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Abstract 

This study investigates the effect of raw materials on some characteristics of meat 

emulsion for food production; seek to understand how it is possible to improve Hardness 

and Resilience of the final product after cooking by changing the percentages of the raw 

materials. The data set is a subset of 129 observations corresponding to different 

combinations of percentages of 8 raw materials. To accomplish our task in this research a 

mixture regression model was developed due to their advantages over the classical models 

such as Tobit model in model fit when data are generated from a two step process. 

Additionally, the model is shown to allow for flexibility in distributional assumption. 

However, zero-inflated gamma and zero-inflated log normal models were used to evaluate 

the effect of raw material on Hardness and Resilience of the end product and to account 

for both the presence of zeroes values and the positive skewness in these outcomes 

variable. The results showed that the zero-inflated gamma model clearly models and 

predicts with more accuracy than the zero-inflated log normal model for Resilience 

outcome whereas the zero-inflated log normal predicted better than the zero inflated 

gamma for Hardness outcome based on the AIC.  
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1. Introduction 

Data analysts are often confronted with the issue of choosing the right model because a 

variety of models can be derived for a single dataset. Thus the model building process 

based on sound scientific principles is important (Burnham & Anderson, 2002). In 

specifying a statistical model in the GLM framework, there is a need to carefully choose 

the random and systematic components, as well as an appropriate link function (Keele, 

2008). 

This project looks into meat emulsions for food production and the effect of raw materials 

on some of its characteristics. Meat emulsions are finely comminuted meat mixtures 

composed of water, protein, fat, salt and small amounts of other ingredients. This meat 

emulsions which are comminuted meat products, are well known in the food industry and 

are widely used in the production of products such as balogna, frankfurters and other 

sausage products. Such meat emulsion products are prepared by mixing, chopping, and 

emulsifying a mixture of raw meat materials, such as lean skeletal beef and pork and meat 

by-products, with ice, salt, spices and curing salts in such a manner as to produce an 

emulsion which contains fine fat particles coated with protein dissolved from the meat 

ingredients. The resulting meat emulsion is then stuffed into suitable casings, which serve 

as processing molds, and are heated at increasing temperatures of from 55°C. to 77°C. for 

extended periods of time which may vary between about 1 to 8 hours or more, depending 

on the volume of the meat emulsion being processed. Upon such heating, the protein in 

the meat emulsion coagulates or sets solid and entraps the fat particles in the protein 

matrix thereby forming a firm meat emulsion product. Such meat emulsion products are a 
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uniform homogeneous mass which contain no discrete particles of meat and retain the 

shape of the casing when set. 

In recent years in order to reduce the cost of certain food products to consumers, there 

has been an increasing demand for chunky food products which resemble chunks or 

pieces of natural meat in appearance, texture and physical structure, and which may be 

used as a partial or complete replacement for the more expensive natural meat chunks in 

food products such as stews, pot pies, casseroles, canned foods and pet food products. 

Chunky meat products are highly desirable in both human foods and pet foods both from 

aesthetic quality and consumer appeal. Because of this desirability and the high ingredient 

cost of natural meat chunks, there is a need for replacement of such expensive natural 

meat chunks in foods with more economical chunky products which simulate natural 

meat chunks in shape, appearance and texture, and which retain their shape, appearance 

and texture when subjected to commercial canning and retorting procedures. 

Heretofore, efforts directed to providing such simulated natural meat chunks have been 

directed to producing such products from vegetable protein sources using extrusion-

expansion techniques. Although the products of such extrusion-expansion procedures 

have met with some acceptance in the food industry, their use has been limited primarily 

to use as meat extenders. Since such products lack the appearance and texture of natural 

meat they are not generally suitable for use as full substitutes for meat. Similarly, meat 

emulsion products produced by conventional procedures, which are in the form of a 

uniform, homogeneous mass, lack the structure, texture and appearance of natural meat 
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chunks and are not suitable for use in applications in which the use of simulated natural 

meat chunks is desired. 

The present invention provides for the production of a meat emulsion product in the form 

of distinct chunks or pieces having a plurality of juxtaposed, manually separable meat-like 

layers resembling a chunk of natural meat in appearance, texture, and consistency. The 

meat emulsion chunks of this invention are suitable for use as a partial or complete 

replacement for more expensive natural meat chunks in both human foods and animal 

foods, and retain their integrity and shape when subjected to commercial canning and 

sterilization procedures such as those required in the production of canned high moisture 

food products. 

Much progress has been made over the last fifty years in understanding what the texture 

of a particular food is, and how it can be measured, specified and controlled. Knowledge 

of the textural properties of processing meat emulsion is crucial to ensuring product 

acceptability; measurement, control, and optimization of these properties through 

judicious selection of varieties and control of unit operations results in products that the 

consumer prefers. In food consumption as mentioned above, appearance, flavor and 

texture of the obtained end product are the three major acceptability factors because they 

can impart enjoyment of the food. If these attributes do not meet consumer expectations, 

the food will not be consumed and the customer is unlikely to purchase that particular 

brand of product again. Additionally, consumer products succeed in the marketplace in 

part because their “textural characteristics” are pleasing to customers. This is certainly true 
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with food products but it also applies to cosmetics, pharmaceuticals, packaging, industrial 

materials and even adhesive type materials. 

Appearance (color, size, shape) is based on the optical sense and is a response of the eye to 

the light reflected from or transmitted through the food. Flavor is the body’s response to a 

chemical impact and is sensed in two locations: 1) the olfactory organ in the nose (aroma 

or smell), and 2) the taste buds in the tongue (taste), these are called the chemical sense. 

Texture considered here as Hardness (soft, compact, hard, defined as force necessary to 

attain a given deformation) and Resilience (tender, chewy, tough, defined as measurement 

of how a sample recovers from deformation in relation to speed and forces derived) of the 

end product is sensed primarily in the mouth, on the lips, teeth, gums and tongue, 

although some texture notes can be sensed by other part of the body, such as the hand. 

