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Abstract

In medical and epidemiological research a common technique is to categorize a continuous

variable before evaluating its prognostic impact on the clinical trial outcome of interest. This

study is related to a clinical trial; which was designed to test the effectiveness of a new treatment

compared to a currently used treatment for prostate cancer. In this study, we focused on

finding a dichotomous latent factor based on the observed risk factors - pain score and PSA

level, and then estimating the treatment effect. The patients having low pain and PSA level

lower than the estimated threshold were considered as asymptomatic patient and the others

are symptomatic patients. We used Cox(1972) model to estimate the effect of the covariates

on survival time. We have applied different approach to estimate the threshold for PSA.

In first approach, we estimated the best cutoff point as the PSA with maximum differences

in treatment effect between asymptomatic and symptomatic patients. This estimated cutoff

separates the patients with significantly different treatment effect. Separation of the patients

in a better way does not necessarily indicate the best fit of the model to the data. In the second

approach, we estimated the threshold by maximizing goodness of fit components; likelihood, c-

index and concordance probability estimate. These estimates of cutoff failed to show significant

differences in treatment effect between two groups of patients. The results of the parameter

estimates in external validation were not as good as the train set,when threshold was estimated

based on maximum differences of treatment effect. Whereas, the estimated threshold in the

second approach, based on goodness of fit, had shown more stable estimates for new data set.

Thirdly, We used another technique, Bayesian change point model for estimating the threshold

and the regression parameters in Cox model. The threshold and the effect estimated in this

method were closer to the estimate using goodness of fit components.

Finally it was concluded based on the second and third approach that, the effect of the

treatment was not different in asymptomatic and symptomatic patients.

Keywords: Cutoff point, latent factor, Bayesian change point model.
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1 Introduction

Prostate cancer is a form of cancer that develops in the prostate, a gland in male reproductive

system. Rates of detection of prostate cancers are higher in developed countries compare to

developing countries. Globally, prostate cancer is the sixth leading cause of cancer related death

in men [1].

Prostate-specific antigen (PSA) is a protein made by prostate tissue; can be detected in

blood. Cancer cells make excessive amounts of this protein, so usually rising PSA levels are used

as a signal of having something wrong with the prostate. PSA threshold for suspecting prostate

cancer varies with age and race of the patients. Also the annual rate of change in PSA level

is considered as an important factor[2]. Generally the higher PSA level and the faster rate of

increasing the PSA, indicates the presence of more cancer cell in the body. But this is not always

true. Sometimes PSA level may not be increased in the presence of prostate cancer.

Different types of treatments are available for prostate cancer patients. Some treatments

are currently used; standard treatment and some are being tested in clinical trials. Prostate cancer

could be very aggressive or very slow-growing. The Prognosis and treatment options depend on

the stage of the cancer (PSA level, grade of tumor, whether the cancer has spread to other place

in the body), patient’s age and some other related factors[3].

Dichotomizing continuous covariates is a common practice in medical and epidemiological

research for both clinical and statistical reasons. From a clinical point of view, binary covariates

may be preferred for classifying high or low risk/response set. From statistical point of view,

binary covariates may be preferred for simple interpretation of common effect measures from

statistical model such as odds ratios and relative risk. The choice of a cut point to dichotomize

a continuous variable needs attention. Most often biological knowledge about a risk factor or the
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results in earlier studies is used. If well established cut points are not available, then statistical

techniques are required to determine the cutoff point. Two broad categories of statistical methods

to select the cutoff point are data-oriented and outcome-oriented. Data oriented method involves

- using mean or any certain quantile as cutoff point. And the outcome oriented methods provide a

value of a cut point that correspond to the most significant relation with outcome. Generally, the

outcome-oriented methods are preferred compared to data-oriented methods. Different statistical

methods for finding the candidate cutoff point has been applied in literature, such as minimum

p-value approach or alternatively the maximum statistic approach . Kim (2004) [4] used profile

likelihood to find cut point to dichotomize a continuous covariate in Cox model. Williams et.

al. (2006) [5] used maximum differences between the two dichotomous group using the log-rank

statistic for time-to event outcome. Some other criteria for choosing an optimal cutoff point have

been applied, like maximum effect size, maximum precision of estimates.

In this study, the overall survival endpoint was compared between the patients receiving

two treatment: a standard treatment available in market and a new treatment. The patients were

not homogeneous in terms of risk factors. So the treatment effect should be estimated considering

the effect of the other considered covariates; pain score and PSA level. The latent covariate group

was defined as a function of these two observed covariates, patients having low pain and PSA lower

than the threshold would be in asymptomatic group, otherwise in symptomatic group. Therefore,

the ultimate goal of this study was to estimate the optimal cutoff point for PSA level and estimate

the treatment effect.

