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Abstract 

The immunological system existing in our body can be considered as a dynamical system, comprising 

of antibodies, and plasma cells. It starts with the development of antibodies, which finally evolve 

into plasma cells, which can be long lived memory cells providing long term immunity or short lived 

plasma cells providing short term immunity. The antibody count in our blood can be observed, and 

hence this entire dynamical system can be considered as analogous to the population dynamical 

system in demography. There is an antibody population which decreases with time, and there is 

development of plasma cells, which increase in number initially but decrease with age. This is similar 

to a growth and decay process in demographical models. The project is concerned with studying the 

growth and decay process existing within the immunological system mathematically. Differential 

equations are popular in the study of dynamical systems, and with the observed empirical data of 

the antibody count post vaccination of Hepatitis A, in particular for this project; we want to look at 

statistical methods that exist, in estimating the parameters of the differential equation system. We 

look at two broad cases, one when the system parameters governing growth and decay are age 

independent, and one where they are age dependent. 

In this project, we have presented an overview of the various statistical methodologies that exist in 

looking at such problems. We also present the problems that arise, when cases like analytically 

closed functional forms do not exist for the solutions of the system of differential equations. We 

have looked into several optimization strategies, in particular the Stochastic Approximation of the 

EM algorithm method, in order to estimate the parameters from a non linear mixed effect model. 

This method is not a gold standard, and thus has its share of problems which could be solved with 

further research. We could obtain the parameter estimates; however we had difficulties in obtaining 

the estimates of the standard errors, through the Fisher Information Matrix. However visual 

predictive tools have been used to explore if the parameter estimates were fitting the data well or 

not.  Numerically we obtain positive values for the age dependent antibody kinetic parameters, 

which indicate that the production rate of plasma cells decrease with age and the corresponding 

decay rate increases with age; however the standard errors could not be computed to establish the 

statistical significance of these estimates. There also exists a problem related to having standard 

software/program/package developed for handling such problems in general, which could be a topic 

of research interest in the future. 
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Introduction 

Immunity is largely understood as our resistance against foreign antigens; infection, disease or any 

unwanted pathogen. The key feature of mammalian defense and maintenance is adaptive immunity: 

body’s capability to modify specifically towards each attack. Following vaccination or infection, T 

cells of the immune system activate the B-lymphocytes for the specific antigen and glycoprotein’s 

that recognize the antigen and tag it for elimination i.e. antibodies (Ab) are released. Ab are also 

called immunoglobulin and occur in distinct idiotypes of G, A, M, E and D. 

What makes this system remarkable is its ability to remember the identity of a pathogen. Inactive 

Memory B cells do not actively secrete Ab but instead maintain their immunoglobulin in the 

membrane-bound form that serves as the antigen-specific B-cell receptor. Whereas, plasma cells are 

differentiated cells that no longer express surface-bound Ab but continuously secrete them without 

requiring further antigenic stimulation (Ahmad and Gray, 1996). Upon activation, the secondary 

response thus elicited is different than the primary response at 3 major aspects: (i) rapidity, (ii) 

relatively more immunoglobulin G (IgG), IgA, or IgE than IgM, and (iii) higher affinity (Amanna et. al, 

2010). 

Hepatitis A is an acute infection of the liver, caused by the Hepatitis A virus (HAV) and is usually 

transmitted via fecal-oral route. Since 1995, hepatitis A vaccines have been used to prevent hepatitis 

A in people not exposed to the hepatitis A virus previously. Only three of the included trials were 

considered to be at low risk of bias; free from overestimation of benefits and underestimation of 

harm due to systemic errors. In persons not previously exposed to hepatitis A infection, hepatitis A 

vaccination with inactivated or live attenuated hepatitis A vaccines had a clear effect on reducing the 

risk of developing clinically apparent hepatitis (Irwing et. al, 2012).  

Antibodies that persist following vaccination have long been considered as the principle marker of 

protection against hepatitis A infection. In extensive studies of children and adults, the inactivated 

hepatitis A vaccine has been found to be highly immunogenic but its safety remains to be an issue of 

constant controversy (Irwing et. al, 2012 & Demichili and Tiberti, 2003). 

The field of systems biology is an ever emerging approach in research based on biological sciences. It 

started with the onset of mathematical models for population studies, and this has a major influence 

in studying the immunological system of the body. In an immunological system, we study the 

antibody count in our blood, which protects our body from a variety of diseases. The decrease in the 

count of antibodies, can severely affect our health condition, and thus population studies at the level 
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of antibodies is a prime area of research. A lot of complex biological phenomena, like the antibody 

system in our body can be looked upon as a dynamical system mathematically, which is expressed in 

terms of systems of partial or ordinary differential equations. With the advent of modern 

technology, we also have access to observe a lot of biological phenomena empirically, and statistical 

methodology helps us to understand the dynamical systems better with observed empirical 

evidence. 

The statistical analysis of the dynamical systems governing the functioning of the immunological 

systems specially the antibody dynamics is a relatively new research field. The work dating back to 

2007 by Park et. al (2007), in the Journal of Royal Society Interface, has shown a statistical study for 

the dynamics of the antibody loss due to a disease causing agent. There has also been works by 

Andraud, Lejeune et. al (2012), where they have described the life span of antibodies, short lived 

plasma cells and long lived plasma cells in describing the observed antibody kinetics after Hepatitis A 

Vaccination (HAV) which is the main system of study in this project.  This work was based on certain 

assumptions in relation to the decay rate of antibodies, and here we look at exploring the 

possibilities of relaxing assumptions and looking at complexities that develop in this process.  