Textural perception occurs directly through the tactile (touch) and kinesthetic 

(movement) senses, and indirectly through the senses of vision and hearing. In contrast to 

color and flavor, there are no specific sensory receptors for texture. Texture is an 

important quality attribute in almost all foods (e.g canning foods), and is most important 

in foods that are bland in flavor or have the characteristics of freshness or crunchiness. 

Interest in what comprises texture and how it is measured and controlled is driven by two 

major concerns: 1) imparting pleasure just before and during mastication and 2) 

economics. People are prepared to pay a higher price for food or any other manufactured 

product when the texture is “just right”. 
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A good example of this human propensity for textures that please can be found in the case 

of meat from American supermarkets, where different cuts of beef typically range in price 

from less than three dollars to more than sixteen dollars per kilogram. This wide range in 

price is largely the result of texture quality: consumers are prepared to pay a high price for 

tender meat and expect to pay low price for tough or dry meat. Considering the many 

millions of kilograms of beef or meat emulsion consumed each year, it becomes obvious 

that economic factors are a great driving force to achieving desirable textures in beef and 

other foods such as meat emulsion. Almost all researchers agree that “texture” is a sensory 

attribute and that a number of textural properties exist. The International Organization 

for Standardization defines texture as “all the mechanical, geometrical and surface 

attributes of a food product perceptible by means of mechanical, tactile, and, where 

appropriate, visual and auditory receptors”. Those physical properties of foods that are not 

sensed by the body (and there are many) should not be described as texture. There are 

often good reasons for measuring non-textured physical properties, but they should not be 

confused with textural properties. 

The rationale of this project therefore was to understand the effect of raw materials on 

Hardness and Resilience of meat emulsion for food production; understand how it is 

possible to improve these characteristics (here Hardness and Resilience) of the final 

product after cooking by changing the percentages of the raw materials.  

To accomplish this task, zero-inflated log normal (ZILN) and zero-inflated gamma (ZIG) 

models derived from a generalized mixture models were used. 
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The data and methodology are presented in section 2, results; discussions and conclusion 

in sections 4 and 5 respectively while section 3 presents the model selection. Section 6 has 

some limitations and recommendations. 

2. Data and Methods 

2.1. Data Description 

The dataset at disposal is a subset of 129 observations corresponding to different 

combinations of percentages of eight raw materials: Raw material 1, 2, 3, 4, 5, 6, 7 and 8. 

The two outcomes of interest in the analysis were Hardness and Resilience of the obtained 

final product after cooking. All the predictors and outcomes variables are semicontinuous. 

The 129 combinations of raw materials summed to 100% inducing multicollinearity 

problem in the data. The Variance Inflation Factor (VIF) was computed and was found to 

be very high (VIF = 6029401 for variable ‘raw material 8’ and greater or equal to 5873710 

for the other covariates). In order to solve this problem, variable “raw material 8” was 

dropped from the analysis. The recorded covariates and outcomes are presented in Table 

1.  

2.2. Exploratory data Analysis (EDA) 

In order to gain insight into the data set, exploratory data analysis was conducted. Given 

the nature of the data, tables, density functions, descriptive statistics, Pearson correlation 

and scatter plots matrix were used to display the data. Investigation of these graphical 
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representations conveys possible relationships of interest within the dataset which were 

investigated in the model selection section in more details. 

2.3. Statistical Analysis 

Dependent variables with many zeroes values have long been a complexity associated 

with micro data sets. In some applications, the response variable can take any nonnegative 

value but has positive probability of a zero outcome. We refer to a variable as 

semicontinuous when it has a continuous distribution except for a probability mass at 0 

such as Hardness of 0g and Resilience of 0joule/m3. Semicontinuous data are common in 

many areas. For example, when each observation is a record of the total rainfall in the 

previous day, many days have no rainfall. In a study of annual medical costs, a portion of 

the population has zero medical expense. With semicontinuous data, unlike censored data, 

the zeros represent actual response outcomes. The most common occurrences are found in 

consumption and production data. Regarding consumption, households typically do not 

purchase all of the goods being evaluated in every time period and some of these 

households spend nothing on a certain commodity during the period of investigation. 

Similarly, a study evaluating the percentage of mortality rates in a cattle production yields 

will likely have outcomes with high percentage of mortality or with zero percentage of 

mortality rates. In both cases, ordinary least squares parameter estimates will be biased 

when applied to these types of regressions (Amemiya, 1984). 

The seminal work by Tobin (1958) was the first to recognize this bias and offer a solution 

that is still quite popular today. The univariate Tobit model is extended, under a mild set 
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of assumptions, to include multivariate settings (Amemiya, 1974; Lee, 1993). While 

empirical applications in univariate settings are discussed by Amemiya (1984), 

multivariate applications are becoming more frequent (Belasco, Goodwin and Ghosh, 

2007; Chavas and Kim, 2004; Cornick, Cox and Gould, 1994; Eiswerth and Shonkwiler, 

2006). While the Tobit model has had a large impact on modeling censored dependent 

variables, it is not without limitations. The two major assumptions made by the Tobit 

model in its original derivations included the assumption of normality and the point that 

both the observable and unobservable variable levels come from the same distribution. 

The assumption of normality has made the Tobit model inflexible to data generating 

processes outside of that major distribution (Bera et al., 1984). Additionally, Arabmazar 

and Schmidt (1982) demonstrate that random variables modeled by the Tobit model 

contain substantial bias when the true distribution is non-normal and has a high degree of 

censoring. Inconsistent estimation results arise when residuals are positively skewed. 

Additionally, maximum likelihood estimation becomes complicated with a system of 

equations when the zeroes values occurs in multiple equations because of the problem of 

integrating more than three integrals in the likelihood. 

