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Abstract

An automatic service to match commuting trips has been designed. Candidate carpoolers register their personal profile

and a set of periodically recurring trips. The Global CarPooling Matching Service (GCPMS) shall advise registered

candidates on how to combine their commuting trips by carpooling. Planned periodic trips correspond to nodes in

a graph; the edges are labeled with the probability for negotiation success while trying to merge planned trips by

carpooling. The probability values are calculated by a learning mechanism using on one hand the registered person

and trip characteristics and on the other hand the negotiation feedback. The GCPMS provides advice by maximizing

the expected value for negotiation success. This paper describes possible ways to determine the optimal advice and

estimates computational scalability using real data for Flanders.
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1. Problem context

An advisory service for carpooling while commuting is to be built. People will register their periodic

commuting trips: the base period typically is one week i.e. a specific pattern valid for working days is re-

peated after every seventh day. Considering one week periods accommodates for most situations (including

part-time workers). People who are able to fulfill all their carpooling needs within their own social net-

work (local exploration) of acquaintances, are assumed not to need the advisor service. Others will need to

explore the set of yet unknown carpooling candidates (global exploration). The matching service shall de-

termine which trips are best suited to be combined for carpooling and provide advice by suggesting people

to start a negotiation with respect to a specific periodically executed trip.
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2. Advisor Model

2.1. Principle of Operation

In order to find carpooling companions, people who did not find a suitable partner by exploring their

private network, register themselves with the GCPMS. Registration implies first posting some descriptive

characteristics like age, gender, education level, special interests (like music style preferences), job category,

driver license availability, etc. Those qualifiers are used because it is known that continued successful

cooperation between people requires a minimal level of similarity.

Secondly, people post information about each trip they periodically plan to execute: those data consist of

origin and destination locations, earliest and latest departure and arrival times, the maximal detour distance

that is acceptable and the availability of a car (possibility to drive). Note that a particular driver license

owner can be unavailable for driving on a specific day of the week because the family car on that day is in

use by her/his partner.

Periodic trip executions (PTE) need to be matched, not people. A periodic trip on Wednesday from A to

B leaving at about 08:30h needs to be matched with another one having similar characteristics. Of course,

the people involved shall be mutually compatible but they are not the primary subject of matching. A

particular individual can periodically carpool with several people for different trips in the week (on Monday

with colleague A, on Tuesday with neighbour B who differs from A). Periodic trip execution is abbreviated

by PTE in the remainder of the text.

A pooled trip execution is the cooperative execution of a set of trips using a single car and a single driver.

As a consequence, the route for each passenger shall be embedded in the route of the driver (single driver

constraint).

After having found a good match (details on how to do so will be explained in section 2.3) the matcher

conveys its advice to the candidates involved (the owners of the matched PTE); they evaluate the proposal,

negotiate about carpooling and possibly agree to cooperate. Note that this negotiation is not guaranteed

to succeed. One of the reasons is that the individuals dispose of more information during the negotiation

process than the service does during the matching process. Therefore, the candidates convey the negotiation

result back to the matcher service. This paper assumes that sufficient (financial) incentives are in place in

order to make this happen.

After trip execution, users can qualify each other. The GCPMS allows for controlled mutual evaluation of

individuals with respect to timeliness and safety. Only individuals cooperating in an agreement can qualify

each other. The negotiation and qualification feedback is used by a learning mechanism incorporated in

the matching service. After receiving the feedback, the matching service disposes of (i) data describing the

PTE and their owners (individuals) as well as of (ii) the negotiation result; those are used to train a logistic

regression based predictor. Please refer to fig. 1 for an high level overview of dataflows, relations and

method activation.

The model used for matching consists of a directed graph (see figure 2 left part); by convention, each

edge points to the PTE whose owner will be the driver. Each vertex corresponds to a PTE. A vertex for

which the owner is unable to become the driver, never can be a target edge (its indegree equals zero). Two

vertices are connected by an edge if and only if it is worth to advise the PTE owners to start negotiating.

Every edge is labeled with the estimated probability for the negotiation to succeed. Note that

1. the set of vertices evolves over time because people register and withdraw PTE as time evolves and

because people join and leave the carpooling candidates society (removing all their PTE in the latter

case).

2. edges emerge as soon as the estimated negotiation success probability exceeds a given threshold; this

can be caused by changes in the PTE (e.g. by relaxing the time constraints) and people characteristics

respectively (e.g. by reputation changes (see below)).

