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Abstract

Malaria is a major health challenge in most of the developing countries leading to high morbid-
ity and mortality rates in the population. Seasonal variations, development of water projects
and their operation have some long history of facilitating increased transmission of vector borne
diseases. The study was motivated by the availability of the time-to-event dataset, which con-
tains data on time-to-first P.falciparum malaria infection. The main interest of the study is to
investigate the influence of seasons and distance to the Gilgel-Gibe hydroelectric dam reservoir
on the time-to-first malaria infection in children aged less than 10 years. To incorporate the
seasonal variation, a more flexible proportional hazards model was fitted by making some mild
assumptions concerning the baseline hazard. The resulting piecewise constant hazards model is
equivalent to a count regression model with aggregated event counts as response variable and
the log of exposure time as an offset. However, due to the aggregation of the event counts for
each period per village we expect some loss of power as compared to the piecewise constant
hazards model which we investigated through simulation studies. Marginal and conditional
models were used to analyse the clustered events.

Results indicate a significant seasonal effect for the time to first malaria infection. None of
the models fitted had a significant distance effect, but it can be noted that three of the four
models predicts an increasing incidence with increasing distance to the dam. Aggregation of
the events per the season of infection lead to some loss of power though not much, hence the
count regression seems a good alternative to the survival modelling.

To maximize on the economic benefits generated by Gilgel-Gibe hydroelectric dam, preventive
programmes against malaria and other related vector-borne diseases need to be implemented
in the households close to the dam reservoir and establishment of an early warning systems for

malaria outbreak especially at the onset of rains.

Keywords: Count regression, Piecewise constant hazards model, P.falciparum.



1 Introduction

1.1 Background

Malaria is a major health concern in most parts of Tropical and sub - Tropical regions of
Africa, Asia, South and Central America which might be attributed to the warm temperatures
that provide ideal habitats for mosquito larvae development. The World Health Organization
(WHO) estimates the annual malaria infections in Africa to be over 300 million and over 1
million annual deaths (WHO, 2001; WHO, 2010). Over 400 species of malaria parasites are
said to exist, with five of them known to infect humans (Service, 1991). The transmission of
malaria from one person to another is by a bite of an infected female Anopheles mosquito. In
most African countries, studies have shown that the flight range of different species of Anophe-
les mosquitoes ranges from 0.8 km to a maximum flight of about 3 km (Yewhalaw et al., 2009;
Thomson et al., 1995). Malaria shows a strong seasonal pattern with a lag time varying from
a few weeks at the onset of the rainy season to more than a month at the end of the rainy
season (Adugna, 2011; White, 1974). In Ethiopia, it is estimated that 75% of the land mass lie
below 2000 metres above the sea level and is malaria prone, hence two-thirds of the country’s
population is at risk of malaria, with an average of 7 million reported cases and 70,000 deaths
per year.

Malaria has led to high morbidity and mortality rate in the population leading to reduced
production activities. Settlement patterns have been influenced by the prevalence of malaria,
with concentration of population in less risk highland areas which has resulted in a massive
environmental degradation and loss of productivity exposing a large proportion of the country’s
population to a continued poverty (Adugna, 2011). Increased school absenteeism during malaria
epidemics significantly reduces learning capacity of children (Karunamoorthi and Bekele, 2012).
Coping with malaria epidemics overwhelms the capacity of the health services increasing the
public health expenditures substantially (Gabriel et al., 2005). This makes malaria not just a

health issue but a food security and environmental issue as well.



Ecological disturbances due to human actions such as deforestation, the construction of dams
and establishment of new settlements in previously unsettled areas allow for the proliferation of
mosquitoes that prefer human habitation to natural settings (Tulu, 1993; Lindsay et al., 1995).
In developing countries and more so in Ethiopia, dams and other related water projects continue
to be planned, constructed and operated to meet human needs such as drinking water, energy
generation and agricultural production (Adugna, 2011). The potential for dams to alleviate
poverty leads to enhanced human health and quality of life but at the same time increasing
the likelihood of human infection due to some waterborne related diseases like schistosomiasis,
malaria, dysentery and river blindness (Steinmann et al., 2006). Various studies have been
done to investigate malaria incidence and prevalence in dam sites compared to a distant site,
however consistent results have not yet been obtained. For example, a recent study in Northern
Ethiopia investigating the possible impacts of small dams on malaria transmission showed that
the rate of infection among children living close to dams was more than in communities with no
dams (Ghebreyesus et al., 1999). However, in other related study it was also found that dam
areas displayed a lower malaria transmission compared with distant setting when integrated
vector management or other control interventions had been applied. For example, in India, a
study which compared the parasitological indices in dam area to forest or plain areas, recorded
a prevalence and annual parasite incidence of zero in dam area (Shukla et al., 2001).

