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ABSTRACT 
 

 

Background: Soft-tissue sarcomas (STS) are a rare and heterogeneous group of tumors of 

mesenchymal origin and can start in any part of the body mainly in support and connective tissues. 

When performing large multicenter clinical trials, a lot of attention is paid to the standardization of 

the treatment procedures across the participating sites. This is done to ensure that the difference in 

effect observed between treatment arms, can be completely attributed to the difference in 

treatments. This is because heterogeneity between the participating centers may add noise to the 

estimation of the treatment effect. 

Objective: The overall objective was to investigate the impact of institution variability on patient 

outcome in a soft tissue sarcoma clinical trial. Specifically, to compare parameter estimates from 

different statistical analysis methods as well as investigate the impact of frailty misspecification on 

parameters of interest.   

Methods: In statistical analysis, semi parametric Cox marginal regression model and frailty models 

were used to analyze right censored data with Overall Survival (OS) and Progression-Free Survival 

(PFS) endpoints. A simulation study was also conducted to assess the impact of frailty distribution 

misspecification on treatment effect and on heterogeneity parameters estimates. Different settings in 

terms of the number of centers and true heterogeneity parameter were considered. 

Results: The parameter estimates obtained from frailty models and marginal model were very close 

particularly for Overall Survival. Furthermore, the heterogeneity parameters in both endpoints were 

small yielding insignificant center effect. From the simulation study, the correctly specified gamma 

frailty model resulted in less biased estimates for treatment effect and heterogeneity parameters 

compared to misspecified models.  

Conclusions: In the absence of center effect, marginal and frailty models were close in parameter 

estimates and either model could be adopted for statistical inference. From simulation study results, 

the heterogeneity parameter was more sensitive to misspecification of the frailty distribution and 

the choice of initial parameters compared to the treatment parameter estimate. 

 

Key words: Absolute relative bias, Gamma frailty, Lognormal frailty, Overall Survival, 

Progression-Free Survival. 
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CHAPTER 1:   INTRODUCTION  
 

1.1 Back ground 
 

Soft-tissue sarcomas (STS) are a rare and heterogeneous group of tumors of mesenchymal origin. 

STS occur mainly in support and connective tissues of the body such as fat cells, muscle, tendons, 

nerves, blood vessels or lymph vessels (Cancer.Net, 2013). STS can start in any part of the body 

with about 60% beginning in arms or legs, 30% start in the torso or abdomen while 10% occur in 

the head or neck. STS accounts for about 1% of all adult cancers and about 15% of all cancers in 

children (Cancer.Net, 2013). 

 

There are over 50 different subtypes of STS which exhibit great differences in terms of genetic 

alterations pathogenesis, histopathological features and clinical behaviours. Unlike most other types 

of cancer which are usually named for the part of the body where the cancer began, the specific 

types of sarcoma are named according to the normal tissue cells they most closely resemble (Garcia 

et al., 2004). However, for the purpose of treatment, all the subtypes are grouped under the heading 

STS. 

  

When performing large multicenter clinical trials, a lot of attention is paid to the standardization of 

the treatment procedures across the participating sites. This is done to ensure that the difference in 

effect observed between treatments arms can be completely attributed to the difference in 

treatments. Nevertheless, country-specific regulation, experience with the disease, experience with 

the treatment under investigation among other factors may introduce heterogeneity between the 

participating centers and may add noise to the estimation of the treatment effect. Moreover, Ha et 

al. (2012) noted that such heterogeneity may alter the interpretation and reporting of the treatment 

effect.  

 

According to Duchateau et al. (2002), heterogeneity decreases the power to detect clinically 

important treatment differences, but on the other hand, more heterogeneous trials lead to more 

general conclusions as they are based on a wider patient population. Legrand et al. (2006) 

suggested that if the differences in outcome exist between centers, it is important to find out what 
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factors have caused the heterogeneity as it might serve to improve the quality of patient care. These 

factors include both patient-specific factors and center-specific factors. 

 

A natural framework for estimating the unexplained variability is through a frailty model. Frailty 

models were introduced by Vaupel et al. (1979) as a generalization of the Cox’s proportional 

hazards model allowing for random effects as a result of unobserved heterogeneity of each 

individual or group. In this model, the unobserved frailty shared by individual members in a cluster 

acts multiplicatively as a factor on the hazard function and is typically modelled parametrically (Li 

et al., 2007; Ha and Gilbert, 2010; Legrand et al., 2006; Govindarajulu et al., 2009). 

 

Several frailty distributions amongst them the lognormal and the power variance function family 

comprising of gamma, compound Poisson, inverse Gaussian and positive stable distributions have 

been studied by different authors. However, some of these distributions are not used in practice due 

to software limitations. Moreover, there is lack of sound estimation procedures for more complex 

frailty models. 

 

Duchateau and Janssen (2008) noted that the choice of the frailty distribution is crucial to obtain 

correct estimates of the dependence structure but the researcher often has no prior information with 

which to choose among the distributions. Furthermore, due to the latent nature of the frailty term, it 

can be difficult to determine an appropriate frailty distribution for a particular data set. Thus, 

misspecification of this unobserved covariate can occur, leading to biased estimates, reduced 

efficiency of the model estimates hence misleading conclusions (Li et al., 2007; Moreno, 2008). It 

is therefore useful in practice to examine to what extent misspecification of the frailty distribution 

affects the validity of the regression coefficients and heterogeneity parameter estimates (Li et al., 

2007).  

1.2 Objectives 

 

The primary objective of this Thesis is to investigate the impact of institution variability on patient 

outcome in a STS clinical trial. In order to achieve the overall objective, the problem will be broken 

down into specific sub-sections as follows; 
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1. Model time to event endpoints using marginal and frailty models, compare the 

parameter estimates and investigate the heterogeneity parameter. 

2. Study the impact of frailty distribution misspecification on the parameters of interest i.e. 

treatment log hazard effect and heterogeneity parameter. 

3. Assess sensitivity of parameter estimates in terms of bias with respect to different 

simulation parameter settings. 

1.3 Thesis overview 
 

This thesis is organized as follows: In chapter 2, the study design and variables in the data set are 

discussed. Chapter 3 discusses the statistical methods applied in the analysis and a description of 

the simulation scheme. In chapter 4, results from the applied statistical methods and simulations are 

presented while chapter 5 provides the discussion and conclusion of the study. The last sections 

present the references and appendix respectively. 
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CHAPTER 2:   STUDY DESIGN 
 

 

The data analyzed in this report came from a randomized phase III, open label, multicenter study 

conducted jointly by European Organization for Research and Treatment of Cancer (EORTC)-Soft 

Tissue and Bone Sarcoma Group and the National Cancer Institute of Canada- Clinical Trial Group 

(NCIC -CTG) between April, 2003 and July, 2012. The study enrolled 450 patients from 36 centers 

in 9 different countries. Patients enrolled were between 18 and 63 years of age and had histological 

evidence of high grade STS with advanced unresectable or metastatic disease. Eligible patients 

were randomized to receive either a single agent treatment or a combination of two treatment agents 

using minimization technique. Treatment was administered until progression of the disease, 

unacceptable levels of toxicity or patients’ refusal, up to a maximum of 6 cycles of chemotherapy. 

