N (π) such that e′(G) = e(G) on any m-short graphs.
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Proof: We will show that for any expression e without transitive closure, e+ can be
expressed without transitive closure on m-short graphs. We will show that e+ ≡ ∪m−1

i=1 e
i

on m-short graphs. By definition ∪m−1
i=1 e

i ⊆ e+. Now let G be an arbitrary m-short
graph and let (x, y) ∈ e+(G). If (x, y) ∈ e+(G) and (x, y) 6∈ e(G), there exists x =
x0, . . . , xn = y, such that (xi, xi+1) ∈ e(G) where n ≥ 2. Without loss of generality we
can assume that this path or cycle is simple in e(G) by Lemma 4.10. Hence xi 6= xi+1 for
all i = 0 . . . n− 1. Furthermore, by Lemma 6.18 there exists a path from xi to xi+1, i.e.,
(xi, xi+1) ∈ Rj(G) for some j > 0. Now since each such path has at least length 1, there
exists a path from x to y in G of at least length n ≤ k, i.e., (x, y) ∈ Rn(G). This implies
that n ≤ k ≤ m− 1 since Rm

′
(G) is empty for all m′ ≥ m and thus (x, y) ∈ ∪m−1

i=1 e
i as

desired. �

Armed with the two previous propositions we are now ready to show that ≤bool
unl does

not necessarily coincide with ≤bool.

Proposition 6.22: The following collapses of languages involving + occur at the level
of boolean queries on unlabeled graphs:

(a) N (+) ≤bool
unl N ;

(b) N (π,+) ≤bool
unl N (π);

Proof: Let us first consider (b). Let e be an expression in N (π,+) and let G be an
arbitrary graph. Lemma 6.19 implies the existence of a natural number m such that
e(G) is nonempty whenever Rm(G) is nonempty. On the other hand, if Rm(G) is empty,
G is m-short. Now, Proposition 6.21 tells us that there exists an expression e′ ∈ N (π)
such that e′(G) = e(G). Hence if G is m-short e′(G) is nonempty if and only if e(G) is
nonempty. Clearly e′ ∪ Rm ∈ N (π) is equivalent to e at the level of boolean queries as
desired.

Since this proof does not depend on the presence of π, (a) also holds. �

The goal of this section and the previous section is to characterize N (F1) ≤bool
unl

N (F2) for languages involving transitive closure. So far we already covered the scenarios
where −1 ∈ F1 or ∩ ∈ F1 or π ∈ F1 or F1 = {+} or F1 = {π,+}. Hence the only
scenarios left to consider are those where F1 = {di ,+} or F1 = {di , π,+}. It appears
that a collapse also appears in these two scenarios.

Proposition 6.23: Let F ⊆ {π, di}. Then, N (F ∪ {+}) ≤bool
unl N (F ).

We will not prove this proposition in this thesis, for a proof of see [FGL+12b].





7
Other Boolean Query Modalities

Until now we said that a boolean query q is expressible in N (F ) if there is an expression
e ∈ N (F ) such that for every graph G, e(G) 6= ∅ if and only if q(G) = true. This is
just a certain interpretation of boolean queries in our language of navigational queries.
Another definition could be: a boolean query q is expressible in N (F ) if there is an
expression e ∈ N (F ) such that for every graph G, e(G) = ∅ if and only if q(G) = true.
In this chapter we will explore the expressibility of boolean queries relative to different
interpretations of boolean queries in our language of navigational queries. From now on
we will refer to these interpretations as boolean query modalities.

To align our results from the previous chapters with this new notion, we will refer to
the modality we used for boolean queries in the previous chapters as the 6=∅-modality.
Furthermore, we will refer to the new modality introduced above as the =∅-modality.

The main focus of this chapter will be to characterize other modalities and compare
them with the characterization of the 6=∅-modality. To this end, we will require a
new notation for ≤bool which facilitates the use of other modalities. We will write
N (F1) ≤bool6=∅ N (F2) if every boolean query q expressible in N (F1) is also expressible
in N (F2) relative to the 6=∅-modality. Similarly, we will write N (F1) ≤bool=∅ N (F1) if
every boolean query q expressible in N (F1) is also expressible in N (F2) relative to the
=∅-modality.

It appears that the characterization of ≤bool=∅ coincides with the characterization
of ≤bool 6=∅.

Proposition 7.1: Let F1 and F2 be arbitrary features. Then, N (F1) ≤bool=∅ N (F2) if
and only if N (F1) ≤bool 6=∅ N (F2).

Proof: Clearly, q is expressible in N (F ) relative to the =∅-modality if and only if ¬q is
expressible in N (F ) relative to the 6=∅-modality. Our proposition now follows directly
from this observation. �
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Figure 7.1: Graphs used to show that Proposition 7.3 does not necessarily hold for
languages without set difference.

7.1 The ⊆-modality

In this section we will introduce yet another modality and we will try characterize its
relative expressiveness in our language of navigational queries.

We say that a boolean query q is expressible in N (F ) relative to the ⊆-modality if
there exists two expressions e1, e2 ∈ N (F ) such that for every graph G, e1(G) ⊆ e2(G)
if and only if q(G) = true. Furthermore, we will write N (F1) ≤bool⊆ N (F2) if every
boolean query expressible in N (F1) relative to the ⊆-modality is also expressible in
N (F2) relative to the ⊆-modality.

The first result for the ⊆-modality mirrors the result for 6=∅-modality.

Proposition 7.2: Let F1 and F2 be sets of nonbasic features. If N (F1) ≤path N (F2),
then N (F1) ≤bool⊆ N (F2).