Gilgel-Gibe hydroelectric dam in South Western Ethiopia was created by impounding the wa-
ters of Gilgel-Gibe river and is currently the largest supply of power (184 MW) in Ethiopia
and has been operational since 2004. During its construction many people were relocated up-
stream of the reservoir, although some still remained close to the buffer zone surrounding the
dam. The location of the villages near the newly formed reservoir may be attributed to the
increased malaria transmission assuming that the reservoir contributes directly or indirectly
to the presence of breeding grounds for malaria vectors (Yewhalaw et al., 2009). The current
study investigates the effects of the dam on malaria incidence among children aged below 10

years, focusing on the distribution of infection in relation to distance of villages to the reservoir



shore and season of infection using survival and count regression models.

1.2 Motivation of the study

This study was motivated by the availability of the time-to-event dataset, which contains data
on time-to-first P.falciparum malaria infection, place of residence (where households are nested
within village) and distance of the household from the reservoir. In this study we are interested
in investigating the influence of different seasons and distance to the dam reservoir on time-to-
first P.falciparum malaria event. For modelling such type of data, proportional hazards model
are often used. However, South Western Ethiopia experiences three climatic seasons per year,
to incorporate the seasonal variation in our model, a more flexible proportional hazards model
has to be fitted by making some mild assumptions concerning the baseline hazard. The baseline
hazard represents the seasonal variations which are considered constant in each period, leading
to a piecewise exponential hazards model. Laird and Oliver (1981) noted that the piecewise
exponential hazards model is equivalent to a log-linear model with the events indicator as the
response and the log of exposure time as an offset. In the context of this study, we will model
the aggregated event counts per period in each village as a response assumed to be independent
Poisson observations and the effect of the distance is assessed by use of the averaged household
distances per village. However, due to the aggregation of the event counts for each period per
village we expect some power loss as compared to the piecewise exponential hazards model.

Since children are clustered within villages, two approaches to analyzing data with clustered
events will be used, which include; the Marginal approach - assume no dependence in the data
and likelihood-based random effects (frailty) model - conditional models assuming dependence
in the data. The efficiency and information loss of the aggregated event times for the mixed

Poisson regression model will be investigated through simulation studies.



1.3 Study Objectives

The main objectives of this study are;

e To investigate the effect of seasonal variations and distance to the dam reservoir on the

time to first P. falciparum malaria event.

e To compare and study the efficiency of the survival model and its equivalent log-linear

model in terms of coverage probabilities and power through simulation studies.

The findings of this study could assist in the proper planning and development of dam associated
malaria control programmes. Information on the effect of seasonal variations is important in
the implementation of effective interventions and establishment of an early warning system for

malaria outbreak.

1.4 Study design

The dataset used for this study was generated by one of the VLIR-OUS Inter University Collab-
oration (IUC) programme with Jimma University (Ethiopia). The IUC-Jimma University aims
at strengthening the institutional capacity and improving the quality of life for the surrounding
communities. The project focuses on the impact of the Gilgel-Gibe hydroelectric dam in terms
of human and animal health, ecology and agronomy. This particular study was undertaken
with the overall aim of determining malaria incidence and patterns of its transmission among
children living close to the dam. The malaria incidence study was conducted within a dura-
tion of 2 year period (July 2008 - June 2010) among children aged less than 10 years living
in villages around the dam as shown in Figure 1 below. Prior to the study, villages within 10
km radius from the dam reservoir shore were first identified and 16 villages randomly selected
among them. The sampled villages were classified as either ’at risk villages’ - within 3 km
distance from the dam shore or ’control villages’ - more than 3 km distance from the dam shore

based on the maximum flying ability of mosquito. Each sampled village was assumed to expe-
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rience similar eco-topography, access to health facilities and to be homogeneous with respect
to socio-cultural and daily economic activities (Yewhalaw et al., 2013). Children recruited to
the study had to have resided in the study area for a duration of at least 6 months prior to
the study and intended to remain in the study area for the entire follow up period. A total of
2082 children were recruited into the study, with each village 7 (i=1,...,16) having around 130
children sampled. Baseline characteristics were collected in regards to individual and household
characteristics. Each of the sampled child j (j = 1,...,n;) in a village ¢ was followed-up by a
trained data collector on a weekly interval based on house to house visits until the first inci-
dence of malaria. The primary outcome is the actual time in days from the start of the study
to the day of first P. falciparum malaria infection. A child suspected to have malaria based on
the either of this symptoms (fever, pain and sweating) had to be confirmed through screening
of the blood for the plasmodium parasite. Censoring was caused by death, dropout or end of
the study. Due to uncontrollable factors in the course of the study duration about 42 children
were lost to follow-up (deaths, migration, among other factors), hence the final dataset used

for the analysis consists of 2040 children.
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Figure 1: Map showing the study villages and the distribution of the Gilgel-Gibe hydroelectric
dam reservoir



