
Universiteit Hasselt | Campus Hasselt | Martelarenlaan 42 | BE-3500 Hasselt

Universiteit Hasselt | Campus Diepenbeek | Agoralaan Gebouw D | BE-3590 Diepenbeek

2012•2013
FACULTY OF SCIENCES
Master of Statistics: Biostatistics

Masterproef
Statistical modeling for correlate of protection using accelerated failure 
time models and piecewise methods.

Promotor :
Prof. dr. Cristina SOTTO

Promotor :
Mrs. MARTINE DOUHA
Dr. FABIAN TIBALDI

Transnational University Limburg is a unique collaboration of two universities in two countries:
the University of Hasselt and Maastricht University.

Polycarp Mogeni 
Master Thesis nominated to obtain the degree of Master of Statistics , specialization
Biostatistics



2012•2013
FACULTY OF SCIENCES
Master of Statistics: Biostatistics

Masterproef
Statistical modeling for correlate of protection using 
accelerated failure time models and piecewise methods.

Promotor :
Prof. dr. Cristina SOTTO

Promotor :
Mrs. MARTINE DOUHA
Dr. FABIAN TIBALDI

Polycarp Mogeni 
Master Thesis nominated to obtain the degree of Master of Statistics , specialization
Biostatistics





i 

 

Acknowledgment  

First is to thank the almighty God for giving me the opportunity to pursue the Master of Science 

in Biostatistics. Special thanks to my sponsor (VLIR-UOS) who made it possible to pursue the 

dream of becoming a Biostatistician and without which my dream of attaining a Master degree in 

Biostatatistics would just have remained a dream. 

I am heartily thankful to my internal supervisor Professor Cristina Sotto of Hasselt University 

and the external supervisors Dr. Fabian Tibaldi and Martine Douha of GlaxoSmithKline 

vaccines, whose constant support and guidance towards understanding the subject matter and the 

write-up has been invaluable. I would also like to thank the GSK administration for granting me 

an opportunity to carry out my research work with them. I extend my appreciation to Hasselt 

University professors through whom I gained a lot of knowledge and expertise in the various 

areas of Biostatistics.  My profound gratitude to Mrs. Martine Machiels, whom despite her busy 

schedule was always willing to assist whenever I sought assistance from her. 

To my friends, colleagues and especially team members in my various projects; your close 

collaboration, assistance and contribution in all the difficult times that we went through together 

will forever remain valuable in my entire life. Similarly I wish to express my gratitude to my 

parents, my brothers, and sister for the support, prayers, encouragement and belief in my 

potential. Special thanks to Emilly Kerubo for your motivation, prayers, support and above all 

patience during this period.  

 

 

 

Polycarp Mogeni 

September 11, 2013 

 

 

 

 



ii 

 

Table of Contents 

Acknowledgment ........................................................................................................................................... i 

List of Abbreviations .................................................................................................................................... iii 

Abstract ........................................................................................................................................................ iv 

1. Introduction .......................................................................................................................................... 1 

1.1 Objectives of this work ....................................................................................................................... 2 

2. Study design .......................................................................................................................................... 3 

2.1 Study endpoints .................................................................................................................................. 3 

2.2 Data and Sample Size .......................................................................................................................... 3 

2.3 Case definition .................................................................................................................................... 4 

2.4 Data Description ................................................................................................................................. 6 

3. Statistical Methods ............................................................................................................................... 7 

3.1 Exploratory Data Analysis ................................................................................................................... 7 

3.2 Accelerated Failure Time (AFT) Models ........................................................................................ 7 

3.2.1 Weibull model ....................................................................................................................... 8 

3.2.2 Log-normal model ................................................................................................................. 9 

3.2.3 Log-logistic model ............................................................................................................... 10 

3.2.4 Piecewise exponential model ............................................................................................. 10 

3.3 Software ...................................................................................................................................... 13 

3.3.1 Procedures for determining the cutoff values ........................................................................... 13 

3.3.2 Data preparation for piecewise exponential model ........................................................... 13 

3.4 Model selection and determination of cutoff .................................................................................. 14 

4. Results ................................................................................................................................................. 15 

4.1 Exploratory data analysis .................................................................................................................. 15 

4.2 Parametric model estimates ............................................................................................................. 17 

4.3 Distribution of log varicella antibody titers by event ....................................................................... 20 

4.4 Determination of the cutoff value .................................................................................................... 22 

5. Discussion ............................................................................................................................................ 23 

References .................................................................................................................................................. 25 

Appendix ..................................................................................................................................................... 27 



iii 

 

 

List of Abbreviations 

AFT:         Accelerated Failure Time  

AIC:          Akaike’s Information Cliterion 

ATP:         According-to-protocol 

BIC:          Bayesian Information Criterion 

GSK:         GlaxoSmithKline 

IDMC:       Independent Data Monitoring Committee 

MMVR:     Priorix-Tetra-(two-dose live varicella vaccine) 

MMR +V:  Varilrix – (one-dose live varicella vaccine) 

MMR:         Measles-Mumps-Rubella 

PCR:           Polymerase Chain Reactions 

VZV:          Varicella-Zoster Virus 

WHO:        World Health Organisation 

 

 

 

 

 

 

 

 

 



iv 

 

Abstract 

Chicken pox is an important childhood illness affecting mostly school-going children. The 

disease can be spread through contacts between infected and susceptible individuals. It is a very 

contagious disease caused by the varicella-zoster virus. Its main symptoms are: blister-like rash, 

tiredness, itching, and fever. Chicken pox can be serious, especially in adults, babies, and people 

with weakened immune systems. The objective of this study was to apply parametric survival 

models to determine whether there is a relationship between the risk of developing a varicella 

case and the titer obtained after vaccination and also to apply accelerated failure time models and 

the piecewise exponential model to determine the threshold that corresponds to the titer which 

best reflects the change in the risk of breakthrough varicella disease. In this analysis we applied 

the accelerated failure time models (Weibull model, the Log-logistic, the lognormal model) and 

the piecewise exponential model. The Akaike’s Information Criterion and Bayesian Information 

Criterion values for the different thresholds were obtained and compared within each model to 

determine the most plausible range of values that can be regarded as cutoff values. In all the four 

models applied, the log antibody titer post vaccination was significant. These results show that 

varicella antibody titer 42 days after vaccination strongly correlate with long-term disease 

breakthrough. Based on the methodology applied and the set of AIC values obtained from the 

different thresholds, the data does not seem to support the existence of a cutoff value. 