In this report we have described the data set used for the analysis in section two. The

optimum cutoff point for PSA was estimated using different outcome oriented objects - difference

in hazard ratio between subgroup patients and goodness of fit components. And the effect of the

covariates (treatment and group) was estimated using Cox model with the selected cutoff. These
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methodologies have been described in section three. In section four application of these methods

to the data set and selected results have been presented. In section five we have done a simulation

study. In chapter six change point modelling technique has been applied in Bayesian frame work

for the considered Cox model. And in the final chapter we discuss the results and make conclusion

based on it.
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2 Data

Data used in this report is from a clinical trial conducted on prostate cancer patients in differ-

ent countries. 1088 patients were observed to assess the effectiveness of a new prostate cancer

treatment, compared to a standard treatment. Two end points were considered in the main trials;

overall survival and progression free survival. In this study we considered only the overall survival

endpoint. About half of the patients (49.6%) received the experimental drug and the other half

was treated with the standard drug. The covariates considered in the study were the treatment

(1=new treatment, 0=standard treatment), pain score (1=low pain and 0=high pain) and PSA

level in observed count (ng/mL).

For overall survival endpoint, 434 events were observed during the study period of 1088

days and 654 patients were censored. Table 1 shows, among 546 patients receiving the ex-

Table 1: Overall Survival Endpoint

Experimental Treatment Standard Treatment

Number of Patients 546 542

Number of events 200 (36.63 %) 246 (43.17 %)

Median Survival Time 1074 days 917 days

perimental treatment, 200 (36.63%) were experiencing the event death during the study period.

While among 542 patients receiving the standard treatment, 234 (43.17%) were experiencing the

event death in the study duration.In addition, 253 (35.33%) out of 716 patients, reported lower

pain had the event (death), and 181 patients out of 372 (48.66%) having higher pain died during

the study time. In an overall observation, censored patients had more wider range of PSA values

(0.04, 6606.44) compared to PSA values (2.17, 3927.43) of the patients had died.

Kaplan-Meier estimate of the survival function for the two treatment groups are in figure 2, indi-
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Figure 1: PSA level among censored and event patients

cates the higher chance of surviving for the patient using the experimental treatment as compare

to the patients using the standard treatment.

Figure 2: KM survival curves for two treatment groups
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3 Methods

This study is related to a clinical trial which was designed to check the effectiveness of a new

treatment compared to a standard one interms of overall survival and progression free survival.

In this study analysis we used only the overall survival endpoint. The study objective was to

create a latent group variable as a function of the observed covariates - pain score and PSA level,

and estimate the treatment effect. Formation of group variable was mainly related to select cutoff

point of PSA. In this section, we discuss the methods of estimating the best cutoff point and fit

Cox model to estimate the treatment effect after adjusting the other covriates effect.

3.1 Basic Survival Model

The We used Cox (1972) model for analyzing the effect of covariates on survival. Treatment was

the main interest covariate in this study. The Cox model for assessing only the treatment effect,

ignoring the effect of other covariates

λ(t|Z) = λ0(t) exp(βtreatment) (3.1)

Where λ0(t) is an arbitrary baseline hazard rate and β is regression parameter for treatment, has

been estimated based on partial likelihood rather than a full likelihood approach, where λ0(t) is

treated as a nuisance parameter function.

Patients used in this study were not identical in terms of the considered risk factors- pain

score and PSA level. In this study, effect of these two covariates have been considered through a

latent factor - group. Treatment effect was estimated using Cox model after adjusting the effect

of group as

λ(t|x) = λ0(t) exp(β1 treatment + β2 group + β3 treatment∗group) (3.2)
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Survival curve based on the Product-Limit estimator of the survival function, proposed by Kaplan

and Meier (1958) in equation (3.3) was used to observe the survival pattern of the patients receiving

new and standard treatments, among the two latent groups.

S(̂t) =


1 if t ≤ ti∏
ti≤t[1−

di
Yi

] if ti ≤ t
(3.3)

3.2 Latent Group Analysis

A dichotomous group variable was created as a function of pain score and PSA level; with value

1 indicating the asymptomatic group and value 0 indicating symptomatic group, as

Group =


1, if pain =low and PSA < threshold

0, otherwise

(3.4)

Expression (3.4) is indicating that, formation of the dichotomous group variable depended on a

hidden threshold value of PSA; denoted by tau in this study. The next step was to find out an

effective threshold value of PSA level.

3.3 Estimation of optimal cutoff point

In this section, we focus on different methods to estimate the cutoff point to create a dichotomous

explanatory variable, group as in equation (3.4). Dichotomizing a continuous variable, initiated

by Thomsen (1988) [6] makes the model more interpretable. The risk measuring variables- pain

score and PSA level has been dichotomized depending on the cutoff point for PSA. We applied

different approaches to find out the optimum cutoff point from a set of possible cutoff points using

grid search technique as is describing below.

The optimum cutoff point of PSA (tau) was calculated in different steps:

1. Grid search method was applied within the inner 70% distribution of the PSA values and
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each integer point within this interval was considered as the possible candidate cutoff. We

have considered only inner 70% range to avoid having small number of patients in one of the

groups following dichotomization.