2 Methodology

In this study we are interested in the time to the first malaria event. The clustering of children
in the villages induces dependence among the event times. Clustered multivariate time-to-event
data appear predominantly in most of the clinical and epidemiological research, e.g. several
types of events in an individual, time-to-event of children clustered within a village or family
studies, etc. Two approaches are commonly used when modelling multivariate time-to-event
data, though other computationally simpler alternatives exist with major drawbacks as com-
pared to the two proposed approaches (Janssen and Duchateau, 2008). The marginal approach
is used when the dependencies between the event times are not of interest, population pa-
rameters are estimated as if the event times were independent, but the dependence between
event times is taken into account when estimating the variance of the parameter estimates (Lin,
1994). A random effect model (Hougaard, 2000) is often used when the dependence between
the event times is of interest. Here the dependency of the related event times is introduced
by a shared unobserved risk factor. The commonly used random effect model for clustered
time-to-event data is the shared frailty model, where a single risk factor (frailty) introduces a
symmetric dependence, i.e. the same dependencies between subjects in the same cluster.

To study the effect of seasonal variations on malaria infection, the study duration is partitioned
into 6 periods (3 seasons per year) to represent the different seasons (long rain, short rain and
dry season) as experienced in South Western Ethiopia. To incorporate the seasonal variation
based on our data, a more flexible proportional hazards model will be fitted by making some
mild assumptions concerning the baseline hazard. The baseline hazard will represent the sea-
sonal variations which are considered constant in each period, leading to a piecewise constant
hazards model which is equivalent to a Poisson regression model (Laird and Oliver, 1981). For
the survival modelling, we model the minimum of the censoring time c;; and event time ¢;;, y;;
= min(c;j, t;;) and 6;; the censoring indicator, taking the value one if an event is observed, oth-
erwise zero. We assume noninformative censoring. For the count regression we will aggregate

event times per period in each village. Period £ starts at time 7,_; and ends at time 7, where
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k =1,2,....,6. Aggregating event times for each period-village combination leads to small set of

summary statistics for village 7 as shown below;

e The aggregated event time in period £,

dig = Y52 0 (Th1 < yij < 71)
e Total time at risk (exposure time) for village i in period k, a;

The aggregated event counts are assumed independent between villages but dependent within
the same village. Due to the aggregation of the event counts for each period per village, we

expect some loss of power which will be investigated through simulation studies.

2.1 Marginal Models

In the marginal model approach, we do not take into account the cluster effect (village) and
act as if the event times are independent of each other, even when the children belong to the
same cluster, which result in an independent contribution to the likelihood by each child -
Independence working model. The marginal parameter estimates obtained from assuming an
independence working model are consistent estimators for the population based parameters.
However, the standard errors are not because of correlation between survival times, therefore
sandwich estimators that cope with the dependence in the data will have to be used to obtain
a consistent estimate of covariance matrix by using the grouped jackknife technique (Janssen

and Duchateau, 2008).

2.1.1 Survival model

A survival model adjusted for distance and seasonal variations, where the distance effect is
introduced as a continuous fixed effect is fitted to the individual subject ignoring the cluster
effect. The seasonal effect is introduced via the baseline hazard which is considered constant

in each of the seasons. An extension of the proportional hazards model under relatively mild



assumptions about the baseline hazard hy(¢;) is fitted to the data. According to the proportional
hazards model, the hazard rate can be written as a product of two functions, one merely
depending on time ¢; and another depending on the covariates. Unlike the constant hazards
model where hg(t;) is assumed to remain constant over the whole range of time, our proposed
model assumes that the baseline hazard is constant in time intervals (seasons). The model is

as described below:

hiji(t) = ho(t;) exp(Bazi;)

where we will assume that the baseline hazard is estimated from the data and is constant within

each period, so that
ho(tl) = )\k fOl" ti in [Tk_l,Tk)

Thus we will model the baseline hazard hy(t;) using k parameters, Ay, where k =1, ..., 6, each
representing the baseline hazard for period & and exp(f,z;;) representing the relative risk for a
child j from village ¢ with household distance z;; compared to the baseline hazard at any given
time. Since we assume the risk to be periodwise constant, the corresponding survival function
is often called the piecewise exponential. The choice of the cut points is based on the actual
seasons in Jimma - Ethiopia.

