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Abstract 
 

Alzheimer’s disease (AD) is the most common form of dementia and characterized by 

progressive neuronal degeneration with depositions of amyloid plaques and neurofibrillary 

tangles. TauPS2APP mice are triple transgenic mice that express human mutated Amyloid 

Precursor Protein, Presenilin 2 and Tau. It is about as close as one can get to the Alzheimer 

pathology in rodents. The aim of the study is to investigate the differences in the evolution 

over time between TauPS2APP and wild-type mice for the behaviour data as well as to 

examine if the effects observed are only associated to learning effects. Moreover, to fit joint 

model combining outcomes in order to investigate if there is any benefit in such a joint 

modelling compared to a univariate analysis. Two datasets, extracted from a pre-clinical 

experiment on Alzheimer’s disease, consisting information regarding 5 tests for different 

behaviours of young and old mice, are combined. Univariate generalized linear mixes models 

(GLMM) with random intercept is first fitted for each of the responses separately assuming 

different outcomes from same mouse are independent. Correlations among outcomes from 

same mouse are captured by modelling the responses jointly by fitting them pair-wise and 

combining the results using pseudo likelihood theory. Findings show significant evidences of 

difference in the evolution over time between genotypes for all the behaviors of young mice 

as well as combined data but not significant for old mice. There is apparent learning effect in 

the mice behaviors. Age and genotype effect are also found significant. Considering all the 

responses together in joint model, we observe significant differences between genotypes in 

the evolution of performance over time. Parameter estimates from joint model are more 

precise than univariate models and hence more reliable as they are obtained considering the 

association between pairs of behaviors of same mouse. 

 

Keywords: Alzheimer’s disease, TauPS2APP, Joint modelling, GLMM 
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1. Introduction 
 

Alzheimer’s disease (AD) is a widespread neurodegenerative disease leading to cognitive 

impairment, difficulty with memory and progressive brain atrophy. It is the most common 

form of dementia and is characterized by progressive neuronal degeneration with depositions 

of amyloid plaques and neurofibrillary tangles (Hölttä et al., 2013; Ozmen et al., 2009; 

Blennow et al., 2006).  According to World Alzheimer Report (2012) there are more than 36 

million people with disease worldwide and predicted to be 115 million by the year 2050. In 

2010 the global cost of the disease was about 600 billion US dollars putting a huge economic 

burden for the society. The likelihood of having Alzheimer's disease increases substantially 

after the age of seventy and may affect around fifty percent of persons over the age of 85. 

Although the greatest known risk factor is increasing age, Alzheimer's is not just a disease of 

old age. Up to 5 percent of people with the disease have early onset Alzheimer's (also known 

as younger-onset), which often appears when someone is in their 40s or 50s. Although many 

advances in identifying the molecular mechanisms involved in AD have been made, there is 

still no cure or treatment available for this disease (Donmez, 2012). 

 

Diagnosis of AD is difficult and the disease is not fully understood even there is no single 

theory available but may be related to beta-amyloid plaques or tau protein tangle formation 

within the brain. It is not clear when the disease starts. It may have developed over many 

years before symptoms first show, no cure but some symptomatic treatments are available. 

Clearance of abnormally phosphorylated Tau (pTau) may prevent neuronal cell death in 

Alzheimer’s disease. The identification of the genetic factors in the familial forms of AD 

enabled the generation of transgenic animals which reproduce an essential part of its 

pathology. The triple-transgenic mice are the offspring of a new double-transgenic line 

bearing the human presenilin 2 gene N141I and amyloid precursor protein mutant genes 

(Ozmen et al., 2009). Amyloid beta peptides and microtubule-associated protein Tau are 

misfolded and form aggregates in brains of Alzheimer's disease patients. To examine their 

specific roles in the pathogenesis of Alzheimer's disease and their relevance in 

neurodegenerative processes, TauPS2APP triple transgenic mice was created that express 

human mutated Amyloid Precursor Protein, presenilin 2 and Tau. The TauPS2APP triple 

transgenic mouse model is very useful for studying the effect of new therapeutic paradigms 
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on amyloid deposition and downstream neurofibrillary tangle development (Grueninger et al., 

2010).  

 

TauPS2APP mice show cognitive impairment in their behaviors like lack of learning ability, 

memory deficiency and anxiety. In an attempt to model human pathological anxiety in 

rodents, a wide range of behavioral testing paradigms have been developed (Borsini et al., 

1989; Hall, 1934). These tests are designed to explore the tendency of mice to engage in 

exploratory activity or social investigation in a structured or an open field. The premise that 

basic physiological mechanisms underlying response in rodents can be equated to similar 

mechanisms operating in humans provides a degree of face validity for these paradigms 

(Rodgers et al., 1997).    

 

TauPS2APP and wild-type mice were examined for five different behaviors related to AD 

applying standardized behavioral tests. The goal of this study is to investigate the difference 

in behaviors between these two types of mice. The five outcomes of different nature on mice 

behavior are to be first modeled independently. It is obvious that different outcomes from 

same mouse are usually expected to be correlated. Evidently this phenomenon triggers the 

point to fit models that may capture these correlations which might change the direction of 

findings obtained from unvariate models. Hence, joint modeling could be a nice approach to 

model five behaviors combined as well as accommodating the association between pairs of 

outcomes from same subject.    