 

Key Words: AFT; Weibull; Log-logistic; Piecewise exponential; Log-normal
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1. Introduction 

Measles, mumps and rubella (MMR) are common viral childhood illnesses. These highly 

infectious diseases and their complications are responsible for considerable morbidity and 

mortality throughout the world [WHO, 2004; WHO, 2001; WHO, 2000]. In countries where 

immunization against MMR is routinely practiced, significant reduction in disease incidence is 

reported.  

Varicella or chicken pox is a highly contagious disease that most children contract. It is 

commonly regarded as a mild childhood illness. However, serious complications such as 

secondary bacterial infection and pneumonia from varicella infections can occur, leading to 

hospitalizations and, in rare cases, even to death [WHO,1998]. Although the varicella vaccine is 

licensed in many countries, it is not routinely used, especially in healthy subjects. The universal 

varicella vaccination is only implemented in a limited number of countries (e.g. United States, 

Germany, Sicily, Qatar and Uruguay). The incidence of varicella disease and the rate of related 

hospitalization in the US have declined by 80% since the introduction of routine vaccination in 

1995 [Galil, 2002]. Though a vaccinated person can get chicken pox, the symptoms are usually 

very mild and only last for a few days.   

The human adaptive immune response relies on a complex combination of cellular and humoral 

immunity, mediated by T- and B-lymphocytes. Although vaccination aims to activate cellular 

and humoral immunity, vaccine-induced immunity is typically evaluated by means of the 

antibody titer secreted by B-cells and plasma cells (PC). Memory B-cells permit a faster and 

more effective immune response upon further exposure to the antigen, whereas PC are the main 

antibody secreting cells [Mathieu et al, 2012].  

The main objective of vaccination is to stimulate an individual’s immune system to develop 

adaptive immunity to a target pathogen. Vaccine administration seeks to protect an individual 

against an infection or minimize the unpleasant clinical features associated with the target 

disease in case of breakthrough after vaccination. The development of vaccines has been made 

possible through the use of weakened live viruses, inactivated viruses, purified bacterial proteins 

and glycoproteins, and recombinant, pathogen-derived proteins. Typically the most convenient 
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measure of vaccine-induced immunity is the antibody titre after vaccination. The relationship 

between antibody titre and protective efficacy has led to the concept of a correlate of protection, 

which is often described as a protective level of antibody titre that can be used to determine 

whether a person is not protected and still susceptible to the disease or completely protected 

[Wilson et al, 2004; Lachenbruch et al, 2000]. Although establishing a protective antibody level 

is desirable, identifying a clear-cut value is very challenging and sometimes impossible with 

more complex pathogens. For example, clinical trials with VARIVAX
TM

 (a live attenuated 

varicella [Oka/Merck] vaccine) have shown the vaccine to have high efficacy against varicella 

[Weibel et al, 1984; Kuter et al, 1991]. Long-term follow-up of vaccine recipients has suggested 

that the frequency of disease breakthroughs after vaccination is inversely related to the post-

vaccination antibody level [White et al, 1992]. However, as far as these studies are concerned, no 

particular antibody level can be considered an absolute protective level.  

In this study, GlaxoSmithKline (GSK) vaccines conducted a randomised clinical trial to evaluate 

the protection against varicella afforded by administration of two doses of MMRV or one dose of 

Varilrix. To achieve more robust efficacy estimates than in previous multi-year live varicella 

vaccine trials, the first phase of this trial (reported here) was observer-blinded and used a 

concurrent control group, active surveillance for varicella, and rigorous case confirmation and 

severity-grading procedures. This trial was initiated in countries with endemic varicella among 

toddlers, permitting a stringent test of vaccine efficacy. 

 

1.1 Objectives of this work 

The objective of this work is firstly to apply the parametric survival model to determine whether 

there is a relationship between the risk of developing a varicella case and the titer obtained after 

vaccination. Secondly, to apply accelerated failure time (AFT) models and the piecewise 

exponential model to determine the threshold that corresponds to the titre which best reflects the 

change in the risk of breakthrough varicella disease. 

 

 



3 

 

2. Study design 

This study is the first part (September 2005 to June 2009) of an observer-blinded, randomised, 

controlled trial  conducted at multiple sites in ten European countries.  

Eligible subjects were randomised according to a 3:3:1 ratio into one of three treatment groups, 

respectively (Figure 1): (i) Group MMRV, where MMRV(Priorix-Tetra™, GlaxoSmithKline 

Vaccines [GSK]) was administered at Dose 1 and 2; (ii) Group MMR+V, where MMR was 

administered at Dose 1 (Priorix™, GSK) and V (Varilrix™, GSK) at Dose 2; or (iii) Group 

MMR, where MMR (Priorix™) was administered at Dose 1 and 2. Doses were administered 42 

days apart (Day 0 and Day 42). After the completion of this first phase of the clinical trial, Group 

MMR+V subjects were offered the second dose of MMR in accordance with the immunisation 

schedule of their respective country. The eligible subjects were  healthy children aged 1222 

months at the time of the first vaccination; had a negative history of varicella, mumps, measles 

and rubella diseases/vaccinations, and were either (i) at home with at least one sibling (with 

negative history of varicella/vaccination), or (ii) attending a childminder (where at least one child 

was without a known positive history of varicella/vaccination), or (iii) playing for more than five 

minutes weekly with children without a known positive history of varicella/vaccination, or (iv) 

registered to attend a daycare center from 24 months of age.  The study was conducted in 111 

study centers. 

2.1 Study endpoints 

The primary efficacy endpoint was the occurrence of confirmed varicella from 42 days after the 

second vaccine dose to the end of the first phase of the trial.  

2.2 Data and Sample Size 

The dataset was obtained according to the study design described in the previous section. The 

number of subjects to be enrolled was estimated to be 5,754 children in order to obtain the 

required number of evaluable confirmed varicella cases within two years of follow-up assuming 

an annual attack rate of 5% for children in the control group and a vaccine efficacy of 80%. 

Details of sample size calculation are not shown here. In total 5,803 subjects were enrolled. 
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5,285 subjects were included in the according to protocol (ATP) analysis, but in this analysis 143 

subjects were eliminated from the main analysis due to missing immunological results. 