To model the seasonal and year effects separately, we introduce the following covariates

1 k>3
{L"yk =
0 otherwise
.
1 k=2,5
Ls2,k =
0 otherwise
\
4
1 k=3.,6
Ls3 k =
0 otherwise




Hence the final piecewise exponential proportional hazards model fitted to the malaria incidence

data after imposing the season and year categorization is:
his(t) = Sy expiji) [(Te1 < t < 73)
where
Aijk = Ao+ ATy + As2Tso ke + As3Tos i + Baij

with Ao, Ay, As2, Asz and By representing the yearl-seasonl effect, year2 effect, second season

effect, third season effect and the distance effect respectively.

2.1.2 Count regression model

Holford (1980), Laird and Oliver (1981) noted that the piecewise exponential hazards model
discussed above is equivalent to a log-linear model with the events indicator as the response
and the log of exposure time as an offset. We will model the aggregated event counts for
each period-village combination as the response variable, di, (i = 1,...,16 £ = 1,...,6) and the
corresponding total time at risk, a;, as a fixed offset variable. The response variables will be
assumed to be independent Poisson observations and the effect of the distance is assessed by

use of the averaged village distance, x; = , since the village is the basis for event

times aggregation. McCullagh and Nelder (1989) provides a clear description of a log-linear
model for handling multivariate count data. Due to dependence of the data, inappropriate
Poisson regression model (standard) will underestimate the standard errors and overstate the
significance of the regression parameters, and consequently give misleading inference about
the regression parameters. The expected number of events, F/(d;), will be represented by .
Different distributions have been proposed to handle dependence in data modelling (Ismail et
al., 2007). In our case we will make use of the mixed Poisson regression modelling (Lawless et
al., 1989) assuming independence working correlation between the different periods within the

same village. The final marginal count regression model fitted assuming the same season - year

restrictions as in the survival modelling is:
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log(&ir) = log(ar) + Mk

where

Nik = Bo + ByTyr + Bs2Zsok + BssTss i + Bai.

and By, Bs2, Bs3, By and By the effect of the yearl-seasonl, second season, third season, second
year and distance respectively. Assuming d;; ~ Poisson(&;) links the observed counts to the

population parameter.

2.2 Conditional Models

To capture the dependence in time between counts measured at different periods in the same
village and dependence of children in the same cluster, conditional models will be utilized.
Children in the same village share the same environmental conditions and therefore we expect
some association between them. To capture the association between the children in the same
village or the aggregated events in a village for the different periods, we shall introduce a ran-
dom effect, (;, for each village to explain the unobserved heterogeneity not captured by the
covariates. The random effects (frailty) are assumed to be observations from a probability dis-
tribution with zero mean and variance, 02, where the variance is to be estimated from the data.
Recent studies show that ignoring heterogeneity in the data may lead to inaccurate conclusions
and underestimation of the standard errors. Oakes (1989) proposed frailty models for bivariate
survival times and introduced several possible frailty models. He believed that improper mod-
elling of heterogeneity would result in biased estimates since the covariates in the model fail
to explain the true effect of the covariates on the response variable. Considerable progress has
been made in recent years in the area of random effects in generalised linear models (Breslow

et al., 1993; McGilchrist, 1994 and Nelder et al., 1996)
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2.2.1 Frailty Model

Frailty models are extensions of the proportional hazards model. In most clinical and epi-
demiological studies, survival analysis assumes a homogenous population. This means that all
sampled individuals are subject to the same risk (e.g. risk of an infection, risk of death) apart
from covariates introduced in the model. In many applications, the sampled individuals can not
be assumed to be homogeneous, rather should be considered as an heterogeneous sample. Var-
ious reasons for heterogeneity exist: difference in locations, not all relevant covariates related
to the event of interest are measured due to economical reasons and the importance of some
covariates might still be unknown. The frailty approach is a statistical modelling concept which
aims to account for this heterogeneity, caused by unmeasured covariates (Wienke, 2003). In
statistical terms, a frailty model is a random effect model for time-to-event data, where the ran-
dom effect has a multiplicative effect on the baseline hazard function. A natural way to model
dependence of clustered event times is through the introduction of a cluster-specific random
effect - the shared frailty. Children in the same cluster are assumed to share the same frailty
term (;, hence the name shared frailty model as introduced by Clayton (1978) and extensively
studied in Hougaard (2000). The survival times are assumed to be conditionally independent
with respect to the shared frailty. One important problem in the area of frailty models is the
choice of the frailty distribution. The most often used frailty distributions include the gamma
distribution, the positive stable distribution, the compound Poisson distribution and the log-
normal distribution. For comparability with the mixed Poisson regression model we shall use
a log-normal frailty as proposed by McGilchrist (1993). The shared log-normal frailty model is