We present our work as a discussion on existing statistical methods and its implementation in 

common software packages, and what are the problems that are incurred when assumptions in the 

antibody dynamical system are changed. We also pose certain unsolved problems that could be 

looked into for further research. 
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Theory and Methods 

Functional Data Analysis  

 

Functional data come in many forms, but their defining quality is that they consist of functions—

often, but not always, smooth curves. Functional data arise in many different fields, ranging from the 

shapes of bones excavated by archaeologists, to economic data collected over many years, to the 

drug reaction mechanism in Pharmacokinetics as well as in modeling growth in different time scales. 

The fundamental aims of the analysis of functional data are the same as those of more conventional 

statistics: to formulate the problem at hand in a way amenable to statistical thinking and analysis; to 

develop ways of presenting the data that highlight interesting and important features; to investigate 

variability as well as mean characteristics; to build models for the data observed, including those 

that allow for dependence of one observation or variable on another, and so on (Ramsay and 

Silverman , 2002).  

 

Functional data arise as the original observations are interpolated from longitudinal data, quantities 

observed as they evolve through time, especially in the example that we are considering in our 

study. However, there are several other ways that can result in development of functional data. 

Instead of looking at data individually, in Functional Data Analysis (FDA), the data set is converted 

into a set of infinite-dimensional curves.  There are several kinds of complications that arise in 

functional data, for example in our case; we do not have observations that are equally spaced and 

we only observe at discrete time points; however it is a desirable property to use functions to reflect 

smooth variations in the measured variable.  There is a major use of derivatives in this field of 

analysis, and several data features can be better illustrated through the derivatives of a specific 

order, since we try to think of the records as functional observations as compared to observations 

measured in discrete time (Wang, 2007 & Ramsay and Silverman, 2005).  

 

In FDA, we have noisy observations on discrete time points, and it can be represented by a linear 

combination of basis functions.  Commonly used basis systems are splines, Fourier basis, and 

polynomial basis, just to name a few. However basis approximation for the functional data is good, 

under the condition that the basis functions can describe the essential characteristics of the 

observed data. 

 



10 
 

Smoothing is the process of converting discrete observations into functions, and it is assumed that 

discrete values are subject to observational error. The method of Roughness Penalized Smoothing is 

a commonly used technique to approximate functional data and control for the smoothness along 

with estimating the derivatives. After the smoothing process, we reduce the dimension from, the 

number of observations per subject say n, to the number of basis functions that are used for the 

approximation of the data say m. Now if m is larger than n, because of the problems in 

approximating the underlying functions, due to the sharp changes or discontinuity in the data, a 

penalty term is often used to control the roughness of the functions and in turn avoid the problem 

of over fitting. Often differential equations are used to define the penalty term in penalized 

smoothing, leading to better estimates for smooth functions and their derivatives (Ramsay and 

Silverman 2002 & Wang, 2007). 

 

In contrast to Time Series Analysis, where it is more common to have equally spaced observations 

and differencing is a widely used concept,  in FDA, there is more common usage of the derivatives 

(Ullah and Finch, 2013). In comparison to Longitudinal Data Analysis (LDA), FDA requires more 

frequent observations. “ FDA tend to be exploratory  in order  to represent and display data in order 

to highlight interesting characteristics, perhaps as input for further analysis − whereas those of LDA 

have a stronger inferential component. This contrast can be seen in the use of estimated time 

correlation functions in the two areas; correlation functions are used in the FDA literature in a 

descriptive manner to characterize time dependencies in the curves, whereas an important aim in 

the LDA literature of estimating these correlation functions is to draw valid inferences.” , (Rice, 

2004).  

 

However there are several similarities in LDA and FDA also, like the characterization of the marginal 

profile over time, estimations of the individual profiles, checking for variability patterns in the 

curves, and assessing the relationship of the shape of curves to the covariates (Rice, 2004). 

Non Linear Mixed Effect Models  

When we have data, for a continuous response that evolves over time, within individuals from a 

population of interest, we have the framework of repeated measures or longitudinal data. Mixed 

effect models for repeated measures data have become a popular analysis tool, because it has a 

flexible covariance structure that allows for non constant correlation among observations, and also 

works for unbalanced data. The intuitive appeal of mixed effect model is because, we assume that 
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individual responses follow a common functional form, and parameters vary among different 

individuals, which is plausible in several scenarios of life.  

Much of the research in this area is based on the field of linear mixed effect models, where the fixed 

effect terms are a linear function of the parameters of the model.  

                 , 

where   
   are the observed covariates for the jth individual, and   ’s the parameters. 

However in several situations like dose response modeling, or pharmacokinetics or growth models 

and many more situations, often require non linear functions in the parameters. Non Linear Mixed 

Effect (NLME) models are the generalization of the linear mixed effect model framework, as well as 

the non linear model framework.  

Let      denote the jth observed response for the ith individual measurement at time point      , i = 1, 2, 

· · · ,N, j = 1, 2, . . . ,ni. 

In linear mixed models, the mean is modeled as a linear function of regression parameters and 

random effects 

                           

In generalized linear mixed models, apart from a link function, the mean is again modeled as a linear 

function of regression parameters and random effects 

                                                                                            

 

For the NMLE models, they are no longer modeled as a function of the linear predictor               . 

In this project, we assume that the conditional distribution of    , given    is belongs to the 

exponential family. The mean is modeled as  

                            

 

The random effects are assumed to be normally distributed with mean   and variance D.  

                is the conditional density of Yij given bi , and          be the density function of the 

N(0,D) distribution.  In most cases of NLME models the obtained likelihood does not have a closed 

form solution, and hence the maximum likelihood cannot be obtained analytically to obtain the 

parameter estimates. Hence we need numerical algorithms to solve this problem (Verbeke and 

Molenberghs, 2010 & Lindstorm and Bates, 1990).  
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In the literature, many methods have been studied to solve this problem for the integration of the 

likelihood, and one of the most common methods is linearization of the non linear model. Generally, 

these methods differ in their assumptions regarding the distribution of the random effects, including 

the inter- and intra-individual variability, and in approximations used to deal with inter-individual 

random effects. Several methods like first order method, conditional first order linearization, 

Laplacian approximation, Lindstorm and Bates algorithm and many others, approximate the non 

linear function to a linear function. A lot of these methods were developed for solving the problems 

in population pharmacokinetics.  