 

Figure 1: Trial Design 

2.3 Case definition 

Confirmed varicella cases are reached during the time frame between the subjects’ 42 days post 

vaccination and the appearance of breakthrough varicella case. The disease was initially 

identified through parents examining their children for possible development of skin reactions 

that might be indicative of varicella/zoster after vaccination. The rash onset that is, the date when 

the first lesion appears and the date the rash ended, that is, date of the first day when no new 

lesion appears were recorded by the parents, while the investigators were required to collect 

biological samples (that is dermal lesions) for viral identification. An Independent Data 

Monitoring Committee (IDMC) consisting of experts in varicella disease and microbiology and 
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other appropriate disciplines reviewed and classify suspected varicella cases according to the 

case definition illustrated in Figure 2.Varicella severity grading was based on the scoring system 

of Vázquez et al. with modifications: mild disease, 7 points; moderately severe disease, 815 

points; severe disease: 16 points. 

 

Figure 2: Varicella case definition 
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2.4 Data Description 

In this section we will briefly describe the variables used in the statistical modeling exercise.  

The time at risk was measured as the number of days from the 42
nd

 day after the date of 

vaccination to the date of onset of a confirmed case of breakthrough disease or the duration in 

days of follow-up starting the 42
nd

 day post vaccination to the end of last contact with the subject 

in case of no breakthrough disease. Other subject characteristics were measured. A binary 

covariate which took the value 1 if there was a breakthrough disease and 0 if there was no 

varicella case, the continuous covariate representing the antibody concentration, the vaccination 

group as categorical variable denoting the type of vaccine that was administered to the subject 

and the categorical variable indicating  the severity of the breakthrough disease. 
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3. Statistical Methods 

The methodology discussed in this section is contained in the paper by Ivan et al, 2002, looking 

at the use of statistical models for evaluating antibody response as a correlate of protection 

against varicella. For a detailed description refer to the mentioned paper. 

3.1 Exploratory Data Analysis 

To gain insight into the dataset, summary statistics, tables of frequencies and graphics were 

considered.  

The vaccine efficacy analyses were performed with a method that can handle uncensored as well 

as censored data. The Cox proportional hazards regression model on time to first event fulfills 

this requirement. By including the vaccine group effect as the only regressor in a Cox 

proportional hazards regression model, the relative risk (RR) of being a varicella case in a 

vaccine group compared to being a varicella case in the control group was estimated through the 

hazard ratio (i.e. RR=exp(B), where B is the estimated regression coefficient for the dummy 

regressor). The vaccine efficacy estimate was then obtained as (1–RR)*100%. A 97.5% 

confidence interval for the vaccine efficacy was calculated using the same regression analysis for 

each comparison between a varicella vaccine and the control group [Dipika et al, 2011]. 

3.2  Accelerated Failure Time (AFT) Models 

The main interest of this study was also to assess the effect of the antibody titer 42 days after 

vaccination on the survival function, and thus, AFT models were applied. 

Let Ti be the time to a varicella event after vaccination for the ith person (i=1,…, n), and (Xi1,…, 

Xik) be the set of baseline covariates for that person. The general AFT model specifies that 

 

  (  )                                                                                           ( ) 

where    is a random disturbance term, usually assumed to be independent and identically 

distributed with some density function  ( ).             are regression parameters of interest, 

and   is a scale parameter. Different distributional assumptions can be assumed for the random 

disturbance term in model (1) and hence the type of AFT model. 
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To assess the relationship between the probability of having a varicella event after vaccination 

and the 42 days varicella antibody titre, three popular AFT models were considered; the Weibull, 

log-logistic and log-normal hazards [Lawless, 1982; Kalbfleisch et al, 1980] and the piecewise 

exponential model. The main reason for allowing these different distributions in our analysis is 

that they encompass a variety of hazard functions that are widely used to analyze time-to-event 

data [Friedman, 1982; Allison, 1995].  

Motivation for the choice of AFT models 

The AFT models are effective methods for regression analysis of censored survival data. Though 

these models are less robust than the more widely used Cox regression analysis, in most cases, 

the results produced by the two approaches are very similar [Allison, 1995]. Moreover, unlike 

the cox regression, the AFT methods make it possible to test hypothesis about the shape of the 

hazard function. All the AFT models to be considered in the next section assume that the hazard 

is a smooth, relatively simple function of time. Cox model is much less restrictive in this regard, 

but it lacks the facility to test hypotheses about the shape of the hazard function. One way to get 

some of the flexibility of the Cox model without losing the hypothesis testing capability is to 

employ the piecewise exponential model. The piecewise exponential model tries to gain most of 

the strength of both the AFT models and the cox regression model while minimizing their 

weaknesses. The major challenge with the piecewise exponential model is the difficulty in 

determining the cut points or the size of the pieces. 

3.2.1 Weibull model 

The Weibull model assumes that    has a standard extreme value distribution, and the 

log-hazard function for the ith person is given by 

  

   (  ( ))           
    

          
                            ( ) 

where   (  ⁄  – 1), and   
  

   

 
  for j=1,…k . 

The hazard function is monotonic in the Weibull model. When     , the model simplifies to 

the exponential model in which the hazard is constant over time. The hazard decreases with time 
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if      and increases with time if    . The Weibull model is also a proportional hazards 

model.  

The hazard function is given as  ( )        , and the survival time is given as  

 ( )      (    ). Having defined the hazard and survival functions, the Weibull model 

maximizes the likelihood: 

  ∏{  (  )     (   )
 
}
  

 

   

 { (   )
 
}
    

                                                                         ( ) 

where    is reparameterized in terms of predictor variables and regression parameters. 

The cumulative probability distribution function of the Weibull model for the ith person is 

  ( )    (    )       { [  
 (                 )]

 
 ⁄
}                                            ( ) 

 

3.2.2 Log-normal model 

The log-normal model assumes that    has a standard normal distribution. Its log-hazard function 

has no closed form expression, but can be expressed by the following relationship: 

   (  ( ))       (  
 (                 ))  (                )                            ( ) 

 

where h0(.) is the common hazard function when all covariates (Xi1,…, Xik) are 0. Unlike the 

Weibull model, the log-normal model has a non-monotonic hazard function that starts at 0 when 

t=0 and increases to a peak and then declines toward 0 as time goes to infinity. The density 

function is given as   ( )  
 

 √   
   * 

 

  
(   ( )   ) + and the survival time is given as 

 ( )      (
    ( )  

√ 
) . The cumulative probability distribution function of the log-normal 

model for the ith person is  

 

  ( )   {
 

 
[     (                 )]}                                                                 ( ) 
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where  ( ) is the standard normal distribution function and   is the variance. In addition, the 

log-normal and the Weibull models are special cases of the generalized gamma model [Allison, 

1995]. 

