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Summary. The main advantage of longitudinal studies is that they can distinguish changes over
time within individuals (longitudinal effects) from differences between subjects at the start of the
study (base-line characteristics; cross-sectional effects). Often, especially in observational stud-
ies, subjects are very heterogeneous at base-line, and one may want to correct for this, when
doing inferences for the longitudinal trends. Three procedures for base-line correction are com-
pared in the context of linear mixed models for continuous longitudinal data. All procedures are
illustrated extensively by using data from an experiment which aimed at studying the relation-
ship between the post-operative evolution of the functional status of elderly hip fracture patients
and their preoperative neurocognitive status.

Keywords: Base-line correction; Linear mixed model; Longitudinal data; Longitudinal trends

1. Introduction

In health sciences, studies are often designed to investigate changes in a specific parameter which
is measured repeatedly over time in the participating subjects. Such studies are in contrast with
cross-sectional studies where the response of interest is measured only once for each individual.
As pointed out by Diggle et al. (1994), section 1.4, the main advantage of longitudinal studies
is that they can distinguish changes over time within individuals (longitudinal effects) from
differences between people in their base-line values (cross-sectional effects).

Often, especially in observational studies, much base-line variability between subjects exists
and we wish to study longitudinal trends, correcting for these base-line differences. For exam-
ple, Diggle et al. (1994), section 9.3, used longitudinal data on 250 children to investigate the
evolution of the risk for respiratory infection, and its relationship to vitamin A deficiency. They
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adjusted for gender, season and age of subjects on entry to the study. Here the correction was
done by including known base-line characteristics as covariates in the model. An alternative
technique is the use of conditional linear mixed models (Verbeke et al., 2001) which considers
the base-line values as nuisance parameters which can be conditioned out before the estimation
of the longitudinal trends. A third technique, which has also been proposed for the analysis of
pretest–post-test data (Bonate, 2000) uses the first observed outcome as a covariate in a model
for the subsequent observations. We shall call this technique ‘analysis of covariance’, thereby
acknowledging the analogy with the more traditional linear regression models that are used for
comparison of groups, correcting for covariates.

In Section 2, the motivating data set will be introduced and analysed by using a linear mixed
model, not correcting for base-line differences. In Section 3, we present three procedures for
base-line correction, and, in Section 4, we apply these methods to our data set. In Section 5, a
general discussion will be given explaining the results that are observed in the data analysis.
Finally, concluding remarks are given in Section 6.

2. Case-study: activities of daily living data

The motivation for this research was the analysis of data that have been collected as part of a doc-
toral research project in the Centre for Health Services and Nursing Research of the Katholieke
Universiteit Leuven in Belgium. Details about the project can be found in Milisen (1999) and
Milisen et al. (1998). The aim of this part of the project was to study the relationship between
the post-operative evolution of the functional status of elderly hip fracture patients and their
preoperative neurocognitive status. Functional status was measured on the first, fifth and 12th
day post-operatively, using the Belgian version of the Katz index of activities of daily living
(ADL) (Katz and Akpom, 1976; Delesie et al., 1987), which is an ordinal score ranging from 6
to 24, with high ADL values indicating greater dependence on others by the subject. In total, we
have data on 54 patients, 17 of whom were classified as having neurocognitive symptoms before
the surgery. The individual profiles of all 54 subjects are shown in Fig. 1, for the neuropsychiatric
and non-neuropsychiatric patients separately. Let Yi.t/ now denote the ADL response taken for
subject i=1, . . . , 54, at time points t =1, 5, 12. We then assume that Yi.t/ can be modelled as

Yi.t/=
{

β10 +b0i + .β11 +b1i/ ln.t/+ "i.t/ if neuropsychiatric,
β20 +b0i + .β21 +b1i/ ln.t/+ "i.t/ if non-neuropsychiatric.

.1/

The model assumes that, on a logarithmic timescale, the ADL score evolves linearly over time,
with average intercepts β10 and β20 and average slopes β11 and β21, for the neurocognitive
patients and the patients without preoperative neurocognitive symptoms respectively. Further,
every subject i is allowed to have its own intercept and slope, through the inclusion of the
random intercepts b0i and random slopes b1i which are assumed to follow jointly a two-dimen-
sional normal distribution with mean 0 and covariance matrix D. Finally, all error components
"i.t/ are assumed to be independent of each other as well as of the random effects b0i and b1i,
and normally distributed with mean 0 and variance σ2.