Overall Survival (OS), the primary endpoint of interest was computed from the date of 

randomization to the date of death, whatever the cause. The secondary endpoint was Progression-

Free Survival (PFS) computed from the date of randomization to the first documented date of 

progression or death. Patients that were alive and progression-free at the time of the analysis were 

censored at the date of last follow-up.  Randomization was stratified by center, performance status, 

age group, and presence of liver metastases. 

2.1 Data description  

 

The variables in the data and their coding are presented in Table 2.1. The data are right censored 

and all the variables considered were categorical except age which was continuous.  
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Table 2.1: Summary of variables in the data set 

Variables Description Codes/values 

HOSPNO Hospital identifier  

PATID Patient identification  number  

AGE Age of patients Years 

CenPFS Progression status 1=Censored, 2= Event 

Censur Survival status 1=Alive, 2=Dead 

Timepro Progression free survival Days 

Timesur Overall survival Days 

Trt1 Treatment  arms 1= A, 2= B 

Grad_rand (Tumor grade) Tumor grade  2=Intermediate, 3=High 

Qval114 (Perform status ) Performance status 0=Able to carry out normal activities 

1=Restricted in some or all activities  

Qval132 (liver meta) Presence of liver metastases 

at baseline 

0=No , 1= Yes 

Hisloc Histological type 

 

1=Leiomyosarcoma,2=Synovial 

sarcoma,3=Liposarcoma,4=Others 
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CHAPTER 3:   METHODS 

3.1 Exploratory Data Analysis (EDA) 
 

Exploratory data analysis was conducted to gain insight into the data. This was achieved by using 

summary statistics and frequencies to evaluate the distribution of patients’ baseline characteristics 

and the distribution of patients across the centers by treatment arm. Kaplan-Meier survival curves 

were also obtained for OS and PFS by treatment and by center respectively.  

3.2 Statistical models for survival data 

 

The analysis of survival data requires special techniques because the data are almost always 

incomplete due to censoring and familiar parametric assumptions might be unjustifiable. In clinical 

trials, the investigators follow patients until they reach a pre-specified endpoint for example, death 

or tumor progression.  However, some patients withdraw from the study or the study comes to an 

end before the endpoint is reached. In these cases, the survival times are censored i.e. subjects 

survived to a certain time beyond which their status is unknown. The uncensored survival times are 

often referred to as event times. In this Thesis, the focus is on semi parametric methods of survival 

analysis as discussed in the following sections. 

3.2.1 Marginal Cox regression model 

 

There are several types of models used in modeling survival data and the Cox’s proportional 

hazards model proposed by Cox (1972) is the most popular.  For this model, the hazard rate is 

expressed as 

                                                      
     0| exp T

jt t x x β
                                           (3.1) 

where  0 t
 
is the baseline hazard function at time t , T

jx  is the vector of explanatory variables and 

β  is a vector of unknown regression coefficients. According to Collet (1994), this model is also 

referred to as a semi parametric proportional hazards model because no parametric form is imposed 

on  0 t  (non-parametric part of the model) but assumes parametric form for the effect of the 

predictors on the hazard (parametric part of model). In this case, parameters can be estimated by 

partial likelihood method presented by Cox (1972). Although the estimates are less efficient 

compared to the maximum likelihood estimates, not having to impose a parametric form on the 
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baseline hazard serves as a remedial virtue against misspecification (Keele, 2007). For this marginal 

model, the regression coefficients are assumed to be the same for all individuals hence interpreted 

at population averaged level as the log-hazard ratio; the hazard ratio is the measure of effect. 

3.2.1 Frailty models (Random effects models)  

 

The frailty model is an extension of Cox’s proportional hazards model allowing for a random effect. 

In this Thesis, the focus is on the multivariate frailty which assumes the center random effect 

operates at a group level. In this regard, a random effect is introduced for each center so that 

patients from one center are more alike than patients treated in different centers. The random effect 

describes the unobserved influences common to all patients of that particular center (Legrand et al., 

2006) and the variance of these random effects is a measure of the heterogeneity in the outcome 

between centers. The hazard rate for the
thj  

patient  1,..., ij n  in the 
thi  

center  1,...,Gi  is 

given by 

                                                   
     0 exp T

ij ij it t w  x β
                                      (3.2)

 

where  0 t is the unspecified baseline hazard at time t ,
T

ijx  is the vector of patient specific 

covariates andβ is the corresponding vector of regression coefficients (unknown parameters). iw  is 

the random effect for center i . Though the random effects ' ,iw s  1,...,Gi   are unobserved, it is 

assumed that they are independent and identically distributed from a density  Wf  . The 

corresponding frailty model can be re-written as follows 

   
       0 exp exp T

ij i ijt t w  x β

 

                                                            

   0 u exp T

i ijt x β

                                           (3.3)

 

where  expi iu w is known as the frailty and acts multiplicatively on the hazard rate for the 
thj

patient in the 
thi center (Nguti, 2003; Duchateau and Janssen, 2008). For this model, regression 

coefficients are interpreted conditional on the center random effect.  
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3.3 Frailty distributions 

 

In this Thesis, gamma and lognormal frailty distributions were considered. Heterogeneity and 

regression parameters were the parameters of interest. 

 

3.3.1 Gamma distribution  

 

Assuming that the frailties come from a one-parameter gamma density with mean 1 and variance , 

the frailty density is given by 

 

                                                   

 
 

 

1 1

1

exp

1
U

u u
f u







 

 



                                           (3.4) 

The variance  of the frailty term represents the heterogeneity among centers while the mean is 

constrained to 1 in order to make the average hazard identifiable (Duchateau et al., 2002; Nguti, 

2003; Glidden and Vittinghoff, 2004; Duchateau and Janssen, 2008). Gamma frailty model belongs 

to the power variance function family (Hougaard, 1986b) and can be expressed in terms of its 

Laplace transform from which properties such as mean and variance can be derived (see Duchateau 

and Janssen, 2008 for more details). The ease of interpretation coupled with the analytic simplicity 

and variety of forms as the parameter varies has popularized the use of the gamma frailty model in 

the correlated failure time analysis (Li et al., 2007). 