3.2.3 Log-logistic model 

The log-logistic model assumes that    has a logistic distribution. Its log-hazard function has a 

relationship similar to (5) except that h0(.) takes a different form. The hazard function behaves 

similarly to log-normal hazard with a longer right tail when    . When    , the hazard is 

decreasing and is similar to the Weibull hazard [Allison, 1995]. The density function is given as 

  ( )  
       

[  (  ) ] 
  and the survival time is given as  ( )  

 

  (  ) 
 . 

 

The cumulative probability distribution function of the log-logistic model for the ith person is 

  ( )  
[   (                )]

 
 ⁄

  [   (                 )]
 
 ⁄
                                                                     ( ) 

The log-logistic model is also a proportional odds model since the log-odds of the survival 

function,     ( ), is linear: 

  [
    ( )

  ( )
 ]  

 

 
(                      )                                                  ( ) 

 

3.2.4 Piecewise exponential model 

Piecewise exponential model [Friedman, 1982; Allison, 1995] allow more flexible estimation of 

underlying hazards. Suppose the follow-up time is divided into intervals with cut points         

                    the piecewise exponential model assumes a constant hazard 

in each time interval. Given the covariates, the hazard function for the ith person is 

   ( )       (                 )                                                                   ( )  

                                                                                   

and the cumulative event rate can be calculated as, for           , 
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  ( )       { [∑  (       )    (      )

   

   

]    (                 )}      (  ) 

 

The piecewise exponential model is a proportional hazards model, and it provides a simple way 

of approximating a variable hazard function that may change abruptly at some threshold time 

points. This model is similar to the Cox proportional hazards model for estimating effects of 

covariates, but it gives a simple functional form of hazard that can be used for estimation and 

prediction purposes. Clearly, sensible choice of the cut points should allow one to approximate 

reasonably well almost any baseline hazard, using closely-spaced boundaries where the hazard 

varies rapidly and wider intervals where the hazard changes more gradually. The regression 

parameter estimates from the piecewise exponential model are generally close to those obtained 

from the Cox model, especially if small time intervals are used [Allison, 1995]. 

The possible hazard function for the Weibull, log-logistic and the piecewise exponential model 

are presented in Figure 3. 
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Weibull hazard function 

 

Log-logistic hazard function 

 

Piecewise exponential hazard function 

 

 

 

 

Figure 3: Hazard functions for different models  
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3.3 Software 

3.3.1 Procedures for determining the cutoff values 

The AFT model for right censored data can be implemented using the PROC LIFEREG or 

PROC NLMIXED in SAS. However, due to its flexibility in terms of programing, PROC 

NLMIXED was preferred. This procedure allows iterations to be specified within its body and 

hence facilitates the programming. To guarantee the correct specification in PROC NLMIXED 

the parameter estimates were compared with those obtained from PROC LIFEREG. To 

determine the set of values that best reflects the change in risk of breakthrough disease, all the 

four models (Weibull, the log-normal, the Log-logistic and the piecewise exponential models) 

were programmed using PROC NLMIXED. Equation 11 presents the AFT model specification 

for the different thresholds. 

  (  )              (        (         ))                                               (  ) 

where    is the log concentration of antibody titer,  

The threshold takes values from 50-300 in intervals of 5 units and 

  ,
                    (         ) 
                                               

  

An iterative procedure running from a threshold of 50 through 300 in intervals of 5 was 

implemented through a macro. The Akaike’s Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) values for fitted models at different thresholds were obtained and 

compared within each model to determine the most plausible range of values that can be 

regarded as cutoff values. These are the set of thresholds that yield the minimum BIC and AIC 

values. Statistical analysis was performed using SAS version 9.2 and R version 2.15.2. 

3.3.2 Data preparation for piecewise exponential model 

The piecewise model was constructed by splitting the surveillance period of 4 years into 4 pieces 

of 1 year. A record is created for each year during which an individual was at risk of 

experiencing an event. Four records were created for persons who experienced an event in the 

fourth year or did not experience an event during the four year follow up. Three, two and one 

records were created for those who experienced an event in the third, second and first year, 
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respectively. Each record is treated as a distinct observation, with the time reset to 0 at the 

beginning of the year. If an event occurred in the quarter, a censoring indicator variable for that 

person-year is set to 1; otherwise, it is set to 0. If neither an event nor censoring occurred in the 

year, the time variable is assigned the full 365 days. If a breakthrough or censoring occurred for 

any given reason, the time variable is coded as the length of time from the start of that year until 

the event/ censoring. For the antibody titer concentration, the piecewise model was constructed 

by first splitting the antibody concentration into pieces of 50, and a similar procedure as that 

applied for time is used to create the piece. 

3.4 Model selection and determination of cutoff  

 The descriptive assessment of the model fit was done by comparing the predicted probability of 

developing clinically–diagnosed varicella during year 1 to 4 after vaccination from the four 

models with the observed Kaplan-Meier probabilities [Lawless, 1982; Kalbfleisch et al, 1980]. 

AFT models can be compared using the likelihood ratio test if they are nested [Allison, 1995]. 

However, this is not the case when one wants to make a choice among the log-normal, Weibull, 

log-logistic and piecewise exponential methods. Hence they can be compared using the AIC or 

BIC. The Akaike’s method penalizes each model’s log likelihood by the number of parameters 

that are being estimated. The lower the AIC the better is the model. 

The AIC is calculated as: 

            . 

The BIC is calculated as: 

               ( ), 

where    is the number of parameters in the model and n is the sample size. 

The BIC and AIC were used to determine the set of values that best reflect the change in risk of 

breakthrough disease. In this case, these are the set of values that gives the lowest BIC and AIC 

in a given range of antibody titer.  
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4. Results 

4.1 Exploratory data analysis 

Between September 2005 and May 2006, 5803 subjects were enrolled (Figure 2). The majority 

(56·4%) of the 5285 subjects in the efficacy cohort were from the Czech Republic, Poland, and 

the Russian Federation. The mean duration of follow-up in the per protocol efficacy cohort was 

35 months and was similar in each of the treatment groups.  