 

An alternate approach to solving such problems in the Bayesian perspective has also been explored 

in the literature. The NLME model is formulated as a three stage Bayesian hierarchical model.  

 

                                    

                

               

  

                                                      . We assume that the functional forms 

of    and    are analytically known as a function of parameters. Inference is drawn by computing the 

posterior distribution of the parameters given the observed data assuming hyperprior distributions 

of the parameters. This method is based on the calculation of the full conditional probability 

distribution of the parameters (Ghosh, 2010 & Wang, 2007).  As always in a Bayesian framework, 

knowledge from previous studies can be utilized, by specifying appropriate prior distributions for the 

parameters. Here all the parameters, both fixed and random effect parameters are assumed to be 

random, since they are assumed to have probability distributions. The Bayesian approach can also 

handle missing and observations quite easily.  

 

Within the framework of NLME, we are often interested in describing the mean profile (or 

trajectory) as a dynamic relationship between response and an explanatory variable (for example 

time), by a system of ordinary differential equations (ODE) whose parameters describe the different 

characteristics of the underlying population. ODE’s are commonly used tools to describe a dynamical 

system, where we are interested in modeling the rate of change over time than, static average value 

of the response variable. In reality it turns out that rarely are we able to derive a closed form 

expression for the exact solution for such a system. The absence of a closed form analytical solution 

for the system of ODE’s makes parameter estimation in such models challenging and 

computationally demanding (Goyal and Ghosh, 2006). 
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There are many methods that have been proposed in literature to deal with this problem of 

estimating parameters in ODE’s without closed form solutions; however they suffer from several 

drawbacks when fitting to noisy data. The most commonly used method is the non linear 

optimization procedure. This is a very computationally intensive procedure, since the ODE’s have to 

be solved numerically in a repeated manner when updating the parameter values and the initial 

values of the components. Often the initial values of the components are not known and add to the 

list of parameters to be estimated. The process also depends heavily on the quality of the starting 

values for the parameters and components. Sometimes algorithms are trapped in local minima and 

thus the ODE’s become unsolvable.  

 

One possible approach to counter the above problem is through the Bayesian methodology, which 

uses the integrated Euler approximation, to obtain a closed form approximation of the mean 

function, without imposing restrictive conditions on the system of ODE’s.  The major advantage in 

this method is that, there is no need to keep evaluating the numerical approximate solution for the 

mean function, repeatedly for interpolation or extrapolation. This technique is called the Bayesian 

Euler Approximation Method (BEAM) (Goyal and Ghosh, 2006). However this method is also often 

computationally intensive and it is also difficult to select initial values and appropriate priors in 

advance.  

 

The likelihood approximations often perform well if the number of intra individual observations is 

not small and the variability of the random effects is not large. Deviations from the above case might 

result in considerable amount of errors (Davidian and Giltinan, 1995 & Pinheiro and Bates, 1995 & 

Lindstrom and Bates, 1990). Thus the use of exact methods like the Monte Carlo methods for 

likelihood based estimation came into existence. The EM algorithm (Rubin et. al, 1977) provides a 

tool for obtaining maximum likelihood estimates, under models that yield formidable likelihood 

equation. The EM algorithm is an iterative routine requiring two primary calculations each iteration; 

Computation of a particular conditional expectation of the log-likelihood (E-step) and maximization 

of this expectation over the relevant parameters (M-step). The Monte Carlo EM (MCEM), introduced 

by Wei and Tanner, 1990, is a modification of the EM algorithm where the expectation in the E-step 

is computed numerically through Monte Carlo simulations. Although the Monte Carlo estimate 

presents a tractable solution to problems where the E-step is not available in closed form, we must 

account for the additional Monte Carlo (MC) error inherent in the approach and try to minimize the 

increased computational cost in obtaining the MC sample (Levine and Casella, 2001). In the MCEM 
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process for the E step approximation is done using the simulated samples from the exact conditional 

distribution of the random effects given the observed data, and this is a popular estimation 

procedure in mixed models. Walker in 1996 proposed MCEM algorithm using approximations based 

on samples from the distribution of the random effects for ML exact estimation in a specific class of 

NLME models. A stochastic version of the EM algorithm (SAEM) using stochastic approximations 

involving samples obtained via Markov chains for fitting NLME models is proposed by Kuhn and 

Lavielle in 2005. The Fischer Information matrix can also approximated stochastically by this method. 

The biggest advantage of this method is that it converges to the neighborhood of the maximum 

likelihood estimate very quickly over the other methods, and thus the confidence interval of this 

estimate can be obtained very quickly. The SAEM can be used for both homoscedastic as well as 

heteroscedastic models. In heteroscedastic models, the estimates for the fixed effect models are 

estimated in a Bayesian framework in terms of their expectations (Wang, 2006). Over all the SAEM 

procedure gives us estimates close to the Maximum Likelihood estimates in very little iterations.  

The hypothesis testing is done by using the Wald Test. 