Proof: Suppose q is a boolean query expressible in N (F1) relative to the ⊆-modality.
Then there exists two expressions e1 and e2 in N (F1), such that for every graph G,
q(G) = true if and only if e1(G) ⊆ e2(G). Furthermore, since N (F1) ≤path N (F2), there
exists e′1 and e′2 in N (F2) such that e′1 ≡ e1 and e′2 ≡ e2. Now, clearly e′1(G) ⊆ e′2(G) if
and only if q(G) = true, and hence q is expressible in N (F2) relative to the ⊆-modality
as desired. �

The following proposition tells us that we can mimic the containment modality in
the =∅-modality modality if we have set difference.

Proposition 7.3: Let F be an arbitrary set of nonbasic features such that \ ∈ F . If q is
a boolean query expressible in N (F ) relative to the ⊆-modality, then q is also expressible
in N (F ) relative to the =∅-modality.

Proof: Let e1 and e2 be the expressions in N (F ) such that e1(G) ⊆ e2(G) if and only if
q(G) = true. Now, the query e1\e2(G) = ∅ clearly expresses q relative to =∅-modality.�

The graphs displayed in Figure 7.1 are distinguishable by the query R ⊆ R2. They
are, however, indistinguishable inN by the brute-force method introduced in Section 3.1.
Hence the previous proposition does not hold when the set difference operator is not
present in F .

The converse, however, does hold for every set of nonbasic features.

Proposition 7.4: Let F be a set of nonbasic features. If q is expressible in N (F )
relative to the =∅-modality, then it is also expressible in N (F ) relative to the ⊆-modality.
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Proof: If q is expressible in N (F ) relative to the =∅-modality, there exists e1 ∈ N (F )
such that e(G) = ∅ if and only if q(G) = true for every graph G. Clearly e(G) ⊆ ∅(G) if
and only if e(G) = ∅, and hence e ⊆ ∅ expresses q relative to the ⊆-modality as desired.�

As in the previous chapters, we will introduce a notion of strong boolean separation
relative to other modalities. We will write N (F1) 6≤bool⊆

strong N (F2) if there exists a boolean
query q expressible in N (F1) relative to ⊆-modality and two graphs G1 and G2 such
that q(G1) = true and q(G2) = false and for every boolean query q′ expressible in N (F2)
relative to ⊆-modality, q(G1) = true if and only if q(G2) = true. In this case we will
also say that N (F1) is strongly separable from N (F2) at the level of boolean queries
relative to the ⊆-modality.

The following proposition mirrors the result for the 6=∅-modality.

Proposition 7.5 (Primitivity of \): Let F1 and F2 be sets of nonbasic features. If
\ ∈ F1 and \ 6∈ F2, then N (F1) 6≤bool⊆

strong N (F2).

Proof: The graphs displayed in Figure 4.4a are distinguishable in N (F1) relative to the
⊆-modality by the query R2 \R ⊆ ∅. On the other hand, by the brute-force method in-
troduced in Section 3.1 they are indistinguishable in N (F2) relative to the 6=∅-modality,
hence also in N (F2) relative to the =∅-modality by Proposition 7.1. Therefore, q is not
expressible in N (F2) relative to the =∅-modality. Proposition 7.5 now implies that q is
not expressible in N (F2) relative to the ⊆-modality either, which concludes our proof.�

We can, as for the 6=∅-modality (see Section 3.1), verify whether two graphs are
distinguishable in N (F ) relative to the ⊆-modality by a brute-force method. We can
do so as follows. Let F be a set of nonbasic features, let G1 and G2 be arbitrary graphs,
and let A = {(e(G1), e(G2) | e ∈ N (F )}. Now, notice that each pair of tuples (X1, Y1)
and (X2, Y2) in A represent a boolean query e1 ⊆ e2 expressible in N (F ) evaluated on
G1 and G2, i.e., X1 = e1(G1), X2 = e2(G1), Y1 = e1(G2) and Y2 = e2(G2). Also, for
every boolean query e1 ⊆ e2, it is clear that (e1(G1), e1(G2)) and (e2(G1), e2(G2)) are
present in A. Hence we can use A to decide whether two graphs are distinguishable in
N (F ) relative to the ⊆-modality or not (see Algorithm 7.1).

Algorithm 7.1 Brute-Force Algorithm for the ⊆-modality

1: procedure Brute-Force-⊆-modality(G1, G2,N (F ))
2: A← {(e(G1), e(G2)) | e ∈ N (F )}
3: for all (R1, R2), (S1, S2) ∈ B do
4: if (R1 ⊆ S1 and R2 * S2) or (R1 * S1 and R2 ⊆ S2) then
5: return Distinguishable

6: return Indistinguishable

Using Algorithm 7.1 we can prove the following proposition which mirrors the result
for the 6=∅-modality.
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Proposition 7.6 (Primitivity of di): Let F1 and F2 be sets of nonbasic features. If
di ∈ F1 and di 6∈ F2, then N (F1) 6≤bool⊆

strong N (F2).

Proof: The graphs displayed in Figure 4.1a are distinguishable in N (F1) relative to the
⊆-modality by the query di ⊆ ∅. We can, however, verify that they are indistinguishable
in N (F2) relative to the ⊆-modality with Algorithm 7.1. �

It appears that π certainly adds expressive power when F2 ⊆ {\,∩,+}.

Proposition 7.7 (Primitivity of π): Let F1 and F2 be sets of nonbasic features. If
π ∈ F1 and F2 ⊆ {\,∩,+ }, then N (F1) 6≤bool

strong N (F2).

