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We present the simplest discrete model to date that leads to synchronization of stochastic phase-
coupled oscillators. In the mean field limit, the model exhibits a Hopf bifurcation and global
oscillatory behavior as coupling crosses a critical value. When coupling between units is strictly
local, the model undergoes a continuous phase transition which we characterize numerically using
finite-size scaling analysis. In particular, the onset of global synchrony is marked by signatures of
the XY universality class, including the appropriate classical exponents β and ν, a lower critical
dimension dlc = 2, and an upper critical dimension duc = 4.

PACS numbers: 64.60.Ht, 05.45.Xt, 89.75.-k

In the early 1960’s, experiments with the Belousov-
Zhabotinsky reaction created a sensation by showing that
dissipative structures and self-organization in systems far
from equilibrium correspond to real observable physical
phenomena. Since then, the breaking of time transla-
tional symmetry has been a central theme in the analy-
sis of nonlinear nonequilibrium systems. However, in the
later studies of spatially distributed systems, most of the
interest shifted to pattern forming instabilities, and sur-
prisingly little attention was devoted to the question of
bulk oscillation and the required spatial frequency and
phase synchronization. On the other hand, the emer-
gence of phase synchronization in populations of globally
coupled phase oscillators, with the synchronous firing of
fireflies as one of the spectacular examples, did gener-
ate intense interest [1]. Because intrinsically oscillating
units with slightly different eigenfrequencies underlie the
macroscopic behavior of an extensive range of biological,
chemical, and physical systems, a great deal of litera-
ture has focused on the mathematical principles govern-
ing the competition between individual oscillatory ten-
dencies and synchronous cooperation [2]. While most
studies have focused on globally coupled units, leading
to a mature understanding of the mean field behavior of
several models, relatively little work has examined pop-
ulations of oscillators in the locally coupled regime [3].
The description of emergent synchrony has largely been
limited to small-scale and/or globally-coupled determin-
istic systems [2], despite the fact that the dynamics of
the physical systems in question likely reflect a combi-
nation of finite-range forces and stochasticity. Two re-
cent studies by Risler et al. [4] represent notable excep-
tions to this trend. They provide analytical evidence
that locally-coupled identical noisy oscillators belong to
the XY universality class, though to date there had been
no empirical verification, numerical or otherwise, of their
predictions.

The difficulty with existing models of locally coupled

oscillators is that each is typically described by a nonlin-
ear differential equation, and it is notoriously computa-
tionally intensive to deal with systems of coupled nonlin-
ear differential equations, especially if they also involve
a stochastic component. However, following Landau the-
ory [5], macroscopically observable changes occur with-
out reference to microscopic specifics, instead giving rise
to classes of universal behavior whose members may dif-
fer greatly at the microscopic level. With this in mind,
we construct the simplest model with short-ranged in-
teractions between individual, stochastic, discrete phase
units exhibiting global phase synchrony and amenable to
extensive numerical study.

Our starting point is a three-state unit [6] governed
by transition rates g (Fig. 1). Loosely speaking, we in-
terpret the state designation as a generalized (discrete)
phase, and the transitions between states, which we con-
struct to be unidirectional, as a phase change and thus
an oscillation of sorts. The probability of going from the
current state i to state i + 1 in an infinitesimal time dt
is gdt, with i=1,2,3 modulo 3. For an isolated unit, the
transition rate is simply a constant (g) that sets the os-
cillator’s intrinsic frequency; for many coupled units, we
will allow the transition rate to depend on the neighbor-
ing units in the spatial grid, thereby coupling neighboring
phases.

FIG. 1: Three state unit with generic transition rates g.
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For an isolated unit we write the linear evolution equa-
tion ∂P (t)/∂t = MP (t), where the components Pi(t) of
the column vector P (t) = (P1(t) P2(t) P3(t))

T are the
probabilities of being in state i at time t, and

M =





−g 0 g
g −g 0
0 g −g



 . (1)

The system reaches a steady state for P ∗
1 = P ∗

2 = P ∗
3 =

1/3. The transitions i → i + 1 occur with a rough pe-
riodicity determined by g; that is, the time evolution of
our simple model qualitatively resembles that of the dis-
cretized phase of a generic noisy oscillator.