 

The other alternative method is to look at Inverse Problems. It is a general methodology to convert 

observed measurements into information about a specific system of interest. We can formulate this 

in the following way, where we want to find the best “m” such that 

   (m), 

where G is an operator describing the explicit relationship between the observed data, d and the 

model parameters. When we have a discrete linear inverse problem describing a linear system, d 

(model parameters) and m (the best model) are vectors, and G is the observation matrix. We can 

realize the simple linear regression model from the above description. Thus we can finally obtain  

          

However in practical scenarios, very often G is non invertible. Thus we have to resort to optimization 

methods to solve the inverse problem. We generally define a target known as the objective function 

for the inverse problem. We objectively try to measure the difference between the observed and the 

fitted value, and try to minimize it at the end. The objective function at the end becomes 

             
  

In the Linear inverse problem, m is the ordinary least squares estimate. The non linear inverse 

problem is not that straight forward, and the solutions depend on many other conditions. The major 

purpose although is to find the global minima. However there exist many challenges, such as, many 
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models comprise non-identifiable parameters which cannot be unambiguously determined with 

sufficient precision (Vajda, Rabitz, Walter, and Lecourtier, 1989). Such non-identifiability is 

manifested by functionally related parameters, such that the effect of altering one parameter can 

be, at least partly, undone by altering some other parameter(s). This type of over parameterization is 

common for complex models and especially in biological modeling; it is nearly unavoidable 

(Mieleitner and Reichert, 2006). In order for the data fitting algorithms to converge, and for the 

parameters to be estimated with reasonable precision, the parameter set must be identifiable 

(Soetaert and Petzoldt, 2010). 
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Models of Antibody Dynamics 

In this section we look at the system of Immunological Process, mathematically, in our body post 

vaccination, through a set of differential equations whose solutions result in functions which are 

non- linear in the parameters. We also know that immunity is an evolving process with time and 

external sources like vaccination. Antibodies are produced in our body, as well as their population 

decays with age too. This decay is the result of observing decreased immunity with age. Vaccines 

also help us develop immunity, some of which stay for the entire life time, through the process of 

being transformed into different kind of plasma cells. This entire process is mathematically described 

below. 

Age-independent model (by Andraud , Lejeune, et. al, 2012) 

 

Here we look at models, where the kinetic parameters are not dependent on age. 

The evolution equation for the population of long-lived plasma cells Pl  is 

dPl

dt
 lPl , 

where l  represents their average decay rate. Integrating the equation gives 

dPl

Pl
  ldt lnPl  lt  c Pl (t)  Pl (0)e

lt . 

The solution for the population of short-lived plasma cells Ps  is similarly 

dPs

dt
 sPs  Ps (t)  Ps (0)e

st , 

where s  represents their average decay rate. 

The evolution equation for the population of antibodies A  is 

dA

dt
 F(t) aA F(t)  lPl (t)sPs (t) , 

where a  represents their average decay rate;  l  and  s  are the production rates of antibodies by 

long- and short-lived plasma cells respectively. 
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The solution of the homogeneous differential equation, corresponding toF(t)  0 , is 

dA

dt
 aA  A(t)  A(0)e

at . 

Applying the method of variation of constants, the solution of the inhomogeneous differential 

equation is looked in the form 

A(t)  K(t)e
at . 

By substitution it follows that 

dK

dt
e
at  aK(t)e

at  F(t) aA(t) . 

After simplification one gets 

dK

dt
 F(t)e

at  K(t)  K(0) F(z)e
azdz

0

t

 . 

Hence the solution of the inhomogeneous differential equation is 

A(t)  A(0) lPl (z) sPs (z) eazdz
0

t










e

at

 A(0)l Pl (z)e
azdz

0

t

 s Ps (z)e
azdz

0

t










e

at .

 

Substituting the solutions of the plasma cells populations it becomes 

A(t)  A(0)l e
(a  l )zdz

0

t

 s e
(a  s )zdz

0

t










e

at , 

where we have set l lPl (0) and s sPs(0) . 

Based on the above equation we come up with three models which are as follows 

Model 1:  Complete Model 

      
  

      
          

  

      
               

  

      
   

  

       
        

Model 2: Asymptotic Model, assuming life span of long lived plasma cells as infinity, or      
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Model 3: Plasma Cell Driven Kinetic Model, assuming that the antibody life span is short relative to 

the plasma cell life span (
    

  
      

         
           

      

Where    
  

  
 and    

  

  
. 

Age- dependent Models (Hoppenstead, 1997)  

Unlike the previous class of models, here we assume that the time dependence of the kinetic 

parameters appears only through age, that is to say time since generation,  . In other words, we 

consider the internal decay processes of the biological agents (plasma cells and antibodies) in an 

otherwise stationary physiological state with respect to the specific humoral immune response. 

The evolution equations for the populations of long- and short-lived plasma cells are now 

Pl ,s

t

Pl ,s


 l ,s ( )Pl ,s ( ,t),   0,t  0;

Pl ,s (0,t)  Gl ,s (t)  0, t  0;

Pl ,s ( ,0)  Pl ,s 0 ( ),   0.

 

We assume that the generation of new plasma cells is ended, Gl,s(t)  0 . 

Hence the solutions are 

Pl ,s ( ,t) 
Pl ,s 0 (  t)e

 l ,s (z)dz
 t




  t

Gl ,s (t   )e
 l ,s (z)dz
0




 0 t  

























. 

The evolution equation for the population of antibodies is now 

A

t

A


 a ( )A( ,t),   0,t  0;

A(0,t)  Ga (t), t  0;

A( ,0)  A0 ( ),   0.

 

The production of new antibodies is given by the integral 
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Ga (t)  l ( )Pl ( ,t) s ( )Ps ( ,t) d
0





 l ( )Pl 0 (  t)e
 l (z)dz
 t




d

t



   s ( )Ps 0 (  t)e
 s (z)dz
 t




d

t





 

The solution is  

A( ,t) 
A0 (  t)e

 a (z)dz
 t




  t

Ga (t   )e
 a (z)dz
0




 0 t  

























 

The observable variable is the total number of antibodies irrespective of their time since production, 

that is to say the integral 

A(t)  A( ,t)d
0



  Ga(t  )e
 a (z)dz
0




d

0

t

  A0(  t)e
 a (z)dz
 t




d

t



  

We get the integral expression of the observable antibody count by substitution and is of the form as 

expressed below. 