written as;
hij(t) = 22:1 exp(Niji + G (Th—1 <t < 73)

with ¢; normally distributed with zero mean and variance o2. The corresponding frailty, u; =

exp((;) has a log-normal distribution;

log u;)2
firlw) = = exp(—1535)



with o2 > 0, estimated from the data. Unlike other frailty distributions (Janssen and Duchateau,
2008), it is natural to assume a zero mean normal distribution for the random effect (;, for the
log-normal distribution. Hence we are able to compare the random effect of the frailty model

and the conditional mixed Poisson regression model.

2.2.2 Conditional mixed Poisson regression model

To capture the dependence of the aggregated event counts in the different periods within the
same cluster/village, a random effect (;, for each village is included in the model. The condi-

tional mixed Poisson regression model fitted is given below;

log(&ix) = log(air) + mir + G

with (; normally distributed with zero mean and variance O’i.

In the subsequent section, it’s shown that the loglikelihood of the frailty model and the condi-

tional mixed Poisson model are equivalent.

2.3 Equivalence of the Frailty and Count regression model

One of the procedures for estimating the parameters of a specified parametric model is the
method of maximum likelihood. According to this method, the partial derivatives of the log-
likelihood function are set equal to zero and the obtained system of equations solved. The
connection between the proportional hazards and log-linear regression models has long been
recognised (Whitehead, 1980; Laird et al., 1981). The two modelling techniques lead to the same
parameter estimates, though the mixed Poisson regression model uses the averaged household
distances whereas the survival modelling uses the individual household distance. The equiva-
lence of the loglikelihoods of the two statistical modelling techniques is as shown below based
on a paper by (Getachew et al., 2013).

The frailty model fitted using the individual household distance as discussed previously is

13



hij(t) = 22:1 exp( gk + G) (11 <t < 7)

where u; = exp((;) and A;jx = Ao + A\yZTyr + As2ZTs2k + As3Tsz ik + Bai
Replacing the individual household distance to dam x;; with the averaged village distance 7; ,

leads to
hij(t) = 22:1 exp(Nix + G (11 < t < 71)
with
ik = Ao + AyTyr + A2 + As3Tos i + BT
The cumulative hazard for 7,y <t < 73 is given by
Hi;(t) = (1 — 1) exp(Ait + G) + (12 — 71) exp(Nia + () + - - + (t — Th—1) exp(Nir + ()
which is equivalent to
Hyj(t) = S0y I(t > 7o) (min(my, t) — 7o) exp(Na + ¢)
Therefore
log S;;(t) = —H;j(t) = — 22:1 I(t > 7_1)(min(mg, t) — T_1) exp(Nir. + ;)
The conditional loglikelihood contribution of the j** child in the i** village is given by
Usi; = 655 10g(hij (yi;)) + log(Si;(yi5))
hence
lsyj = 22:1 Oijie(Aik + G) — 1(yij > 1) (man(Te, Yij) — Th—1) exp(Aix + G)

with 0;;; denoting whether an event takes place, (0;;x = 1), or not, (d;;, = 0), in period k for
the particular child.
Summing over all children in the village and splitting up the sum over the six different periods,

we obtain

Usip = dig(Nik + G) — aipexp( ik + G)

14



The mixed Poisson loglikelihood contribution for the i** village in the k** period is derived as fol-
lows. Assuming the aggregated counts d;; are independent observations with d;, ~ Poisson(&;)

then the loglikelihood contribution is given by;

Cpi, = dig log (&) — i — log(dix!)

Dropping the last term which does not contribute to the likelihood and replacing &;; as described

for the conditional mixed Poisson regression model, we have;

Cpi, = dig log(aix) + dik (M + G) — ai exp(nix + )

This expression is equivalent to the loglikelihood obtained for the frailty model except for the
term d;x log(a;), which is a constant depending on the data and not on the parameters, so it
can be ignored from the point of view of estimation hence the parameter estimates will thus be

exactly the same.