Another important model that is also used to characterize observations containing many 

zeros is the zero-inflated models. These models have been rarely used in statistics. The 

Poisson distribution is commonly placed into a zero-inflated framework and is 

appropriately called the zero-inflated Poisson (ZIP) model. The advantage to using this 

type of model is again that it recognizes that decisions or production output processes are 

part of a two step process. In the other hands, Hardness and Resilience of meat emulsion, 
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which are provided in this data set, provide valuable insights into the profitability and 

performance of food production companies. Additionally, the measures of these outcomes 

may be more accurately characterized by a mixture model that takes into account their 

positive skewness as well as allowing zeroes and non-zeroes observations to be modeled 

independently. A zero-inflated specification (zero inflated log normal(ZILN) and zero 

inflated gamma (ZIG) models) is used rather than other mixture specifications, such as 

Hurdle model to more accurately capture measure of Hardness and Resilience of the final 

product after cooking. One drawback from using the Tobit Model is that the optimization 

routine necessary to estimate all parameters may take quite long to converge. The next 

essay will then focus on a Zero inflated (ZILN and ZIG) regression model that may work 

to shrink the computational burden from estimating so many parameters, as well as 

improve estimation efficiency. 

Having noted the nature of the responses variables (Hardness and Resilience in our case) 

as always non-negative containing zeroes values and positively skewed various, models for 

continuous and positive skewed dataset such as lognormal and gamma were considered. 

To compare model fits, we use the classical computation of Akaike’s Information Criteria 

(AIC) (Akaike, 1974) as discussed in the paper by Eric J. Belasco and Sujit K. Ghosh (2008) 

and  negative log-likelihoods (actually -2* the log-likelihood) values as discussed in the 

paper by Mathew Flynn et al (2009). Likelihood ratio test was not applied since it can only 

be used to compare a nested model (Verbeke and Molenberghs, 2008/2009) which is not 

the case here. We consider the use of a mixture model to characterize dependent variables 

with zeroes values as an alternative to the Tobit model. Its major advantages include the 
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flexibility in distributional assumptions and an increased efficiency in situations involving 

a high degree of zeroes. We derive the zero-inflated log-normal and gamma model from a 

generalized mixture model.  

2.3.1. Generalized Mixture Models 

In general, mixture models characterize dependent variables with zeroes values (here 

Hardness and Resilience) as a function of two distributions (Y = VB). First, B measures the 

likelihood of zero or positive outcomes, which have been characterized in the literature 

using Bernoulli and Probit model specifications. Then, the positive outcomes are 

independently modeled as V. A major difference between the mixture and Tobit model is 

that unobservable, censored observations are not directly estimated. A generalized 

mixture model can be characterized as follows: 

                          

                                                       

 

Where                  
 

 
. This formulation includes the standard univariate Tobit 

model when                
 

 
   and        

  
   

 
 

  
 

 
 
        Notice that in Log-

normal and Gamma zero-inflated specifications to follow,   is modeled independently of 

mean and variance parameter estimates, making them more flexible than the Tobit model. 

Next, we develop two Univariate zero-inflated models that include covariate variables 

such as raw materials, which then can be extended to allow for multivariate cases. Since 



17 
 

only the positive outcomes are modeled through the second component, the log of the 

dependent variables can be taken. Taking the log of these variables works to symmetrize 

the dependent variables that were originally positively skewed. Using a log-normal 

distribution for the V random variable and allowing   to vary based on the conditioning 

variables, we can transform the basic zero-inflated model into the following form that can 

be generalized to include continuous distributions. We start by deriving the normal 

distribution to model the logarithm of the dependent variable outcomes, also known as 

the log-normal distribution, of the following form: 

                                                                                       

                                     
 

  
  

          
  

  
                                

Where      

                                                       
 

         
   
                                                      

       
        

                                                           

Which guarantees   
  to be positive and        to be between 0 and 1 for all observations 

and all the parameters values.      denotes the probability density function of a standard 

normal distribution with mean zero and variance unity; K is equal to the number of 

conditioning predictor variables or covariates;           are (Kx1) vectors of regression 

coefficients;   
  is a (1×K) vector of predictor variables (raw materials in our case); 

      is the logit link function;   
  is the conditional variance and    is the responses 

variable (Hardness and Resilience). Notice that this specification is nested within the 
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generalized version in equation (1) where        is a log-normal distribution and 

           This model will be denoted by ZILN (         where ρ denotes the link 

function (e.g. logit, probit, etc.), μ denotes the mean function on the logarithmic scale and 

   denotes the variance function on the logarithmic scale of the positive part of Hardness 

and/or Resilience. 

In addition to deriving a zero-inflated log-normal distribution, we will also derive a zero-

inflated Gamma distribution to demonstrate the flexibility of the zero-inflated regression 

models and perhaps improve upon modeling a variable that possesses positive skewedness. 

Within a univariate framework, the sampling distribution can be easily changed by 

deriving V as an alternative distribution in much the same way as equation (2). Following 

is the specification for the zero-inflated Gamma distribution, where V is distributed as a 

Gamma distribution where the shape parameter is   , and    is the rate parameter.  

                                                                  

            
  
          

     
  
                                     

This function can be reparameterized to include the mean of Gamma, µ by 

substituting         , where      
   
    and     

   
   . Within the Gamma 

distribution specification, the expected value and corresponding variance can be found to 

be            and                   
     

  

  
  respectively. Both the Gamma and 

log-normal univariate specifications allow for a unique set of mean and variance estimates 

to result from each distinct set of conditioning variables. 
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3. Model Building 

This section describes model selection procedures that were employed to choose 

parsimonious models. After carrying out the exploratory data analysis, we fitted a zero-

inflated lognormal and gamma models due to the presence of zeroes and the positive 

values in the outcome variables and to account for their positive skewedness. As already 

mentioned in the above equations (2, 3 and 5), the parameter estimates in the zero-

inflated model refer to two distinct processes. The first process includes the likelihood of a 

zero outcome or the one described by a log-normal or gamma distribution. This process is 

estimated through   utilizing equation (3) in both log normal and gamma model. The 

second process includes the likelihood of the positive outcome and it is estimated through 

β and   for the lognormal and gamma models respectively. Variable ‘Raw material 8’ was 

dropped from the analysis due to the multicollinearity problem and also due to the fact 

that individually; it was significantly negatively correlated with the outcome variables. 

We began by fitting the complex model with fixed effect and all the possible two and 

three ways interactions between covariates.  