3. probability estimates can change over time by re-training the predictor. Note that this can cause

threshold crossing and hence edge creation or deletion.
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Fig. 1. Application context: the right hand side shows the matcher service. People register some descriptive data (lower part) about

themselves and their trips to be executed periodically (PTE). Those constitute a graph (upper part): the edges are labeled with the

probability that negotiation will succeed when the trip owners are advised to carpool. Negotiation result is fed back to train the logit

predictor. The left hand side shows the entities exercising the matcher service in consecutive phases.

Fig. 2. The leftmost diagram shows the graph where vertices correspond to PTE (periodic trip execution) and the edges are labeled

with the success probability for the negotiation (if that is sufficiently large). The rightmost part shows the same information in bipartite

graph showing both PTE and vehicles . Continuous line arcs connect an PTE to the vehicle of its owner; dashed lines show potential

participation as a passenger. Grey vertices correspond to PTE where the owner is prepared to drive. Some, but not all of the edges have

been labeled with their weights.
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Fig. 3. Overview of functions defined on the sets (individual, PTE and agreement) used in the model and functions those sets are

involved in. Continuous lines represent references, dashed lines represent functions.

Finally the problem size can grow large when a nation-wide service is considered. Large scale deployment

probably is a necessary condition for both effective operation (delivery of advice that has a high success

probability) and economic viability. The matcher needs to cope with large networks whose topology and

edge weights evolve in time.

This represents a complex problem and hence thorough evaluation before deployment. An agent based

model simulating the actual population behavior, will be used to exercise the matching service for several

reasons. First, performance and effectiveness need to be evaluated on a running system since they are very

difficult to predict from design data only. Second, deploying such system should go flawlessly because lost

customers will be reluctant to return. Finally, the system behavior during the startup transient when only

few customers already registered, is difficult to predict and hence observations made are difficult to interpret;

simulation can support learning about the overall system behaviour.

2.2. Similarity, Reputation and Cohesion

The functions used to determine the input variables for the logit based negotiation success probability

estimator are briefly explained in this section. Details have been left out due lack of space. Fig. 3 shows an

overview.

1. Path similarity pathSim() is a value in [0, 1] assigned to an ordered pair (pte0, pte1) of PTE that

indicates to what extent the OD (Origin, Destination) pairs involved in the respective trips, are com-

patible for carpooling in case the owner of pte0 is assigned to be the driver. Path similarity defines a

function of PTE that is not symmetric in its arguments. This is easily seen because the distance driven

depends on the driver selection; the driver needs a detour to pick up passengers.

2. Profile similarity profSim() is a value in [0, 1] assigned to a pair of individuals that indicates to what

extent the individuals are compatible for carpooling (homophily concept).

3. Time interval similarity tis() is a value in [0, 1] assigned to an ordered pair (pte0, pte1) of PTE hav-

ing identical origins and identical destinations; it indicates to what extent the time intervals involved

are compatible for carpooling. Compatibility for carpooling requires a minimal amount of intervals

overlap (see fig. 4). Time interval similarity can be calculated only for a pair consisting of the pas-

senger trip and the part of the driver’s trip for which the route coincides with the passenger trip route

(because tis() applies to trips having identical origins and destinations).
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Fig. 4. Activities (aA,0 , aB,0, aC,0) for individuals A, B and C and the associated trips (crossed rectangles). The valid departure intervals

id,A , id,B, id,C are shown. Note that B can choose to co-travel with A or C but A and C cannot co-travel.

4. Safety reputation sRep() of a driver is a value in [0, 1]. Each individual has an sReputation value

that evolves over time due to qualification by passengers (i.e. individuals who participated in an

agreement where the person being evaluated was the driver). Notifications received are registered in

a personal qualifications list with the individual they apply to; for each issuer, only the most recent

qualification is kept. The sReputation is calculated as a weighted average of the values posted in the

qualification list: the weight decreases with age of the notification and increases with the duration of

the cooperation.

5. Timeliness reputation tRep() (or accuracy reputation) is a value in the range [−0.5, 0.5] assigned

(by the co-travellers) to a PTE in an agreement: it indicates to what measure the owning individual

respects the timing when executing the periodic trip in the agreement. tReputation is defined for both

drivers and passengers. tReputation has been defined as a characteristic of a tuple (PTE,agreement)

and not as a characteristic of an individual or of a PTE because an individual can behave differently

on a specific PTE pte0 in different agreement contexts (pools).