3.3.2 Lognormal distribution 

 

According to Duchateau and Janssen (2008), the use of lognormal distribution in frailty models 

originates from the link with generalised mixed models, with a standard assumption that the random 

effects iw  follow a zero-mean normal distribution with variance 
2 . The corresponding lognormal 

frailty distribution is given by 

                                     

 
 

2

22

log1
exp

22
U

u
f u

u 

 
  
 
            

, 0 

                          (3.

 

5)

 

 

The mean and variance are expressed as 
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                                                     2exp 2E U   

                                               
   

      2 2exp exp 1Var U     

It is worth noting that mean and variance of the lognormal frailty density are both functions of 

parameter
2 . Although lognormal frailty distribution has no explicit evaluation of the Laplace 

transform, it allows a relatively simple extension to the multivariate case with general variance-

covariance matrix which is far more complex to pursue with other distributions (Nguti, 2003). In 

lognormal density, the heterogeneity parameter is typically described by
2( )Var w  , whereas for 

the gamma density it is often described by (U)Var   (Duchateau et al., 2002). However, in this 

Thesis,   was used to denote the heterogeneity parameter for both lognormal and gamma frailty 

models. 

3.4 Estimation methods 
 

In a semi parametric approach, the baseline hazard is unspecified and the frailties ( iu ) are 

unobserved. For these reasons, it is difficult to maximize the likelihood to estimate the parameters 

(Nguti, 2003). One solution to this kind of problem is the Expectation-Maximization (EM) 

algorithm which is typically used in the presence of unobserved information. However, the 

execution of the EM algorithm is computer intensive and slow. An alternative estimation method is 

the Penalized Partial Likelihood (PPL) presented by Therneau and Grambsch (2000) where the 

random effect is treated as a penalty term. Maximization in PPL approach is a double iterative 

process that alternates between an inner and an outer loop until convergence. In the inner loop, the 

Newton–Raphson procedure is used to maximize, for a provisional value of , β  and w  (best 

linear unbiased predictors, BLUPs) (Duchateau et al., 2002). For both gamma and lognormal frailty 

distributions, this step is identical. In the outer loop of a lognormal distribution, the restricted 

maximum likelihood estimator (REML) for   is obtained using the best linear unbiased predictors, 

BLUPs. On the other hand, the outer loop of a gamma frailty distribution is based on the 

maximization of a profiled version of marginal likelihood and therefore, a REML estimate is not 

available (Duchateau et al., 2002; Duchateau and Janssen, 2008). For gamma frailty model, PPL 

and EM algorithm lead to the same estimates. The use of PPL method for the lognormal frailty is 

motivated by the Laplace approximation to the full likelihood similar to the arguments used in the 

context of generalized linear mixed models (McGilchrist, 1993). PPL approach is preferred over 
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EM algorithm since it is faster and is implemented in most standard software. A detailed review of 

these estimation methods is covered by Duchateau et al. (2002) and Duchateau and Janssen (2008).  

3.5 Heterogeneity parameter 
 

In this Thesis,   was estimated to get an idea on heterogeneity in the outcome between centers. 

When   is large and differs significantly from zero; it reflects heterogeneity between centers and a 

strong association among patients in the same center. On the other hand, when  is equal to zero, 

the frailties are identically equal to one which implies that the center effects are not present and 

events are independent within and across centers (Glidden and Vittinghoff, 2004). The likelihood 

ratio test comparing the models with and without frailties was used for testing the null hypothesis 

= 0 versus the alternative hypothesis  > 0. Since the null hypothesis is at the boundary of the 

parameter space, a mixture of chi-square distribution with 0 and 1 degree of freedom was used as 

suggested by Duchateau and Janssen (2008). 

3.6 Simulation study 

 

A simulation study was undertaken to evaluate the performance and robustness of semi parametric 

frailty models with respect to the bias around the trues  values of the treatment log hazard ( 1


) and 

the heterogeneity parameter (


) estimate when the frailty distribution is misspecified. The 

simulated data was designed to reflect data obtained from the real clinical trial considering the PFS 

endpoint. The next section presents the details of the simulation study.  

 

3.6.1 Simulation scheme 

 

Assuming a fixed constant event rate 0 , time to event outcome (survival time) for each patient was 

randomly generated from an exponential distribution expressed by 

 

                                                      

 

 0 1

log

exp *
ij

i

U
T

u trt 
 

                                          (3.6)                                          

 

where U is a random variable following a uniform distribution in the interval [0,1] (Bender et al., 

2005). 1  , the true treatment log hazard was estimated from the real trial data. Patients were 



12 

 

assumed to have been accrued into the study at some point during an 84 month period with their 

entry time generated from a uniform distribution between time zero and 84 months; an approach 

suggested by Morden et al. (2011). Further, a follow-up period of 24 months was considered. Time 

at risk for a particular patient consisted of time at risk before the end of accrual period added to the 

follow-up time. A patient j in center i with  time to event ijT longer than time at risk was censored 

with time to censoring equal to time at risk such that  min ,ij ij ijX T C where ijC is the censoring 

time independent of ijT and  ij ij ijI C T    is the censoring indicator as described by Duchateau et 

al. (2002). The frailties iu were generated from three distributions. First, a one-parameter gamma 

with mean 1 and variance   as discussed in section 3.4.1 was considered. The second frailty 

distribution considered was a transformation of lognormal distribution discussed in section 3.4.2. 

According to Duchateau and Janssen (2008), the transformed frailty density is expressed as  

                                    

 
 

2

22

log1
exp

22
U

u
f u

u





 
  
 
      

, 0 

                             (3.7)

 

Mean and variance are given by 

 

                                               2exp 2 1E U      

                                        
      2 2exp 2 exp 1Var U       

 

Where log( 1) 2     and  2 log 1  
 
were used to ensure a lognormal distribution with 

mean 1 and variance  . The third distribution considered was a discrete distribution.  For this 

distribution, the frailty was sampled from two values i.e. 1x and 2x  with probabilities 0.2 and 0.8 

respectively.  For each , 1x and 2x  were obtained by solving the following set of constrained mean 

and variance equations 

   
2

1

1i i

i

E X p x x


 
     

 

                            
2

2

1

i i

i

Var X p x x E X 


  
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Though not a frailty distribution, the discrete distribution was considered so as to study the impact 

of extreme misspecification of the frailty distribution on the parameters of interest. The mean and 

variance were fixed to 1 and   respectively for the three distributions to allow for comparability.  