The Parameters estimates for the log normal and gamma models using log link were first 

used as starting values in the zero-inflated models but the algorithm did not converge and 

the convergence was finally achieved by using zeroes as starting values. Maximum 

likelihood estimation method was used to estimate parameters of both models. The 

optimization technique used was the Dual Quasi-Newton algorithm and the ‘none’ option 

used as the integration method for the approximation of the integral.  
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The backward selection methods were used to reduce the model based on the p-values for 

the solution of the fixed effects and interaction terms (the ones with highest p-values 

being eliminated first). The interactions with the largest p-value being eliminated first and 

the fitting procedure repeated until all the insignificant effects were eliminated from the 

model. Test of significance were all performed at 5% level of significance. Analysis was 

done using SAS 9.2 and R 2.15.0.  
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4. Results 

This section presents EDA’s findings and results of the various fitted models for the two 

outcomes variables (Resilience and Hardness). 

4.1. Exploratory Data Analysis 

As already mentioned, the 129 observations correspond to different combinations of 

percentages of 8 raw materials. Hardness and Resilience are the textural measured of the 

end product after cooking. Exploration of the covariates shows that they all have similar 

mean values with a slightly higher mean attributed to variable ‘raw material 1’. The 

minimum and maximum values of all the raw materials are 0 and 1 respectively. The 

average Hardness and Resilience were respectively 895.6565g and 0.1408 joule/m3 with 

their minimums being 0 and maximum being 2360.78 and 0.304 respectively (Table 1). 

Figure 1 shows the extent of correlation among the dependent variables while histograms 

and density plot of the dependent variables are shown in Figure 2 and Appendix Figure 1 

in order to observe a clear distribution of Hardness and Resilience. Here the positively 

skewed nature of Hardness and Resilience of the end product are quite apparent. 
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Table 1: Variable description and Summary Statistics 

Variables N Mean Std.  Dev. Minimum Maximum 

Covariates      

Raw material 1 129 0.1265 0.2104 0 1.00 

Raw material 2 129 0.1243 0.2058 0 1.00 

Raw material 3 129 0.1250 0.2076 0 1.00 

Raw material 4 129 0.1243 0.2067 0 1.00 

Raw material 5 129 0.1243 0.2067 0 1.00 

Raw material 6 129 0.1243 0.2058 0 1.00 

Raw material 7 129 0.1258 0.2086 0 1.00 

Responses      

Hardness 129 895.6565 477.4071 0 2360.78 

Resilience 129 0.1408 0.0617 0 0.304 

 

Table 2: Correlation between the two responses variables 

Variables Hardness Resilience 

Hardness 1.0000 0.8035 

<.0001 

Resilience 0.8035 

<.0001 

1.0000 

 

The correlation between the responses variables and covariates was also computed and 

revealed a highly significant correlation between raw material 5 and the outcomes 

variable (Appendix Table 3). 
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Figure 1: Scatter plot Matrix for the dependent variables 

 

From Figure 2 and Appendix Figure 1, it is clear that the two outcomes variables do not 

follow the normal distribution. These histogram and density plot though not conditional 

on the covariates, would possibly give an over view of its distribution. These figures 

clearly show that the observations are non-negative and right skewed justifying the 

choice of gamma and lognormal model to describe the positive part of our responses 

variable.  
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Figure 2: Histograms of the dependent variables 

 

The scatter plot matrix of the dependent variable (Figure 1) revealed a strong correlation 

between Hardness and Resilience with Pearson correlation computed as 0.8035 with a 

highly significant p-value (p <.0001) (Table 2).  

4.2. Statistical Analysis 

This research focuses on the estimation and prediction of Hardness and Resilience of meat 

emulsions for food production. These outcomes herein are of particular interest for 

manufactures due to the fact that people are prepared to pay a higher price for food or any 

other manufactured product when the texture is “just right”. As mentioned above (Table 

1) the data set consists of 129 observations corresponding to different combinations of 

percentages of seven raw materials and two responses variable. The degree of zeroes 
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values in this sample data set was 10.85% and 7.75% for Resilience and Hardness 

respectively implying that almost 1/9 and 1/14 of the observations corresponding to 

different combinations of percentages of the eight raw material contain a end product 

which was not resilient nor hard enough. 

As mentioned by (Amemiya, 1984), “ordinary least squares parameter estimates are biased 

when applied to the regressions when the outcome contain zeroes values”, we then opted 

for the zero-inflated gamma (ZIG) and lognormal (ZILN) models with logit link function 

in the univariate setting. To assess the goodness of fit of the models we compute the AIC 

and negative log-likelihoods (actually -2* the log-likelihood). A desirable model 

specification will be the one that fits the data in estimation and is able to predict 

dependent variable values with accuracy. Table 3 presents all the fitted models while 

Table 4 and Table 5 present parameter estimates for the ZIG for Resilience outcome and 

ZILN for Hardness outcome respectively which were found to be the best model for 

Resilience and Hardness based on the AIC and negative log-likelihoods (the smaller the 

better). Appendix Table 1 and Appendix Table 2 present the results of the ZILN model for 

Resilience and ZIG model for Hardness respectively. 

In the process of running these ZIG models in SAS, it became apparent that the data did 

not result in any statistically significant variables used to estimate the rate parameter,  . 

Because there were no apparent advantages to estimating this set of variables, regressions 

were run using only an intercept term for  , keeping   constant across all observations. 
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Table 3: Fitted Models 

Models Outcome Variable Link function AIC -2 Log Likelihood 

ZILN Hardness Logit  206.9 152.9 

Resilience logit -451.1 -509.1 

ZIG Hardness logit 1797.1 1743.1 

Resilience logit -480.9 -538.9 

  

It can be seen from Table 3 that the ZIG model fits the data better (smaller AIC and -2 Log 

Likelihood) for Resilience than the ZILN whereas ZILN model fits better than the ZIG for 

Hardness. Moreover, there is a significant improvement in fit when moving from the 

ZILN to the ZIG models especially for Hardness. The results indicate that the model fit to 

our data was improved by using a zero inflated gamma model for Resilience and zero 

inflated log normal model for Hardness. 