6. Cohesion qualifies the strength of an agreement using a value in [0, 1] that is a function of attributes

of the agreement only. It is a measure for the resistance to break an existing pool in case some

participants receive a better offer.

2.3. Weights Determination - Learning Mechanism

The weights used to label the edges in the graph, are probability values associated with the success of the

negotiation process between individuals. Those probabilities are calculated by means of logistic regression

(logit) fed by results of negotiations who have been advised by the carpoolMatcher.

Fig. 5 summarizes the data dependencies relevant to edge weight determination. From the point of view

of the matcher service, the outcome of a negotiation process is a discrete variable with values : success

(yes) and failure (no). Independent variables influencing the negotiation are continuous : profSim, pathSim,

tis, cohesion and sReputation. A logit model will be used to predict the negotiation outcome. Negotiation

results fed back to the Global CarPooling Matching Service (GCPMS) are used to determine the coefficients

for the logit model by linear regression.

3. Optimisation problem

The GCPMS aim is to maximize carpooling. Hence, the advice is based on maximizing the expected

value for the negotiation outcomes.
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Fig. 5. Dependencies between concepts used to calculate the weight for a edge connecting two periodicTripEx’s

3.1. Graph theory based solution

1. Consider the rightmost part figure 2. Assume that the graph is connected (partitioning has already

been done).

2. First, one can try to reduce the problem using following steps:

(a) Edges emerging from a vertex at the lower side of the diagram, are mutually exclusive. If and

only if a PTE ptei does not point to any other Vehicle than the one owned by its owner, then the

edge ptei, vehi shall be selected.

(b) If a subset Vnc of vehicles exists so that none of its members is critical with regard to capacity,

then the constraint specified in equation 4 always is met. In such cases, as soon as the subset

Vu ⊆ Vnc of vehicles to be used is known, the PTE can be assigned to the vehicles in arbitrary

order and hence for all the edges involved the one having maximal weight can be chosen. Note

that the number of combinations to investigate equals 2|Vnc| and can be large.

3. Note that the problem sketched no longer is a matching problem in a regular graph (where each edge

has exactly 2 vertices). The so-called Hungarian method (which comes down to path finding) to find

a maximum matching cannot be used.

4. We conjecture that describing the problem as a directed hypergraph (in which an edge can have an

arbitrary number ≥ 2 of vertices), can lead to an Hungarian Method based problem solution. [1]

3.2. Specification as a linear problem

1. The linear optimisation problem can easily be derived from the rightmost graph in figure 2 as follows.

Let G(V, E) with vertex set V = Vp∪Vv and edge set E denote the bipartite graph of figure 2. Vv denotes

the set of vehicle vertices, Vp denotes the set of PTE vertices. A variable xe is associated with each

edge e. Value one (zero) means that the edge has (not) been selected. P(e) denotes the PTE (source

vertex) for the edge; Veh(e) denotes the vehicle (target vertex). cap(v) denotes the vehicle capacity

(defined as the number seats, including the driver seat). Let Veh(p) denote the vehicle owned by the

owner of the PTE p. The weight associated to each edge that links a PTE to the owners vehicle, is set
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to zero because those links do not contribute to the objective of maximizing the number of succeeded

negotiations: ∀e : Veh(e) = Veh(P(e))⇒ we = 0. Then the problem statement is:

maximize
∑

e∈E
we · xe (1)

subject to

∀e ∈ E : xe ≤ 1 (2)

∀p ∈ Vp :
∑

{e∈E|P(e)=p}
xe = 1 (3)

∀v ∈ Vv :
∑

{e∈E|V(e)=v}
xe ≤ cap(v) (4)

∀v ∈ Vv : ∀{e ∈ E|V(e) = v} : xe ≤ x f |V(x f ) = v ∧ Veh(P(x f )) = v (5)

Equation 2 limits the range of the (boolean) variables. Equation 3 requires that each PTE shall be

assigned to exactly one vehicle (i.e. the trip shall be executed). Equation 4 states the limited capacity

for each vehicle. Equation 5 follows from the requirement that each car be driven by its owner only.