In the MMR (control) group, there were 201 varicella cases, giving an incidence of 10·4 per 100 

person years, of these, more than half of the cases were graded as moderately severe or severe. In 

the MMR+V group (one-dose live varicella vaccine), there were 243 varicella cases, giving an 

incidence of 3·8 per 100 person years. In the MMRV group (two-dose live varicella vaccine), 

there were 37 varicella cases, giving an incidence of 0·6 per 100 person years. The efficacy of 

two-dose vaccination against all varicella was 94·9% and against moderate to severe varicella, 

was 99·5%. For one-dose, these efficacy rates were 65·4% and 90·7%, respectively. The 

summary of the incidence and their respective confidence intervals are presented in Table 1. 

Table 1: Summary of the incidence of varicella cases in each treatment group per 100 person 

years 

Group 
Varicella 

severity 
n / N 

Total  

Time in year 

Incidence rate (97·5%CI)  

100 person year
-1

 

Vaccine Efficacy 

 (97·5%CI) 

MMRV 
all 37 / 2279  6690 0·6 (0·4–0·8) 94·9 (92·4–96·6) 

mod./sev. 2 / 2279 6740 0·0 (0·0–0·1) 99·5 (97·5–99·9) 

MMR+V 
all 243 / 2263  6455 3·8 (3·3–4·3) 65·4 (57·2–72·1) 

mod./sev. 37 / 2263  6698 0·6 (0·4–0·8) 90·7 (85·9–93·9) 

MMR 
all 201 / 743  1934 10·4 (9·1–11·9) - 

mod./sev. 117 / 743  2047 5·7 (4·8–6·9) - 
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The distribution of the antibody titer was found to be right skewed and was therefore log 

transformed. The box plot (Figure 4) hints on presence of number of outlying observations. The 

median antibody titer for the MMVR group is higher than that MMR+V and MMR group.  

 

Figure 4: Box plot displaying the distribution of antibody titer in each treatment group 

 

 

To assess the possible correlation between the antibody titer concentration and breakthrough 

disease among the vaccinated patients only, different cutoff values were assessed graphically as 

displayed in the Figure 5. From the graph we observe that while breakthrough cases occurred 

across a range of VZV titers, higher titers were associated with less breakthrough disease. 
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Figure 5: Breakthrough rate of confirmed varicella as a function of anti-VZV concentration 42 days after 

vaccination 

4.2 Parametric model estimates 

The parameter estimates obtained from fitting the AFT models and the piecewise exponential 

model are shown in Table 3 below. In all the four failure time models, the log antibody titer 42 

days post vaccination was significant. These results consistently show that varicella antibody 

titer 42 days after vaccination strongly correlate with long-term varicella breakthrough.  

Table 3: Statistical model parameter estimates of the time to varicella event after vaccination. 

Method Covariate Estimate [95% CI] P-value AIC 

Weibull  
Log antibody 

titer 
0.81 [0.70, 0.91] <0.001 9202.516 

Lognormal 
Log antibody 

titer 
0.90 [0.79, 1.01] <0.001 9283.54 

Loglogistic 
Log antibody 

titer 
0.82 [0.71, 0.92] <0.001 9211.026 

Piecewise ( piece on 

time ) 

Log antibody 

titer 
1.34 [1.26, 1.43] <0.001 21645.29 

Piecewise ( piece on 

both time and titer 

concentration) 

Log antibody 

titer 
1.28 [1.20, 1.37] <0.001 54343.16 

0
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 The piecewise levels 1, 2, 3, 4, corresponding to the yearly pieces covered by each record in the 

piecewise exponential model, show a significant effect, implying that the hazard is not constant 

over time (Table A3, Appendix). The Wald chi-square value is 18.17 on 3 degrees of freedom 

and a p-value 0.0004. From this result the Weibull model (AIC=9202.516) fits the data better 

than the log-normal, log-logistic and the piecewise model. It can be observed from the model 

fitted that subjects with higher antibody titer 42 days after vaccination have better disease free 

survival. For the Weibull model, for one unit increase in log-antibody titer, the subjects’ average 

disease free survival is twofold (2.24 times) (Table A1, appendix).  

Table 4 below presents the various model-based estimates of cumulative varicella event rates 

through years 1 to 4. All the four yielded cumulative event rates estimates that were quite similar 

to those obtained from the life-table estimates. In addition, the piecewise exponential model gave 

year-by-year estimates that are almost identical to the life-table estimates except for the 4
th

 year. 

This could be attributed to the low number of subjects in the fourth year compared to the 

previous years. By comparison the year-by-year estimates from the three AFT models and the 

piecewise exponential model were similar to those obtained from the life-table estimates.  

Table 4: Estimated cumulative rate of varicella event rates from year 1 through year 4 after 

vaccination calculated as a life table estimate using the Kaplan Meier method and predicted 

cumulative rates as estimated by different statistical models. 

Time 

Interval 

Number 

of  

Reported  

Varicella 

cases 

life-table 

Estimate 

Per 100  

person year 

Model-based Cumulative estimate  

per 100 person year 

Weibull Log-normal Log-logistic Piecewise exponential 

Day 42-Year1 48 1.07% 0.91% 1.07% 0.91% 1.06% 

Year1-Year2 69 2.73% 3.07% 3.41% 3.10% 2.71% 

Year1-Year3 111 5.61% 6.12% 6.13% 6.10% 5.62% 

Year1-Year4 52 8.92% 9.85% 8.84% 9.59% 10.90%  
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The cumulative probability of events over 3 year follow-up period as a function of titer was 

predicted from the models at different levels of the antibody titer concentration (Table 5).  It can 

be seen that the cumulative probability of breakthrough varicella decreases with increasing 

thresholds. This observation is consistent across all the AFT models and the piecewise 

exponential model. 

Table 5: Cumulative probability of breakthrough varicella over 3 year follow-up period as a 

function of anti-VZV concentration among vaccinated subjects. 

Threshold Weibull Log-normal Log-logistic 
Piecewise 

Exponential 

25 19.0% 18.9% 19.3% 17.5% 

50 13.0% 13.8% 13.3% 11.8% 

75 10.3% 11.3% 10.6% 9.5% 

100 8.8% 9.7% 9.0% 7.9% 

125 7.7% 8.6% 7.9% 7.1% 

150 7.0% 7.8% 7.1% 6.4% 

200 5.9% 6.6% 6.0% 5.4% 

300 4.6% 5.2% 4.7% 4.2% 

 

The estimated predictions for the three years follow-up at different thresholds are very similar, 

especially among the three AFT models (Weibull model, lognormal model and the loglogistic 

model). However, the piecewise exponential model estimates are slightly different from the rest 

of the models. 