2. At each candidate cutoff point, dichotomous group covariate was calculated and Cox PH

model as in equation (3.2) was fitted

3. Optimum cutoff point was calculated based on the following outcome objects:

(a) Maximum treatment effect on subgroup

(b) Maximum goodness of fit component

i. Maximum likelihood

ii. Supreme c-index

iii. Supreme concordance probability estimate (cpe)

3.3.1 Maximum treatment effect on subgroup

As the first approach, the optimum threshold for creating group variable was estimated based on

the maximum difference of treatment effect between the asymptomatic and symptomatic patients.

Mathematically, we have selected the PSA value which has given maximum interaction effect be-

tween treatment and group (in absolute quantity); β3 in linear predictor of Cox model in equation

(3.2). Such that, patients in asymptomatic group were benefited most from the new treatment. At

the marginal portion of the considered range, standard error was higher cause of fewer number of

patients in one of the subgroups and could estimate unstable subgroup treatment effect. Finally,

we considered the best cutoff which provide maximum standardized interaction effect, i.e., β3
SE(β3)

;

or maximum test statistic (or minimum p-value) for the interaction effect parameter β3.
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3.3.2 Maximum goodness of fit components

At the first approach, we have estimated the threshold as the PSA value where the differences of

treatment effect was maximum between two groups. But this model may not be the best fitted

model. Therefore, we propose some other techniques, based on goodness of fit to estimate the best

cutoff.

Maximum likelihood The best cutoff was estimated as the PSA value at which the Cox model

(3.2) had maximum likelihood. Log-likelihood was considered in the calculation instead of likeli-

hood.

Supreme c-index C-index was used to estimate the optimum cutoff for PSA and to create

group variable. The PSA value which calculated maximum value of c-index for equation (3.2) was

taken as the best cutoff.

Harrell et. al. (1982, 1984) [7, 8] proposed the c-index as a way of estimating the

concordance probability for survival data is defined as

c =
number of concordance pairs

number of usable pairs

Number of usable pairs is computed by counting all pairs {(ti, xi, δi), (tj , xj , δj)} of the observed

data, where the smaller follow-up time is an event time. And concordance pairs are the patients

pairs, in which the predicted survival times and the observed follow-up times are concordant. If

predicted survival times are equal for a patient pair, 1
2 rather than 1 is added to the count of

concordant pairs. The c index measures predictive information derived from a set of explanatory

variables in a model, related to rank correlation between observed and predicted outcomes. The

value of c-index=0.5 indicates no predictive discrimination (equivalent to Somers’ D = 0, indicat-

ing no correlation) and 1 represents perfect discrimination of patients (Somers’ D = 1, represents
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perfect correlation). Somers’ D rank correlation index is related to c-index as 2(c − 0.5). In this

analysis we used R-package Hmisc to calculate c-index.

Supreme concordance probability estimate As the third component of goodness of fit, we

used concordance probability estimate (cpe), another format of concordance probability measure

within the frame work of Cox model. PSA value which measured maximum cpe for the Cox model

(3.2) was considered as the cutoff point.

Gonen and Heller (2005) [9] estimated c index as a simple function of Cox model, which is more

robust to the rate of censoring. They define concordance probability

K(β) = pr(T2 > T1|βTx1 ≥ βTx2)

and the concordance probability estimate (CPE) was

Kn(β̂) =
2

n(n− 1)

∑∑
i<j

{
I(β̂Txji < 0)

1 + exp(β̂Txji)
+

I(β̂Txij < 0)

1 + exp(β̂Txij)

}

where, xij = xi − xj

We used R-package CPE to calculate cpe values.

3.4 Model formulation

Based on different optimization components used in estimating the best cutoff point, we propose

four models in two groups in this section. All these models are considered as Cox model with the

same linear predictor in equation (3.2), only the latent group variable was defined by different

cutoff. In later section we propose another model in Bayesian frame work.

1. Model I: threshold was estimated by maximizing the interaction effect.

2. Model II: threshold was estimated by maximizing the goodness of fit components
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(a) Model II(a)threshold was estimated by maximizing the log-likelihood

(b) Model II(b): threshold was estimated by maximizing c-index

(c) Model II(c): threshold was estimated by maximizing concordance probability estimate

(cpe)

3. Model III: threshold was estimated using Bayesian change point model (discuss in chapter

six)

We checked the proportional hazard assumption for each model.

3.5 Model validation

In this study we estimate the optimum cutoff point and then estimate the model parameters. To

check whether the cutoff estimation works perfect, the most stringent test is an external validation-

the application of the model to a new population. We have used three-fold cross-validation to

estimate the performance of estimated cutoff point. The process flow chart is describing in figure

3

Figure 3: Three-fold cross validation flow chart

Cross-validation is repeated data-splitting. We did the modelling process 100 times,

leaving one-third of the data set for testing called test set and estimate the cutoff point using the

12



techniques in section 3.3 based on remaining two-third objects, train set.

Using the estimated cutoff point, the latent covariate group was created and estimated

the regression parameters, and hazard ratio for the train data set. The cutoff points calculated

from the train set were applied to the test data set to formulate group variable and fit the Cox

regression model (3.2).