Proof: The brute-force algorithm tells us that the graphs in Figure 4.4b are indistin-
guishable in N (F2) relative to the ⊆-modality. They are however distinguishable in
N (F1) by π1(R2) ◦R ◦ π(R2) ⊆ ∅. �

It is still open whether the other results involving π still hold.

We will now try to prove that adding transitive closure to a language adds expressive
power. To this end, we first need that every boolean query expressible in a language
without transitive closure relative to ⊆-modality is also expressible in first order logic.
This should not come as a surprise since containment is expressible in first order logic.

Proposition 7.8: Let F be a set of nonbasic features such that + 6∈ F . Then every
boolean query expressible in N (F ) relative to the ⊆-modality is also expressible in first
order logic.

Proof: Let q be expressible in N (F1) relative to the ⊆-modality. Then there exists e1

and e2 in N (F1) such that e1(G) ⊆ e2(G) if and only if q(G) = true. By Proposition 2.6
there exists ϕ1(x, y) and ϕ2(x, y) such that (a, b) ∈ e1(G) if and only if G |= ϕ1[a, b], and
(a′, b′) ∈ e2(G) if and only if G |= ϕ2[a′, b′]. Now, define ψ := ∀x, y : ϕ1(x, y)→ ϕ2(x, y).
Clearly G |= ψ if and only if e1(G) ⊆ e2(G) if and only if q(G) = true. Hence q is
expressible in first order logic as desired. �

We are now ready to prove that transitive closure adds expressive power.

Proposition 7.9 (Primitivity of +): Let F1 and F2 be sets of nonbasic features. If
+ ∈ F1 and + 6∈ F2, then N (F1) 6≤bool⊆ N (F2).

Proof: The query S ◦R ◦ T = ∅ is expressible in N (F1) relative to the ⊆-modality by
the query S ◦R ◦ T ⊆ ∅. Now, suppose for the sake of contradiction that S ◦R ◦ T ⊆ ∅
is expressible in N (F2) relative to the ⊆-modality. Then by Proposition 7.8 this query
is also expressible in first order logic and hence its negation S ◦ R ◦ T 6= ∅ as well.
This query, however, is not expressible in first order logic by Proposition 2.6 and hence
contradicts our assumption. �
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Figure 7.2: Graphs used to show that Proposition 7.3 does not hold for languages
without set different.

Notice that the proof of the proposition above requires two edge labels. Hence the
same question arises as for 6=∅-modality: does this proposition still hold when we only
consider unlabeled input graphs. We will explore this question in Section 7.2.

Remember that a certain collapse around −1 occurs relative to the 6=∅-modality. The
following proposition tells us that this collapse no longer occurs for certain languages,
e.g., N (−1) 6≤bool⊆ N (π).

Proposition 7.10: Let F1 and F2 be nonbasic features. If −1 ∈ F1 and F2 ⊆ {∩, \, π, π,+},
then N (F1) 6≤bool⊆

strong N (F2).

Proof: The graphs displayed in Figure 7.2 are indistinguishable in N (∩, \, π, π,+) by
the brute-force method introduced in Section 3.1. They are, however, distinguishable
in N (−1) by the query R ◦R−1 ⊆ id . �

It is still open whether we can extend the previous proposition to include diversity in
F2. Notice that the previous proposition also implies the following important result.

Proposition 7.11: ≤bool⊆ and ≤bool6=∅ do not coincide everywhere. More formally,
there exists sets of nonbasic features F1 and F2 such that N (F1) 6≤bool⊆ N (F2).

It is still open whether the separation results discussed in Chapter 5 involving π and
∩ still hold.

7.2 Unlabeled graphs

In the previous section we mentioned that the proof of Proposition 7.9 required 2 edge
labels. Hence it is natural to ask which results still hold when we only consider unlabeled
input graphs. Notice that all the other results in the previous section only require one
edge label. Therefore they still hold when we only consider unlabeled input graphs.

It is still open whether Proposition 7.9 still holds in its full generality when we only
consider unlabeled input graphs. We can, however, prove some less general results. The
first result requires that ∩ is also present in F1.

Proposition 7.12: Let F1 and F2 be sets of nonbasic features. If + ∈ F1,∩ ∈ F1 and
+ 6∈ F2, then N (F1) 6≤bool⊆ N (F2).

Proof: Notice that the negation of the ‘cycle’ query is expressible in N (F1) relative to
the ⊆-modality by the query R+∩ id ⊆ ∅. On the other hand, the negation of the ‘cycle’
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query is not expressible in first order logic since the ‘cycle’ query is not expressible in
first order logic due to Proposition 6.4. Hence by Proposition 7.8 it is not expressible
in N (F2) relative to the ⊆-modality either. �

The following separation result involving transitive closure requires that −1 is present
in F1.

Proposition 7.13: Let F1 and F2 be sets of nonbasic features. If + ∈ F1,
−1 ∈ F1 and

+ 6∈ F2, then N (F1) 6≤bool⊆ N (F2).

Proof: Proposition 6.12 tells us that the boolean query R2 ◦ (R ◦ R−1)+ ◦ R2 6= ∅ ∈
N (F1) is not expressible in first order logic. Therefore, R2 ◦ (R ◦R−1)+ ◦R2 ⊆ ∅ is not
expressible in first order logic. Hence by Proposition 7.8 it is not expressible in N (F2)
relative to the ⊆-modality either. �

The last separation result involving transitive closure requires that π is present in F1.

Proposition 7.14: Let F be a set of nonbasic features such that π ∈ F and + 6∈ F .
Then, N (F ∪ {+}) 6≤bool

unl N (F ).