In this simulation study, three values of   were considered as true values of the heterogeneity 

parameter i.e. 0.02, 0.2 and 2. 1000 datasets were generated for each parameter setting 

 0 1, , , ,i iN c   
 

where N is the fixed sample size and c is the number of centers under 

consideration. Frailty model (3.3) was fitted to the simulated data. The mean, median, per cent 

relative bias (RB%), standard deviation (SD) and the mean of the standard error (SE) were 
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

 around 1 . The RB % and SD for 1


 are 

respectively defined as 

1 1

1

% 100RB
 






     and  

 
1 2

2

1 1 999
i

i

SD  
   

   
   

  

where 
 _

11 1000
i

i

 


   is the mean of 
 

1

i




’s and 
 

1

i




is the estimate of  1  in the 
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Similarly, the mean, median, per cent relative bias (RB%) and standard deviation (SD) for the 

heterogeneity parameter were obtained as above replacing  accordingly. To test for the need of 

center effect, 1000 data sets were again simulated under the null hypothesis i.e. assuming 0  . 

Marginal log-likelihood estimates were obtained in all iterations and plotted against . Based on 

this plot, a 95% confidence interval for the heterogeneity parameter would be determined by taking 

two values of   for which the marginal profile log-likelihood lies 1.92 units below the maximum 

profile likelihood (Morgan, 1992).  
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3.7 Statistical software 
 

Statistical analysis was conducted using SAS version 9.3 and R version 3.0.1. Specifically, lifetest 

procedure in SAS was used to obtain the Kaplan-Meier survival curves and log-rank test. The semi 

parametric Cox marginal and frailty models were fitted using phreg procedure. Coxph function in 

Survival Package was used to fit frailty models on simulated data. All simulations were conducted 

in R. For semi parametric frailty models in both SAS and R, the frailty distribution is restricted to 

one parameter gamma with mean 1 and lognormal frailty models with mean not equal to 1. 

Additionally, in both SAS and R, the default estimation method (PPL) was used.  All statistical tests 

were conducted at 5% level of significance and 95% confidence intervals computed where 

necessary. 
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CHAPTER 4:   RESULTS  
 

4.1 Exploratory Data Analysis 
 

A total of 450 patients were enrolled across 36 centers. However, 12 centers with less than 2 

patients were dropped from the analysis to avoid estimation-related problems particularly when 

fitting frailty models. For this reason, the total number of patient reduced to 427 with 49.6% of the 

patients randomized to treatment A and 50.4% randomized to treatment B. As observed in Table 

B.1 in the Appendix, the remaining 24 centers accrued between 5 and 38 patients with mean and 

median of 15 and 18 patients respectively.  In this study, the mean age was 45.2 years with a 

standard deviation of 10.6 years. In the analysis age was categorized into two groups whereby 57% 

of the patients were younger than 50 years and 43% were 50 years old  or more. Patients’ baseline 

characteristics were well balanced across the treatment arms as observed in Table 4.1. 400 (94%) 

patients had an event in PFS while 350 (82%) patients had an event in both PFS and OS. There was 

no missing data for either of the endpoints or covariates of interest. 
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Table 4.1:  Patients baseline characteristics. 

 Treatment Total 

(n=427) A (n=212) B (n=215) 

n (%) n (%) n (%) 

Performance status    

  0 122 (57.55) 116 (53.95) 238 (55.74) 

  1    90 (42.45) 99 (46.05) 189 (44.26) 

Age group    

  < 50 years 118 (55.66) 126 (58.60) 244 (57.14) 

  ≥ 50 years 94 (44.34) 89 (41.40) 183 (42.86) 

Histological type    

 1 (Leiomyosarcoma)  49 (23.11) 55(25.58) 104 (24.36) 

 2 (Synovialsarcoma)  36 (16.98) 26 (12.09) 62 (14.52) 

 3 (Liposarcoma) 24 (11.32) 28 (13.02) 52 (12.18) 

 4 (Others) 103 (48.58) 106 (49.30) 209 (48.95) 

Presence of Liver  

metastases at baseline 

 0 (No) 179 (84.43) 179 (83.26) 358 (83.84) 

 1 (Yes) 33 (15.57) 36 (16.74) 69 (16.16) 

Tumor grade    

 2 (Intermediate) 102 (48.11) 106 (49.30) 208 (48.71) 

 3 (High) 110 (51.89) 109 (50.70) 219 (51.29) 
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     Figure 4.1: Kaplan Meier OS curves                    Figure 4. 2: Kaplan Meier PFS curves   

                        by treatment.                                                           by treatment. 

 

                                                            

Figure 4.1 shows Kaplan–Meier OS curves by treatment. The estimated median OS time was 12.7 

months with 95% confidence interval (CI) [10.4, 14.4] in treatment arm A and 14.3 months in 

treatment arm B with a 95% CI [12.7, 16.8]. Similarly, as observed from Figure 4.2, the median 

PFS was 4.5 months with 95% CI [2.8, 5.6] and 7.5 months with 95% CI [6.8, 8.4] for arms A and 

B respectively. The survival curves were crossing suggesting violation of proportional hazard 

assumptions.  
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Figure 4.3: Kaplan Meier curves for OS          Figure 4.4: Kaplan Meier curves for PFS 

                   Stratified by centers.                                         stratified by centers. 

 

Figure 4.3 presents Kaplan–Meier OS curves stratified by centers. From the plot, there seems to be 

variability in the outcome between centers. Similar observations were made from PFS curves 

stratified by centers presented in Figure 4.4. However, due to the large number of curves 

corresponding to the centers, it was difficult to interpret such plots. Moreover, the precision with 

which the curves are estimated depends on the number of events observed in each center which 

should be taken into account as suggested by Legrand et al. (2006). Based on a classical log rank 

test, the P-values were 0.711 and 0.344 for OS and PFS endpoints respectively. Hence, there was no 

evidence to reject the null hypothesis. This suggests that there may not be substantial heterogeneity 

in outcome among the centers for the two endpoints.  
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4.2 Statistical Analysis  

4.2.1   Marginal and shared frailty models  

 

Table 4.2: Overall survival Hazard Ratio (95% C I) for frailty and marginal Cox models  

 Gamma  frailty Lognormal  frailty Marginal Cox model 

parameter HR       (95 %  CI) HR       (95 %  CI) HR      (95 %  CI) 

Treatment: B 0.785    (0.634, 0.973) 0.785    (0.633, 0.972) 0.786   (0.635, 0.973) 

Hisloc: 1 0.841    (0.642, 1.103) 0.840    (0.640, 1.103) 0.842    (0.644, 1.101) 

Hisloc: 2 0.919   (0.667, 1.266) 0.916    (0.664, 1.263) 0.923    (0.671, 1.270) 

Hisloc: 3 0.579    (0.401, 0.836) 0.577    (0.400, 0.834) 0.583    (0.404, 0.840) 

Tumor grade: 2 0.764    (0.616, 0.949) 0.764    (0.615, 0.949) 0.765    (0.617, 0.949) 

Liver meta: 2 0.716    (0.535, 0.960) 0.715    (0.534, 0.959) 0.717    (0.536, 0.960) 