  

1.1  Objectives of the Study 
 

The main objective of the study is to investigate differences in the evolution of performance 

over time (age) between TauPS2APP and wild-type mice for five different behaviors. 

Moreover, to fit joint models combining five behaviors together for capturing the associations 

between pairs of behaviors of same mouse. The specific objectives are: 
 

 To investigate the differences in the evolution over time (age) between genotypes for 

the behaviour data as well as to examine the learning effect; 

 To investigate whether there is any benefit of joint modelling combining all outcomes 

compared to univariate modelling. 
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1.2  Organization of the study 
 

The thesis is organized as section one for introduction followed by section two deals with 

description of data and variables used in this study. Section three presents detailed about 

materials and methods used to meet the objectives of the research. Results are presented in 

section four. Discussion along with some concluding remarks are presented in section five. 

Furthermore, content has been outline at the beginning and the list of the references is 

presented at the end of the study. 
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2. Data and Variables 
 

Data for this study extracted from a pre-clinical experiment on Alzheimer’s disease where 

different behaviours of TauPS2APP and wild type mice were assessed longitudinally. 

TauPS2APP mice were triple transgenic mice that express human mutated Amyloid 

Precursor Protein, Presenilin 2 and Tau. It is about as close as one can get to the Alzheimer 

pathology in rodents at this moment. Two datasets were combined consisting information on 

different activities of 5 tests for 31 young mice age between 4 to 9 months and 32 old mice 

age between 12 to 21 months. The response variables and covariates are presented in table 1. 

 

Table 1: Description of the study variables 

Variable                         Description 

Response 
  

LMA_DM : Log distance moved within 60 minutes in locomotion activities  

CMAT_TE  : Total number of entries in CMAT 

CMAT_NA : Number of alternations in CMAT 

VMaze_DT : Distance moved in test phase in VMaze 

VMaze_DH : Distance moved in habituation phase in VMaze 

Covariate 

Genotype : 1. TauPS2APP and 0. Wild-type 

Age (Time) :  4, 6 and 9 months for young mice; 12, 15, 18 and 21 months for old mice  
  

 

Although the scenario is different for different outcomes, there are 15 transgenic among 31 

young mice and 16 transgenic among 32 old mice, from which 1 young and 10 old mice are 

dropped out throughout the entire period of study (Table 2). Even though the study is 

balanced by design, the data turned out to be unbalanced after combining two datasets of 

young and old mice since they are not measured at same time points.  

 

Table 2: Distribution of mice by age and genotype 

 

Mouse 

 

Age (Time point) 

Number of Mouse 

Control Transgenic Total 

 

Young 

4 16 15 31 

6 16 15 31 

9 16 14 30 

 

 

Old  

12 16 16 32 

15 15 11 26 

18 14 10 24 

21 13 9 22 
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Besides baseline a high variability between mice could be observed, especially for the CMAT 

behaviours of old mice and VMaze behaviours of young mice. However, the within patient 

variability could be considered as moderate as shown in figure 1. Vmaze behaviours of old 

mice were measured only three time points except for age 12 months. In addition, one wild 

type mouse was missing at age 18 months. However the nature of the considered outcomes 

are not same which should be taken into account at modelling stage, e.g. Vmaze_DT and 

Vmaze_DH follow normal distribution, whereas LMA_DM is normal after logarithmic 

transformation, at the same time CMAT_TE and CMAT_NA are count data.    

 

Figure 1: Individual, Mean and Variance Profile for Behavior Measures 

LMA_DM CMAT_TE CMAT_NA VMaze_DT VMaze_DH 
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It is noticeable that the mean performance is higher at baseline and declined steadily 

throughout subsequent ages. For all behaviors average performance of transgenic mice is 

evolving higher than those of wild type. Variance profiles are not constant over time and 

might be higher in wild-type than transgenic mouse though there are apparent mixing in some 

time points (figure 1).  
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3.  Methodology 
 

3.1  Univariate Generalized Linear Mixed Models  
 

To investigate the differences in the evolution over time (age) between TauPS2APP and wild 

type mice for the behaviour data, first univariate Generalized Linear Mixes Models (GLMM) 

(Molenberghs and Verbeke, 2005; McCulloch, 1997; Breslow and Clayton, 1993; Wolfinger 

and Connell, 1993) with random intercept is fitted for each of the responses separately 

assuming different outcomes from same mouse are independent. The GLMM is chosen due to 

diverse nature of the outcome measures. The outcomes distance moved in LMA and VMaze 

are Gaussian while total entries and number of alternation in CMAT are count data. 

 

 Let Yijk be the outcome measured for mouse i at age (time) j and genotype k, where i = 1, 

2,...., 31 for young mice and i = 1, 2,...., 32 for old mice; j = 4, 6, 9 for young and mice j = 12, 

15, 18, 21 for old mice; k = ‘1’ for TauPS2APP and ‘0’ for wild type mouse. All the 

outcomes of each rat were measured longitudinally. This feature of the data was taken into 

account by fitting generalized linear mixed model with random intercept as follows. 