Note that the components β10 +b0i and β20 +b0i model the differences between the subjects
at base-line. We shall therefore call them the cross-sectional components of the model. Further,
the components .β11 +b1i/ ln.t/ and .β21 +b1i/ ln.t/ model how the responses evolve over time
and are therefore called the longitudinal components in model (1). Obviously, the longitudinal
component is of primary interest.

Model (1) is an example of a linear mixed model (Laird and Ware, 1982), which assumes that
the outcome vector Yi for the ith subject satisfies
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Fig. 1. ADL data: individual profiles for (a) non-neuropsychiatric and (b) neuropsychiatric patients

Yi =Xiβ+Zibi +εi, .2/

in which β is a vector of population-average regression coefficients called fixed effects, and where
bi is a vector of subject-specific regression coefficients. The bi describe how the evolution of the
ith subject deviates from the average evolution in the population. The matrices Xi and Zi are
ni ×p and ni ×q matrices of known covariates. The random effects bi and residual components
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Table 1. ADL data: restricted maximum likelihood estimates, associated standard errors
and Wald tests for fixed longitudinal effects, based on only those subjects for whom all
three scheduled ADL measurements are available as well as based on all subjects†

Effect Results for only
35 complete subjects Results for all 54 subjects

Estimate p-value Estimate p-value

Linear mixed model without base-line covariates
Neuropsychiatric (β11) −0.421 (0.454) 0:3544 −0.626 (0.376) 0.0962
Non-neuropsychiatric (β21) −2.098 (0.287) <0.0001 −1.926 (0.251) <0.0001
Difference (β11 −β21) 1.678 (0.537) 0:0018 1.300 (0.452) 0.0041

Linear mixed model with base-line covariates
Neuropsychiatric (β11) −0.421 (0.454) 0.3544 −0.589 (0.372) 0.1137
Non-neuropsychiatric (β21) −2.098 (0.287) <0.0001 −1.896 (0.248) <0.0001
Difference (β11 −β21) 1.678 (0.537) 0.0018 1.307 (0.447) 0.0035

Conditional linear mixed model
Neuropsychiatric (β11) −0.421 (0.454) 0.3544 −0.622 (0.376) 0.0981
Non-neuropsychiatric (β21) −2.098 (0.287) <0.0001 −1.920 (0.250) <0.0001
Difference (β11 −β21) 1.678 (0.537) 0:0018 1.298 (0.452) 0:0040

Analysis of covariance
Neuropsychiatric (β11) 1.142 (0.782) 0.1534 1.146 (0.779) 0.1504
Non-neuropsychiatric (β21) −2.010 (0.494) 0.0003 −2.043 (0.493) 0.0002
Difference (β11 −β21) 3.153 (0.925) 0.0017 3.189 (0.922) 0.0015

†Four analyses are presented: a linear mixed model without base-line covariates, a linear
mixed model with base-line covariates (age and living situation), a conditional linear mixed
model and analysis of covariance. Standard errors are given in parentheses.

εi are assumed to be independent with distributions N.0, D/ and N.0, σ2Ini/ respectively. Infer-
ence for linear mixed models is based on maximum likelihood or restricted maximum likelihood
estimation under the marginal model for Yi, i.e. the multivariate normal model with mean Xiβ,
and covariance

Vi =ZiDZ′
i +σ2Ini :

More specifically, we have that

β̂=
(∑

i

X′
iV

−1
i Xi

)−1∑
i

X′
iV

−1
i Yi, .3/

which is normally distributed, with mean β and covariance .Σi X
′
iV

−1
i Xi/

−1, from which infer-
ences immediately follow. We refer to Verbeke and Molenberghs (2000) for more details on
estimation and inference in the context of linear mixed models.

The estimation and inference results for the fixed slopes β11 and β21, which are obtained
from fitting model (1) to the ADL data, are shown in the top right-hand part of Table 1. We
obtain a significant difference in the average evolutions over time (p=0:0041), with no signifi-
cant time trend for the neurocognitive patients and a significant average improvement for the
patients who were not neurocognitive preoperatively. The variance of the random intercepts b0i

was estimated as 9.0968, which is large compared with the within-subject error variability σ2

estimated as 2.4291. This suggests that there is much between-subject variability at base-line,
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and therefore we wonder whether efficiency can be gained by formally correcting for these base-
line differences. More specifically, it will be investigated how correction for base-line differences
will affect estimation of and inference for the longitudinal component in a linear mixed model.
In Section 3, we shall therefore discuss three different statistical procedures towards base-line
correction.