A(t)  e
at Pl (0)l (z)e

 l ( z )d z
0

z


 Ps (0)s (z)e

 s ( z )d z
0

z


















e
azdz

0

t

  A(0)

















. 

where, 

A(0)  A( ,0)d
0



  A0( )d
0



  

Let us assume that both the increases of the plasma cells decay rates and the decrease of the 

antibody production rates are exponential. If we set 

l,s( )  l,s(0)e

l,s

and l,s( ) l,s(0)e


l,s

,  

The asymptotic model corresponds to a static population of long-lived plasma cells with infinite 

lifespan and steady antibody production rate. If we set 
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l ( )  0 and l ( ) l ,  

We obtain the asymptotic model as follows.  

0

( )
( ) (0)

s
l la a s s

s

a a

t z
t z e

A t e e dz A


    

 

  
 
     
 
 


 

In the above equation the age dependent kinetic parameters are γ and  .  

In case of the age dependent kinetic parameters, we have a closed form analytical solution for the 

Plasma Cell Driven Kinetic model. Here we also assume 
    

  
 is a finite quantity. The two models are 

based on the assumptions of the functional form for the plasma cell production and decay. 

The general form is 

     
          

  
            

 

   
          

  
            

 

  

Model 1:                   
         and                  

      , for simplicity        , which implies 

a constant rate of production. Exponential function for the decay. 

            
        

     

  
          

        
     

  
  

where       
              

  
.        are the age dependent kinetic parameters we are interested in. 

Model 2:                   
          and                         

     , for simplicity we assume 

         , which implies a constant rate of production. Polynomial function for the decay. 

                         
     

    
                        

     

    
   

where       
              

  
.       are the age dependent kinetic parameters we are interested in. 

Model 3: We consider the case of Model 1, when           

                 
       

     

  
               

        
     

  
  

      and        are the age dependent kinetic parameters we are interested in. 
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Model 4: We consider the case of Model 2, when           

     
   

      
  
                 

     

    
         

   

      
  
                 

     

    
    

      and        are the age dependent kinetic parameters we are interested in. 
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Statistical Software / Packages for FDA 

Here is a description of some of the software that exists for dealing with problems of Functional 

Data Analysis as a broad field of study. We shall look at R and SAS only for this report.  

 

The nlme package in R is a standard tool for analyzing non linear mixed effect models in R. It was 

developed by Pinhero and Bates in 1990. This package however cannot deal with functions that do 

not have an analytical closed form. The other drawback of this package is that it cannot deal with 

systems of differential equations. 

 

The nlmeODE package developed by Tonroe (2004), enables nlme package to handle the system of 

ODE’s. The estimation of the parameters is done by solving the ODEs numerically for every iteration 

in the numerical estimation process of the mixed effects model, which can take a very long time, 

even on fast computers (Hagenbuch, 2011). This package is also tailor-made for specific type of 

problems, particularly in pharmacokinetics, and requires a very specific way the data set needs to be 

structured and labeled. The error displayed was that “object of type 'closure' is not subsettable”, 

although there was no error in defining the functional form, which is one of the most common 

instances where this error occurs. The same function was used to solve the ODE system at hand, and 

it worked perfectly. The other errors that were common to both this and nlme, was that “Step 

halving factor reduced below minimum in PNLS step”, and “Maximum number of iterations reached 

without convergence”.  

 

Within R, there exists a package deSolve (Soetaert, et. al, 2010) to solve a system of differential 

equations. The dynamical system consisting of ODE’s can be solved by this program, by entering 

starting values for the system. However only three specific kinds of PDE’s can be solved in this 

package, and there is no special provision for solving a system of linear PDE as we have here.  

 

Further development in terms of computational efficiency to solve a non analytical likelihood 

function which is common in a non linear mixed effect model, a package saemix (Comets, et. al, 

2013) uses the stochastic approximation EM algorithm, for parameter estimation. This is sufficiently 

faster than most of the other existing methods for parameter estimation procedures, since the 

population parameter estimation does not require approximation of the likelihood function by the 

SAEM algorithm and the dependence on the initial starting values is much less. This package also 

requires closed form analytical solutions of the objective function of interest. Having too many 

http://stackoverflow.com/questions/11308367/object-of-type-closure-is-not-subsettable
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parameters to estimate may result in failure of the estimation procedure though. The model fitted 

with the Gaussian Adaptive Quadrature is much more time consuming than with the importance 

sampling method, and the results are quite close to each other in terms of parameter estimates and 

AIC. However at least for the examples we verified, the AIC under Importance sampling was always 

less than that of Gaussian Quadrature method. 

 

The FME package (Soetaert and Petzoldt, 2012) is another improvement in the field of functional 

data analysis, where it uses the method of inverse modeling, to fit the data to the function, and it 

works even when closed form analytical solutions to the system of equations do not exist. This 

package has the drawback that it cannot handle longitudinal data. Also, since it is related to the 

deSolve package, by virtue of the authors of both packages being the same people, it has no specific 

tool for handling linear system of PDE’s.  

 

For solving the function expressed as an integral equation, as in case of the asymptotic model, that 

has been discussed, no specific package exists as of now to handle such problems. One way to 

approach the problem is to perform the optimization of the completely specified likelihood function 

or use non linear least squares on the user defined function. We tried to optimize the user defined 

likelihood function, assuming the Gaussian distribution, as well as define a function (for the non 

linear least squares), to obtain the estimates, however there were issues with the starting values, or 

the function was non convergent. 