 

                

Where, the random intercept    is assumed to be normally distributed with mean 0 and 

variance   .     is the vector of unknown fixed effect parameters for behavior k at time j.      

is the corresponding link function (identity link for continuous and log link count outcomes 

respectively).      is the known design matrix for the fixed effects. The possible correlation 

among the observations at different age from the same mouse is captured by mouse-specific 

random intercepts. The fixed part of the model is defined as follows: 

 

                     

  Overall effect + age effect + effect of genotype + interaction effect between age and genotype   

             

Where   is the overall effect,    is the effect of age j,    is the effect of genotype k and      is 

the interaction effect between age j and genotype k. This interaction effect is used to answer 

the main research question, whether there are differences in the evolution over time between 

the genotypes for the behaviour data or not. If the interaction effect between age and 

genotype is significant then we can conclude that there are differences in the evolution of 

performance over time between TauPS2APP and wild-type mice. Otherwise the effects might 
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be associated to learning effects since the outcomes are related to the performances on 

locomotion and cognitive behaviours of mice measured at different time points. Learning is 

commonly defined as the difference between initial and final levels of performance on a 

cognitive task (Zhang et al., 2007; Glaser, 1967; McGeoch, 1942; Woodrow, 1946). Learning 

effect occurs in situations where response changes logically each time subjects take a test. 

Learning can also be assessed by examining improvement in performance during subsequent 

trials (Bromley-Brits et al., 2011). The idea is that a subject usually performs sensibly in 

subsequent tests having learned something or gathering experience from previous test.    

 

3.2 Joint Modelling 
 

A flexible joint model can be obtained by modeling each outcome separately using a mixed 

model, by assuming that, conditionally on these random effects, the different outcomes are 

independent, and by imposing a joint multivariate distribution on the vector of all random 

effects. This approach has many advantages and is applicable in a wide variety of situations. 

First, the data can be highly unbalanced. For example, it is not necessary that all outcomes 

are measured at the same time points. Moreover, the approach is applicable for combining 

linear mixed models, non-linear mixed models, or generalized linear mixed models. The 

procedure also allows the combination of different types of mixed models, such as a 

generalized linear mixed model for a discrete outcome and a linear mixed model for a 

continuous outcome (Molenberghs and Verbeke, 2005). In section 3.1 we assumed that 

different outcomes from same mouse were independent. In this section the correlation among 

different outcomes from same mouse are captured by modelling the responses jointly first by 

fitting pair-wise and then combined all the responses together. 

 

3.2.1  Multivariate Generalized Linear Mixed Models 
 

In multivariate GLMM, all the univariate models can be jointly modeled by specifying a joint 

distribution for the random effects. Let    be the vector containing all parameters (fixed 

effects parameters as well as covariance parameters).     
                   then refers to 

the log-likelihood contribution of subject i to the full joint mixed model. Likelihood-based 

inference for fitting GLMMs can be used to obtain parameter estimates for this joint model 

(Fieuws et al., 2006). Using the same notation applied in section 3.1, a joint generalized 

linear mixed model for m responses Yijkm (m = 1, 2,...,5) can simultaneously be specified as 
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The vector    of all random effects for mouse i is multivariate normal with mean 0 and 

covariance D, ie.,  

   

 

 
 

   
   
   

    

 
 
  

 
 
 

 
 

 

 
 

 
 
   
  

 
 
    

 

 
 

     
                                    

                    
                      

                                                                                                                                                                                          
                                       

       

 
 
 

 
 
 

 
 

 

It is assumed that, conditionally on the random effects   ,    ,      the m outcomes Yijk1, 

Yijk2,....., Yijkm are independent. The fixed part of the model is defined as follows: 

 

                           

Where    is the overall effect,     is the effect of age j,     is the effect of genotype k and  

     is the interaction effect between age j and genotype k on the behaviour m. 

 

3.2.2  Pairwise Fitting of Joint Model 
 

In high dimensional joint model computational problems due to the dimension of the joint 

covariance matrix of the random effects arise as soon as the number of outcomes increases. 

This problem can be solved by applying pairwise approach in which all possible bivariate 

models are fitted, and where inference follows from pseudo-likelihood arguments. The 

approach is applicable for linear, generalized linear, and nonlinear mixed models, or for 

combinations of these (Fieuws and Verbeke, 2006).  

 

In the pairwise approach proposed by Fieuws et al. (2006), assuming that the multivariate 

GLMM is specified correctly, all bivariate GLMMs are correct. Within a maximum 

likelihood framework, each bivariate GLMM then yields consistent estimates with classical 

asymptotic properties. Some estimates from different bivariate GLMMs refer to the same 

parameter in  
 
. For example, if a parameter is specific to only a set of items, then there will 

be m−1 estimates for this parameter. To obtain one single estimate for the parameters in  
 
, 

averages will be taken over the estimates that are obtained from the different bivariate 
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GLMMs. These averages of maximum likelihood estimates are asymptotically normally 

distributed with the parameter value in  
 
 as the mean. Formally, in the first step log-

likelihoods of the following form will be maximized separately: 

      

 

   

               

where r=1, . . . ,m−1 and s=r+1, . . . ,m, and N denotes the total number of subjects.      

represents the vector of all parameters in the bivariate GLMM corresponding to the specific 

pair (r, s). Let   be the stacked vector combining all pair-specific parameter vectors     . 