Proof: The boolean query “there is a non-sink node from which no sink node can be
reached” is expressible in N (π,+) by Lemma 6.14. Hence its negation is expressible in
N (π,+) relative to the ⊆-modality due to Proposition 7.4, and thus also in N (F ∪{+})
relative to the ⊆-modality. This query, however, is not expressible in first order logic
by Lemma 6.15 and hence by Proposition 7.8 not in N (F ) relative to the ⊆-modality
either. �

It is still open whether the other separation results discussed in Chapter 6 involving
transitive closure still hold.



8
Conclusion

In this thesis we studied navigational query languages which contain the basic features
identity (id), composition (◦) and union (∪), and a selection of nonbasic features: di-
versity (di), converse (e−1), intersection (e1 ∩ e2), difference (e1 \ e2), projections (π1

and π2), coprojections (π1 and π2) and transitive closure (e+). Furthermore, we in-
troduced path queries over these operators which map graphs to graphs and boolean
queries which map graphs to true or false.

In Chapter 4 we completely characterized the relative expressiveness of our query
languages at the level of path queries. It appears that this relative expressiveness has
an interesting structure: every path query in N (F1) is expressible N (F2) if and only if
every feature in F1 is expressible in F2.

On the other hand, in Chapter 5 we completely characterized the relative expres-
siveness of our query languages at the level of boolean queries. We have proven that
the relative expressiveness at the level path and boolean queries do not coincide. Most
notably, at the level of boolean queries −1 does not always add expressive power, while
−1 always adds expressive power on the level of path queries.

During the characterization of the relative expressiveness at the level of boolean
queries we noticed that the proof of the proposition which established that + always
adds more expressive power requires more than one edge label. Hence we wondered
whether the relative expressiveness at the level of boolean queries changes when we
only allow unlabeled input graphs. In Chapter 6 we showed that a certain collapse in
expressiveness occurs. Most notably, + does not add expressive power when there are
no other nonbasic features present in the language.

To express boolean queries in our navigational query languages we associated a
nonempty query result with true and an empty query result with false ( 6=∅-modality).
This is the standard method to express boolean queries in database theory. We could,
however, express boolean queries in our language in a different manner. In Chapter 7
we introduced two new methods to express boolean queries (also called modalities).
Most notably, we linked a boolean query q to every pair of path queries e1, e2 as follows:
q(G) := true if and only if e1(G) ⊆ e2(G) (⊆-modality). During the characterization of
this new modality we discovered that the collapse surrounding −1 no longer occurs when
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di is not present. It is still open whether this collapse also disappears in the presence
of di . Furthermore, it is also still open whether the separation results discussed in
Chapter 5 involving π, π and ∩ still hold.

During the characterization of the ⊆-modality we again noticed that the proof of the
proposition which established that + always adds more expressive power requires more
than one edge label. Hence here we also wondered whether the relative expressiveness
at the level of boolean queries changes when we only allow unlabeled input graphs.
In Section 7.2 we started this characterization. It is unfortunately still open whether
the collapse surrounding + still occurs. We did, however, establish some results which
mirror the results for the 6=∅-modality.



A
Additional Material

Lemma A.1: There are 157 pairs (F1, F2) such that N (F1),N (F2) ∈ C and such that
F1 6⊆ F2.

Proof: We will split our proof into several exclusive cases. First, notice that in C, we
have F2 = F2 ∪ {π | π ∈ F2}.

Suppose that π ∈ F2, then F1 6⊆ F2 if and only if F1 ∩ {di ,−1} 6⊆ F2 ∩ {di ,−1}.
Furthermore, suppose that F2 ∩{di ,−1} = ∅. Then to have a valid pair, di or −1 has to
be in F1, which gives us 3 possible choices for F1∩{di ,−1}. Each of these choices can be
combined with ∅, {π}, {π} or {π, π}. Moreover, π can be in F2 or not. Hence we have
3 · 4 · 2 = 24 pairs. On the other hand, suppose that |F2 ∩ {di ,−1}| = 1. To construct a
valid pair, F1 ∩{di ,−1} has to contain the operation not present in F2 ∩{di ,−1}, hence
we have 2 possible choices for F1 ∩ {di ,−1}. Again, these choices can be combined with
∅, {π}, {π} or {π, π} and π can be in F2 or not. Furthermore, F2∩{di ,−1} can be either
di or −1. Therefore, we have 2 · 4 · 2 = 32 pairs.

Now, assume that π ∈ F1 and π 6∈ F2. Since we already have one element in F1 not
in F2, the other elements of F1 and F2 can be arbitrary. Hence we have 23 · 23 = 64
pairs.

Suppose that π 6∈ F1 and π 6∈ F2. Now, |F2| 6= 3, since F1, F2 ⊆ {di , π,−1}. If
|F2| = 2, then there are 3 possible choices for F2. Because |F2| = 2, it lacks one feature
x in {di , π,−1}. Therefore, any F1 which leads to a valid pair with F2, has to contain
x, there are 4 such F1’s. Hence we have 3 · 4 = 12 pairs.

Now, suppose that |F2| = 1, then there are 3 possibilities for F2. Any set having more
than one element is a valid pair with F2. Furthermore, any set with one element except
one is a valid pair with F2. Also, F1 cannot be empty, hence we have (23 − 2) · 3 = 18
pairs. Finally, if F2 = ∅, any nonempty F1 will do. Hence we have 23 − 1 = 7 pairs.