Perform status: 0 0.565    (0.456, 0.699) 0.563    (0.455, 0.698) 0.566    (0.457, 0.701) 

Age ≥ 50 1.157    (0.925, 1.447) 1.156    (0.924, 1.448) 1.158    (0.927, 1.447) 

 

 

Table 4.2 presents the marginal (population averaged) and center-specific model (gamma and 

lognormal frailty models) results for OS endpoint. It is observed that for all the covariates, the 

Hazard Ratio (HR) with the corresponding 95% confidence interval (CI) were close for the three 

models but slightly higher for the marginal model. However, it is important to bear in mind that 

parameter interpretation for marginal and frailty models differs and examining their magnitude 

alone is of no relevant consequence. For example, in the case of marginal model, on average, the 

risk of an individual in arm B dying was 0.786 times lower compared to an individual in arm A. On 

the other hand, for either of the frailty models, for a given center, the risk of an individual in arm B 

dying was 0.785 times lower compared to an individual in arm A (evaluated at reference levels of 

other covariates). The corresponding 95% CIs did not contain the value 1; therefore, there is a 

significant difference between the treatment arms. All other parameter estimates can be interpreted 

in a similar manner. 

 

The similarity between the marginal and shared frailty models could be further attributed to the fact 

that for frailty models, the heterogeneity parameters were very small i.e. 0.005 and 0.008 for 

gamma and lognormal frailty model respectively. Furthermore, the random effects estimates for all 
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the centers were not significantly different from 0 (results omitted). A formal test for the need of 

center effect was conducted by comparing the partial log-likelihood for the models with and 

without the frailty term.  For the lognormal frailty, the change in the partial log-likelihood was -2 (-

1836.376 +1836.3) = 0.152 which was compared to a mixture of chi-square with zero and one 

degree of freedom ( 2

(0:1) ). Based on the resulting P-value, 0.348, there was no sufficient evidence to 

reject the null hypothesis of homogeneity between the centers. Similarly, for the gamma frailty 

model, the change in partial log-likelihood with inclusion of the frailty was 0.305 and compared to

2

(0:1) , the resulting P-value was 0.291. From these results, there was no sufficient evidence to reject 

the null hypothesis; we therefore concluded that events were independent within and across centers 

for both frailty models. 

  

Table 4.3: PFS Hazard Ratio (95% C I) for frailty and marginal Cox models. 

 Gamma  frailty Lognormal  frailty Marginal Cox model 

Variable HR        (95 %  CI) HR        (95 %  CI) HR       (95 %  CI) 

Treatment: B 0.675    (0.551,  0.826) 0.673   (0.550, 0.823) 0.686   (0.554, 0.848) 

Hisloc: 1 0.969    (0.751, 1.251) 0.967   (0.749, 1.249) 0.930   (0.715, 1.210) 

Hisloc: 2 0.922    (0.679, 1.252) 0.919   (0.676, 1.249) 0.956   (0.695, 1.315) 

Hisloc: 3 0.700    (0.505, 0.970) 0.697   (0.503, 0.967) 0.601   (0.417, 0.865) 

Tumor grade: 2 0.816    (0.665, 1.000) 0.816   (0.665, 1.001) 0.727   (0.587, 0.902) 

Liver meta: 0 0.766    (0.581, 1.010) 0.766   (0.581, 1.010) 0.709   (0.533, 0.943) 

Perform status: 0 0.709   (0.580, 0.867) 0.708   (0.579, 0.866) 0.674   (0.545, 0.834) 

Age ≥ 50 0.901   (0.728, 1.114) 0.900   (0.728, 1.114) 0.966   (0.773, 1.208) 

 

 

Table 4.3 presents the results for the PFS endpoint. The HR (95% CI) for most covariates obtained 

under marginal model were relatively lower (narrower) compared to frailty models (gamma and 

lognormal). Furthermore, as observed in Table B.3 in the Appendix, the estimated heterogeneity 

parameters for gamma and lognormal frailty models were 0.023 and 0.029 respectively. Although 

the estimated heterogeneity parameters were larger for PFS compared OS, all the center random 

effects estimated were not significantly different from 0 (results omitted). Additionally, a formal 

test for the need of center random effect was conducted by comparing the partial log-likelihood for 
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the models with and without the frailty term. Based on a mixture of chi-square with zero and one 

degree of freedom the resulting P-values were 0.157 and 0.145 for gamma and lognormal frailty 

models respectively. Therefore, we failed to reject the null hypothesis of homogeneity between 

centers. 

  

For both OS and PFS, it was observed (Table B.2 and B.3 in the Appendix) that the standard error 

for the estimated heterogeneity parameter was available for lognormal frailty model and missing for 

gamma frailty model. This was due to the difference in the outer loop for the two frailty 

distributions i.e. a REML estimate is available for   in the case of lognormal density whereas such 

an estimate is not available for gamma frailty distribution (Duchateau and Janssen, 2008). 

Furthermore, a comparison of the parameter estimates is not straightforward because these two 

frailty densities have different means. For instance, considering PFS endpoint, the estimated frailty 

mean was  0.029exp 2 1.015  for lognormal frailty model and 1 for the gamma frailty model. 

4.3 Simulation Results  
 

4.3.1 Comparison of gamma and lognormal generated frailties 

 

Figure 4.5 presents the histograms of generated frailties under gamma and lognormal frailty 

densities with mean 1 and variances ( )  0.2 and 2 respectively over 1000 iterations.  It is observed 

that for a given variance, the two distributions have approximately similar shapes but deviate from 

each other. Additionally, these densities become more left skewed for larger variances. For a 

particular variance ( ), the range of generated lognormal frailties was wider compared to that of 

gamma distributed frailties. Specifically, for  =2, the range of lognormal was two times the range 

of gamma frailties (Table B.4 in the Appendix). When the number of centers was increased to 25, a 

similar trend was observed but the range reduced accordingly for each .   
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Figure 4.5: Lognormal and gamma distributed frailties over 1000 iterations with mean 1 and           

variance 0.2  and 2 respectively. 

 

4.3.2 Regression coefficient 

 

The simulated data consisted of a fixed sample size of 450 patients. For simplicity, two settings that 

varied with respect to number of centers (c) were considered, i.e. 10 centers each having 45 patients 

and 25 centers each having 18 patients. The true treatment effect (log hazard) 1 = −0.353 was 

estimated from a proportional hazard model with treatment as the only covariate. Allocation of each 

patient to receive either treatment A or B was generated from a binomial distribution with success 

probability 0.5 while a constant event rate, 0 =0.180 was chosen such that approximately 8 % of 

patients were censored. Simulation study results of correctly specified lognormal frailty model 

(lognormal frailty model fitted to clustered data generated from a lognormal distribution) were not 

evaluated. This is because by default, a lognormal frailty model fitted in Coxph function has a mean 

1E U
 

 
 

while the mean of generated lognormal frailties was constrained to 1. Moreover, as noted 

earlier, the mean and variance of lognormal distribution are linked. This difference led to inflated 

bias.  