Estimates for the elements in   are obtained by maximizing each of the m(m−1)/2 

likelihoods separately. Fitting all possible pairwise models is equivalent to maximizing a 

function of the form 

                                                      

Although each part in equation above is maximized separately, its form (a joint log-likelihood 

replaced by a sum of log-likelihoods) is typically encountered within pseudo-likelihood 

theory (Arnold and Strauss, 1991; Geys et al., 1997). Therefore, results from pseudo-

likelihood theory can be used for inference for  . The asymptotic multivariate normal 

distribution for    is given by  

                          

where          is a ‘sandwich-type’ robust variance estimator. where J is a block diagonal 

matrix with diagonal blocks Jpp  and K is a symmetric matrix containing blocks Kpq, with p, 

q=1, . . . , m(m−1)/2. These blocks are given by 

 

     
 

 
   

     

      
  

 
    and      

 

 
   

        

      
  

 
    

Estimates are obtained by dropping the expectations and replacing the unknown parameters 

by their estimates. The specific expression for the first- and second-order derivatives in Kpq 

and Jpp respectively will depend on the link function and the covariates in the GLMM. At 

this stage we have an estimate and a distribution for the parameter vector  , but our interest 

lies in the parameter vector  
 
. Note that these parameter vectors are not equivalent. Some 

parameters in  
 
 will have a single counterpart in  , whereas other elements in  

 
 will have 

multiple counterparts in  . Therefore estimates for the parameters in  
 
 are obtained by 

taking averages over all pairs. The estimate is  therefore of the form   
 
=A  , for an 

appropriate weight matrix A, from which it follows that  
 
 follows a multivariate normal 
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distribution with mean  
 
 and covariance matrix         , where       equals the covariance 

matrix for    obtained from distribution. Approximate Wald tests can then be constructed in a 

classical way to test for any linear combination of the parameters in  
 
 (Fieuws et al., 2006). 

  

3.2.2.1   Poisson-Normal Joint Model 
 

Let      , the mth count outcome from mouse i at time (age) j and genotype k, follows a 

Poisson distribution with mean        and        , the   th continuous outcome from mouse i 

at time (age) j and genotype k, follows a Normal distribution with mean         and variance 

 
  
        .  That is,  

                                                               
  . 

Therefore, the correlated random intercept model is specified as 

                         ………………… for count outcome 

                                 ……………….. for normal outcome  

Where,     
   
      

     
 
 
      

  
       

       
  
   . 

The random effects     and      are used to accommodate the longitudinal structure in the 

data.  

 

3.2.2.2   Joint Models for Bivariate Normal Outcomes 
 

Let       and        are two different outcomes from mouse i at time (age) j and genotype k; 

      .  For capturing the longitudinal structure of the data it is assumed that given the 

corresponding random effects     and      , the two outcomes       and        are 

independent and follow normal distribution with mean and variance       ;   
  and  

            
  respectively. That is, 

                         
                                    

  . 

 

Therefore, the general linear mixed model with correlated random intercept is specified as 



Joint Modelling of Multiple Outcomes on Longitudinal Behaviour of Genetically Modified Mice 

 

12 
 

 
 
 

 
 
                                                              

                                                              

    
   
     

     
 
 
      

  
       

       
  
   

                                                                         

  

 

3.2.2.3   Joint Models for Bivariate Poisson Outcomes 
 

Let       and        are two different outcomes from mouse i at time (age) j and genotype k; 

      . For capturing the longitudinal structure of the data it is assumed that given the 

corresponding random effects     and      , the two outcomes       and        are 

independent and follow Poisson distribution with mean        and        respectively. That 

is, 

                                                                  . 

Therefore, the generalized linear mixed model with correlated random intercept is specified 

as 

 
 
 

 
 

                        
                              

    
   
     

     
 
 
      

  
       

       
  
   

  

 

3.2.2.4   Steps in combining results from pairwise models  
 

As described in section 3.2.2, let  
 
 be the vector containing all parameters of full 

multivariate joint mixed model and   be the stacked vector combining all pair-specific 

parameter vectors   . Then asymptotic distribution of maximum pseudo likelihood estimator 

   is given by                          . In convenient notation,     
 

 
  and     

 

 
     ; Where H =  

    
   
    

  ,   G =  
  

 
  

  , N denotes the number of subjects, P 

denotes specific pairwise model,    is the hessian matrix and    be the accumulated subject 

specific gradient vectors obtained from pth pairwise model.  
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At the first stage of combining results, the block diagonal matrix H and symmetric matrix G 

as well as    and    are calculated using                     obtained from all the pairwise 

models. In second step, all the estimates of parameters obtained from pairwise model are 

stacked on the vector                       matrix is calculated using the formula        

 

 
           . Appropriate coefficient matrix A is then constructed in such a format that one 

can get the average of the coefficients of pairwise model by using the formula   
 
=A  .  