 

SAS, also has the PROC NLMIXED, which handles the non linear mixed effect models, with a closed 

analytical functional form, and gives us estimates to the population parameters, as well as the 

subject specific parameters using the numerical integration approximation method, Gaussian 

Adaptive Qaudrature as the default method to optimize the objective function. This works in an 

iterative process, finding the maximum likelihood estimates of the fixed effects for these values, re-

estimating the random effects, and then going back to the fixed effects. Thus it is a very time 

consuming process, and it is also highly dependent on the starting values (Pillai, et. al, 2005). 
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“Summary of the different programs/packages used” 

R 

Nlme 
linearization based algorithm for optimization, slow convergence, needs 
analytically closed functional forms, can handle hierarchical data, cannot handle 
Differential Equations directly 

nlmeODE 
combines aspects of nlme and odesolve package, works only for ODE’s, 
analytically closed functional forms not needed, often problems are incurred in 
functional specification, and not very popular 

saemix 

uses Gaussian Adaptive Qaudrature, as well as Stochastic Approximation of EM 
algorithm for optimization, can handle only mixed effect models, one of the 
fastest optimization methods, can handle only analytically closed functional 
forms 

FME 
uses the concept of Inverse Modeling, does not handle hierarchical data-in fact 
only one observation of a variable at a specific time is considered, handles wide 
variety of dynamical systems but only three specific kinds of PDE's 

SAS NLMIXED 
uses Gaussian Adaptive Quadrature method for optimization, quite reliable and 
most popularly used tool for mixed effect models, needs analytically closed 
functional forms, convergence is often very slow 

 

However in general when working with non linear models (even mixed effect models included) in 

both R and SAS, there is dependency on the starting values of the parameter estimates. Often it is 

seen that the algorithms, get stuck in the local minima, and hence has issues with convergence. We 

also did not explore the software implementing the Bayesian Methodology for this report. 
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Dataset Description 

We have dataset from a longitudinal study, of healthy HAV-seronegative adults aged between 18 

and 40 years, and they were enrolled after giving a written informed consent. We have 284 patients 

who have been administered the HarvixTM 1440, which is a hepatitis A vaccine. We have a 

longitudinal profile of these patients; with the outcome being measured is the population of 

antibodies present in the blood, with the unit of measurement as mIU/ml.  We are interested in the 

long term persistence of antibodies, after full vaccination schedule, and observations are taken at 

1,12,18,24,36,42,48,50,66,78,90,102,114 and 126 months after boosting. We do not have any other 

covariate of interest in the data set. This data set is the observed empirical evidence that we have 

about the antibody system existing in our body.  
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Exploratory Data Analysis 

We look at the histogram of the antibody count (population), and observe that it is highly skewed, 

where as the log base 10 transformed counts has a symmetric distribution.  

 

Figure 1:Histogram of the observed Antibody count(left), log10Antibody count(right) 

 

Thus we have a rough idea that the antibody count can be thought of as log normally distributed, or 

the log scaled antibody count is normally distributed. However the residuals in the statistical models 

are not necessarily of the same distributional form as that of the observed data.  

We also present the table of the number of observations at every time point, and also the average 

antibody count at each of the time points. We see that there is a sharp drop from time point 1 to 

time point 2, and in the following interval till time point 3, after which the change is quite minimal. 

This can also be seen in the graphical representation of the profiles, thereby indicating that a non 

linear function would be required to fit the data. 

 

 

 



30 
 

Time Average(Log10Y) Average(Y) Number of 
Observations 

1 3.631 6468.122 262 

12 3.173 2231.772 237 

18 3.059 1565.400 70 

24 3.057 1839.340 147 

30 2.898 1159.635 74 

36 3.022 1717.252 143 

42 2.783 973.182 66 

48 2.903 1379.503 143 

50 2.755 868.647 68 

66 2.836 1141.693 192 

78 2.897 1222.093 204 

90 2.799 1022.508 184 

102 2.903 1253.359 170 

114 2.904 1248.195 159 

126 2.847 1020.860 157 

Table 1: Summary of the Population Averaged, observed data at the different time points. 

 

Figure 2: Longitudinal profiles of the log10Antibody count. 

There is missingness observed in our data set. We try to explore the missingness observed based on 

a logistic regression, by modeling the probability of observing a drop out based on the last observed 

antibody count. We do not observe a significant effect of the observed drop out on the probability of 

drop out. So it is quite possible that the missingness observed is random. . In practice it is never 

possible to confirm if the missingness is exactly at random. Since we look at the likelihood based 

models, where we use the observed data to make our parameter estimates, we could proceed with 

the assumption of missing at random as opposed to missing completely at random. 
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Statistical Analysis 

We first look at the system of differential equations for the age independent model. We obtain three 

models, as have been described before. The similar kind of analysis has been done using MONOLIX, 

in 2012 by Andraud, et. al, where they had described the three time scales of antibody dynamics. 

Here we look at using the R package, saemix to estimate the population parameters from the data 

that we have at hand and compare the estimated parameter (only one realization) using the starting 

values as from the previous paper through the Non Linear Mixed Effect Models. We assume a 

random effect for all the parameters, and that the random effects are independent of each other, 

which is a very strong assumption to make.  

All the estimates are obtained, using 5 chains and 5000 MCMC iterations.  

Complete Model 

 

Parameter          A0       

Estimate 0.65 0.05 9.30E-07 3.80 1.80 0.38 

 

We also obtain an AIC value of -1579.85 by the method of importance sampling. We see that the 

estimates of the short lived plasma cell life time are (μs
-1) which is approximately 20 months, and 

that of the long lived plasma cells is really huge. This is similar to the findings of the previous paper. 

The life time of the plasma cells are (μa
-1) about 1.5 months. Thus we see that the life spans of the 

short lived plasma cells are much longer than the antibodies. Also the rate of production of long 

lived plasma cells is much higher than the short lived plasma cells. The observed AIC is larger than 

what was observed in the past paper. So there exists scope for improvement of the estimates.  