Figure 6 below presents the plot of the cumulative probability estimates against the log varicella 

antibody titer for the four models. For all the AFT and piecewise models presented in Figure 6, it 

can be observed that the cumulative varicella event rates decreases monotonically with 

increasing antibody titer.  
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Figure 6: Estimated cumulative probability of a varicella event through 3 years follow-up period  

 

4.3 Distribution of log varicella antibody titers by event  

The distribution of varicella titer by varicella cases was assessed among all enrolled subjects, 

vaccinated subjects (that is, subjects who received MMRV or MMR+V) and among subjects 

vaccinated with MMR+V. The objective was to gain insight to the possibility of obtaining the 

threshold that correspond to the titer which best reflects the change in the risk of breakthrough of 

varicella disease. Figure 7; 1(a) compared to 1(b), 2(a) compared to 2(b) and 3(a) compared to 

3(b) indicates that the distribution of varicella titer among varicella cases (V cases) overlaps with 

that of no varicella cases (No V cases). This implies that if there exists a single cutoff value, then 

one has to contend with some amount of misclassification.  
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*V cases  --   Varicella events ;  No V cases- No varicella events 

 

Figure 7: Distribution of the varicella titers as measured by BELISA in MMRV and Varilrix groups 
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4.4 Determination of the cutoff value 

 

To determine the set of antibody titer values that best reflect the change in the risk of event, we 

applied the three AFT models and the piecewise exponential model. This was done on all 

subjects, only the vaccinated groups (MMRV and the MMR+V) and on the Varilrix group only 

(MMR+V). The MMRV group only was not investigated due to the low number of events. The 

results in terms of the AIC are presented in the appendix (Tables A4 and A5). 

 

The choice of the range of antibody titer used in the investigation of the cutoff value was 

motivated by the knowledge that the antibody titer of 50 is the limit of quantification while the 

upper limit was motivated by the knowledge that not many Subjects get an antibody titer greater 

than 300 post vaccination. 

 

Plotting the graph of AIC against the thresholds, we expect to a U-shape relationship. That is, we 

expect the model to fit poorly with thresholds far away from the cutoff values. The obtained 

graphs (Figure A1, A2 and A3, Appendix) do not seem to capture the expected U-shape. From 

the given dataset and the AIC values obtained, there seems to be no set of values that can be said 

to best reflect the change in risk of breakthrough varicella disease. All the three AFT models and 

the piecewise exponential model seem to yield similar conclusion regarding to the possibility of 

obtaining a set of values that could be regarded as possible cutoff values.   
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5. Discussion 

Varicella is a highly contagious disease that is caused by the varicella-zoster virus (VZV) and 

predominantly affects preschool and school aged children and therefore its importance as a 

health problem cannot be over emphasized. Vaccination against varicella aims to educate the 

immune system by introducing varicella memory specific pathogens in its absence. To measure 

the effect of varicella vaccine, the antibody titer is normally used as a marker for the vaccine’s 

efficacy. After vaccinating the children, the antibody titer concentration in the blood is expected 

to rise to a maximum after approximately 42 days which explains why the follow up time 

variable and the antibody titer were measured 42 days post vaccination.  

From data exploration we observed that breakthrough events occurred across the whole range of 

antibody titers, though higher titers were associated with less breakthrough events. The 

distribution of antibody titer was highly skewed which motivated the log transformation of the 

titer concentration. For the 4 years follow-up period, higher proportions of events were observed 

among patients in the control group when compared to the vaccinated groups. From the box plot 

and the table of means for the log antibody titer, it was observed that the vaccinated children had 

a higher mean log antibody titer compared to those in the MMR group.  

The efficacy of the two-dose and one-dose vaccination against moderate to severe varicella, was 

high, that is 99·5% and 90·7% respectively which is similar to some clinical trials with 

VARIVAX
TM

 where the vaccine was shown to have high efficacy against varicella [Weibel et al, 

1984; Kuter et al, 1991]. Moderate to severe breakthrough varicella was highest among the 

control group (MMR), with an incidence of between 4.8 and 6.9 per 100 person years and lowest 

among subjects in the MMRV group.   

The relationship between the varicella antibody response and the risk of breakthrough disease 

has been previously assessed by using AFT models and the piecewise exponential model [Ivan et 

al, 2002]. This study aimed at applying this methodology to assess the association between the 

varicella antibody titer after vaccination and the rate of breakthrough disease. Using these 

statistical methods we established an association between the distribution of varicella antibody 

response after vaccination and the long term protection against varicella in all the 4 fitted 
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models. These findings were consistent to those reported in the paper by Ivan et al, 2002, though 

the two studies were quite different in terms of study design and especially the age group; While 

this study focused on children between the age of 12 and 22 months in Europe, the study by Ivan 

et al was carried out among children aged between 1 year and 12 years in the United States of 

America.  

Based on the AIC values, the Weibull model seems to perform better than the rest of the models 

fitted; this contradicts the finding of the paper by Ivan et al where the exponential model was 

shown to perform better. This is an indication that the choice of the best model among this group 

of models highly depends on the data at hand. The descriptive assessment of the model based 

prediction comparison with the life table estimates indicated that the four models performed 

quite similar. That is all the four models yielded cumulative event rate estimates that were very 

close to those obtained from the life-table estimates. In addition, the piecewise exponential 

model gave year-by-year estimates that were almost identical to the life-table estimates except 

for the 4
th

 year. The prediction of the probability of varicella events through 3 years follow-up 

period are quite similar for the Weibull, log-normal and the log-logistic models and slightly 

different for the piecewise exponential model with pieces based on the yearly time interval. 

To estimate the set of point that best reflects the change in risk of breakthrough disease, a set of 

models were fitted at different thresholds specifically between the limit of quantification 50 and 

300 titer in an interval of 5. The aim was to obtain a set of antibody titer that yields the lowest 

AIC values and hence the cutoff. Based on the methodology applied and the set of AIC values 

obtained the four year follow-up data does not seem to support the existence of a cutoff value.  