Adding all the subtotals, we get 24 + 32 + 64 + 12 + 18 + 7 = 157 pairs. �
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B
Implementation

Throughout this thesis most of our results relied heavily on three algorithms: Algo-
rithm 3.1, Algorithm 7.1 and the algorithm outlined in the proof of Theorem 5.20.
I implemented these algorithms in java and I choose to implemented Algorithm 3.1
and Algorithm 7.1 in an object oriented fashion so the algorithms can be extended to
include for example other nonbasic features like the residuation operator introduced
in [FGL+12a]. We will devote this chapter to how I implemented Algorithm 3.1 and
Algorithm 7.1.

Notice that Algorithm 3.1 and Algorithm 7.1 only differ in the distinguishability
check. This distinguishability check depends only on the given boolean query modality.
Hence why I chose the strategy pattern to accommodate different boolean query modal-
ities (see Figure B.1). The Modality class plays strategy role. It contains two methods:
elementSeparation and postSeparation. The elementSeparation method accommodates
separation tests on individual elements in A = {e(G1), e(G2) | e ∈ N (F )}, while the
postSeparation method accommodates separation tests on the whole of A.

To accommodate a wide variety of nonbasic features I also used a strategy like

+elementSeparation(entry : HistoryEntry)
+postSeparation(entries : HashSet<HistoryEntry>)

<<Interface>>
Modal i ty

+elementSeparation(entry : HistoryEntry)
+postSeparation(entries : HashSet<HistoryEntry>)

ContainsModality

+elementSeparation(entry : HistoryEntry)
+postSeparation(entries : HashSet<HistoryEntry>)

NotEqualModality

StrongPathSeparator

Visual Paradigm for UML Community Edition [not for commercial use] 

Figure B.1: Strategy pattern to accommodate different modalities.
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Figure B.2: Strategy like pattern to accommodate different nonbasic features.

pattern. To this end I introduced two interfaces: UnaryOperator and BinaryOperator
(see Figure B.2). Either interface contains an execute method which represents the
action an operator has to carry out given the input graphs. To compute A, we first
initialize a set of unary and binary operators and then call the execute method of their
base class repeatedly until now change occurs. This method, however, does not work
for coprojection operator, since the calculation of π(e1)(G) does not only depend on the
e1(G) but also on G. Hence unfortunately one extra test had to be included for the
coprojection operator.



C
Meeting Reports

Date: 01/08/2012

Attendees: Professor Jan Van den Bussche
Between this meeting and our last meeting I implemented the brute-force algorithm

described in Section 3.1 in java. It accepts command line parameters for language and
graph selections. I also finished the proof of a proposition which is needed to establish
separation on the level of path queries for languages in C. The proof utilizes the so
called homomorphism approach which we discusses in our last meeting.

In this meeting I demonstrated the algorithm to my advisor. He also revised the
proof mentioned above and explained me how the counting argument works to establish
separation on the level of path queries. I also asked the following question which was
deemed trivial by the paper I am studying: if N (F1) ≤path N (F2), then why does
N (F1 ∪ {+}) ≤path N (F2 ∪ {+}). My advisor explained me how to tackle this problem.

My planning: I will try to start the actual characterization proof of path for
languages in the same classes and hopefully also for languages in different classes.

Date: 28/09/2012

Attendees: Professor Jan Van den Bussche
In our last meeting I asked the following question, which was deemed trivial by

the paper I am studying: if N (F1) ≤path N (F2), then why does N (F1 ∪ {+}) ≤path

N (F2∪{+}). In this meeting we reviewed the proof I wrote up for this meeting associated
to this question. I also provided an alternative proof (a case analysis) for the actual path
separation for every class of languages. I found this proof while trying to understand
the counting argument used in the paper.

My planning: I will try to understand the collapse of −1 for bool. I will also try
to establish characterization of bool for languages in C.

Date: 25/10/2012

Attendees: Professor Jan Van den Bussche
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Since our last meeting I started with the characterization of bool. First I showed
that a certain collapse occurs around −1. However, my advisor pointed out that there
was a flaw in my proof. The flaw arose because I thought that I could remove the
pre-order and post-order assumption in his proof. I also proved the characterization
theorem of bool for languages in the C class.

My planning: I will try to finish the characterization of bool for languages in C[∩]
by our next meeting.

Date: 7/01/2013

Attendees: Professor Jan Van den Bussche, Jelle Hellings and Robert Brijder

First, I had to give a mid term presentation of my thesis for my advisor and assessors.
In my opinion it went well, although I forgot to include the difference between strong
separation versus normal separation in the presentation. My advisor noticed this and
asked me to explain it, which lead to an interesting discussion between me and the
other attendees. This discussion made it crystal clear again why this distinction was so
important.

The assessors left when my presentation was over. We then proceeded with a nor-
mal advisor-student meeting. Since our last meeting I read a part of another paper:
‘Similarity and bisimilarity notions appropriate for characterizing indistinguishability
in fragments of the calculus of relations’. This so I could show that two particular
marked graphs are bisimilar up to every level in polynomial time. I also adapted the
theory described in that paper to the language I required, as in the paper they consider
another fragment of the calculus of relations. I also implemented this polynomial time
algorithm. Moreover, I finished the proof of ≤bool characterization for languages in C[∩].

As in previous meetings, I always typeset and finalize my master thesis text before
starting with new concepts, hence why my writing work is not lacking behind. The
previous meeting, however, my advisor pointed out to me that I should write more
‘binding text’, which I did by this meeting.

My planning: Finish the characterization of ≤bool and ≤bool
unl by the following

meeting and after that start with some research of my own on other modalities for
boolean queries.

Date: 25/02/2013

Attendees: Professor Jan Van den Bussche
Since the previous meeting I finished the characterization of ≤bool apart from one proof
on which I am still stuck. This proof requires a complicated kind of pebble game to
establish separation. I discussed this problem with my advisor and we tried to find a
tactic for the game to finish to proof.