4.2.1. Zero-Inflated Gamma Model: Resilience (first outcome variable) 

As already mentioned, parameter estimates in zero-inflated model refer to two distinct 

processes. The first process includes the likelihood of the zero outcomes or the one 

described by a gamma and/or log normal distribution. This process is estimated through   

utilizing in equation (3). Based on this formulation, the parameter estimates can be 

expressed as the negative of the marginal impact of the covariate on the probability of a 

positive outcome, relative to the variance of the Bernoulli component as discussed in the 

paper by Eric J. Belasco and Sujit K. Ghosh (2008): 

    
      

    
 
 

     
  
        

   

      
   

     
   
    

 
 

              
                  

Where the variance is shown as               . For example from Table 4 and Table 5, 

except for the intercepts, all the main effects estimates have negative   coefficient 
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meaning that the raw materials largely and positively influences the likelihood of positive 

Resilience and/or Hardness of meat emulsion. This is not surprising given that a high 

percentage of combinations of raw materials tend to contribute to an end product which is 

harder and more resilient whereas low combinations of percentages of raw materials tend 

to be more likely to result in Hardness of 0g and/or Resilience of 0 joule/m3. Therefore, 

these main effects have a higher probability of incurring positive Resilience and Hardness 

realizations that can be modeled with the gamma and log normal distributions. These 

results showed that we did not lose much information by dropping variable ‘raw material 

8’ since the remaining covariates in the model can still contribute to an end product with 

acceptable texture.  It is important to note here that none of the interaction terms was 

found to be significant for the zero part of the model.  

Parameter estimates for   refer to the marginal impact that the covariates have on the 

positive realizations of Resilience of meat emulsion. Except of raw materials 1 and 2 

which were found to be insignificantly related to Resilience, all the remaining main 

effects were significantly related to this response variable. Decision was then made to 

keep the insignificant main effects in the model to enable interpretation of their 

interaction terms. Due to the presence of significant two and three ways interactions 

between the covariates (Table 4), the gamma regression coefficients for the variables will 

no longer indicate a change in the mean gamma of the response with a unit percentage 

increase of that particular variable alone, keeping the other variables constant; rather it 

also depends on the level of the other covariates involve in the interaction.  
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The contribution of variable ‘raw material 2’ for example to Resilience of meat emulsion 

after cooking will depend on the contribution of all the other raw materials interacting 

with raw material 2 (that is raw material 3, 4, 5, 7, interaction between 1 and 5, and 

between 3 and 6).  
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Table 4: Estimates standard errors and p-values for the ZIG (Resilience) 

Variables Estimates Std. Errors P-Values Parameters 

Probability limit effect (        

 

 

 
  

Intercept  3.1439 1.2599 0.0138 

Raw material 1 -6.1314 2.2386 0.007 

Raw material 2 -8.8182 3.03 0.0043 

Raw material 3 -3.4820 1.7152 0.0444 

Raw material 4 -8.6228 2.9854 0.0045 

Raw material 5 -11.0164 3.8256 0.0047 

Raw material 6 -19.0017 9.867 0.0563 

Raw material 7 -4.2099 1.8422 0.0239 

Mean effects ( )     

Intercept  -2.102 0.0654 <.0001  

 

 

 

 

 

 

 

 

    γ 

Raw material 1 -0.122 0.0855 0.1559 

Raw material 2 -0.076 0.1108 0.494 

Raw material 3 0.384 0.1024 0.0003 

Raw material 4 0.5828 0.1014 <.0001 

Raw material 5 0.689 0.0983 <.0001 

Raw material 6 0.2842 0.0893 0.0018 

Raw material 7 0.5981 0.1016 <.0001 
Two ways Interaction    

Raw material 1   2 -0.8452 0.3592 0.0201 

Raw material 2   3 -0.4834 0.4041 0.2338 

Raw material 2   4* -1.6434 0.3791 <.0001 

Raw material 2   5 0.7781 0.3755 0.0402 

Raw material 2   7 -1.0668 0.379 0.0056 

Raw material 3   4 -1.2074 0.3961 0.0028 

Raw material 4   5 -0.8809 0.3657 0.0174 

Raw material 4   7 -0.7985 0.3742 0.0347 

Raw material 5   6 -0.8804 0.3599 0.0158 
Three ways interaction    

Raw material 1   2   5** 16.1895 3.5457 <.0001 

Raw material 2   3   4 8.6361 3.7554 0.0231 

Raw material 2   3   6 -8.3143 3.4725 0.0181 

     

Rate ( )       

Intercept 0.001953 0.000262 <.0001  

Fit Statistics     

-2 Log Likelihood -538.9    

AIC -480.9    

*= Interaction between raw material 2 and raw material 4. **= Interaction between raw material 1, 2 and 5. 
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It can be shown that a change in the mean of gamma with a unit percentage increase in 

raw material 5 when raw material 2, 4 and 6 and interaction between raw material 1 and 2 

is held constant is: 

                                                                           

                             

Similarly, the change for example in the mean of gamma for Resilience with a unit 

percentage increase in raw material 7 when raw material 2 and 4 are held constant is: 

                                                         

Hence, in the gamma regression, both the effect of for example raw material 7 for a given 

level of raw materials 2 and 4 and the effect of raw materials 2 and 4 for given level of raw 

material 7 depend on the level of the other predictor variables. 

Considering the slope of the regression function plotted against raw material 7 now differ 

for raw materials 2 and 4 = 1% and raw materials 2 and 4 = 2%. The slope of the response 

(Resilience) function when raw materials 2 and 4 are 1% is given by: 

                                           

And when raw materials 2 and 4 = 2%, the slope are: 

                                           

Thus, a unit percentage increase in raw materials 2 and 4 has a negative effect on 

Resilience or decreases the Resilience by 0.033 joule/m3 (      –      ) when the 

combinations of raw material 2 and 4 are at the higher level than when it is at the lower 
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level. Another way of saying this is that the slopes of the regression lines between 

Resilience and raw material 7 are different for the different combinations of raw materials 

2 and 4. The estimates of the interaction terms between raw material 2 and 7 and raw 

materials 4 and 7 (        and       ) indicate how different those slopes are. This 

could be due to the interference or antagonistic interactions effect. 