We therefore recommend that the same models be fitted once again after the second phase of 

follow-up to check whether the result will change.    
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Appendix 

Table A1: Ratio of survival times per unit increase in the log antibody titer among the vaccinated 

subjects 

Method Covariate Ratio of survival times [95% CI] 

Weibull Log antibody titer 2.24[2.01,2.48] 

Lognormal Log antibody titer 2.46 [2.20, 2.75] 

Loglogistic Log antibody titer 2.26 [2.03, 2.51] 

Piecewise ( piece on time ) Log antibody titer 3.81 [3.53, 4.18] 

Piecewise ( piece on both time and 

titer concentration) 
Log antibody titer 3.60 [3.32, 3.94] 

 

 

Table A2: Summary Statistics of the log antibody titer per treatment group 

Vaccine group N Mean 95% CI Minimum Maximum 

MMVR  (Log titer) 2,216 3.26 [2.496, 4.024] 1.10 4.44 

MMR+V   (Log titer) 2,202 1.98 [1.157, 2.803] 1.10 3.85 

Placebo   (Log titer) 724 1.15 [0.562,1.738] 1.10 3.71 

 

 

 

 

Table A3: Parameter estimates from the piecewise exponential model 

Parameter Estimate 95%CI p-value 

intercept 4.7530 [4.626, 4.880] < .0001 

Log antibody titer 1.3446 [1.257, 1.433] < .0001 

Lamba1 0.8885    [0.796, 0.981] < .0001 

Lamba2 0.9559    [0.858, 1.054] < .0001 

Lamba3 1.1912    [1.079, 1.304] < .0001 

Lamba4 0.8174    [0.642, 0.992] < .0001 
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Figure A1: Graph of AIC against thresholds for the different groups of subjects for the Weibull 

model 
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Figure A2: Graph of AIC against thresholds for the different groups of subjects for the Log-

logistic model 
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Figure A3: Graph of AIC against thresholds for the different groups of subjects for the piecewise 

exponential model 
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Table A4: Model comparison at different thresholds 

  Weibull model     Log-logistic Model 

  All subjects 

Vaccinated subjects  

only Varilix only     All subjects 

Vaccinated subjects  

only Varilix only 

Threshold AIC BIC AIC BIC AIC BIC   Threshold AIC BIC AIC BIC AIC BIC 

55 9202.10 9228.29 5628.77 5654.34 4770.82 4793.60   55 9211.73 9237.91 5632.74 5658.31 4774.09 4796.87 

65 9202.09 9228.27 5629.14 5654.71 4771.12 4793.91   65 9211.74 9237.92 5633.15 5658.72 4774.42 4797.21 

75 9202.33 9228.51 5629.89 5655.46 4771.70 4794.49   75 9211.93 9238.11 5633.85 5659.43 4774.97 4797.76 

85 9202.45 9228.63 5630.27 5655.85 4771.96 4794.75   85 9212.02 9238.20 5634.22 5659.79 4775.21 4798.00 

100 9202.79 9228.97 5631.02 5656.60 4772.48 4795.27   100 9212.26 9238.44 5634.88 5660.45 4775.64 4798.43 

115 9203.19 9229.32 5631.74 5657.31 4772.79 4795.58   115 9212.49 9238.67 5635.48 5661.06 4775.81 4798.60 

125 9203.34 9229.52 5632.13 5657.70 4772.78 4795.57   125 9212.61 9238.79 5635.80 5661.37 4775.70 4798.49 

140 9203.62 9229.80 5632.65 5658.22 4772.45 4795.23   140 9212.77 9238.95 5636.21 5661.78 4775.24 4798.03 

150 9203.79 9229.97 5632.95 5658.52 4772.03 4794.82   150 9212.86 9239.04 5636.43 5662.00 4774.74 4797.53 

165 9203.96 9230.14 5633.24 5658.82 4771.34 4794.13   165 9212.93 9239.11 5636.64 5662.22 4773.96 4796.75 

175 9204.02 9230.20 5633.36 5658.93 4770.93 4793.72   175 9212.95 9239.13 5636.72 5662.30 4773.53 4796.31 

190 9204.09 9230.27 5633.48 5659.05 4770.39 4793.18   190 9212.98 9239.16 5636.80 5662.38 4772.96 4795.74 

200 9204.13 9230.31 5633.55 5659.12 4770.03 4792.82   200 9212.99 9239.17 5636.85 5662.42 4772.58 4795.37 

215 9204.16 9230.34 5633.61 5659.18 4769.61 4792.40   215 9213.00 9239.18 5636.88 5662.46 4772.15 4794.94 

225 9204.18 9230.36 5633.64 5659.21 4769.35 4792.14   225 9213.00 9239.18 5636.90 5662.47 4771.89 4794.68 

240 9204.21 9230.39 5633.69 5659.26 4768.95 4791.74   240 9213.01 9239.19 5636.93 5662.50 4771.48 4794.27 

250 9204.22 9230.40 5633.71 5659.29 4768.70 4791.49   250 9213.01 9239.19 5636.95 5662.52 4771.22 4794.01 

265 9204.23 9230.41 5633.73 5659.30 4768.44 4791.23   265 9213.01 9239.19 5636.95 5662.53 4770.96 4793.75 

275 9204.242 9230.42 5633.74 5659.31 4768.33 4791.12   275 9213.01 9239.19 5636.96 5662.53 4770.86 4793.64 

290 9204.25 9230.43 5633.75 5659.33 4768.16 4790.95   290 9213.01 9239.19 5636.97 5662.54 4770.69 4793.48 

300 9204.252 9230.43 5633.76 5659.33 4768.07 4790.86   300 9213.01 9239.19 5636.97 5662.54 4770.61 4793.40 
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Table A5: Model comparison at different thresholds   

  Piecewise exponential model     Log-normal Model 

  All subjects 

Vaccinated subjects  

only Varilix only     All subjects 

Vaccinated subjects  

only Varilix only 

Threshold AIC BIC AIC BIC AIC BIC   Threshold AIC BIC AIC BIC AIC BIC 

55 21629.95 21684.45 13387.27 13440.78 11619.64 11668.18   55 9285.47 9311.65 5668.07 5693.65 4797.19 4819.98 

65 21588.75 21643.25 13419.07 13472.58 11633.46 11682.00   65 9285.45 9311.63 5668.47 5694.04 4797.58 4820.37 

75 21547.93 21602.43 13445.78 13499.29 11616.00 11664.54   75 9285.38 9311.56 5669.00 5694.57 4798.14 4820.93 

85 21512.09 21566.59 13466.75 13520.27 11576.24 11624.79   85 9285.31 9311.49 5669.30 5694.88 4798.44 4821.23 

100 21467.72 21522.22 13484.00 13537.51 11551.04 11599.58   100 9285.13 9311.31 5669.73 5695.30 4798.82 4821.61 