2.4 Simulations

Simulation studies present an important statistical tool to investigate the performance and
estimation techniques in comparing statistical models in pre-specified situations (Bender et
al., 2005). Since the difference between the mixed Poisson regression model and the frailty
model is in the use of the aggregated and individual risk factors, we aim to study the effect
of the averaged and individual risk factors (distance effect) on the coverage and power based
on different parameter values of the risk factor. Based on the parameter estimates obtained
from the frailty model and altering the risk parameter values, we will generate event times
from a piecewise constant hazards distribution. In generating the event times the dependence
between children in the same village will be captured to reflect the real situation as depicted
in the study design. Frailty terms representing each village are randomly sampled from a
normal distribution with mean zero and variance of the random effects in the frailty model 0 as

estimated from the data. Using the individual household distance as observed in the malaria
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incidence study as risk factors, a total of 5000 data sets for each parameter value of the risk
factor will be generated.

A detailed discussion on the generation of event times can be found in Walke (2010) and
Bender et al., (2005). The generated event times will be classified into each of the six periods
depending on the season of infection and those exceeding the study duration considered as
censored observations. At the end of simulation exercise we will have a complete dataset with
information on the survival time, censoring indicator and distance. For the count regression
modelling, the events are aggregated as per each season of infection in each village. The two
statistical methodologies discussed previously will be compared with respect to their efficiency
by use of the coverage probability and power using the 5000 generated data sets. The coverage
probabilities are given by the number of times the true parameter is contained in the 95%
confidence interval divided by the number of evaluated data sets. For both models, results
will be summarized by median, standard error, 5* and 95" quantile and the 95% coverage
probability for the risk factor, 5;. The power of the statistical test is the probability that the
test will reject the null hypothesis when the null hypothesis is false, hence in our simulation
study it will be represented by the percentage of data sets that do not include the true risk

parameter in the 95% confidence interval.
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3 Results

3.1 Exploratory Data Analysis

To get insights into the dataset, summary statistics and graphs will be used. Distance to
the dam as the main risk factor under investigation was used to classify the households as
either, at risk or control based on the flying ability of mosquitoes. The mean distance of the
sampled households from the dam was 2.53 km with a standard deviation of 2.03 km, minimum
and maximum distance from the dam of the sampled households were 0.055 and 9.046 km
respectively. About 73.48% children resided in households which were classified as at risk. The
minimum and maximum observed time-to-first malaria event in this study were 7 and 698 days
respectively.

During the follow up period, 548 children had at least one malaria event. The Kaplan-Meier
survival function for the control and at risk group is displayed in Figure 2. We observe that the
estimated survival for the children in control households is higher than those at risk households
over the entire follow up period, giving evidence for lower risk of malaria infection in children
living at a distance to the dam as compared to those children living in a close proximity to the

dam.
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Figure 2: Survival curves for the risk and control groups

3.2 Statistical Analysis

3.2.1 Marginal Models

The marginal model parameter estimates are obtained by ignoring the dependence structure in
the data. The event times were classified into each of the 6 different season depending on the
season of infection. In survival modelling the season effect was captured by assuming a constant
risk to malaria infection in each of the seasons and the distance effect captured by introducing
the individual household distance to the dam as a continuous fixed effect covariate. The risk of
malaria is found to be related to the season of infection. The sandwich estimators were used to
obtain consistent estimates of the covariance matrix by using the grouped jackknife technique.

Marginal model results for the two statistical models are as presented in Table 1.
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Table 1: Marginal models.

Survival model Poisson model
Parameter Estimate Std Error P-value Estimate Std Error P-value
Seasonl -7.2690 0.1523 <.0001  -7.3025 0.1637 < .0001
Season2 -1.5432 0.1831 < .0001  -1.5427 0.1830 < .0001
Seasond -0.8269 0.1032 < .0001 -0.8264 0.1037 < .0001
Year2 -0.1925 0.0802 0.0164  -0.1914 0.0805 0.0175
Distance 0.0564 0.0561 0.3148 0.0687 0.0591 0.2450

On the other hand, a marginal count regression model was fitted for the aggregated event times
ignoring the dependence between the periods within a village (use of independence working
correlation). We used the mean distance to the dam since we aggregated the event times per
village in each period. We observe similar parameter estimates as obtained for the survival
model and the results show a significant seasonal effect. We observe from the marginal model
results that the risk to first malaria event is high in the first season (long rain season) and
decreases as we move to the dry season and the relative risk to first incidence of malaria is high

for households close to dams with respect to the baseline seasonal effect.