∀v ∈ V : (∃e ∈ E|(Veh(e) = v) ∧ (xe = 1))⇒ (∃ f ∈ E|(Veh(P( f )) = v) ∧ (x f = 1)) (6)

Equation 6 says that if there is a passenger in the car who is not the car owner, then the car owner is

in the car too. By numbering both the PTE and vehicles from 0 to N − 1, the edges can be identified

by xi, j where i identifies a PTE and j identifies a vehicle.

∀i, j ∈ [0,N − 1] : xi, j ≤ 1 (7)

∀i ∈ [0,N − 1] :
∑

j∈[0,N−1]

xi, j = 1 (8)

∀ j ∈ [0,N − 1] :
∑

i∈[0,N−1]

xi, j ≤ cap(v j) (9)

∀i, j ∈ [0,N − 1], i � j : xi, j − xi,i ≤ 0 (10)

2. This in general, cannot be solved using linear programming. Note that all coefficients in the matrix

equal either −1, 0 or 1; this holds for the coefficients of the x unknowns in 7, 8, 9, 10 and for the slack

variables originating from the inequalities. The special case where capacity constraints are redundant

(inequalities 9 do not generate polytope faces) can be proved to correspond to an integer polyhedron

and hence the simplex method leads to an integer optimum. Additional research is required to de-

termine the amount of cases where inequalities 9 are not redundant and generate polytope faces (and

hence non-integer vertices) for graphs derived from realistic data.

4. Data characteristics - Problem size

Before taking a final decision about the method to choose, we analyzed the characteristics of the graph in

which to embed an optimal assignment. From the output of a FEATHERS activity based simulation run for

Flanders, we filtered home-work trips starting in a given period of time. Profile similarity, path similarity

and time interval similarity can be calculated since the origin, destination and start time follow from the

FEATHERS predictions (9139001 episodes). In order to calculate time interval similarity we assume that

people are prepared to shift the trip start within a time window [t0 − 20[min], t0 + 10[min]] where t0 denotes

the originally planned time of departure. All home-work trips starting between 07:30h and 8:00h (143395

trips) were paired to calculate profile, path and timeInterval similarity. Since we do not know the relation

between those quantities and the negotiation success probability, we assumed the probability to equal the
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product of the similarities. For profile similarity, we considered the same attributes as [2]. Each trip pair for

which the probability exceeded minProb was added to the graph. This was repeated for several minProb

values. Results have been reported in table below showing characteristics of the resulting graphs.

minProb nVertices nEdges nComponents Compon.Size Compon.Size nEdges/nVertices

Largest Average

0.80 102 58 44 5 2.32 0.57

0.75 719 492 247 13 2.91 0.68

0.70 3706 3062 763 427 4.86 0.83

0.65 13993 15478 1380 5223 10.14 1.11

0.60 37748 64737 1659 19601 22.75 1.71

0.55 74241 230731 1249 70452 59.44 3.11

0.50 109667 733098 451 108517 240.61 6.68

Note the difference between the average and largest component sizes in each case. For minProb = 0.70

and lower values, the networks consist of one or a few (very) large components and hundreds of small

ones. In a second experiment, we used the average value of the similarity functions as an estimate for the

probability (hence the edge weight) instead of their product. In that case, large components already occur

for minProb = 0.80. We conclude that the problem size explosion (as expected) strongly depends on the

minProb value and that we shall be prepared to solve the scalability problem.

5. Related work

[3] describes an agent-based model aiming to optimally combine demand and supply in an advisory

system for repeated ride-sharing. The authors focus on the mechanisms required to model users cooper-

ating on joint plans and focuses on the economic value of the shared plans; this research focuses on the

fairness of the payment system but does not consider the rideshare demand and supply change in time. [4]

focuses on dynamic non-recurring trips which is related to commuting carpooling but requires different so-

lution concepts. Both maximal individual advantage and system wide optimum are considered. The paper

presents a crisp problem specification. It suggests that integer programming optimisers can turn out to be

insufficiently performant to solve practical problems. [5] derives travel routine from sets of GPS traces;

the routines are matched to find an upper bound for possible carpooling. [2] investigates for the region of

Toronto-Hamilton(Ca) what are the driving factors behind carpool formation: age, gender and income cat-

egory are the only relevant factors. Recent carpool advisors (like http://www.zimride.com/) take additional

factors into account for matching candidates (interests, music tastes) and allow for feedback to be posted.
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