  



23 

 

Table 4.4:  Simulation results for true β1 = -0.353 from correctly specified gamma and misspecified 

frailty models. 

  

 Centers =10 Centers = 25 

  =0.02  =0.2  =2  =0.02  =0.2  =2 

True frailty distribution: gamma 

Fitted: gamma frailty 

Mean  -0.356 -0.355 -0.352 -0.353 -0.356 -0.352 

median -0.354 -0.352 -0.352 -0.350 -0.354 -0.348 

RB % 0.943 0.529 0.151  0.063 0.682 0.181 

SD 0.097 0.102 0.114 0.099 0.102 0.114 

SE 0.097 0.098 0.112 0.097 0.100 0.115 

True frailty distribution: lognormal   

Fitted : gamma frailty 

Mean  -0.357 -0.358 -0.356 -0.356 -0.357 -0.356 

median -0.354 -0.358 0.356 -0.357 -0.356 -0.346 

RB % 1.383 1.587 1.060 0.722 1.111 1.094 

SD 0.099 0.100 0.090 0.099 0.101 0.103 

SE 0.097 0.098 0.102 0.097 0.100 0.104 

True frailty distribution: Discrete 

Fitted : gamma frailty 

Mean  -0.348 -0.333 -0.291 -0.349 -0.334 -0.292 

median -0.347 -0.334 -0.291 -0.347 -0.334 -0.292 

RB % 1.489 5.677 17.46 1.24 5.465 17.31 

SD 0.094 0.092 0.099 0.095 0.092 0.095 

SE 0.096 0.096 0.099 0.096 0.096 0.099 

 

Table 4.4 presents the simulation results for the estimated 1


 obtained from correctly specified 

gamma frailty model (gamma frailty model fitted to clustered data generated from a gamma 

distribution). Generally, the mean and median of the estimated 1


were close to true 1  with a 0.06 

% to 0.9 % bias range. It was further noted that for a particular true  , the RB % slightly increased 

when the number of centers increased from 10 to 25 except for true   =0.02 where a decrease was 

observed. Considering a10 center scenario, the RB% decreased with increasing magnitude of true

However, for a 25 center scenario, no particular trend was observed. The standard error (SE) 

estimates over 1000 simulations were very close to the SD and both were increasing with an 

increase in size of true  . This agreement between SE and SD showed that the estimated SE well 

estimated.  
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To investigate sensitivity to misspecification for the frailty distribution, a gamma frailty model was 

first fitted to clustered data generated from a lognormal distribution. From the results presented in 

Table 4.4, it was observed that the mean and median of the estimated 1


were very similar. In 

general, the RB % ranged between 0.7 % and 1.58 %. A cross the two center settings, the RB % 

corresponding to  =0.02 and  =0.2 decreased when the centers increased from 10 to 25. On the 

other hand, a slight decrease was observed for true  =2. Furthermore, the bias from this 

misspecified model and the correctly specified model did not vary substantially. This suggests 

robustness of the gamma frailty with respect to lognormal distribution (Duchateau and Janssen, 

2008).  

 

When the gamma frailty model was fitted to the data generated from a discrete distribution, the 

estimated 1  was somewhat sensitive to misspecification as observed in Table 4.4. Generally, the 

bias range was between 1.24 % and 17.46%. Within a particular center scenario i.e. either 10 or 25, 

the RB% increased with an increase in size of the true heterogeneity parameter. For a particular , 

the RB% decreased by a small margin when the centers increased from 10 to 25. This implied that 

the regression coefficient was not greatly affected by center size. Is should be noticed that under 

misspecified models, the SE and SD tend to be smaller compared to correctly specified model. This 

could be due to downward bias observed particularly for discrete frailty producing estimated that 

were too optimistic.  
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Figure 4.6: Density curves of the estimated 1  over different simulation settings. 
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Figure 4.6 presents density plots of the estimated 1  under different simulation settings with respect 

to number of centers and true heterogeneity parameters. The vertical line represents 1 = -0.353. It 

is observed that for  =0.02, the estimated 
1



 from different models were very close irrespective 

of the number of centers under consideration. However, differences among the fitted models and 

deviations from the true treatment log hazard effect were more pronounced for larger   i.e.  =0.2 

and  = 2 respectively. These observations are consistent with results discussed in Table 4.4 above. 

4.3.3 Heterogeneity parameter 

 

From Table 4.5, simulation results for estimated 


 obtained under correctly specified gamma frailty 

model are presented.  It was observed that the RB% range was between 0.2 % and 7.26 %. For a 10 

centers scenario, the RB% decreased with increasing size of true  . However, this trend was not 

observed in 25 centers scenario. Furthermore, for a particular true , the RB% decreased when the 

number of centers increased from 10 to 25. The standard deviation (SD) was increasing with an 

increase in magnitude of true  and number of centers. The marginal profile log likelihood plot for

  (Figure B.1 in the Appendix) suggested no center effect. Besides the 95% confidence interval 

range contained the value 0. 

 

Similarly, sensitivity to misspecification of the frailty distribution was assessed with respect to the 

estimated . From Table 4.5, moderate to high RB% was observed for each of the assumed true . 

The RB% was much higher for the two misspecified models compared to the correctly specified 

frailty model. Specifically, for a gamma frailty model fitted to discrete generated frailties, serious 

downward bias was observed with a RB% range between 64% and 99.8%.  Additionally, the RB% 

increased with an increase in size of true  . For gamma frailty model fitted to lognormal generated 

frailties, the RB% ranged between 10.03% and 54.05 %. For   =0.02, the bias was close to that of 

correctly specified gamma frailty model.  These observations were consistent with results of 

generated frailties whereby for  =0.02 and  =0.2, the range of frailties for the two distributions 

were close whereas for  =2, the range was much wider for lognormal frailties compared to gamma 

distributed frailties. A slight decrease in RB% was also observed when the number of centers 

increased from 10 to 25. These results show that the misspecified gamma frailty model was not 

successful in estimating the underlying true heterogeneity parameter. Similar to correctly specified 
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gamma frailty model, the standard deviation (SD) generally increased with an increase in 

heterogeneity parameter. 

 

Table 4.5: Simulation results for   from correctly specified gamma and misspecified frailty models. 