A few weeks back I visited my advisor for a couple of small questions since I could
not directly find an EhrenfeuchtFräıssé game. My advisor then told me about another
technique one can use to establish inexpressibility in first order logic, called the Hanf-
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locality. Since this mini-meeting I picked up the book [Lib04]. With this new technique
I could finish the characterization of ≤bool

unl .
In this meeting my advisor also proofread the last additions to my text. He pointed

out that there was a mistake in one of my proofs, we could, however, patch the proof up
right away. He also pointed out that the use of ‘we have’ or ‘we have that’ can usually
be omitted in the english writing.

In another short visit to my advisor before this meeting I pointed out that there was
a flaw in the characterization theorem of ≤bool in [FGL+11]. By this meeting I found
a new theorem for which I had to introduce some new notation. The problem with the
old notation (and theorem) was that it did not support the transitivity problem on the
left hand side. I introduced some new notation to capture this problem and patched up
the characterization theorem of ≤bool with this new notation.

My planning: Finish up that one last proof for the characterization of ≤bool. This
will finish up the work I am doing involving [FGL+11]. I will also try to rewrite my text
to omit the overuse of ‘we have’ and ‘we have that’. Furthermore, I will now start with
the characterization of ≤bool for other modalities.

Date: 28/04/2013

Attendees: Professor Jan Van den Bussche
Since the previous meeting I tried to prove Proposition 5.25. Unfortunately, however,
I could not finish the bisimilarity game. On the other hand, I started working on the
characterization of ≤bool⊆ and already found some small results.

In this meeting we found a strategy to prove Proposition 5.25.
My planning: Try to prove Proposition 5.25 with the strategy we found in this

meeting. I will also try to find some more results involving ≤bool⊆.

Date: 02/05/2013

Attendees: Professor Jan Van den Bussche
Since the previous meeting I found a proof for Proposition 5.25.

In this meeting my advisor proof read Proposition 5.25. There were some gaps in
my proofs and my advisor found my proof very hard to follow. He asked whether I
could maybe come up with a more ‘high level’ proof. He did say that I should first try
to find some more results for ≤bool⊆.

My planning: Try to prove Proposition 5.25 with the strategy we found in this
meeting. I will also try to find some more results involving ≤bool⊆.
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Door de jaren heen zijn er tal van query talen gëıntroduceerd en grondig bestudeerd.
Enkele van deze query talen hebben we zorgvuldig bestudeerd in onze bachelor en master
opleiding, bijvoorbeeld relationele algebra en XPATH. In deze thesis zullen we naviga-
tionele query talen bestuderen op gelabelde grafen. Deze talen zijn relevant voor de
praktijk omdat graaf data terug gevonden kan worden in RDF en overal op het web.

In onze navigationale query talen zullen we een selectie van unaire en binary operato-
ren beschouwen die grafen op grafen afbeelden. De unaire operatoren zijn projectie (π),
coprojectie (π), inverteren (−1), identiteit (id), diversiteit (di), transitieve sluiting(+)
en een operatie om bogen met een bepaalt label terug te krijgen. Anderzijds, de binaire
operatoren zijn unie (∪), doorsnede (∩), compositie (◦) en verschil (\). Deze operatoren
zijn gedefinieerd als volgt:

R(G) = G(R); (G(R) zijn de bogen met label R)

∅(G) = ∅;
id(G) = {(m,m) | m ∈ adom(G)};

e1 ◦ e2(G) = {(m,n) | ∃p : (m, p) ∈ e1(G) ∧ (p, n) ∈ e2(G)};
e1 ∪ e2(G) = e1(G) ∪ e2(G);

di(G) = {(m,n) | m 6= n ∧m,n ∈ adom(G)};
e−1(G) = {(m,n) | (n,m) ∈ e(G)};

e1 ∩ e2(G) = e1(G) ∩ e2(G);

e1 \ e2(G) = e1(G) \ e2(G);

π1(e)(G) = {(m,m) | m ∈ adom(G) ∧ (∃n)(m,n) ∈ e(G)};
π2(e)(G) = {(m,m) | m ∈ adom(G) ∧ (∃n)(n,m) ∈ e(G)};
π1(e)(G) = {(m,m) | m ∈ adom(G) ∧ ¬(∃n)(m,n) ∈ e(G)};
π2(e)(G) = {(m,m) | m ∈ adom(G) ∧ ¬(∃n)(n,m) ∈ e(G)};

e+(G) =
⋃
k≥1

ek(G); ; (waarbij ek(G) = e ◦ . . . ◦ e︸ ︷︷ ︸
k times

(G))
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Merk op dat deze operatoren inwerken op het actief domein1 van de input graaf. We
doen dit omdat we enkel bogen in onze query resultaten willen hebben indien er naartoe
genavigeerd kan worden. Net zoals in de relationele algebra zijn queries in onze talen
recursief opgebouwd over bovenstaande operatoren (zie Voorbeeld D.1). Omdat de
bovenstaande operatoren grafen op grafen afbeelden, beelden deze queries ook grafen
op grafen af. Vanaf nu zullen we queries die grafen op grafen afbeelden pad queries
noemen.

Voorbeeld D.1: De pad query π1((R ◦ R) ∪ (R ◦ R ◦ R)) selecteert alle paren (x, x)
zodat er geen pad is van lengte twee of drie startende in x en de pad query R+ ∩ id
selecteert een paar (x, x) als x zich in een cykel bevindt. �

We noemen een selectie van operatoren een taal. De kleinste taal die we zullen be-
schouwen bevat ∅, id , ◦ en ∪. De verzameling van queries over deze taal noteren we als
N . We kunnen aan deze basis taal een verzameling van operatoren F toevoegen, de
verzameling queries over deze taal noteren we als N (F ), bijvoorbeeld N (π) bevat alle
queries over ∅, id , ◦, π en ∪.