4.2.2. Zero-Inflated Log Normal Model: Hardness (Second outcome variable) 

 The ZILN model was found to be the best fit for the second outcome variable (Hardness). 

And we can see from Table 5 the estimates for the zero part ( ) of the model are negative 

except the intercept and can have similar interpretation with those of Table 4.  

Parameter estimates for β refer to the marginal impact that the covariates have on the 

positive realizations of Hardness of meat emulsion. Except of raw materials 1, 2, 5 and 6 

which were found to be insignificantly related to Hardness, all the remaining main effects 

were significantly related to the Hardness of the end product. Decision was then made to 

keep the insignificant main effects in the model to enable interpretation of their 

interaction terms between these raw materials; same reason holds for the interactions 

between raw material 1 and 2 and raw material 2 and 4. 
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Table 5: Estimates standard errors and p-values for the ZILN (Hardness) 

Variables Estimates Std. Errors P-Values Parameters 

Probability limit effect (        

Intercept  5.0892 1.7779 0.0049  

 

 
    

Raw material 1 -7.2320 2.6487 0.0072 

Raw material 2 -10.7094 3.8409 0.0061 

Raw material 3 -10.1332 3.5836 0.0054 

Raw material 4 -10.1864 3.6116 0.0056 

Raw material 5 -13.3559 5.0333 0.009 

Raw material 6 -22.5224 10.5389 0.0345 

Raw material 7 -13.2705 4.9917 0.0088 

Mean effects (µ)      

Intercept  6.7600 0.2178 <.0001  

 

 

 

 

 

        

    

 

 

        (β) 

Raw material 1 -0.5868 0.3227 0.0713 

Raw material 2 0.4228 0.3034 0.1658 

Raw material 3 -1.249 0.3169 0.0001 

Raw material 4 0.5935 0.2877 0.0412 

Raw material 5 0.2987 0.3037 0.3271 

Raw material 6 -0.1938 0.313 0.5369 

Raw material 7 -0.8776 0.3316 0.0091 

Two ways Interaction    

Raw material 1   2 -0.9693 1.2016 0.4214 

Raw material 1   3 5.4846 1.2703 <.0001 

Raw material 1   7 4.5682 1.2352 0.0003 

Raw material 2   4 -1.7365 1.2045 0.1518 

Raw material 3   5 3.8274 1.1952 0.0017 

Raw material 3   6 4.0011 1.1583 0.0007 

Raw material 5   7 4.4628 1.1625 0.0002 

Raw material 6   7 3.408 1.1651 0.0041 

Three ways interaction    

Raw material 1   2   3 -41.0594 11.9081 0.0008 

Raw material 2   4   7 -43.1015 11.5839 0.0003 

Variance (α)     

intercept -0.8957 0.06482 <.0001     (α) 

Fit Statistics     

-2 Log Likelihood 152.9    

AIC 206.9    
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The contribution of raw material 5 to Hardness of meat emulsion will depend on the 

presence of raw material 3 and raw material 7 as can be seen from Table 5, there is a 

significant interaction effect between the three raw materials.  

For example, considering the slope of the regression function plotted against raw material 

5 now differ for raw materials 3 and 7 = 1% and raw materials 3 and 7 = 2%. The slope of 

the response (Hardness) function when raw materials 2 and 4 are 1% is given by: 

                                       

And when raw materials 3 and 7 = 2%, the slope are: 

                                       

Thus, a unit percentage increase in raw materials 3 and 7 has a slightly positive effect on 

Hardness or increases the Hardness by 0.083g (0.464 – 0.381) in the logarithmic scale 

when the combinations of raw material 3 and 7 are at the higher level than when it is at 

the lower level. Another way of saying this is that the slopes of the regression lines 

between Hardness and raw material 5 are different for the different combinations of raw 

materials 3 and 7. The estimates of the interaction terms between raw material 3 and 5 

and raw materials 7 and 5 (       and      ) indicate how different those slopes are. 

This could be due to the interference or antagonistic interactions effect. 

These outcomes were also modeled using a zero-inflated log normal (ZILN) and ZIG 

models. Tough the AIC opted for ZIG model for Resilience outcome, the parameter 

estimates for this model were found to be similar to those of ZILN for this particular 
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outcome. In the other hand ZILN model for Hardness showed also similar output with 

variable ‘Raw Material 7’ becoming significant whereas this was not the case with ZIG 

model for Hardness. These models characterize the positive observations using a log 

normal and gamma distributions, which can take into account highly skewed data. The 

results from the ZILN model for Resilience and ZIG model for Hardness are shown in 

Appendix Table 1 and Appendix Table 2 respectively. 
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5. Discussion and Conclusion 

It was the purpose in this project to understand the effect of raw materials on Hardness 

and Resilience of meat emulsions for food production, understand how it is possible to 

improve these characteristics of the final product after cooking by changing the 

percentages of the raw materials. Data for 129 observations corresponding to different 

combinations of percentages of raw materials with Hardness and Resilience as outcomes 

variables was analyzed. From the EDA it was clear that the data was positively skewed 

with outcomes containing zeroes values. And we would not therefore expect the classical 

regression models to fit the data well (Amemiya, 1984). 

Modeling data sets with the presence of zeroes values in the outcome variables remains a 

large problem in statistics. While use of the Tobit model may be well-justified in certain 

instances such as the cattle feeder example discusses in the paper by Eric J. Belasco and 

Sujit K. Ghosh (2008), the results from meat emulsions data sets suggest the use of a zero-

inflated modeling mechanism. This is particularly true in instances where data come from 

a two-step process. While two-step processes have been applied to hurdle models, zero-

inflated models have largely been ignored in profitable studies. This is mainly a result of 

the past limitation of zero-inflated models to count data. 