 

  Centers =10 Centers = 25 

  =0.02    =0.2    =2  =0.02    =0.2    =2 

True  frailty distribution: gamma 

Fitted: gamma frailty 

Mean  0.019 0.179 2.005 0.019 0.201 1.988 

median 0.002 0.160 1.984 0.009 0.187 1.944 

RB % 7.265 6.513 0.266 4.681 0.473 0.570 

SD 0.029 0.068 0.308 0.021 0.089 0.507 

True frailty distribution: lognormal  

Fitted: gamma frailty 

Mean  0.018 0.266 0.969 0.017 0.163 0.919 

median 0.013 0.244 0.941 0.009 0.154 0.908 

RB % 11.89 32.83 51.56 10.03 18.664 54.05 

SD 0.018 0.168 0.280 0.019 0.068 0.218 

True frailty distribution: Discrete   

Fitted: gamma frailty 

Mean  0.002 0.003 0.003 0.004 0.004 0.005 

median 0.000 0.000 0.000 0.000 0.000 0.000 

RB % 89.47 98.69 99.84 77.96 97.88 99.77 

SD 0.006 0.006 0.007 0.010 0.009 0.010 
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CHAPTER 5:   DISCUSSION AND CONCLUSION 

5.1 Discussion 
 

The primary objective of this Thesis was to investigate the impact of institution variability on 

patient outcome in a soft tissue sarcoma clinical trial. In the analysis attention was restricted to 

centers with at least 5 patients for avoid estimation-related problem in statistical analysis. The 

patients’ baseline characteristics were well balanced between the treatment groups as expected. 

 

In statistical analysis, parameter estimates (HR) and corresponding 95% confidence intervals from 

the frailty models and marginal Cox regression model were close particularly for the OS. This 

similarity was attributed to the fact that none of the center random effect was significant. Moreover, 

the corresponding heterogeneity parameter estimates from gamma and lognormal frailty models 

were very small and insignificant hence, no sufficient evidence to reject the null hypothesis of no 

center effect. Therefore, we concluded that events were independent within and across centers for 

both endpoints. The formal test of center effect was based on the mixture of chi-square likelihood 

ratio test with 0 and 1degrees of freedom. This is because the null hypothesis for   was at the 

boundary of the parametric space and using a chi-square with one degree of freedom would be 

inappropriate.  

  

A simulation study was conducted with an aim to investigate the impact of frailty distribution 

misspecification on estimated regression and the heterogeneity parameter.  PFS was the endpoint of 

interest and several settings with respect to number of centers and true heterogeneity parameter 

were considered. From the results of correctly specified gamma, the estimated mean and median of 

the treatment log hazard were very close to the true treatment effect. As a result, the RB % was 

small with no major discrepancies with respect to number of centers or true heterogeneity parameter 

considered. On the other hand, low to moderate percentage RB was observed in the estimation of 

the heterogeneity parameter. 

  

To investigate the impact of misspecification of the frailty distribution, two scenarios were 

considered. First, a gamma frailty model was fitted to clustered data generated under lognormal 

distribution (misspecified model). The estimated mean and median of the treatment log hazard were 

very similar. Additionally, the RB % was relatively small and comparable to that of correctly 
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specified model. This indicated that frailty distribution misspecification did not greatly affect the 

regression coefficient estimate despite the fact that different frailty distributions can lead to 

noticeably different association structures. From a previous study examining the gamma frailty 

model in multicenter clinical trial (cohort study), Glidden and Vittinghoff (2004) found by 

simulation that regression coefficient estimates were minimally affected by frailty misspecification 

similar to the findings here. However, their assumed true frailty distribution was inverse Gaussian.  

For the heterogeneity parameter, the RB % was somewhat large and more pronounced as compared 

to correctly specified model. Besides, this bias was increasing with an increase in magnitude of true 

heterogeneity parameter but was less affected by the number of centers. These study findings were 

consistent with results from a perioperative breast cancer clinical trial study whereby Duchateau 

and Janssen, (2008) which investigated the robustness of the gamma frailty distribution 

assumptions with respect to the lognormal distribution. Results revealed downward bias of the 

variance estimator in the misspecified model (gamma frailty model fitted to clustered data 

generated from the lognormal frailty model). However, their study differed from this one in terms 

of true  considered as well as number of centers. 

  

In the second scenario of misspecified models, gamma frailty model was fitted to data simulated 

from a discrete distribution. From the results, it was evident that the regression coefficient was 

somewhat sensitive to the extreme frailty misspecification. The bias was much larger compared to 

other fitted models particularly for large heterogeneity parameters. Likewise, large RB% was 

observed for the heterogeneity parameter. Specifically, the relative bias was more pronounced for 

large   and slightly influenced by the number of centers considered. These results showed lack of 

fit of the continuous gamma frailty distribution approximation for the discrete frailties. This clearly 

indicated that a discrete frailty distribution was extreme and inappropriate. 

5.2 Conclusion 
 

With no sufficient evidence to reject the null hypothesis of homogeneity between centers in frailty 

models, we concluded that events were independent within and across centers in this study. 

Furthermore, parameter estimates from frailty models considered were almost identical to those of a 

marginal model. Therefore, in this particular study, either of the models could be used for statistical 

inference. However, this may not hold in other studies and choice of model should be driven by the 

scientific objectives of the study i.e. a marginal model should be used when population average risk 
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is of interest whereas a frailty model would be more appropriate when interest lies on center 

specific risk. 

 

From simulation study results, assuming a gamma frailty distribution when the underlying frailty is 

lognormal, the regression coefficient (treatment effect) estimate was minimally affected in terms of 

relative bias. In this case, we concluded that gamma frailty distribution was more robust with 

respect to lognormal distribution compared to discrete distribution. On the hand, for heterogeneity 

parameter, assuming a gamma distribution when the true frailty distribution is either lognormal or 

discrete, robustness was an issue particularly for large values of true . Overall, heterogeneity 

parameter was more sensitive to misspecification of the frailty distribution and choice of initial 

parameters compared to regression parameter estimate.  