115 21432.34 21486.84 13482.37 13535.89 11518.23 11566.78   115 9284.86 9311.04 5670.02 5695.60 4798.84 4821.63 

125 21412.56 21467.06 13474.63 13528.15 11499.59 11548.14   125 9284.67 9310.85 5670.126 5695.7 4798.60 4821.39 

140 21387.25 21441.75 13459.13 13512.65 11475.73 11524.27   140 9284.35 9310.53 5670.181 5695.75 4797.95 4820.74 

150 21372.71 21427.20 13448.00 13501.52 11462.1 11510.64   150 9284.11 9310.29 5670.164 5695.73 4797.34 4820.13 

165 21353.64 21408.14 13431.48 13485.00 11444.41 11492.96   165 9283.82 9310.00 5670.1 5695.67 4796.44 4819.23 

175 21342.44 21396.93 13420.93 13474.44 11434.15 11482.7   175 9283.68 9309.86 5670.05 5695.63 4795.93 4818.72 

190 21327.47 21381.97 13406.01 13459.53 11420.64 11469.18   190 9283.52 9309.70 5669.99 5695.57 4795.29 4818.08 

200 21318.53 21373.03 13396.71 13450.23 11412.68 11461.23   200 9283.42 9309.60 5669.96 5695.53 4794.88 4817.67 

215 21306.41 21360.90 13383.71 13437.23 11402.06 11450.6   215 9283.33 9309.51 5669.92 5695.49 4794.42 4817.21 

225 21292.24 21346.73 13375.64 13429.16 11395.72 11444.26   225 9283.28 9309.46 5669.90 5695.47 4794.12 4816.91 

240 21289.00 21343.49 13364.36 13417.88 11387.16 11435.7   240 9283.20 9309.38 5669.86 5695.43 4793.66 4816.45 

250 21282.83 21337.33 13357.35 13410.87 11382.00 11430.54   250 9283.15 9309.33 5669.84 5695.41 4793.38 4816.17 

265 21274.31 21328.80 13347.53 13401.05 11374.96 11423.51   265 9283.12 9309.30 5669.82 5695.40 4793.09 4815.87 

275 21269.04 21323.54 13341.41 13394.92 11370.68 11419.23   275 9283.10 9309.28 5669.82 5695.39 4792.96 4815.75 

290 21261.70 21316.19 13332.79 13386.31 11364.79 11413.34   290 9283.08 9309.26 5669.81 5695.38 4792.76 4815.55 

300 21257.13 21311.63 13327.40 13380.92 11361.18 11409.73   300 9283.08 9309.26 5669.80 5695.38 4792.66 4815.45 
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/**Weibull Model*/ 

proc nlmixed data=efficacy11; 

       bounds gamma > 0; 

parms b0=8 b1=1 gamma=1; 

       linp = b0+b1*LOGN; 

       alpha = exp(-linp); 

       G_t= exp(-(alpha*tte)**gamma); 

       g=gamma*alpha*((alpha*tte)**(gamma-1))*G_t; 

       ll=(vevent=1)*log(g) + (vevent=0)*log(G_t); 

       model tte~general(ll); 

 

/*Weibull model predictions*/ 

       predict 1-exp(-((exp(-(b0)))*1460)**gamma) out=cdf2; 

   run; 

 

/**Log-Normal Model*/ 

 

PROC NLMIXED data=efficacy1; 

    parms  b0=-1 b1=0 sigma=1; 

             bounds sigma>0; 

    

    mu=(b0+b1*LOGN);    

   *survival function; 

 st=(1-cdf('LOGN',tte,mu,sqrt(sigma))); 

    *Density fuction; 

    g = exp(-0.5*((log(tte)-

mu)**2/sigma))/((y*(2*sigma*CONSTANT('PI'))**0.5)); 

    ll=(vevent=1)*log(g)+ (vevent=0)*log(st); 

    model tte~general(ll); 

 

 /*Lognormal model predictions*/ 

predict 1-(1-cdf('LOGN',1095,(b0+b1*logN),sqrt(sigma))) out=cdf1; 

   run; 
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/**Log-logistic Model*/ 

 

proc nlmixed data=efficacy1; 

 bounds gamma > 0; 

 parms b0=8 b1=1 gamma=1; 

 linp  = b0 + b1*LOGN; 

 alpha = exp(-linp); 

 G_t   = 1/(1+(alpha*tte)**gamma); 

 g = (gamma*((alpha)**gamma)*(tte)**(gamma-1) /(1+(alpha*tte)**gamma))*G_t; 

 ll = (vevent=1)*log(g) + (vevent=0)*log(G_t); 

 model tte ~ general(ll); 

 

 /*Loglogistic model predictions*/ 

 predict 1-1/(1+(exp(-(b0 + b1*LOGN))*1095)**gamma) out=cdf3; 

  run; 

 

 

/*Data preparation for the piecewise model*/ 

data effc1; 

  set efficacy1; 

    year=ceil(tte/365) ; 

      do j=1 to year; 

        time=365; 

          event =0 ; 

          if j=year and vevent=1 then do; 

         event=1; 

       time=tte-365*(year-1) ; 

      end; 

     output; 

    end; run; 

 

data effc; 

set effc1; 

if event=0 and tte>0 and tte<365 and j=1 then time=tte; 

if event=0 and tte>365 and tte<730 and j=2 then time=tte-365; 

if event=0 and tte>730 and tte<1095 and j=3 then time=tte-365*2; 

if event=0 and tte>1095 and tte<1460 and j=4 then time=tte-365*3; 

y1=log10(time); 

run; 
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/***********Piecewise Exponential Model*****************/ 

proc nlmixed data=effc; 

       parms b0=8 b1=1 a1=1.1 a2=2 a3=2 a4=2; 

       linp  = b0 + b1*LOGN +a1*(J=1)+a2*(J=2)+a3*(J=3)+a4*(J=4); 

       alpha = exp(-linp); 

       G_t   = exp(-(alpha*time)); 

       g     =alpha*G_t; 

       ll    = (vevent=1)*log(g) + (vevent=0)*log(G_t); 

       model time ~ general(ll); 

       /*piecewise exponential  model predictions*/ 

       predict 1-exp(-(exp(-(b0 + b1*LOGN +a1*(J=1)+a2*(J=2)+ a3*(J=3)    

+a4*(J=4)))*365)) out=cdf4; 

   run; 
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