R language software version 3.0.1 and also Statistical Analysis System (SAS) version 9.3

have been used in the analysis.
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4 Application to the Data

In survival analysis when the interest is to assess the impact of covariates on survival time, Cox

proportional hazard model is a popular method to use. The result of Cox model to check only

the impact of treatment on survival was significant (p-value=0.019) and the estimated hazard of

death for the patients receiving the new treatment was 20.30% lower compared to the patients

treated with the standard treatment.

4.1 Estimation of optimum cutoff point

A latent covariate; group was formed as a function of the observed covariates pain score and PSA

level. As mentioned in the earlier section the latent covariate depends on hidden threshold of PSA

level. Figure 4 indicates the estimate of PSA based on the differences of hazard ratios (model

Figure 4: Panel a, b, c and d indicates PSA cutoff based on maximizing the components: a)

treatment effect on subgroup, b)log-likelihood, c)c-index, d) cpe

I) was much different from the threshold estimated using the goodness of fit measures. Using
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Table 2: Five candidate cutoff points

Tau Interaction effect Tau log-likelihood Tau cpe Tau c-index

114 -2.4389 55 -2774.17 55 0.6215 56 0.6148

112 -2.3932 56 -2774.49 56 0.6212 55 0.6148

113 -2.3932 54 -2774.67 54 0.6207 54 0.6140

109 -2.3691 58 -2775.57 58 0.6200 58 0.6137

110 -2.3691 51 -2775.65 52 0.6196 52 0.6130

hazard ratio or regression parameter for the interaction effect the cutoff point was estimated at

PSA=114, while maximum log-likelihood and maximum cpe provide the same estimate, PSA=55,

and another goodness of fit component provide very close estimate PSA=56 as shown in table 2

4.2 Latent group analysis

Based on the estimated cutoff points, latent covariate group was formed and fitted the Cox model

as in equation (3.2) The KM survival curve for the two groups of patients based on the cutoff at

PSA=114 and PSA=55 is presented in figure 5 In Figure 5(a), differences of the survival probability

Figure 5: Panel a and b indicates KM survival curves with cutoff at a) maximum treatment effect

on subgroup (PSA=114), b) maximum likelihood (PSA=55)

between two treatment groups was much higher for the asymptomatic patients. And the estimated
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survival probability pattern was almost similar for two treatment groups in asymptomatic groups;

while group was created based on the cutoff at PSA=114. The difference of the survival probability

was much lower between two treatments as in figure 5(b) in asymptomatic patients, and also the

symptomatic group is showing little difference in treatment effect while the cutff was estimated at

PSA=55.

4.2.1 Model I: Maximize subgroup treatment effect

As mentioned in the previous section, threshold was estimated at PSA=114 while maximize treat-

ment effect in subgroup. We defined model I as the Cox model in equation (3.2), with group

variable created as following:

Group =


1, if pain=low and PSA < 114

0, otherwise

Parameter estimates of model I, is presented in table 3 and the hazard ratio estimates for two

groups of patients are in table 4. Negative estimate of main effect of treatment in table

Table 3: Parameter estimates for model I

Parameter Estimate SE p-value

Treatment (new) -0.0245 0.1234 0.842

Group (asymptomatic) -0.4923 0.1326 0.0002

Treatment∗Group -0.487 0.1996 0.0147

3 indicates the new treatment decreases hazard of death compared to the standard treatment

for symptomatic patients, but the difference was not statistically significant. Also the negative

group effect describes lower hazard of death for asymptomatic patients compared to symptomatic

patients who were treated with the standard treatment. Significant interaction effect indicates the

performance of the treatments was different in asymptomatic and symptomatic patients. -2logL
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for model I was 5571.60 and the AIC was reported as 5577.60. Table 4 is showing performance

Table 4: Hazard ratio estimates for model I

Parameter Estimate SE Lower limit upper limit p-value

HR in group 0 0.975 0.120 0.7661 1.242 0.842

HR in group 1 0.599 0.094 0.440 0.815 0.001

of the new drug among two groups; the new treatment has significantly reduced the hazard (by

40.05%) of death among asymptomatic patients. While among the symptomatic patients, the

estimated of two treatments were almost similar. This result is expected, as the latent group

variable was formed so that the asymptomatic patients would be benefited more with the new

treatment, and also supported by the figure 5(a).

4.2.2 Model II: Maximize goodness of fit components

Figure 4 indicates the similar performance of the candidate cutoff points while goodness of fit

components (log-likelihood, c-index and and concordance probability estimate) were considering.

Table 2 confirms likelihood and cpe provide similar estimate of cutoff point at PSA=55, and

c-index results almost similar estimate of best cutoff point at PSA=56.