Asymptotic Model 

 

Parameter       A0       

Estimate 0.66 0.05 3.79 1.84 0.37 

 

We obtain an AIC value of -1580.06 by the method of importance sampling. We see that the 

estimates of the short lived plasma cell life time are (μs
-1) which is approximately 20 months. This is 

similar to the findings of the previous paper as well as the Complete Model. The life time of the 

plasma cells are (μa
-1) about 1.5 months. Thus we see that the life spans of the short lived plasma 
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cells are much longer than the antibodies when the life span of long lived plasma cells is considered 

to be infinite. Also rate of production of long lived plasma cells is much higher than the short lived 

plasma cells. The observed AIC is larger than what was observed in the past paper. So there exists 

scope for improvement of the estimates.  

Plasma Cell Driven Kinetic (PCDK) Model 

 

Parameter Βs Βl μs μl 

Estimate 2.8 0.83 0.08 8.10E-06 

 

We obtain an AIC value of -1509.64 by the method of importance sampling. Here the estimates of 

the short lived plasma cell life time are (μs
-1) which is approximately 12 months. The estimated 

parameter values are quite close to the estimates in the original paper. We however obtain an AIC 

value which is lower than that was observed originally. Unlike the previous models that were 

discussed here, in the PCDK model, the production rate of long lived plasma cells is lower than that 

of short lived plasma cells, which is in line with the original paper.  

In general, all the three models show a good consistency between the individual predictions and 

observations. The asymptotic model, like in the original paper has the lowest AIC value, but the 

PCDK model has a better fit in this case. However in general the final estimates depend heavily on 

the starting values of the parameters. The only advantage of the SAEM algorithm is the use of 

random sampling to estimate the maximum likelihood estimates. Thus the chances of being stuck in 

local minima are less. 

Parameters Complete Model Asymptotic Model PCKD Model 

Βs   2.800 

Βl   0.830 

μs 0.050 0.050 0.077 

μl 9.30E-07  7.10E-06 

μa 0.650 0.660  

   0.380 0.370  

   1.800 1.840  

A0 3.800 3.790  

AIC- Importance 
Sampling 

-1579.850 -1580.060 -1509.638 

Table 2: Comparison of the different Age independent models 
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The diagnostic plots for the asymptotic model are presented below.  

 

 

Figure 2: Predictions computed with the population parameters versus the observations (top left), 
and plot of the predictions computed with the individual parameters versus the observations (top 

right), prediction intervals around the boundaries of the selected interval (bottom). 
 

 

The visual predictive checks include the prediction intervals around the boundaries of the selected 

interval as well as around the median (50th percentile of the simulated data). The top most intervals 

do not indicate a very good fit for the data unlike the other intervals. 

The individual plots for 12 subjects have been shown in the following diagram. 
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Figure 3: Individual plot for subject 1 to 12, using individual level parameters. 

 

We now look at the models for the age dependent rates and summarize our findings below. We did 

not have any starting values in mind, so we started randomly and we proceed till we can minimize 

the AIC values. 

Model 1: Exponential Decay and Constant Production Rate 

Parameters bl μl(0)  l bs μs(0)  s 

Estimates 1.000 0.12 0.027 4.100 1.80E-06 0.015 
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The calculated AIC value for the model is -1434.629 after a series of changing starting values, and it 

did not increase further. The terms , bs  and bl indicate the plasma cell production rate and it is as per 

the ideas from the original paper that short term plasma cell production rate is much higher than the 

long term. Also the parameters    l and  s are positive, indicating that the age dependent decay 

process exists, increasing with increase in age. This may happen just by chance so formal statistical 

tests need to be performed to come to such a conclusion. These values have been obtained as a part 

of the optimization process of the likelihood function.  

Model 2: Polynomical Decay function of Time and Constant Production Rate 

Parameters bl μl(0)  l βl bs μs(0)  s βs 

Estimates 1.000 0.055 0.004 0.024 0.003 1.7E-05 0.002 5.3E-06 

 

The calculated AIC for this model is -1317.638, which is much less than the exponential decay rate 

model above. The age dependent kinetic parameters,  l and  s are smaller than in case of the 

previous model. The positive value indicates a progression in the decay rate with increase in age. 

Similarly like the previous model, the estimates were obtained as a part of the optimization process, 

and formal statistical tests need to be done to check its significance.  

Model 3: Generalization of Model 1, with an Exponential Function defining the Production Rate 

Parameters bl μl(0)  l bs μs(0)  s γl γs 

Estimates 1.100 0.043 0.110 0.230 0.060 0.0005 0.008 1.7E-07 

 

We calculate the AIC value for this model as -1552.51. The age dependent kinetic parameters,  l is 

larger than the previous two models that have been studied but the  s is smaller than in case of the 

previous model. The positive value indicates a progression in the decay rate with increase in age. We 

also see that the age dependent kinetic parameter for the production rate of the short lived plasma 

cells is very small and almost close to zero. However for the long lived plasma cells it is significantly 

larger, thus suggesting that long lived plasma cells are produced more with the increase in age, than 

the short lived plasma cells.  Similarly like the previous models, the estimates were obtained as a 

part of the optimization process, and formal statistical tests need to be done to check its 

significance.  

Model4: Generalization of Model 2, with an Exponential Function defining the Production Rate 
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Parameters bl μl(0)  l βl bs μs(0)  s βs γl γs αl αs 

Estimates 1.30 0.06 0.003 8.1E-

04 

0.23 1.0E-

05 

0.001 3.4E-

06 

0.039 0.036 0.76 0.22 

 

We calculate the AIC for this model as -1591.24. The age dependent kinetic parameters  l and  s for 

the decay are much smaller than the case where we assume the constant rate of production. Thus 

we see that rate of decay increases with an increase in age of the person. Similarly for the age 

dependent production rates, we see that the rate of production increases with age. The values for 

the long lived and the short lived plasma cells are almost similar. Similar to the above model, we see 

that long lived plasma cell production is much more than short lived plasma cells.  