N N (
−1

)

N (
−1
, di )N (di )

N (π ) N (
−1
, π )

N (
−1
, di, π )N (di, π )

N (π , π) N (
−1
, π , π)

N (
−1
, di, π , π)N (di, π , π)

Figuur D.1: Het Hasse diagram van
≤path for languages F als \,∩,+ 6∈ F .
Er is een pad van N (F1) naar N (F2)
als en slechts als N (F1) ≤path N (F2).

Een interessante vraag voor onze nieuwe
query talen is hoe twee talen gerelateerd zijn
in termen van expressieve kracht2. We wil-
len bijvoorbeeld weten of het toevoegen van
di aan een bepaalde taal ons toelaat om meer
pad queries uit te drukken. Deze vraag heb-
ben we beantwoord in Hoofdstuk 4. Het blijkt
dat er een interessant patroon zit achter de
relatieve expressiviteit op het niveau van pad
queries: alle pad queries in N (F1) zijn uit-
drukbaar in N (F2) als en slechts als de ope-
ratoren in F1 uitdrukbaar zijn aan de hand
van de operatoren in F2. We zullen vanaf nu
N (F1) ≤path N (F2) schrijven als alle pad que-
ries in N (F1) ook uitdrukbaar zijn in N (F2).
Zie bijvoorbeeld Figure D.1 voor de volledige
karakterisatie van ≤path indien de talen geen
doorsnede, verschil en transitieve sluiting be-
vatten. In deze figuur duiden de omkaderde
operatoren de kleinste verzameling van opera-
toren aan waarvan de overblijvende operato-
ren afgeleid kunnen worden.

1Het actief domein van een graaf bevat alle knopen die voorkomen in een boog relatie.
2We noemen dit ook de relatieve expressiviteit van pad queries.
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Voorbeeld D.2: N (π1, π2) ≤path N (π1, π2) omdat πi = πi(πi). AnderzijdsN (+) 6≤path

N omdat + niet uitdrukbaar is aan de hand van ◦, id en ∪. �

We kunnen ook booleaanse queries uitdrukken in onze nieuwe query talen door een
niet leeg query resultaat te associëren met true en een leeg query resultaat te associëren
met false (zie Voorbeeld D.3).

Voorbeeld D.3: De booleaanse query id \ (π2((id \ R+) ◦ (di ∪ id))) 6= ∅ drukt graaf
connectiviteit uit en de booleaanse query R+ ∩ id 6= ∅ drukt de cykel query uit. �

Voor deze booleaanse queries kunnen we dezelfde vraag stellen als voor pad queries.
We willen bijvoorbeeld weten of het toevoegen van π aan een bepaalde taal ons toelaat
om meer booleaanse queries uit te drukken. Deze vraag hebben we beantwoord in
Hoofdstuk 5. Het blijkt dat er voor boolean queries ook een interessant patroon zit
achter de relatieve expressiviteit op het niveau booleaanse queries. Deze is echter te
moeilijk om intuitief te formuleren omdat −1 in tegen stelling tot bij pad queries niet
altijd expressieve kracht toevoegd aan talen die nog geen −1 bevatten (zie Voorbeeld D.4
en Figure D.2). We zullen vanaf nu N (F1) ≤bool N (F2) schrijven als alle booleaanse
queries in N (F1) ook uitdrukbaar zijn in N (F2).

Voorbeeld D.4: N (−1) ≤bool N (π1, π2) maar N (−1) 6≤path N (π1, π2). Anderzijds
N (−1) 6≤bool N . �

N

N (di )

N (
−1
, di )

N (
−1
, di, π ) = N (di, π )

N (
−1
, di, π , π) = N (di, π , π)

N (
−1

)

N (
−1
, π ) = N (π )

N (
−1
, π , π) = N (π , π)

Figuur D.2: Het Hasse diagram van
≤bool voor talen F als \,∩,+ 6∈
F . Er is een pad van N (F1)
naar N (F2) als en slechts als
N (F1) ≤bool N (F2).

Als een pad of booleaanse query niet uitdruk-
baar is in een taal, dan is het mogelijk dat deze
query wel uitdrukbaar is in die taal indien we en-
kel ongelabelde input grafen toelaten. Hierdoor is
het mogelijk dat de expressieve kracht van talen
veranderen indien we enkel ongelabelde input gra-
fen toelaten en dus ook de relatieve expressiviteit.
In Hoofdstuk 6 hebben we aangetoond dat de rela-
tieve expressiviteit op het niveau van pad queries
niet veranderd, maar dat de relative expressiviteit
op het niveau van booleaanse queries wel veran-
derd (zie Voorbeeld D.5).

Voorbeeld D.5: N (+) 6≤bool N maar elke boole-
aanse query op ongelabelde grafen in N (+) is uit-
drukbaar in N . �

Tot nu toe hebben we booleaanse queries uit-
gedrukt in onze talen door een niet leeg query re-
sultaat te associëren met true en een leeg query
resultaat te associëren met false ( 6=∅-modaliteit).
Dit is de standaard methode voor uitdrukken van
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booleaanse queries. We kunnen booleaanse queries ook op andere manieren uitdrukken
in onze query talen. We kunnen bijvoorbeeld de rollen true en false omdraaien, i.e.,
we associëren een niet leeg query resultaat met false en een leeg query resultaat met
true (=∅-modaliteit). Wij zouden ook bijvoorbeeld een booleaanse query q kunnen as-
sociëren aan elk paar pad queries e1, e2 als volgt: definieer q(G) = true als en slechts
als e1(G) ⊆ e2(G) (⊆-modaliteit) (zie Voorbeeld D.6). We noemen deze alternatieve
methoden voor het uitdrukken van booleaanse queries modaliteiten.