Model II(a), II(b) and II(c) were defined based on the cutoff points estimated from

goodness of fit components. Since model II(a) and II(c) have the same estimate of cutoff, so the

explanatory variable group in model II(a) and (c) was defined together as

Group =


1, if pain=low and PSA < 55

0, otherwise

While model II(b) considered the estimate of cutoff depending on c-index. The covariate group is
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defined as

Group =


1, if pain=low and PSA < 56

0, otherwise

Results of model II(a) and (c), and also the result of model II(b) have been presented in table

5. Negative value of the estimated treatment (main) effect indicates new drug reduced the

Table 5: Regression Parameter Estimates of Model II

Parameters Model II(a), (c)(cutoff = 55) Model II(b) (cutoff = 56)

Estimate SE P-value Estimate SE P-value

Treatment -0.16031 0.10995 0.1448 -0.16904 0.11013 0.1248

Group -0.83352 0.15124 0.0001 -0.84506 0.15124 0.0001

Treatment*Group -0.28891 0.23124 0.2115 -0.25301 0.23006 0.2714

hazard of death among the symptomatic patients, but this effect was not statistically significant

in all of these three cases. The estimated group effect indicates that asymptomatic patients had

(exp(−0.83352) = 0.4345) 56.54% lower hazard of death as compared to symptomatic patients,

while treated with the standard treatment. Interaction effect of treatment and group was not

statistically significant, indicates no statistical evidence of differences in treatment effect among

symptomatic and asymptomatic patients. -2logL for model II(a) and model II(c) was 5548.35,

AIC was reported 5554.35, while -2logL for model II(b) was 5548.98 and AIC was reported as

5554.98.

Latent group variable was defined based on different estimates of threshold. And the

created latent variable results differences in the estimates of regression parameters and HR as

shown in table 3 and table 5. All the goodness of fit components gave almost same pattern of

threshold, as in figure 4 and in the next part of the analysis we considered the model II as Cox

model defining by cutoff at PSA=55, representing the estimate by maximizing goodness of fit
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components. The notable point here is that between two approaches or two models; model I pro-

vide significant differences in treatment effect between asymptomatic and symptomatic patients.

The other approach, model II do not provide sufficient evidence of treatment differences between

symptomatic and asymptomatic patients.

Since both the threshold and hazard ratio were estimated from the same data set, we need

to check whether these estimation of threshold is equally good in estimating the model parameters

for a new data set. We performed three-fold cross validation to check whether these threshold

selection procedures give equally good result when patient variation is taken in to account.

4.3 Cross-validation

100 repeats of 3-fold cross-validation was performed in this study as mentioned in the method

section. The interaction effect between treatment and group was overestimated (in quantity) in

Table 6: Cross validation estimates of Model I and II

Parameters Model I(cutoff =114) Model II (cutoff = 55)

Estimate train test Estimate train test

Treatment -0.02 (0.12) -0.03(0.09) -0.14(0.16) -0.16(0.11) -0.15(0.07) -0.16(0.14)

Group -0.49(0.13) -0.52(0.14) -0.69(0.34) -0.83(0.15) -0.84(0.13) -0.75(0.23)

Treat∗Group -0.48(0.20) -0.61(0.22) -0.33(0.39) -0.29 (0.23) -0.32(0.18) -0.32(0.32)

cpe 0.607 0.605 0.622 0.615

the train data set as compared to test data for model I; when the threshold value was estimated

at PSA=114 as in table 6. In case of model II, i.e., when the threshold was estimated as PSA=55

the interaction effect also overestimated (in quantity), but for both train and test set and also the

rate of overestimation was not so remarkable. The dot plot in figure 6 indicates large variability of

the parameter estimates in the test data sets as compared to train data set. Which is expected as

smaller number observations were used in the test data set as compared to the train set. Figure
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Figure 6: Treatment and group interaction effect estimate in cross validation; panel a) for model

I and panel b) for model II

6(a) is presenting the cross-validation estimate of the interaction effect between treatment and

group, in train and test data set for model I. This figure also shows the train set estimates had

large negative value compared to the test set estimation. Figure 6(b) is presenting the estimates for

model II. In some points train estimate was overestimated and also test estimates in some other

points Box plot in figure 7(a), supports over-estimation of the hazard ratio for asymptomatic

Figure 7: Hazard ratio estimates in cross validation for asymptomatic group; panel a) for model

I and panel b) for model II
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patients in train data set for model I. Which indicates the selected thresholds do not provide the

same good results for new data sets. Figure 7(b) is presenting the cross-validation estimates for

asymptomatic patients in model II. Boxplot result for model II does not indicate remarkable over

or under estimation in train and test set estimation. The dotted line indicates the estimates of

hazard ratio from data set for two models. Estimates in train and test set are more close to the

true estimates for model II, compared to model I. Concordance probability estimates (CPE) as

in table 6, indicates better discriminatory power of the proportional hazard model represented by

model II compared to model I in both train and test set.
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5 Simulation

We performed a small simulation study to estimate the treatments effect with making adjustment

for the effect of the latent covariate group, also to compare the estimates in train and test set.

This simulated data set consisted of (ti, δi, xi), where ti was the survival time, δi was survival

indicator; event( δ = 1) and censored (δ=0), and xi indicated the covariates. The covariates

considered this simulated data set were treatment and PSA level. Treatment was considered as

a binomial variable having values 1 = experimental treatment and 0=standard treatment with

p = Prob(receiving new treatment) = 0.4967. The other covariate PSA level was generated from

Uniform distribution within the range [6, 285]. Survival indicator (δ) (1=event and 0=censored)

was generated as binomial random variable with p = Prob(event=0.3981), similar to the original

data.