 In this project, a zero-inflated model is developed that can handle both univariate and 

multivariate situations rather efficiently. Additionally, the inherent parametric flexibility 

allows for distributional assumptions to change based on the data on hand, rather than 

strictly using normally distributions. Here we use a log-normal and gamma distributions 
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to capture the positively skewed nature of Hardness and Resilience of meat emulsion after 

cooking, which gives the zero-inflated model significant advantages over the Tobit model. 

Though it is argued that the log-normal and the gamma density function are both likely to 

give equally fitting results (Wiens, 1999), Kundu and Manglicky (2005) extend from 

Wiens contention (Wiens, 1999) that there are cases when the interchangeability of these 

two models slightly differs. Particularly on tail data which is crucial on inferences. It was 

therefore worthwhile fitting both of them and examining the result. The ZIG model 

seemed to give a better fit for Resilience outcome variables with smaller AIC values than 

the ZILN model whereas ZILN fitted better than ZIG for Hardness outcome variable. 

Advantages in model fit for the ZILN and ZIG model stem from the ability of the zero-

inflated model to isolate the impacts from observing a positive Hardness and Resilience 

and their levels. 

It emerged from Bernoulli part of ZIG and ZILN models that all the main effect estimates 

have negative   coefficient meaning that the raw materials largely and positively 

influences the likelihood of positive Resilience and/or Hardness of meat emulsion. From 

the gamma and log normal part, raw materials 3, 4, 5, 6 and 7 were found to be 

significantly related to Resilience while raw materials 3, 4 and 7 were significantly related 

to Hardness of meat emulsion. These results are in agreement with those obtained from 

the raw data. As expected both in the gamma and lognormal part of the models, the 

interactions terms (two and three ways) were found to be significant on both outcomes. 

These presences of significant interactions indicate that the effect of one raw material on 

Hardness and/or Resilience is different at different values of the other raw materials. 
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Knowledge of Hardness and Resilience of processing meat emulsion is very crucial for 

production companies to ensuing product acceptability. Results from this research 

demonstrate the potential gains from using this particular mixture model. Additionally, 

the ZIG demonstrated a strong ability to fit the data slightly better than the ZILN for 

Resilience whereas for Hardness the ZILN was better than ZIG model. 

 In conclusion, had they been there were no significant interactions terms in the model, 

improvement of Hardness and/or Resilience of the end product after cooking could have 

been made by combining different combinations of percentages of the significant mean 

effects; that is combining different combinations of percentages of raw materials 3, 4, 5, 6 

and 7 for Resilience and raw materials 3, 4 and 7 for Hardness. The presence of significant 

two and three ways interaction terms in the models drastically changes the interpretation 

of all of the coefficients (main effects) and becomes more challenging since the gamma 

regression coefficients for example raw materials 2 and 4 will no longer indicate the 

relationship between these raw materials and Resilience keeping the other variables 

constant because of the interaction between them; rather it also depends on the level of 

the other variable involve in the interaction. It is also important to mention here that 

though raw material 5 was not significantly contributing to Hardness of meat emulsion, 

this was due to the presence of interactions terms in the model and particular attention 

should be paid to this raw material as can be seen from Appendix Table 3, variable ‘raw 

material 5’ was found to be highly significantly related to both outcomes. Moreover, 

privilege should be given to the estimates with high estimates because we suspect that 
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their different combinations of percentages could lead to an end product which is 

acceptably hard and resilient. 

6. Limitations and recommendations  

Often, multivariate tests are more powerful especially when the responses are highly 

correlated. Regression from univariate Hardness and Resilience models offer information 

concerning the relative impacts each covariate has on these outcomes variable. However, 

these variables would be likely better characterized in multivariate setting in order to 

capture the covariance structure between Hardness and Resilience; one of the advantages 

of doing multivariate analyses is that you can conduct tests of the coefficients across the 

different models. This was attempted in this research but due to the complexity of the 

model and time constraints, the model did not sufficiently converge. We therefore 

recommend future research to consider the multivariate setting and possibly examine 

other possible characteristics that might explain Hardness and Resilience of meat 

emulsion, or other possible covariates related to these characteristics of the end product 

after cooking in order to ensure product acceptability.  
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Appendix 

Zero-Inflated Log Normal model 

Resilience 

Appendix Table 1: Estimates, standard errors and p-values for ZILN (Resilience) 

Variables Estimates Std. Errors P-Values Parameters 

Probability limit effect (       

Intercept  3.1357 1.2585 0.014  

 

 
    

Raw material 1 -6.1208 2.2366 0.0071 

Raw material 2 -8.8026 3.0263 0.0043 

Raw material 3 -3.4738 1.714 0.0447 

Raw material 4 -8.6061 2.981 0.0046 

Raw material 5 -10.9925 3.8183 0.0047 

Raw material 6 -19.0111 9.8985 0.057 

Raw material 7 -4.201 1.8408 0.0241 

Mean effects (µ)      

Intercept  0.1182 0.0115 <.0001  

 

 

 

 

 

 

 

 

   (β) 

Raw material 1 -0.0174 0.0150 0.2489 

Raw material 2 -0.0079 0.0195 0.6822 

Raw material 3 0.0593 0.0179 0.0012 

Raw material 4 0.0972 0.0178 <.0001 

Raw material 5 0.1152 0.0169 <.0001 

Raw material 6 0.0445 0.0156 0.0053 

Raw material 7 0.0965 0.0178 <.0001 

Two ways Interaction    

Raw material 1   2 -0.07204 0.0635 0.2588 

Raw material 2   3 -0.0735 0.0712 0.3042 

Raw material 2   4* -0.2459 0.0667 0.0003 

Raw material 2   5 0.1372 0.0663 0.0405 

Raw material 2   7 -0.1794 0.0663 0.0078 

Raw material 3   4 -0.2037 0.0689 0.0037 

Raw material 4   5 -0.1659 0.0636 0.0103 

Raw material 4   7 -0.1363 0.0654 0.0392 

Raw material 5   6 -0.1552 0.0630 0.0151 

Three ways interaction    

Raw material 1   2   5 2.7977 0.6217 <.0001 

Raw material 2   3   4 1.2433 0.6515 0.0586 

Raw material 2   3   6 -1.0436 0.6071 0.088 

http://www.freepatentsonline.com/EP0265740.html
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Variance (α)     

intercept -3.844 0.06596 <.0001 (α) 