Hence A   and          respectively provided the desired estimates of the parameters of full 

multivariate joint mixed model and their robust standard errors. Finally covariance 

parameters were combined and the correlations between random intercepts were calculated. 

In SAS, the programs were written in IML to combine the results of pairwise models. 

 

3.2.2.5   Pseudo-likelihood ratio statistics 
 

To investigate the overall effect, that is the significance of fixed effect parameters on overall 

responses, pseudo-likelihood ratio statistics was used. As proposed by Faes et al. (2008), 

suppose we are interested in testing the null hypothesis        where   is an r-

dimensional subvector of the p-dimensional vector of regression parameters   and write 

  as         . Then, the pseudo-likelihood ratio test statistic, given by  

  
         

 
                     

is approximately   
  distributed.  

 
  is the pseudo-likelihood parameter estimate of   and 

       denotes the maximum pseudo-likelihood estimator in the subspace where     . 

Furthermore,    is the mean of the eigenvalues of           , where     is the r×r submatrix 

of inverse of J and     is the submatrix of           . 

   

3.3  Statistical Software 
 

SAS version 9.2 and R version 2.15.2 were used to analyze the data. 
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4.  Results 

4.1  Univariate Generalized Linear Mixed Models 
 

In the first stage of modelling mice behaviours, generalized linear mixes models (GLMM) 

with unstructured fixed effect parameters are fitted for each of the five outcomes separately 

assuming them independent. The longitudinal structure of the data is taken into account by 

incorporating random intercept. Although random slope was plausible, it was not 

incorporated due to the problem of non-convergence. The reason for fitting models with 

unstructured fixed effect parameters is to get estimates for both genotypes at each time point 

which enables one to construct and test any particular type of contrast. The estimates with 

standard error bar of TauPS2APP and wild-type mice at each time point for all the five 

behaviors are plotted in figure 2. 

 

The figure shows that the average evolution is decreasing over time. TauPS2APP mice are 

evolving consistently higher than wild-type except age 21 for VMaze_DT and age 18 for 

CMAT_NA. If we draw separate trend line from age 4 to 9 months and from 12 to 21 

months, we will observe two parallel lines for young and old mice. The performance of 

young mice is falling down more rapidly than old one. At subsequent trials, learning from 

their past behavior in addition to becoming more familiar with the environment, mice are 

reducing their movement and other cognitive activities. This indicates an apparent learning 

effect in the data. 
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Figure 2: Estimates with Standard Error Bar of Taups2app and Wild-Type Mice at Each Time Point 

 

 

 

At this point it is not yet possible to decide on the significance of this difference. It is useful 

to explore the difference between genotype separately since even when both evolutions might 

be complicated, the difference in performance, which is of primary interest, could follow a 

simple model and vice versa (Verbeke and Molenberghs, 2002).  The estimated difference 

(with 95% confidence interval) in behaviour measures between TauPS2APP and wild-type 

mice for five behaviors are plotted against time in figure 3.  
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Figure 3: Estimated Difference (with 95% CI) in Behaviors between TauPS2APP and Wild-type Mice 

 

Significant differences between the estimates of TauPS2APP and wild-type mice are 

observed except the age 18 months for Cmat behaviors, 9 months for VMaze_DH and for old 

mice in case VMaze_DT . However, these confidence intervals are not adjusted for multiple 

testing; hence results might be misleading.  

  

To have a valid inference about the significant differences between TauPS2APP and wild-

type mice in the evolution of behaviours over time, we should see the interaction effect 

between age and genotypes from the fitted models. The P-values for the fixed effects 

obtained from fitted univariate GLMM for all the five behaviors are presented in table 3. 
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Table 3: P-values for the fixed effects obtained from fitted univariate GLMM 

Mouse 

type 
Effect 

P-value 

LMA_DM CMAT_TE CMAT_NA VMaze_DT VMaze_DH 

Young 

Age 

Genotype 

Age*Genotype 

<.0001 

<.0001 

0.0055 

<.0001 

<.0001 

0.0546 

<.0001 

<.0001 

0.0042 

<.0001 

<.0001 

0.0012 

<.0001 

0.0006 

0.0041 

Old 

Age 

Genotype 

Age*Genotype 

<.0001 

<.0001 

0.7592 

<.0001 

0.0038 

0.1005 

<.0001 

0.0109 

0.0846 

0.8175 

0.4263 

0.1704 

0.0568 

0.0078 

0.4288 

Overall 

Age 

Genotype 

Age*Genotype 

<.0001 

<.0001 

0.0131 

<.0001 

<.0001 

0.0656 

<.0001 

<.0001 

0.0075 

<.0001 

<.0001 

<.0001 

<.0001 

<.0001 

0.0056 

  

Table 3 show significant evidences of difference in the evolution over time between 

genotypes for all the behaviors except border line significant for total number of entries in 

CMAT. Similar conclusions can be drawn from the combined data of young and old mice 

since the interaction between age and genotypes is significant for all the behaviours except 

total number of entries in Cmat. The effect of age and genotype are found significant for all 

the behaviors for young mice as well as combined data of young and old mice; while these 

effects are significant for locomotion activity and Cmat behaviors of old mice. 