A proportional hazard relationship was generated from the exponential regression model

ti = exp(β1treatmenti + β2groupi + β3treatmenti ∗ groupi)εi (5.1)

where β1 = −0.0245, β2 = −0.4923 and β3 = −0.487. The εi were independent identically

distributed exponential variable with rate parameter =6.1. So that the response - survival time

(t) was generated as Exponential distribution with rate=(η − 6.1). while,

η = exp(β1 treatment + β2 group + β3 treatment∗group) (5.2)

and variable group was created as a function of PSA level as

Group =


1, if PSA < 114

0, otherwise

and mean survival time was almost similar to the mean survival time calculated in the main data

set. 100 data sets were generated each with 1085 data points.
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Cox (1972) model was fitted with linear predictor η as in equation (5.2), and instead of

fixing the threshold at PSA=114, new threshold was calculated from the generated data sets. To

find out the optimal PSA cutpoint, grid search method was applied on a smaller range of PSA

[80, 130]. And the similar technique was applied as in the main data set to find out the optimal

cutoff point, the maximum interaction effect between treatment and group (β3) statistics. Let τj

be the estimated cut point and β̂ij the estimate of regression parameters βi, i = 1, 2, 3 in jth

simulation, j = 1, 2, . . . , 100. The local squared bias was estimated for βi as b̂2i = {β̂i − βi}2, with

β̂i =
∑100

j=1
β̂ij
100 , and also estimated the local variance as v̂i =

∑100
j=1

{β̂ij−β̂i}2
100 . So, the estimate of

local mean square error was ˆMSEi = b̂2i + v̂i.

Three fold cross-validation was performed 50 times within each simulation, i.e., two-third

of the data set was selected randomly to estimate the threshold tau(τ), and the model parameters

were also estimated from this data set, called train set. Using this estimated cut point tau(τ),

regression parameters were estimated from the rest part i.e., test set. This was done 50 times

within each simulation. At the jth simulation, the cutoff point was estimated as τj =
∑50

k=1
τjk
50

for jth simulation and parameters estimated from train set as β̂(tr)ij =
∑50

k=1
β̂(tr)ijk

50 , where

β̂(tr)ijk was estimate of βi, (i = 1, 2, 3) from the jth simulation in kth train set in cross

validation. And the estimate of parameters from train set was β̂(tr)i =
∑100

i=1
β̂(tr)ij
100 . The local

squared bias estimated for βi from train set was b̂(tr)2i = {β̂(tr)i − βi}2, and the estimated local

variance was v̂(tr)i =
∑100

j=1
{β̂(tr)ij−β̂(tr)i}2

100 . So, the local mean square error was estimated as,

ˆMSE(tr)i = b̂(tr)2i + v̂(tr)i.

Parameters estimated at jth simulation, from test set as β̂(te)ij =
∑50

k=1
β̂(te)ijk

50 , where

β̂(te)ijk was estimate of βi, (i = 1, 2, 3) from the jth simulation in kth test set in cross validation.

And the estimate of parameters from test set was β̂(te)i =
∑100

j=1
β̂(te)ij
100 . The local squared bias

estimated for βi from test set was b̂(te)2i = {β̂(te)i − βi}2, and the local variance was v̂(te)i =
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∑100
j=1

{β̂(te)ij−β̂(te)i}2
100 . So, the local mean square error was ˆMSE(te)i = b̂(te)2i + v̂(te)i.

Different combination of parameters (τ=(100, 114, 130) and β3=(0.25, 0.487, 0.75)) ap-

plied to this data set and estimate the threshold by maximizing the differences of treatment

effect between two groups of patients . Further, another parameter combinations (τ = 55, β1 =

0.150, β2 = −0.833andβ3 = (−0.288,−0.50) was considered for estimating the threshold by maxi-

mizing likelihood (model II). Simulation result (in table 6) indicates that the train set overestimate

(in absolute quantity) the interaction effect (β3) for the first set up (model I). and the test set

underestimate (in absolute quantity) the effect. For the second set up (model II) the estimate in

train and test set were not much different. Estimates of local bias, variance, mean squared error

and relative bias for one parameters combination (tau = 114, β3 = −0.487) in first set up, has

been shown in table 9 in the appendix.