Voorbeeld D.6: De booleaanse query gekoppeld aan R+ ⊆ R is waar als en slechts als
de input graaf transitief gesloten is. �

In Hoofdstuk 7 hebben we aangetoond dat de relatieve expressiviteit voor de =∅-modaliteit
samenvalt met de relatieve expressiviteit voor de 6=∅-modaliteit, maar de relatieve ex-
pressiviteit voor de ⊆-modaliteit valt niet samen met de relatieve expressiviteit voor
de 6=∅-modaliteit (zie Voorbeeld D.7). We zullen ≤bool6=∅ schrijven voor de relatieve
expressiviteit van de 6=∅-modaliteit en ≤bool⊆ voor ⊆-modaliteit.

Voorbeeld D.7: N (−1) ≤bool 6=∅ N (π) maar N (−1) 6≤bool⊆ N (π). �

Er zijn nog tal van open vragen voor de ⊆-modaliteit. We weten bijvoorbeeld niet of
N (−1) ≤bool⊆ N (di) en N (π) ≤bool⊆ N .

Net zoals bij de 6=∅-modality is het mogelijk dat een query uitdrukbaar is in een taal
voor de ⊆-modaliteit indien we enkel ongelabelde input grafen toelaten, terwijl deze
niet uitdrukbaar is voor de ⊆-modaliteit voor algemene input grafen. Hierdoor is het
mogelijk dat de expressieve kracht van talen veranderd voor de ⊆-modaliteit en dus
ook de relatieve expressiviteit voor de ⊆-modaliteit. Het is nog open of de relatieve
expressiviteit effectief veranderd; de tot noch toe gevonden resultaten vallen samen met
deze voor de ⊆-modaliteit, bovendien vallen ze voorlopig ook nog samen met deze voor
6=∅-modaliteit.

Voor het bewijzen van bovenstaande resultaten hebben we gebruik gemaakt van
enkele technieken. We zullen deze technieken hieronder even kort toelichten.

− Omdat booleaanse queries een speciale interpretatie zijn van pad queries weten we
dat: als N (F1) ≤path N (F2) dan N (F1) ≤bool N (F2) voor eender welke modaliteit
die we gëıntroduceerd hebben. Door de contrapositie te nemen van deze eigenschap
krijgen we: als N (F1) 6≤bool N (F2) dan N (F1) ≤path N (F2), met andere woorden,
we kunnen de expressiviteit van talen scheiden op het niveau van pad queries aan
de hand van scheiding op het niveau van booleaanse queries.

− Alle pad queries en dus ook alle booleaanse queries in een taal zijn uitdrukbaar
in eerste order predicaten logica indien deze taal geen transitieve sluiting bevat.
Dit resultaat kunnen we gebruiken om talen F1 die transitieve sluiting bevatten te
scheiden van talen F2 die geen transitieve sluiting bevatten als volgt: indien een
query q uitdrukbaar is in N (F1) en niet uitdrukbaar is in eerste orde logica, dan
is deze ook niet uitdrukbaar in N (F2).
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Om aan te tonen dat een query niet uitdrukbaar is in eerste orde predicaten
logica hebben we twee methoden gebruikt. De meest gebruikte en eenvoudigste
methode is het reduceren naar queries waarvan algemeen gekend is dat ze niet
uitdrukbaar zijn in eerste orde logica, e.g., om aan te tonen dat de transitieve
sluiting expressiviteit toevoegt aan talen die geen transitieve sluiting bevatten
gebruiken we het feit dat de ‘reachability’ query niet uitdrukbaar is in eerste
order predicaten logica. Een andere methode die we gebruikt hebben is de Hanf-
lokaliteit. Dit omdat klassieke Ehrenfeucht-Fräıssé spellen snel heel ingewikkeld
worden.

− Indien we werken met eindige grafen G1 en G2, dan kunnen we de verzameling
A = {(e(G1), e(G2)) | e ∈ N (F )} berekenen. Hierdoor kunnen we ook berekenen
of twee eindige grafen onderscheidbaar zijn in een taal of niet. Dit kunnen we dan
gebruiken voor het scheiden van twee talen op het niveau van booleaanse queries
als volgt: indien we twee grafen kunnen vinden die onderscheidbaar zijn in N (F1)
en niet onderscheidbaar zijn in N (F2), dan is duidelijk N (F1) 6≤bool N (F2). Deze
methode werkt echter niet altijd omdat dergelijke grafen niet altijd bestaan indien
N (F1) 6≤bool N (F2). Bovendien kan het berekenen van A zeer traag zijn daar A
exponentieel groot kan zijn ten opzichte van het aantal knopen in G1 en G2.

− In eerste orde logica worden er Ehrenfeucht-Fräıssé spel gespeeld van k rondes om
aan te tonen dat een query niet uitdrukbaar is in FO[k].3 We hebben een soort
gelijk spel ontworpen voor N (di , \)k.4 Dit spel kunnen we net zoals in eerste orde
logica gebruiken om aan te tonen dat een query niet uitdrukbaar is in N (di , \).

3FO[k] is de verzameling van alle eerste order logica zinnen met kwantor diepte maximaal k.
4N (di , \) staat voor de verzameling van alle queries in N (di , \) met een graad van maximaal k.
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