    

Further investigation is done to see whether there is learning effect in the mice behaviors 

data. The estimates of performances at each time point are plotted separately for young and 

old mice in figure 4.  
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Figure 4: Estimates of performances at Each Time Point for Young and Old Mice 
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From figure 4 it is observed that for both the genotypes and both young and old mice 

performances in behaviour measure are decreasing rapidly with increase in time. For young 

mice performances are decreasing quickly compared to old mice. Moreover, the starting 

points are more or less similar for both old and young mice. This is a clear indication of 

learning effect. If there would not have learning effect in the data then obviously the starting 

point of old mice would be at the end point of young regarding performance. Moreover, 

parallel evolution of performances of both young and old mice also rendering the present of 

learning effect in the data. 

 

4.2  Joint Modelling 
 

Although estimates of the parameters of a joint models can be obtained by using maximum 

likelihood estimation, due to the computational complexity of five dimensional random 

intercepts, 10 pairwise models are fitted and  the pseudo-likelihood theory is used to 

combined the all pairwise estimates as well as to obtain their corresponding sandwich-type 

robust standards errors. The steps followed to combine the estimates and standard errors from 

all the pair wise models to make one set of estimates are described in section 3.2.2.5.  

 

4.2.1  Pairwise fitting of joint models 
 

In this section the correlation among different outcomes from same mouse are captured by 

modelling the responses jointly by fitting them pair-wise to avoid computational problems 

due to non-convergence of more than two dimensional joint models. For each of the fitted 

pair-wise models, differences in the evolution of responses over time between the genotypes 

of a specific behaviour, is investigated through the interaction effect between age and 

genotypes using same model as univariate analysis. The difference of pairwise models from 

univariate is that here the correlation between two outcomes is captured through the 

correlation between their random intercepts.  The p-values for the interaction effects between 

age and genotypes obtained from all the pair-wise models fitted for each of the behaviours 

are plotted in figure 5. The p-values for all, young and old mice are plotted in three different 

columns respectively. P-values obtained from univariate modelling are also plotted for the 

purpose of comparison.   
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Figure 5: P Values from Joint Models (Pair-Wise) for Differences in the Evolution between Genotypes 

 

In most of the cases p values obtained from pairwise models are lower than those of univarite 

models, while for some of the cases they are more or less similar which is a clear signal of the 

benefit of joint modelling. In line with univariate analysis significant differences are observed 

in the evolutions of almost all behaviours between TauPS2APP and wild-type mice for 

combined data. For young mice differences in the evolution of performance between 

genotype over time are found significant for all the five behaviors. Joint models also show no 

evidence of difference in the evolutions for old mice. Inference from joint modelling might 

be more reliable for the reason that it gives precise estimates correcting for correlation among 

different outcomes from same subject.  

   

Estimated difference in performances (with 95% confidence intervals) between genotypes 
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Figure 6: Estimated Difference in Performance between Genotype for Joint (Pair-wise) Models 
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independent estimates to see if there is mentionable difference between two types of 

modelling techniques. There is no mentionable difference observed among the estimates of 

pairwise models. 

 

Applying the theory of pseudo likelihood estimation, the parameter estimates and their 

standard errors obtained from pairwise fitted models were combined in single estimate for 

each. The estimates were simply averaged. The combined estimates of the fixed effect 

parameters of multivariate joint mixed model and their robust standard errors using combined 

data of young and old mice for the behavior VMaze_DH is presented in table 4 and table 8 in 

appendix for other behaviors.  

 

Table 4: Parameter estimates and standard errors of joint model for VMaze_DH 

Effect 
Joint Model Univariate Model 

Estimate SE Estimate SE 

Intercept 1182.19 77.379 1790.55 128.22 

Age 4 367.52 141.828 361.76 175.20 

Age 6 368.90 156.056 363.14 175.20 

Age 9 -30.24 145.603 -35.9993 175.20 

Age 15 112.15 114.664 107.67 103.62 

Age 18 -50.34 99.092 -50.3415 104.72 

Genotype 184.82 156.204 237.73 195.62 

Age 4* Genotype 675.12 257.350 635.45 260.25 

Age 6* Genotype 539.22 260.502 499.56 260.25 

Age 9* Genotype 168.54 243.071 131.85 261.16 

Age 15* Genotype 106.50 121.774 111.04 157.45 

Age 18* Genotype 179.64 127.029 179.64 158.81 

 

From the results of multivariate joint model it is observed that the parameter estimates are 

more precise than the univariate estimates. In terms of inference there is no mentionable 

difference but in terms of precision joint model is better than independent models. 

 

The significance of fixed effect parameters on overall responses is tested by using pseudo-

likelihood ratio statistics. Results are presented in table 5. 
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Table 5 : Pseudo Likelihood Ratio Statistic and P-value for overall effect 

Effect Pseudo Likelihood Ratio Statistic (  
    P-value 

Age 1569.261 <0.0001 

Genotype 319.387 <0.0001 

Age*Genotype 125.545 0.0007 

 

Considering all the responses together, we observe significant differences in the evolution of 

performance over time between TauPS2APP and wild-type mice. The age and genotype 

effects are also found to have significant on overall behaviors.     