Table 7: Estimates of treatment and group interaction effect from simulation

Tau True Value Without CV Train Test

100 -0.25 -0.287 -0.405 0.246

-0.487 -0.480 -0.582 -0.431

-0.75 -0.759 -0.840 -0.686

114 -0.25 -0.274 -0.391 -0.241

-0.487 -0.501 -0.608 -0.461

-0.75 -0.712 -0.792 -0.6527

130 -0.25 -0.268 -0.390 -0.225

-0.487 -0.480 -0.559 -0.408

-0.75 -0.752 -0.805 -0.684

55 -0.288 -0.334 -0.346 -0.330

-0.50 -0.531 -0.548 -0.506
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6 Bayesian Change Point Model

We modeled the time-to-event data using proportional hazard model. Cox’s method does not

assume any particular distribution for survival times, it only assumes that the effect of the different

variables on survival are constant over time and are additive in exponential scale. Partial likelihood

(Breslow) likelihood for the considered Cox model

L(β) =
n∏
i=1

 di∏
j=1

exp(η)∑
l∈Ri

exp(η)

vi (6.1)

where,

η = β1treatment + β2group + β3treatment∗group

β is the parameter vector, n is the total number of observations in the data set, ti is the ith time

which can be either event time or censored time, di is the number of failures at time ti, vi is

censoring indicator (1=event and 0=censored), Ri is risk set at ith event time (ti), and group is

a latent covariate, created depending on the estimate of hidden cutoff point cp.

In literature different approaches has been used to estimate hidden value of cp [10, 11],

such as partial MLE. We have applied the Bayesian approach, where cp was assumed to have

a distribution instead of a certain value. Estimation of cp in Bayesian hierarchical method was

done in two steps; apply Bayesian method for Cox model and then use change point technique in

Bayesian Cox model.

6.1 Bayesian Cox Model

In Bayesian frame, work regression parameters of Cox model are considered to have some distribu-

tion, instead of having a fixed value. The variable group has been created in this section based on

the estimated threshold in model I and model II. Vague normal prior distribution N(0, 106) were
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considered for the model parameters (βs). Posterior distribution of the regression parameters, βs

are

π(β|D) ∝ Lp(D|β)p(β) (6.2)

where Lp(D|β) is the likelihood function with regression coefficients (β) as parameters. Formu-

lation of marginal posterior distribution is not straight forward, as the partial likelihood of Cox

model does not assume any distribution. MarkovchainMonteCarlo technique has been used to

solve this problem. We have used SAS (version 9.3) procedure Proc MCMC based on blocked

Metropolis(-Hastings) algorithm. In Proc MCMC, it is required to specify the likelihood function

and the prior as mentioned in equation (6.2). Construction of likelihood function is not straight

forward in Cox model, as no certain distribution is assumed for the response, survival time. As

seen in equation (6.1) the likelihood depends on the risk set at each event time. The risk set

consists of all data point j such that j ≤ i, when the time variable is ordered in descending order.

The data set considered in this study have multiple events at some event time point. So, it was

needed to check whether subsequent observations i.e., observations i, i + 1, i + 2 have the same

survival time as ti. If more than one observations have the same event time, all tied observations

need to be included in the risk set calculation. That is, in calculating likelihood function it is

required to access both the previous and the subsequent observations in the data set. In Proc

MCMC, we have used LAG function to do it, and then cumulatively increment in the survival

function in SAS statements to create the likelihood function.

6.2 Change point model

In this section we have considered latent covariate, group correspond to a change point cp, where

group =

 1, if pain score=low and PSA < cp

0, elsewhere
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Which indicates hazard ratios and also the mean survival times are different for the patients having

lower and higher level of PSA compared the change point.Along with the regression parameters,

the change point was considered as a random variable. Prior for the change point was considered

as Uniform distribution over the range (9,205), the inner 70% distribution of PSA level in the data

set. Then the joint distribution of likelihood and prior was

π(β, cp|D) ∝ Lp(D|β, cp) p(β) p(cp) (6.3)

Marginal posterior distribution of cp, i.e., the distribution of cp|Y requires integra-

tion over βs, which also required formation of joint distribution. This has been done through

Markov chain Monte Carlo sampling using Proc MCMC in SAS 9.3 version. Results for the

Table 8: Posterior summary measures of the parameters

Parameter Mean SD MCSE 2.5% HPD 97.5% MCSE/SD Sample

Treatment -0.158 0.110 0.003 -0.385 0.048 0.030 1000

Group -0.820 0.154 0.005 -1.148 -0.544 0.033 1000

Treatment∗ Group -0.305 0.232 0.006 -0.771 0.098 0.027 1000

cp 55.629 5.72 0.198 43.923 69.300 0.034 1000

Bayesian change point model is presented in table 8. Posterior mean of cp is 55.617 with 95%

credible interval (43.26, 69.45). Only main effect of group is significant, which indicates the hazard

was lower for asymptomatic patients compared to symptomatic patients. The main and interac-

tion effect of treat included 0 in the 95% credible interval indicates no significance differences of

treatment effect among asymptomatic and symptomatic patients. The reported value of DIC was

5559.78, deviance evaluated at the posterior mean, Dmean was 5547.82 and the effective number

of parameters (PD) were 5.974.