3.2.2 Conditional Models

Due to the dependence of children within the same village, a log-normal frailty model with
village as frailty and constant baseline hazard for each season was fitted. Accounting for the
unobserved heterogeneity (village effect) led to insignificant distance effect and change of sign of
the parameter estimate as compared to the marginal hazards model. The association parameter
is significant hence reflecting dependence of subjects within the same cluster. On the other
hand, the conditional mixed Poisson regression model was fitted with village as random effect
and we note that the parameter estimates of the two models are the same. From Table 2 below
we observe a significant period effect between aggregated event counts within a cluster. It can
be observed that there is no significant distance effect in any of the two conditional models,
however, it can be noted that the distance effect changes direction from one model to the other.

The frailty model predict a decreasing malaria incidence with increasing distance to the dam
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which might be attributed to the use of individual household distance. In the estimation of the
random effects, Figure 4 in the Appendix show a positive relationship between the best linear
unbiased random effects predictors obtained from the frailty model, (;, and the distance to the

dam.

Table 2: Conditional models.

Frailty model Conditional Mixed Poisson model
Parameter Estimate Std Error P-value Estimate Std Error P-value
Seasonl -7.1677 0.2147 < .0001  -7.3893 0.2443 < .0001
Season2 -1.5242 0.1356 < .0001  -1.5244 0.1356 < .0001
Season3 -0.8024 0.1192 < .0001  -0.8027 0.1192 < .0001
Year2 -0.1538 0.0876 0.0995  -0.1541 0.0876 0.0988
Distance -0.0344 0.0570 0.5549 0.0539 0.0743 0.4797

Random effect  0.3486 0.1478 0.0323 0.3100 0.1290 0.0282

3.3 Simulation Results

Assuming different values for the risk factor and using the parameter estimates of the frailty
model, the event times were generated from a piecewise constant hazard function. The gener-
ated data sets were fitted using the frailty model and the conditional mixed Poisson regression
models as described in the methodology section. To investigate the coverage probabilities, we
varied the risk factor parameter value and calculated the number of times the true parameter
value was contained in the 95% confidence interval. For example, assuming a risk factor of
Ba = 0.05, the estimated average of the overall median estimate of the risk factor (distance ef-
fect) for 5000 generated data sets was 0.0462 and 0.0491 for the fitted conditional mixed Poisson
regression and frailty models respectively. The number of generated data sets that contained
the true parameter value of 0.05 in the 95% confidence interval were 4482 and 4589 for the
models fitted using the mixed Poisson regression and frailty models, translating to 0.8964 and
0.9178 coverage probabilities respectively. Other coverage probabilities are as presented in Ta-
ble 3. We observe that there is a slight difference in the coverage between the two models which
might be attributed to the information loss due to the event aggregation and use of the mean

risk factor (distance) as compared to the use of individual household distances.
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Table 3: Simulation results comparing the mized Poisson regression and the Frailty models assuming
different risk factor values for the distance

Parameter value  Model Median (P5,P95) Std error (P5,P95)  Coverage(%)
0 Poisson  -0.0044(-0.1166,0.0777) 0.0452(0.0318,0.0606) 90.06
Survival -0.0005(-0.0695,0.0702) 0.0397(0.0297,0.0485) 92.16
0.05 Poisson  0.0462( -0.0322,0.1225) 0.0443(0.0304,0.0600) 89.64
Survival  0.0491(-0.0200,0.1155)  0.0382(0.0287,0.0470) 91.78
0.1 Poisson  0.0945(0.0112,0.1729)  0.0434(0.0296,0.0591) 88.16
Survival ~ 0.0986(0.0322,0.1658)  0.0374(0.0273,0.0461) 91.88
0.15 Poisson  0.1434(-1.4192,0.2231)  0.0428(0.0294,0.0584) 86.94
Survival ~ 0.1497(0.0845,0.2136)  0.0366(0.0270,0.0448) 92.38
0.2 Poisson ~ 0.1813(0.118,0.2762)  0.0426(0.0283,0.0573) 88.94
Survival ~ 0.1955(0.1376,0.2634)  0.0361(0.0270,0.0439) 92.36

Through simulation we were able to compare the efficiency of the two statistical methodologies
in statistical testing. The power represents the percentage of data sets which do not include
the true parameter in the 95% confidence interval. From the simulation results on power we
observe that the use of aggregated events as compared to the individual risk factor leads to a

reduced power. However, the power reduction is small as depicted in the Figure 3 below.