 

Parameters Model1 Model2 Model3 Model4 

bl 1.0000 1.0000 1.1000 1.3000 

μl(0) 0.1200 0.0550 0.0430 0.0600 

 l 0.0270 0.0040 0.1100 0.0030 

βl  0.0240  0.0008 

bs 4.1000 0.0030 0.2300 0.2300 

μs(0) 1.8000E-06 1.7000E-05 0.0600 1.0000E-05 

 s 0.0150 0.0020 0.0005 0.0010 

βs  5.3000E-06  3.4000E-06 

γl   0.0080 0.0390 

γs   1.7000E-07 0.0360 

αl    0.7600 

αs    0.2200 

AIC- Importance 
Sampling 

-1434.6290 -1317.6380 -1552.5100 -1591.2400 

Table 3:Comparison of the 4 scenario’s of the PCDK model for the age dependent case. 

The AIC value for the Model 4, considered is the smallest, and we there use this model for making 

the diagnostic checks.  
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Figure 4: Predictions computed with the population parameters versus the observations (top left), 
and plot of the predictions computed with the individual parameters versus the observations (top 

right), prediction intervals around the boundaries of the selected interval (bottom). 

 

The visual predictive checks include the prediction intervals around the boundaries of the selected 

interval as well as around the median (50th percentile of the simulated data). The bottom most 

intervals do not indicate a very good fit for the data unlike the other intervals. The visual predictive 

checks look much better than the age independent models. 

The individual plots for 12 subjects have been shown in the following diagram. 
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Figure 5: Individual plot for subject 1 to 12, using individual level parameters. 
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Conclusion and Discussion 

In this report, we discussed the various aspects of Functional Data Analysis as a broad field of study. 

One of the major advantages of functional data analysis is that, it can be used to study many realistic 

physical and biological systems. Systems are generally described best by a set of differential 

equations, which may be ordinary, partial, stochastic, or algebraic. These systems finally result in a 

mostly non linear function in practice, some having closed form analytical expressions, but that’s not 

always a necessity. The various methods that exist for the above broad field have been described. 

Non Linear Mixed Effect models are one of the most popular analysis tools that exist for such 

studies. The concepts of Inverse Models for systems are also coming up in statistical literature. 

In particular we have looked at the system of Immunological activity in out body, post Hepatitis A 

vaccination. The underlying assumptions, on which the mathematical models were developed, come 

from the paper by Amana, et. Al, 2010, where it has been described that , initially there are antibody 

produced, followed by short lived plasma cells, and finally the long lived plasma cells, with an 

increasing life span for each of them respectively. We also considered two kinds of models, one 

assuming that the decay rates for the antibodies and plasma cells in our body are constant. However 

we know that our body immunity decreases with age, so we also look at an age dependent decay 

rate for antibodies and plasma cells and the models have been developed by Prof. Olivier Lejeune.  

In the age independent case, we obtain analytical closed form expressions, for the antibody 

presence in our blood. In case of the age dependent models, analytical closed form expressions exist 

only for the Plasma Cell Driven Kinetic Model, where it is assumed that the antibody life span is 

much shorter than that of the plasma cells. The number of parameters in the complete model is far 

too many, and hence was not described in this report. In the asymptotic model, the expression for 

the antibody count could be expressed as an integral equation. 

The Non Linear Mixed Effect models were fitted to the data with analytical closed form expressions, 

using the saemix package in R, which uses a Stochastic Version of the EM algorithm to come up with 

parameter estimates using the method of Importance Sampling. On a comparative basis, with 

NLMIXED package in SAS, the PCDK model for the age independent case took over 75 hours for 

convergence, whereas saemix could do the same job in 30 minutes.  

The final model, that we selected based on the lowest AIC among the list of models that were 

considered assumed, a polynomial decay rate, thus the decay increases with time, since the 

coefficients are all positive. The production rate for the antibodies is considered to be exponential. 
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The power of the exponential is negative, thereby indicating that the production decreases with 

time.  

In our case the saemix package could not estimate the Fischer Information matrix from the data, 

giving an error of “non conformable arguments” and as described by the builder of the package, 

Emanuelle Comets it could be possibly because of “a lot of random effects being present in the 

model”. Thus in our report, we present estimates of the parameters only, and we could not perform 

a statistical test for the significance of the estimated parameter from the data. However we 

performed visual predictive checks, which indicate a good fit for the data.  As a general note, 

whenever we deal with problems of non linear optimization, the estimates largely depend on the 

starting value which is often a source of trouble. As for the integral equation, we did not use an 

approximation by the commonly used Taylor series expansion, since the presence of integral may 

inflate the error out of proportions. We did try to perform a non linear least square estimate 

calculation; however we experienced problems with starting values, and the Hessian matrix used in 

the approximation as becoming singular.  

In regards to software packages that exist to solve these kinds of problems, a discussion has been 

presented. The Functional Mixed Effect model (fme package) approach using inverse problem 

methods to estimate parameters of an expression have certain drawbacks, like it cannot handle 

linear PDE’s or data of hierarchical data.  Even saemix, cannot handle functions which do not have a 

closed form expression.  

The question of dealing with the functional forms not existing, in certain examples have been looked 

at by a Bayesian approach by some researchers. However there is no existing methodology to handle 

situations when an expression/function is expressed only as an integral. Thereby no software 

packages exist, specifically for such kind of analysis. Due to the restricted time span of this thesis, I 

explored the methods and problems that exist in studying the antibody dynamics, and the 

mathematical challenges that are faced in this process. Thereby developing general methodology to 

solve all the existing problems remain an open question, for further research in terms of statistical 

methodology as well as in terms of computational software’s being available. Currently I am trying to 

use the procedure of bootstrapping to come up with bootstrap confidence interval for all the model 

parameters that were used. The results would be available in the sometime, due to the 

computational time involved in the computational process, and thereby we could guess something 

about the parameter significance level.  
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