3. Procedures for base-line correction

3.1. Introduction of base-line covariates
A classical statistical procedure that is often used to correct for differences between subjects is
the inclusion of covariates which may explain the observed heterogeneity. In our ADL example,
available potential covariates are the age of the patient at entry, as well as the living situation of
the patient before the hip fracture. The living situation is a nominal variable indicating whether
the patient was living on his or her own, living with a partner, family or friend(s), or living in
a nursing home. Both variables are believed to be highly predictive of the functional status of
the patients. In model (1), age and living situation can be formally corrected for by including
them as covariates (after recoding the living situation by two dummy variables). Obviously, the
advantage of this procedure is that the new model is still a linear mixed model such that the
same estimation and inferential procedures can be used as for the original uncorrected model.
Among the disadvantages is the fact that predictive covariates must be known and available,
but also the fact that the correct parametric functional relationship between the covariates and
the response of interest must be specified.

3.2. Conditional linear mixed models
An alternative way to make inferences about the longitudinal components in a linear mixed
model, independently of the way that the cross-sectional components have been parameterized,
is the use of conditional linear mixed models, which were introduced by Verbeke et al. (2001).
The key idea is to rewrite model (1) as

Yi.t/=
{

bÅ
0i + .β11 +b1i/ ln.t/+ "i.t/ if neuropsychiatric

bÅ
0i + .β21 +b1i/ ln.t/+ "i.t/ if non-neuropsychiatric, .4/

with subject-specific intercepts bÅ
0i, which are not of any interest. These nuisance parameters

can be eliminated by conditioning on their sufficient statistics and inference for the longitudinal
parameters of interest can be based on the likelihood of our data, conditional on the sufficient
statistics for the nuisance parameters. A similar conditioning argument forms the basis of con-
ditional logistic regression, which is a standard tool for the analysis of matched binary data
(Breslow and Day (1989), section 7.1). In our context, this conditional inference can be shown
to be equivalent with transforming all vectors Yi → A′

iYi for any set of full rank ni × .ni − 1/

matrices Ai satisfying A′
i1ni = 0 and A′

iAi = Ini−1. Here, 1ni is the ni-dimensional vector con-
taining only 1s, and Ini−1 equals the .ni − 1/-dimensional identity matrix. The transformed
data then satisfy a new linear mixed model with transformed covariates, and in which the only
remaining parameters are the original longitudinal effects (fixed as well as random), and the
residual variance σ2. Hence, standard software for linear mixed models can again be applied to
obtain inferences for the parameters of interest, independently of any parametric assumptions
about the base-line differences between the study participants. For two repeated measurements
per subject, the transformation Yi →A′

iYi reduces to the calculation of the within-subject differ-
ences between the two outcome measurements. Hence the conditional linear mixed model can
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be viewed as an extension of the well-known paired t-test to longitudinal data sets, possibly
unbalanced, with more than two measurements per subject.

Finally, it can be shown that the conditional linear mixed model yields the same estimates and
inferences for the longitudinal effects as the linear mixed model (4) in which the subject-specific
intercepts bÅ

0i are considered unknown fixed parameters, and provided that restricted maxi-
mum likelihood estimation is used for parameter estimation (Verbeke and Molenberghs (2000),
chapter 13). Hence, the conditional linear mixed model also has a fixed effects interpretation.

The theoretical properties of the estimates that are obtained from conditional linear mixed
models have been investigated in detail by Verbeke et al. (2001). These properties immediately
follow from the close relationship with restricted maximum likelihood estimation, for which
theoretical justification can be found in Patterson and Thompson (1971), Sprott (1975) and
Harville (1974, 1977).

3.3. Analysis of covariance
A third technique is analysis of covariance in which the first observed outcome is used as covar-
iate in a model for the subsequent observations. For our ADL example, we would then consider
the model

Yi.t/=
{

β10 +b0i +γ yi.1/+ .β11 +b1i/ ln.t/+ "i.t/ if neuropsychiatric
β20 +b0i +γ yi.1/+ .β21 +b1i/ ln.t/+ "i.t/ if non-neuropsychiatric,

.5/

in which yi.1/ is the first outcome value measured on subject i, i.e. the ADL score for subject i

at day 1 post-operatively. Further, γ is a fixed unknown regression coefficient, and the model is
restricted to outcomes Yi.t/ measured at time points t > 1 which, in our example, is equivalent
to t = 5, 12. Again, model (5) is a linear mixed model, implying that estimation and inference
can be obtained from standard software.