21



Power of the statistical tests

o
O pu—
—
o _|
(0]
— 8 ]
x
=
[«5]
=
o
o o _|
<
o
(e\]
—— Mixed Poisson model
= - =  Frailty model
o p—

I I I I I
0.00 0.05 0.10 0.15 0.20

Risk factor

Figure 3: Power of the statistical models testing the effect of the distance to the dam under
different risk factors value
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4 Discussion and Conclusion

Malaria has posed as a major health challenge in most of the developing countries leading
to reduced production activities hence continued poverty in many countries. Public health
expenditure in most developing countries has been crippled due to the high costs in the provision
of health services geared towards prevention and treatment of malaria hence overdependence
on donor funding. Seasonal variations, and development of water projects and their operation
have some long history of facilitating increased transmission of vector borne diseases. Earlier
studies have shown that malaria have a strong seasonal pattern with a lag time varying from a
few weeks at the onset of the rainy season to more than a month at the end of the rainy season.
Reliable analysis of the climatic and environmental risks to health is therefore fundamental for
the prevention and control of malaria.

In this study we investigated the relation between seasonal variations and distance to the dam,
to the time to the first malaria event of children living in close proximity to the Gilgel-Gibe
hydroelectric power dam using the piecewise exponential proportional hazards model and its
equivalent count regression model. 548 events (Only 26% of the children experienced the event
during the follow-up period) were observed over the entire study period with a minimum and
maximum event times of 7 and 698 days respectively. Most of the events were recorded during
the rainy seasons and in children living in a close proximity to the dam shores. Some of the
villages did not record any events in some periods especially during the dry season whereas
in other periods had high number of events recorded, hence a more accurate technique had to
be used to capture all the information. For the survival modelling the individual household
distances were used whereas for the count regression averaged village distances were used since
the events were aggregated within a village.

The malaria incidence data was analyzed by using both the marginal and conditional models.
By ignoring the dependence structure in the data, consistent parameter estimates of seasonal
and distance effects were obtained under the two statistical techniques. The standard error

were estimated by their robust sandwich estimators by using the grouped jackknife technique
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for the hazards model and assuming an independent working correlation assumption for the
marginal mixed Poisson model. The risk to malaria event is high in the first season (long rain
season) and decreases during the dry season. The relative risk to first incidence of malaria is
high for households close to dams with respect to the baseline seasonal effect. To cater for
the dependence in the data, conditional models were fitted by assuming a normally distributed
random effect with zero mean and variance, (, which was estimated from the data to capture the
unexplained variability in the marginal models. For comparability with the conditional mixed
Poisson regression model a shared log-normal frailty was considered for the frailty model. Since
no explicit form of it’s marginal likelihood exists we used a numerical integration of the normally
distributed random effects based on the Gaussian quadrature (nlmixed procedure in SAS).
Although distance to the dam effect was found to be insignificant in all the four models, it
can be observed that three of the four models predict an increasing incidence with increasing
distance to the dam. The frailty model predicts a decreasing incidence with increasing distance
to the dam, which might be attributed to the use of individual distance for the frailty model as
compared to the use of averaged distance for the conditional mixed Poisson regression model.
Both models show a positive relationship between the best linear unbiased predictors (BLUPS)
of the random effect and the averaged distances from the dam shore.

Simulation studies carried out to check on the adequacy of the two statistical techniques showed
that the coverage probabilities of the true parameter in the simulated dataset were almost
similar though, a slightly lower coverage for the mixed Poisson regression which might be
attributed to the aggregation of event counts in the different periods. On the other hand, the
power of the statistical tests was estimated by the number of the data sets that did not include
the true parameter, based on the results obtained mixed Poisson regression can serve as a good

alternative for the frailty model, though with a small power loss.
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4.1 Recommendation and Limitation

The economic benefits generated by Gilgel-Gibe hydroelectric dam can be maximized if preven-
tive programmes against malaria and other related vector-borne diseases can be implemented
in the households close proximity to the dam reservoir. Health package programmes includ-
ing the use of bed nets, health education especially at the onset of rains and environmental
management (clearing of bushes, draining stagnant water, etc) should be implemented in an
integrated way and strengthened to reduce disease burden in the population. If possible future
dam projects should be undertaken in the highland areas since they are less prone to malaria.
The major limitation in this study was in explaining the correlation between children within
clusters where we used the shared frailty which forces the unobserved factors to be the same

within the cluster which may not always reflect reality.
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Appendix

Best Linear unbiased Preditors of the Village effect
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Figure 4: Best Linear unbiased predictors (BLUPS) of the random effect as a function of the
distance to the dam
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