The interesting behavior emerges when the transition
probability of a given unit to the state ahead depends
on the states of the unit’s nearest neighbors in a spatial
grid. To capture the physical nature of synchronization,
we choose a function which compares the phase at a given

FIG. 2: (a) Onset of synchronization in d=3. The system
size L=80 is used. Upper left inset: Fluctuations peak near
the critical point, giving an estimation of ac=2.345±0.005.
P1 and P2 undergo smooth temporal oscillations for large a

(upper right inset), while lower a decreases temporal coher-
ence (lower left inset). Lower right inset: Log-log plots of r

vs L−1 with a=2.275, 2.3, 2.325, 2.375, 2.4, 2.425 from lowest
to highest plots. (b) Finite size scaling analysis for d=3 us-
ing the XY and Ising critical exponents. Data collapse with
ac=2.345.

site with its neighbors, and adjusts the phase at the given
site so as to facilitate phase coherence. With universality
in mind, we stress that the specific nature of the cou-
pling is not important so long as we ultimately observe
a transition to global synchrony at some finite value of
the coupling parameter. For any unit, the transition rate
from state i to state j is given by

gij = g exp

[

a(Nj − Ni)

2d

]

δj,i+1, (2)

where the constant a is the coupling parameter and δ is
the Kronecker delta. Nk is the number of nearest neigh-
bors in state k, and 2d is the total number of nearest
neighbors in d dimensional cubic lattices. While this
choice is by no means unique and these rates are some-
what distorted by their independence of the number of
nearest neighbors in state i − 1, the form (2) is simpli-
fied by this assumption and, as we shall see, does lead to
synchronization.

To test for the emergence of global synchrony, we first
consider a mean field version of the model. In the large
N limit with all-to-all coupling we write

gij = g exp [a(Pj − Pi)] δj,i+1. (3)

Note that in the mean field limit gij does not depend on
the location of the unit within the lattice. Also, there
is an inherent assumption that we can replace Nk/N
with Pk. With this simplification we arrive at a nonlin-
ear equation for the mean field probability, ∂P (t)/∂t =
M [P (t)]P (t), with

M [P (t)] =





−g12 0 g31

g12 −g23 0
0 g23 −g31



 . (4)

Normalization allows us to eliminate P3 and obtain
a closed set of equations for P1 and P2. We can further
characterize the mean field solutions by linearizing about
the fixed point (P ∗

1 , P ∗
2 ) = (1/3, 1/3). The complex con-

jugate eigenvalues of the Jacobian evaluated at the fixed
point, λ± = g(2a− 3 ± i

√
3)/2, cross the imaginary axis

at a = 1.5, indicative of a Hopf bifurcation at this value,
which following a more detailed analysis [7] can be shown
to be supercritical. Hence, as a increases, the mean field
undergoes a qualitative change from disorder to global
oscillations, and the desired global synchrony emerges.
Numerical solutions confirm this behavior, yielding re-
sults that agree with simulations of an all-to-all coupling
array [8]. Here we characterize the breakdown of the
mean field description for the nearest-neighbor coupling
model as spatial dimension is decreased.

We perform simulations of the locally coupled model
in continuous time on d-dimensional cubic lattices with
periodic boundary conditions. Time steps are 10 to 100
times smaller than the fastest local average transition
rate, i.e., dt ≪ e−a (we set g=1). We find that much
smaller time steps lead to essentially the same results.
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Starting from random initial conditions, all simulations
were run until an apparent steady state was reached, and
statistics are based on 100 independent trials.

To characterize the emergence of phase synchrony, we
introduce the order parameter [2]

r = 〈R〉, R ≡ 1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

eiφj

∣

∣

∣

∣

∣

∣

. (5)

Here φj is the discrete phase 2π(k-1)/3 for state k ∈
{1, 2, 3} at site j. The brackets represent an average
over time in the steady state and over all independent
trials. Nonzero r in the thermodynamic limit indicates
synchrony. We also calculate the generalized susceptibil-
ity χ = Ld[〈R2〉 − 〈R〉2].

In d=2 we do not see the emergence of global oscilla-
tory behavior. Instead, we observe intermittent oscilla-

FIG. 3: Transition in d=4 (top) and d=5 (bottom): The or-
der parameter near the transition point is shown for various
system sizes. © L=4, � L=8, × L=12, △ L=16 for d=4 and
© L=4, � L=6, × L=8, △ L=10 for d=5. The upper left
inset in each panel shows the generalized susceptibility which
peaks at a=1.900±0.025 for d=4 and at a=1.750±0.015 for
d=5. The lower right inset shows the system size dependence
of the order parameter. For d=4 the coupling constant varies
from a=1.6 to 2.4 in increments of 0.1 (excluding a=1.9) from
lowest to highest plots and for d=5 from a=1.4 to 2.2 in in-
crements of 0.1.

tions (for very large values of a) that decrease drastically
with increasing system size. In fact, r → 0 in the ther-
modynamic limit, even for very large values of a [8]. We
conclude that the phase transition to synchrony cannot
occur for d=2. Interestingly, snapshots of the system re-
veal increased spatial clustering as a is increased, as well
as the presence of defect structures, perhaps indicative of
Kosterlitz-Thouless-type phenomena [5]. Further studies
along these lines are underway.