In this particular example, model (5) is overspecified since the 2×2 covariance matrix for the
second and third measurement is parameterized with four parameters, which is one too many.
Any restriction can be used, e.g. assuming independence of random intercepts and slopes, or
setting specific variance components equal to a prespecified value. All such analyses will lead
to the same fitted normal model for Yi, with mean Xiβ and covariance matrix

Vi =ZiDZ′
i +σ2Ini

and hence to exactly the same inferences for the elements in β.

4. Application: activities of daily living data

We shall now apply all three procedures to our ADL case-study. We hereby first focus on the 35
patients for which all three scheduled ADL measurements have been taken (Section 4.1). After-
wards, all methods will be applied to the complete data set with all 54 subjects (Section 4.2). All
the results have been summarized in Table 1.

4.1. Balanced data
Balanced longitudinal measurements are obtained when a fixed number of measurements are
taken for all subjects, at fixed time points. Often, models for balanced data have properties which
are no longer valid in unbalanced situations (see for example classical analysis-of-variance mod-
els; Neter et al. (1990)). We therefore first compare the results of the various procedures obtained
from the complete profiles, i.e. based on all subjects with all three scheduled measurements avail-
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able. The results are shown on the left-hand side of Table 1. Note how the correction for the
base-line covariates age and living situation have not affected the estimates for the longitudinal
effects, nor their estimated standard errors. Still, the age of the patient as well as the preoperative
living situation were found to be significantly related to the outcome of interest (p=0:0032 and
p = 0:0477 respectively; the results are not shown). Exactly the same estimates and standard
errors are obtained from the conditional linear mixed model, which provides inferences for the
longitudinal effects β11 and β21, without making any parametric assumptions about the way
that subjects differ at base-line. Finally, we observe that the results from the analysis of covari-
ance are not consistent with the results from the other two methods. The estimates are distinctly
different and the standard errors are larger.

4.2. Unbalanced data
We repeated the analyses after having added the 19 subjects for which only the first two mea-
surements are available. The results are now shown on the right-hand side of Table 1. As is
expected, we obtained different, more efficient results when compared with the results that are
based on the complete profiles only. However, in contrast with before, we now also obtained
(slight) differences in parameter estimates, as well as standard errors, between the first three
procedures. As before, the analysis of covariance yields estimates that are distinctly different
from those from the other procedures, as well as much larger standard errors.

5. Discussion

To explain the results that were obtained in Section 4, we first briefly summarize some theoret-
ical results that were derived in Verbeke and Fieuws (2005), on the effect of including base-line
covariates in linear mixed models, when interest is on inferences for longitudinal effects. We
again consider the balanced case first, with exactly n observations per subject, all observations
taken at fixed time points. It can then be shown that, in growth curve models, estimates and
associated standard errors for longitudinal effects are not affected when base-line covariates
are added to the model. Growth curve models (Laird et al., 1987; Lange and Laird, 1989) are
linear mixed models of the form (2), but with all design matrices Xi of the form [1ni |T ] ⊗ a′

i

where 1ni is the n-dimensional vector of 1s, T is an n × .r − 1/ design matrix modelling the
slopes and ai is a vector with s subject characteristics that is used to explain variability between
subjects in intercepts and slopes. Typically, the r −1 columns in T consist of hierarchical orders
of polynomials of the time points at which the n measurements have been taken. However, more
general models can be considered as well, e.g. piecewise linear models. The growth curve model
basically assumes that the same covariates are used to model differences between subjects in
the intercepts as well as differences between subjects in time effects. Furthermore, it is assumed
that the design matrices Zi are of the form [1ni |Z] for all i, where the columns in Z are the
first q − 1 columns of T , q� r. This automatically leads to a so-called well-formulated model
(Morrell et al., 1997) which does not include any polynomial effects or interactions unless all
hierarchically lower order terms have been included as well.