 

The correlations between random intercepts incorporated for modeling different behaviors are 

presented through the following image plots (figure 7). 

 

Figure 7: Image Plot for Correlation between Random Intercepts in Pair-wise Modelling 

  

These correlations can be interpreted as the association between the individual deviations 

from the overall profile. There is almost perfect correlation between the intercepts of distance 

moved in habituation and test phase in VMaze for both young and old mice which lead to a 

shared random intercept model. Moreover, the intercepts of VMaze behaviors are highly 

correlated with other behaviors except LMA_DM for old mice. For young mice except 

locomotion activity and Cmat behaviors, correlations among random intercepts for all other 
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behaviors are significant. While, for old mice correlation between random intercepts of all 

behaviors, except the correlation between random intercept of LMA_DM and VMaze_DT, 

are significant. Based on the estimated variance-covariance matrix of the random effects, one 

can estimate the correlation between the different outcomes. These correlations are much 

smaller when compared with the correlation between the random effects (Faes et al., 2008). 
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5.  Discussion and Conclusion 
 

Alzheimer’s disease is the most common form of dementia and is characterized by 

progressive neuronal degeneration with depositions of amyloid plaques and neurofibrillary 

tangles (Hölttä et al., 2013; Ozmen et al., 2009; Blennow et al., 2006).  The likelihood of 

having Alzheimer's disease increases substantially after the age eighty. TauPS2APP triple 

transgenic mice was created that express human mutated Amyloid Precursor Protein, 

presenilin 2 and Tau. The TauPS2APP triple transgenic mouse model is very useful for 

studying the effect of new therapeutic paradigms on amyloid deposition and downstream 

neurofibrillary tangle development (Grueninger et al., 2010). 

 

The aim of the study was to investigate the differences in the evolution over time between 

genotypes for the behaviour data as well as to examine if the effects observed only associated 

to learning effects. Moreover, to fit joint model combining outcomes for investigating if there 

is any benefit in such a joint modeling compared to a univariate analysis. Data for this study 

was extracted from an experiment on alzheimer’s disease where different behaviours of 

TauPS2APP and wild type mice were assessed longitudinally. Two datasets consisting 

information on different activities of 5 tests for young and old mice were combined. To 

investigate the differences in the evolution over time between the TauPS2APP and wild type 

mice for the behaviour data, univariate generalized linear mixes models (GLMM) with 

random intercept was first fitted for each of the responses separately assuming different 

outcomes from same mouse are independent. The longitudinal feature was taken into account 

by incorporating random intercept in the model. The unstructured fixed effect parameters at 

each age for both genotypes separately were estimated to notice the evolution of performance 

of different behaviors mice over time. The correlations among different outcomes from same 

mouse are captured by modelling the responses jointly. Mixed models are widely used in the 

literature for the analysis of single outcome variable, measured repeatedly over time. We can 

denote this standard situation as the analysis of univariate longitudinal data. Multivariate 

longitudinal data arise when a set of different responses on the same unit are measured 

repeatedly over time. In such a case a mixed model can be used for each response variable, 

separately. However, this strategy is not useful to answer the research questions whether the 

evolution of one response is related to the evolution of another response. Even to see how the 

association between responses evolves over time, a joint modeling strategy is needed (Kundu, 

2011). 
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Five outcomes of different nature which might lead to several difficulties to model them 

jointly; the most important one is the issue of convergence. It arises computational problems 

due to the dimension of the joint covariance matrix of the random effects. It is very difficult 

to model more than three variables jointly. The solution is to fitting them pairwise and then 

combining the estimates using the method proposed by Fieuws et al. (2006), where inference 

follows from pseudo likelihood approach and interested hypotheses could be tested using 

approximate Wald type test. The principal idea of the pseudo-likelihood methodology is to 

replace the computationally cumbersome likelihood by a function set up as the product of 

easy-to-compute functions, but which is no longer equal to the full likelihood. The method 

can be used for arbitrary combinations of outcome types (Faes et al. 2008). The application of 

pairwise modelling strategy to obtain parameter estimates of high dimensional GLMMs has 

many advantages. First, the strengths of the random-effects approach for joint modelling are 

kept. For example, insight can be gained in the association structure of the latent traits. Also, 

discarding subjects from the analysis due to missing observation or considering questionable 

imputation techniques is not needed. Second, no strong a priori (unidimensionality) 

assumption about the covariance structure of the random effects needs to be made, thereby 

avoiding potential biases in the fixed effects estimates. Finally, high dimensional 

integrational problems are avoided. As such, the complicated five-dimensional integration 

problem in the application has been reduced to a set of feasible two-dimensional integrations. 

the pairwise approach will be valid as soon as missingness at random holds in each bivariate 

GLMM. (Fieuws et al., 2006). The pairwise approach is more than an valuable alternative for 

the Bayesian Markov chain Monte Carlo methods that have been proposed for 

multidimensional item response theory models (Bolt and Lall, 2003; Beguin and Glass, 

2001).  