In contrast to the d=2 case, which serves as the lower
critical dimension, a clear thermodynamic-like phase
transition occurs in three dimensions. We see the emer-
gence of global oscillatory behavior as a increases past
a critical value ac. Figure 2a shows the behavior of the
order parameter as a is increased for the largest system
studied (L=80); the upper left inset shows the peak in χ
at a=2.345±0.005, thus providing an estimate of the crit-
ical point ac. We see no change as system size is increased
beyond L=40. At any rate, finite size effects are within
the range of our estimation. The lower right inset in
Fig. 2a shows explicitly that for a < ac, r → 0 as system
size is increased, and a disordered phase persists in the
thermodynamic limit. For a > ac, the order parameter
approaches a finite value as the system size increases. We
tried to apply the Binder cumulant crossing method [9]
for determining ac more precisely, but residual finite size
effects and statistical uncertainties in the data prevent
us from determining the crossing point with more preci-
sion than that stated above. In any case, the accuracy
of our current estimation of the critical point suffices to
determine the universality class of the transition.

To further characterize this transition, we use finite
size scaling analysis by assuming the standard scaling

r = L−
β
ν F [(a − ac)L

1

ν ]. (6)

Here F (x) is a scaling function that approaches a con-
stant as x → 0. To test our numerical data against differ-
ent universality classes we choose the appropriate critical
exponents for each, recognizing that there are variations
in the reported values of these exponents [10]. For the
XY universality class we use the exponents β=0.34 and
ν=0.66 [11]. For the Ising exponents we use β=0.31 and
ν=0.64 [12]. In Fig. 2b, we see quite convincingly a col-
lapse when exponents from the XY class are used. For
comparison, we also show the data collapse with 3D Ising
exponents (note the scale differences).

For d=4 we estimate the transition coupling to be
ac=1.900±0.025 from the peak in χ (Fig. 3a). Because
we expect d=4 to be the upper critical dimension in ac-
cordance with XY/Ising behavior, we anticipate a slight
breakdown of the scaling relation (6). A priori it is not
clear how strongly (6) will be violated in d=4. As shown
in Fig. 4, the data collapse is very good with the mean
field exponents. As such, our simulations suggest that
d=4 serves as the upper critical dimension; additionally,
it appears that corrections to finite-size scaling at d=4
are not substantial, though a much more precise study
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FIG. 4: Finite size scaling analysis for d=4 and d=5: Data
collapse using ansatz (6) with mean field exponents.

would be needed to investigate such corrections in greater
detail.

To further support the claim that duc=4, we con-
sider the case d=5. We see a transition to synchrony
at ac=1.750±0.015 (Fig. 3b). As expected, this value
is considerably closer than the critical coupling in four
dimensions to the mean field value ac=1.5. The data
collapse with the mean field exponents is excellent, as
shown in Fig. 4. We note the rarity of computations in
such a high dimension.

In conclusion, while nonequilibrium phase transitions
exhibit a much wider diversity in universality classes than
equilibrium ones [13], it is remarkable that the prototype
of a nonequilibrium transition, namely, a phase transi-
tion that breaks the symmetry of translation in time, is

described by an equilibrium universality class. In par-
ticular, the Mermin-Wagner theorem, stating that con-
tinuous symmetries can not be broken in dimension two
or lower, appears to apply. The XY model is known
to display a Kosterlitz-Thouless transition in which, be-
yond a critical temperature, vortex pairs can unbind into
individual units creating long range correlations. Prelim-
inary results indicate that a similar transition occurs in
our model.

Finally, a note of caution concerning the discreteness
of the phase is in order. We first note that microscopic
models often feature discrete degrees of freedom. For ex-
ample, our model is reminiscent of the triangular reaction
model of Onsager [14], on the basis of which he illustrated
the concept of detailed balance as a characterization of
equilibrium. Continuous phase models appear in a suit-
able thermodynamic limit. We stress that the breaking
of time translational symmetry can occur independently
of whether the phase is a discrete or continuous variable.
It is, however, not evident whether continuous and dis-
crete phase models belong to the same universality class.
For example, the three state ferromagnetic Potts model
displays a weak first order phase transition in d=3 [15],
while the anti-ferromagnetic version belongs to the XY
universality class [10, 16]. The results found here appear
to be compatible with the latter, but a renormalization
calculation confirming this hypothesis would be welcome.
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