Clearly, model (1) is a growth curve model, with T and Z equal to the vector containing
the transformed time points ln.t/, t = 1, 5, 12, and with ai equal to the vector with elements 1
and 0, or 0 and 1, depending on whether the subject belongs to the neuropsychiatric or non-
neuropsychiatric group respectively. Hence, the above result explains why adding the base-line
characteristics age and living situation does not affect the longitudinal conclusions. This would
not hold for omitting the main effect of the neuropsychiatric status. Indeed, omitting this main
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effect would no longer lead to a growth curve model as the interaction between neuropsychiat-
ric status and ln.t/ would still be in the model. Further, the fixed effects interpretation of the
conditional linear mixed model approach shows that this model reduces to adding well-chosen
base-line covariates to the original linear mixed model, again not affecting the results for the
longitudinal effects. Finally, the above result implies that the longitudinal inferences that are
obtained from the analysis of covariance would not be affected if the base-line response value
yi.1/ were left out of model (5). Hence, as far as the longitudinal trends are concerned, the
analysis of covariance is equivalent to fitting the original linear mixed model (1) to the data
restricted to the second and third measurements only, thereby completely ignoring the base-line
measurements yi.1/. This explains the observed increased standard errors for the estimates of
β11, β21 and β11 −β21. Therefore, the only effect of analysis of covariance is loss of efficiency.

The analysis of covariance not only leads to much larger standard errors, but also to very
different point estimates of the slopes. As a referee pointed out, one possible explanation might
be a model violation. Indeed, if all three measurements are analysed, versus only the last two
outcomes, then the linearity assumption will be very crucial. For the ADL data, however, we
did not find any evidence for non-linearities (p = 0:1114 based on the complete profiles only;
p=0:0844 based on all profiles). This immediately points to an additional disadvantage of the
analysis-of-covariance technique, i.e. the fact that, by restricting the analysis to the last two
outcomes, information is lost about part of the evolution in the profiles.

In the case of unbalanced data, the results summarized earlier for growth curve models are
no longer valid. In general, one can show that omitting base-line covariates will imply biased
inferences for the longitudinal time trends of interest. This explains why the linear mixed mod-
els, with and without base-line covariates, and the conditional linear mixed model, no longer
provided identical results for the longitudinal parameters of interest. Fortunately, the bias due
to the omission of important base-line covariates can, in many applications, be expected to be
small (Verbeke and Fieuws, 2005). In our example, this is probably reflected in the fact that,
although not completely identical, the longitudinal inferences are very similar for the first three
procedures. Finally, given our earlier remarks with respect to analysis of covariance for the
balanced case, it is not surprising that strongly different estimates and much higher standard
errors are obtained in the unbalanced case as well.

It should be emphasized that the theoretical results in Verbeke and Fieuws (2005), which
completely explain our current findings, are not based on asymptotics arguments but solely use
expression (3) for the estimate of the regression parameters in linear mixed models. Hence, our
findings in the particular example of the ADL data are applicable in general, for small as well as
large data sets. Also, although the small effect of base-line covariates on longitudinal inferences
may not come as a complete surprise, unbalanced examples can be constructed where consid-
erable bias would occur. These are situations where the omitted base-line covariates contain
information about the nature of the imbalance in the data, e.g. about the time points at which
measurements have been taken.

6. Conclusion

When analysing longitudinal data, primary interest is in studying how subjects evolve over time,
and what subject characteristics affect these evolutions. Often, especially in observational stud-
ies, much base-line variability is observed between subjects. In this paper, we have addressed the
question of whether or not we should correct for such base-line heterogeneity. Two procedures
that are often used in practice to correct for base-line differences are the inclusion of impor-
tant base-line covariates and the analysis of covariance. In the context of the ADL case-study,
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we have shown that the inclusion of base-line covariates will have no, or very little, effect on
the inferences for the longitudinal effects (the parameters of interest), and strong evidence has
been found that analysis of covariance is very inefficient, especially in examples with a small
number of repeated measurements per subject. We also have discussed and illustrated the use
of conditional linear mixed models which provide inferences for the longitudinal component of
the model, completely independently of any parametric assumption about the way that subjects
differ at base-line.

The key argument in explaining our findings was the fact that longitudinal inferences based
on linear mixed models are very robust with respect to the inclusion of base-line covariates.
This is no longer expected to be so for non-linear mixed models (Davidian and Giltinan, 1995;
Vonesh and Chinchilli, 1997) or generalized linear mixed models (Pinheiro and Bates, 2000).
It therefore should be emphasized that our findings apply only to the context of linear mixed
models for continuous longitudinal data. Future research is required to study how our results
extend to other types of models or data.
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