 5.3 Limitations and Recommendations 
 

Our study was limited to investigating only the center random effect since the software used did not 

allow for more than one random effect. This limitation has been previously been acknowledged by 

Glidden and Vittinghoff, (2004) i.e. some gaps remain, especially in the use of frailty models for 

treatment-by-center interaction. Thus development of computation and theory for such extended 

frailty models is a useful area for future development.  Furthermore, in the simulation study, 

treatment was the only covariate and therefore we recommend future testing of the frailty models 

with baseline hazard adjusted for other patient-specific covariates so as to evaluate the models in 

more details.  
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APPENDIX   A 
  

Selected Codes 

 

R codes 

 

#overall survival curves by treatment 

library(survival) 

 

fit.hosp=survfit(Surv(osurv,censur)~as.factor(Trt1), data=sarcoma,type="kaplan-

meier",conf.type="none") 

plot(fit.hosp, conf=T,main="",xlab=" Overall Survival (Months) ",ylab="Survival 

Probability",lty=c(1,4),col=c(2,4),lwd=2.5,xlim=c(0,100)) 

legend(70,0.9,c("treatment A","treatment B"),lty=c(1,4),lwd=2.5,col=c(2,4))  

 

#pfs survival curves by treatment 

fit.hosp=survfit(Surv(pfsy,cenpfs)~as.factor(Trt1), data=sarcoma,type="kaplan-

meier",conf.type="none") 

plot(fit.hosp, conf=T,main="",xlab=" PFS (Months) ",ylab="Survival 

Probability",lty=c(1,4),col=c(2,4),lwd=2.5,xlim=c(0,100)) 

legend(70,0.9,c("treatment A","treatment B"),lty=c(1,4),lwd=2.5,col=c(2,4)) 

 

SAS codes 

 

/*survival curves by hospital*/ 

 proc lifetest data=work.proj; 

 time  timesur*censur(1); 

 strata hospno ; 

  run;quit; 

 

/*gamma frailty  frailty*/ 

PROC PHREG DATA=work.proj plots(cl)=survival; 

class hisloc trt1 (param=ref ref="1") tumorgrd  livermeta perfmsts agecat(param=ref ref="1") 

hospno; 

MODEL timesur*censur(1)= trt1 hisloc tumorgrd  livermeta perfmsts agecat /rl; 

random hospno/ DIST=gamma solution; 

RUN; 

 

/*lognormal   frailty*/ 

   goptions reset=all; 

ods graphics on; 

ods rtf file="F:\uhasselt year2\Second sem\THESIS\draft\lognorm.rtf"; 

PROC PHREG DATA=work.proj plots(cl)=survival; 

class hisloc trt1 (param=ref ref="1") tumorgrd  livermeta perfmsts (param=ref ref="1") hospno; 

model timesur*censur(1)= trt1 hisloc tumorgrd  livermeta perfmsts agecat/rl; 

random hospno/dist=LOGNORMAL solution; 

RUN; 
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APPENDIX   B  
 

Additional Analysis Results 

 

 

 

                        Table B.1: Distribution of patients in centers by treatment received 

 

 treatment 

Center 

No. 

A 

n (%) 

B 

n (%) 

Total 

101 3  (42.86 ) 4 (57.14) 7 

147 15 (53.57) 13 (46.43) 28 

227 14 (53.85) 12 (46.15) 26 

301 12 (48.00) 13 (52.00) 25* 

302 20 (52.63) 18 (47.37) 38 

304 4 (40.00) 6 (60.00) 10 

310 16 (47.06) 18 (52.94) 34 

335 5 (62.50) 3 (37.50) 8 

406 11 (55.00) 9 (45.00) 20 

508 7 (63.64) 4 (36.36) 11 

510 5 (41.67) 7 (58.33) 12  

527 7 (33.33) 14 (66.67) 21 

528 6 (66.67) 3 (33.33) 9 

530 16 (48.48) 17 (51.52) 33 

601 7 (46.67) 8 (53.33) 15 

609 6 (40.00) 9 (60.00) 15 

610 8 (57.14) 6 (42.86) 14 

613 12 (54.55) 10 (45.45) 22 

622 9 (40.91) 13 (59.09) 22 

661 5 (45.45) 6 (54.55) 11 

1765 5 (50.00) 5 (50.00) 10 

3039 5 (55.56) 4 (44.44) 9 

6998 3 (60.00) 2 (40.00) 5 

7802 11 (50.00) 11 (50.00) 22 
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Table B.2: Parameter Estimates(SE) for Overall survival  

 

 Gamma frailty model Lognormal frailty model Marginal effects 

Parameter Estimate (SE) Estimate (SE) Estimate (SE) 

Treatment: B -0.242 (0.109) -0.242 (0.109) -0.241(0.109) 

Hisloc :1 -0.173(0.138) -0.174(0.139) -0.172 (0.137) 

Hisloc: 2 -0.085(0.164) -0.088(0.164) -0.080 (0.163) 

Hisloc: 3 -0.546(0.187) -0.549 (0.188) -0.540 (0.187) 

Tumorgrade :2 -0.269(0.111) -0.269 (0.111) -0.268 (0.109) 

Livermeta: 0 -0.334(0.149) -0.335(0.149) -0.332 (0.149) 

Perform status:0 -0.572(0.109) -0.574(0.109) -0.569(0.109) 

Age ≥ 50 0.146 (0.114) 0.145(0.115) 0.146 (0.114) 

Hospno (θ) 0.005(-) 0.008 (0.022) - 

 

 

Table B.3: Parameter  Estimates (SE) for PFS 

 

 Gamma frailty model Lognormal frailty model Marginal model 

parameter Estimate (SE) Estimate (SE) Estimate  (SE) 

Treatment B -0.394 (0.103) -0.396 (0.103) -0.377 (0.109) 

Hisloc: 1 -0.031 (0.130) -0.034 (0.131) -0.072 (0.134) 

Hisloc :2 -0.081 (0.156) -0.085 (0.157) -0.045 (0.163) 

Hisloc: 3 -0.357 (0.166) -0.360 (0.167) -0.509 (0.186) 

Tumorgrade :2 -0.204 (0.104) -0.203 (0.104) -0.318 (0.109) 

Liver meta: 0 -0.267 (0.141) -0.266 (0.141) -0.344 (0.145) 

Perform status:0 -0.344 (0.103) -0.345 (0.103) -0.394 (0.108) 

Age ≥ 50 -0.105 (0.108) -0.105 (0.109) -0.034 (0.114) 

Hospno (θ) 0.023 (-) 0.029 (0.027) - 
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Table B.4: Summary statistics for the generated frailties under gamma and lognormal distributions 

over 1000 iterations. (25000 observations) 

 

 10 centers 

 0.02 0.2 2 

 mean var min max mean var min max mean var min max 

Lognormal 0.99 0.0199 0.54 1.8 0.99 0.194 0.22 4.7 0.97 1.86 0.007 47.43 

Gamma 0.99 0.0196 0.54 1.54 1.01 0.205 0.10 3.46 0.99 2.00 0.00 20.69 

 25 centers 

 0.02 0.2 2 

 mean var min max mean var min max  mean var min max 

Lognormal 0.99 0.02 0.59 1.82 0.99 0.197 0.17 4.72  1.01 2.10 0.01 32.87 

Gamma 0.99 0.02 0.49 1.63 1.00 0.19 0.04 3.87  1.00 2.03 0.00 18.94 

 

 

 

 
Figure B.1: Profile marginal likelihood for the heterogeneity parameter with a horizontal lines at 

maximum  and 1.92 units below. 
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