 

Findings show significant evidences of difference in the evolution over time between 

genotypes for almost all the behaviors of young mice as well as for combined data. 

Difference in the evolution is not significant for old mice might be symptoms of Alzheimer’s 

disease in genetically modified mice. As AD is age related the old mice start suffering from 

cognitive impairment which leads to disability of performing as like as they did in young age. 

The effect of age and genotype are found significant except Vmaze behavior of old mice. 

There is apparent learning effect in the data. For all the behaviors the starting points are more 

or less equal for both old and young mice but performance of youg mice is decreasing rapidly 
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with age as compared to old mice. This is the indication of learning effect. Considering all the 

responses together in multivariate joint model, significant differences are found in the 

evolution of performance over time between TauPS2APP and wild-type mice. Age and 

genotype have significant effect on overall behaviors. Parameter estimates from joint model 

are also more precise than the univariate estimates. The estimates of Cmat behaviors 

sometimes demonstrated strange result since for some of the mouse IDs of young mice at age 

9 months, there are measurements for both the genotypes which is not realistic. Nevertheless 

this problem could not be solved throughout the short interval of this study period. In the 

presence of missing observations, it is sensible to incorporate the techniques dealing with 

missing data. However this issue is beyond the scope of this thesis.  
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7. Appendix 
 

Figure 8: parameter estimates and standard errors from univariate models and joint model 

Behaviour Effect 
                          Joint Model Univariate Model 

Estimate SE Estimate SE 

LMA_DM 

Intercept 8.48 0.060 8.5719 0.05701 

Age 4 0.51 0.069 0.5111 0.07732 

Age 6 -0.11 0.074 -0.1087 0.07732 

Age 9 -0.26 0.090 -0.2686 0.07732 

Age 12 0.51 0.057 0.5117 0.06416 

Age 15 0.19 0.062 0.1852 0.06477 

Age 18 -0.03 0.061 -0.02189 0.06555 

Genotype 0.39 0.084 0.3897 0.08824 

Age 4*genotype -0.15 0.112 -0.1522 0.1159 

Age 6*genotype 0.15 0.116 0.1580 0.1159 

Age 9*genotype 0.09 0.121 0.1023 0.1166 

Age 12*genotype -0.09 0.085 -0.08741 0.09756 

Age 15*genotype -0.08 0.094 -0.07232 0.1007 

Age 18*genotype  -0.05 0.075 -0.04436 0.1021 

CMAT_TE 
 

Intercept 2.35 0.145 2.3790 0.1072 

Age 4 1.20 0.156 1.2111 0.1285 

Age 6 0.52 0.177 0.5230 0.1350 

Age 9 0.10 0.174 0.09387 0.1392 

Age 12 0.81 0.133 0.8131 0.09794 

Age 15 0.53 0.144 0.5369 0.1025 

Age 18 0.32 0.187 0.3282 0.1072 

Genotype 0.56 0.206 0.5597 0.1487 

Age 4*genotype -0.25 0.226 -0.2410 0.1727 

Age 6*genotype -0.20 0.255 -0.1951 0.1808 

Age 9*genotype 0.06 0.242 0.06611 0.1752 

Age 12*genotype -0.07 0.176 -0.07199 0.1315 

Age 15*genotype -0.05 0.199 -0.05518 0.1378 

Age 18*genotype  -0.32 0.224 -0.3216 0.1483 

CMAT_NA 
 

Intercept 1.81 0.177 1.8343 0.1289 

Age 4 1.08 0.189 1.0906 0.1539 

Age 6 0.37 0.214 0.3675 0.1648 

Age 9 -0.45 0.242 -0.4638 0.1882 

Age 12 0.69 0.159 0.6980 0.1303 

Age 15 0.36 0.199 0.3612 0.1386 

Age18 0.24 0.216 0.2478 0.1429 

Genotype 0.45 0.238 0.4528 0.1813 

Age 4*genotype -0.16 0.257 -0.1452 0.2128 

Age 6*genotype -0.17 0.299 -0.1524 0.2271 
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Behaviour Effect 
                          Joint Model Univariate Model 

Estimate SE Estimate SE 

 

Age 9*genotype 0.46 0.313 0.4657 0.2369 

Age 12*genotype -0.02 0.222 -0.01721 0.1784 

Age 15*genotype 0.05 0.263 0.05083 0.1895 

Age 18*genotype  -0.39 0.291 -0.3911 0.2053 

Vmaze_DT 
 

Intercept 1651.63 90.829 1668.74 131.38 

Age 4 90.05 108.999 87.1132 179.67 

Age 6 121.04 111.247 118.41 179.67 

Age 9 -171.90 118.900 -177.48 179.67 

Age 15 -75.68 90.191 -80.0351 103.37 

Age 18 -78.86 83.894 -79.6615 104.40 

Genotype -123.45 137.011 -92.4447 200.52 

Age 4*genotype 1278.21 265.839 1265.93 266.93 

Age 6*genotype 894.17 228.161 878.01 266.93 

Age 9*genotype 748.51 258.720 733.19 267.82 

Age 15*genotype 253.63 135.228 259.32 157.04 

Age 18*genotype 230.73 178.485 233.06 158.33 
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