Fit Statistics     

-2 Log Likelihood -509.1    

AIC -451.1    

 

Zero Inflated Gamma: Hardness 

Hardness (ZIG) 

Appendix Table 2: Estimates, standard errors and p-values for ZIG (Hardness) 

Variables Estimates Std. Errors P-Values Parameters 

Probability limit effect (         

Intercept  5.0861 1.7769 0.0049  

 

 
    

Raw material 1 -7.2279 2.6472 0.0072 

Raw material 2 -10.7051 3.8394 0.0061 

Raw material 3 -10.1579 3.5935 0.0055 

Raw material 4 -10.1526 3.5987 0.0055 

Raw material 5 -13.3075 5.0113 0.0089 

Raw material 6 -22.481 10.499 0.0341 

Raw material 7 -13.3093 5.0099 0.0089 

Mean effects ( )     

Intercept  6.7231 0.211 <.0001  

 

 

 

 

 

 

 

 

 

 

    (γ) 

Raw material 1 -0.5447 0.3071 0.0784 

Raw material 2 0.3649 0.2762 0.1888 

Raw material 3 -0.8489 0.3192 0.0088 

Raw material 4 0.6336 0.2656 0.0185 

Raw material 5 0.3896 0.2901 0.1817 

Raw material 6 -0.0508 0.2901 0.8612 

Raw material 7 -0.4192 0.3371 0.216 
Two ways interaction    

Raw material 1   2 -0.6405 1.0895 0.5576 

Raw material 1   3 4.7701 1.1995 0.0001 

Raw material 1   7 3.6454 1.1508 0.0019 

Raw material 2   4 -1.4249 1.1093 0.2013 

Raw material 3   5 3.1592 1.1464 0.0067 

Raw material 3   6 3.0396 1.0743 0.0054 

Raw material 5   7 3.609 1.1027 0.0014 

Raw material 6   7 3.1883 1.0504 0.0029 
Three ways interaction    

Raw material 1   2   3 -42.069 11.2089 0.0003 

Raw material 2   4   7 -47.1066 11.1151 <.0001 
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Rate ( )        (   

Intercept 106.04 16.0182 <.0001 

Fit Statistics     

-2 Log Likelihood 1743.1    

AIC 1797.1    

 

Appendix Table 3: Correlation Matrix between the responses and covariates 

Pearson Correlation Coefficients, N = 129 

Prob > |r|  

 R_M1 R_M2 R_M3 R_M4 R_M5 R_M6 R_M7 R_M8 Hardness Resilience 

R_M1 

 

1.00000 

 

-0.1414 

0.1098 

-0.1465 

0.0976 

-0.1449 

0.1012 

-0.1449 

0.1012 

-0.1415 

0.1096 

-0.1480 

0.0941 

-0.1474 

0.0955 

-0.12261 

0.1663 

-0.13586 

0.1248 

R_M2 

 

-0.1414 

0.1098 

1.00000 

 

-0.1430 

0.1057 

-0.1373 

0.1206 

-0.1415 

0.1096 

-0.1421 

0.1081 

-0.1446 

0.1020 

-0.1391 

0.1138 

-0.04673 

0.5990 

-0.13834 

0.1179 

R_M3 

 

-0.1465 

0.0976 

-0.1430 

0.1057 

1.00000 

 

-0.1425 

0.1072 

-0.1425 

0.1072 

-0.1389 

0.1164 

-0.1414 

0.1098 

-0.1449 

0.1011 

-0.08160 

0.3579 

-0.10147 

0.2525 

R_M4 

 

-0.1449 

0.1012 

-0.1373 

0.1206 

-0.1425 

0.1072 

1.00000 

 

-0.1409 

0.1111 

-0.1415 

0.1096 

-0.1440 

0.1034 

-0.1434 

0.1048 

0.10727 

0.2263 

0.16514 

0.0615 

R_M5* 

 

-0.1449 

0.1012 

-0.1415 

0.1096 

-0.1425 

0.1072 

-0.1409 

0.1111 

1.00000 

 

-0.1415 

0.1096 

-0.1398 

0.1138 

-0.1434 

0.1048 

0.34916 

<.0001 

0.41754 

<.0001 

R_M6 

 

-0.1415 

0.1096 

-0.1421 

0.1081 

-0.1389 

0.1164 

-0.1415 

0.1096 

-0.1415 

0.1096 

1.00000 

 

-0.1404 

0.1123 

-0.1440 

0.1034 

0.10966 

0.2161 

0.15485 

0.0797 

R_M7 

 

-0.1480 

0.0941 

-0.1446 

0.1020 

-0.1414 

0.1098 

-0.1440 

0.1034 

-0.1398 

0.1138 

-0.1404 

0.1123 

1.00000 

 

-0.1465 

0.0976 

0.12985 

0.1425 

0.05850 

0.5102 

R_M8 

 

-0.1474 

0.0955 

-0.1399 

0.1138 

-0.1449 

0.1011 

-0.1434 

0.1048 

-0.1434 

0.1048 

-0.1440 

0.1034 

-0.1465 

0.0976 

1.00000 

 

-0.43760 

<.0001 

-0.41253 

<.0001 

Hardness 

 

-0.1226 

0.1663 

-0.0467 

0.5990 

-0.0816 

0.3579 

0.10727 

0.2263 

0.34916 

<.0001 

0.10966 

0.2161 

0.12985 

0.1425 

-0.4376 

<.0001 

1.00000 

 

0.80354 

<.0001 

Resilience 

 

-0.1358 

0.1248 

-0.1383 

0.1179 

-0.1014 

0.2525 

0.16514 

0.0615 

0.41754 

<.0001 

0.15485 

0.0797 

0.05850 

0.5102 

-0.4125 

<.0001 

0.80354 

<.0001 

1.00000 

 

R_M5* = Raw Material 5 
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Appendix Figure 1: Density plot of the response variables 
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