The posterior autocorrelations in figure A: 9 were very low for all lags. Again the trace
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plots in figure A: 10 showed good mixing for all parameters. Further Geweke (test result is in

table 11) and Heildelberger-Welch diagnostics indicated good mixing, but the chain was too small

for the Raftery-Lewis diagnostic. The MC error were below 5% of the posterior SD. Posterior

Figure 8: Panel a, b, c and d is showing the posterior density plots of the effects: a)treatment,

b)group c) treatment∗group d)change point estimate

density plot (fig 8) indicates normality for the regression parameters β1, β2 and β3, denoting the

main effect of treatment, group and their interaction effect. Also the change point estimate, cp

shows approximate normal distribution pattern.
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7 Discussion

The main objective of this study was to find best cutoff point (PSA value) to separate patients

into two groups; asymptomatic and symptomatic and estimate the treatment effect. To do this,

a latent covariate was formed as a function of two observed covariates; pain score and PSA level

and depended on the the threshold value of PSA.

We have applied systematically different approaches to estimate the best cutoff point,

and also to estimate the treatment effect. At the first approach, we estimated best cutoff point

by maximizing the object component; differences in treatment effect in two groups. Creating

group based on this estimate of threshold, provided significant separation of patients in terms of

treatment effect. Hazard ratio (of death) for the treatment (new treat vs. standard treat) was

much lower among asymptomatic patients as compared to the symptomatic patients. In the second

approach, thresholds of PSA was estimated using the best fitted point based on likelihood, Harrells’

c-index and concordance probability. All these three estimates were almost the same. And we

considered the estimate using likelihood for comparing the results with other approaches. Patients

grouped based this estimated threshold, was not significantly different in treatment effect. Which

indicates patients’ response on treatment was not different among these two groups of patients.

In the third approach, we used the change point model in Bayesian framework for esti-

mating the threshold and the model parameters. The threshold has been considered as the change

point and was estimated using both the prior distribution assumptions for the change point and

the data set. model used only one model and use the data once to estimate all parameters.

Threshold estimated at the first approach, i.e., model I provide significant differences

between the treatment effect in asymptomatic and symptomatic group. But this model did not

provide the best fitting to the data (maximum likelihood or minimum AIC). While the second
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approach, i.e., model II provide lower AIC compared to model I. Also the first approach failed to

provide similar good estimate of model parameters for new data set. While, the second approach

provide more stable results in case of fitting the model for new data set.

Threshold estimation method described above used the data set twice; to estimate thresh-

old and then estimate the model parameters. Which could overestimate or underestimate the

effects. In this study estimated value of the change point was quite similar to the threshold esti-

mated in the second approach. The change point model provide the shorter confidence interval as

compared to frequentist, for estimating the hazard ratio among asymptomatic patients (table 11,

in the appendix).

And finally we concluded that the patients receiving the new treatment were expected

to have longer survival time compared to the patients treated with the standard one. But while

treated with new treatment, the estimated survival time was not different in asymptomatic and

symptomatic group.

7.1 Recommendations

Appropriate treatment options usually correspond with risk level. Prostate Cancer Research

Institute suggested a general classification of risk groups based on PSA level, PSA density in

blood, PSA velocity, size of lump, % biopsy cores positive and Gleason sum. In this study the

effectiveness of the treatment were assessed between two groups by using pain score and PSA level

only. So, considering other important risk factors could be better options to find cutoff point.

In Bayesian change point model we considered Uniform prior for change point within

inner 70% range of PSA. Instead, some informative prior assumption(exponential, weibull etc.)

could be considered depending on the distribution of PSA.
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A

Graphical plots

Figure 9: Autocorrelation plot for treatment, group, treatment∗group and change point

Figure 10: Trace plot for treatment∗group (beta3) and change point (cp)
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B

Tables

Table 9: Parameter estimate from simulation

Parameter True Value Estimates Without CV Train Test

Treatment -0.0245 Mean -0.0165 0.0128 -0.0433

Bias 0.0079 0.0373 0.0188

Variance 0.0135 0.0132 0.0145

MSE 0.0135 0.0146 0.0149

Relative bias 32.55% 152.50% -77.11%

Group -0.4923 Mean -0.4866 -0.3681 -0.4348

Bias 0.0056 -0.3681 0.0574

Variance 0.0182 0.0145 0.0164

MSE 0.0183 0.0299 0.0197

Relative bias 1.14% 25.21% 11.67%

Treatment∗Group -0.487 mean -0.5011 -0.6088 -0.4616

Bias 0.0141 0.1218 0.0253

Variance 0.0377 0.0331 0.0387

MSE 0.0379 0.0480 0.0393

Relative bias -2.90% -25.01% 5.21%

MCE 0.0437 0.0438

cpe 0.5954 0.5876 0.5889

c-index 0.5958 0.5894 0.5905

Tau 114 110.01
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Table 10: Geweke diagnostics

Parameter z Pr > |z|

Treatment -0.685 0.493

Group -0.222 0.823

Treatment * Group 0.252 0.800

Change point 0.362 0.716

Table 11: Hazard ratio estimates for asymptomatic patients

Tau Estimate SE lower limit upper limit interval

55 0.6381 0.1298 0.4283 0.9507 0.5224

56 0.6557 0.1324 0.4414 0.9742 0.5328

114 0.5995 0.0941 0.4408 0.8155 0.3747

55.629 0.6423 0.1306 0.4311 0.9569 0.5258

Posterior estimate 0.6428 0.134 0.427 0.935 0.508
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