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Abstract An automatic service to match commuting

trips has been designed. Candidate carpoolers regis-

ter their personal profile and a set of periodically re-

curring trips. The Global CarPooling Matching Service

(GCPMS) shall advise registered candidates how to

combine their commuting trips by carpooling. Planned

periodic trips correspond to nodes in a graph; the edges

are labeled with the probability for for success while ne-

gotiating to merge two planned trips by carpooling. The

probability values are calculated by a learning mecha-

nism using on one hand the registered person and trip

characteristics and on the other hand the negotiation

feedback. The probability values vary over time due to

repetitive execution of the learning mechanism. As a

consequence, the matcher needs to cope with a dynam-

ically changing graph both with respect to topology

and edge weights. In order to evaluate the matcher

performance before deployment in the real world, it

will be exercised using a large scale agent based model.

This paper describes both the exercising model and the

matcher.

Keywords Graph theory · Binary matching · Agent-

based modeling · Scalability · Dynamic networks ·
Learning

1 Introduction

An advisory service for carpooling while commuting is

to be built. People will register their periodic commut-

ing trips: the base period typically is one week i.e. a

specific pattern valid for working days is repeated af-

ter every seventh day. Considering one week periods

accommodates for most situations (including part-time

workers).
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People who are able to fulfill all their carpooling

needs within their own social network of acquintances

(local exploration), are assumed not to need the service.

Others will need to explore the set of carpooling can-

didates yet unknown to them and managed by a web

based GCPMS (Global Car Pooling Matching Service):

this is called global exploration. The matching service

integrated in the GCPMS shall determine which trips

are best suited to be merged for carpooling and shall

provide advice by suggesting people to start a negoti-

ation with respect to a specific periodically executed

trip.

Testing software that implements a GCPMS is es-

sential because providing inaccurate or wrong advice

initiates negotiations having a large probability to fail,

which can expel customers. Deployment of a GCPMS

shall go flawlessly because lost customers will be reluc-

tant to return. However, the integrated matching mech-

anism can only be verified for operational fitness by

testing under real world conditions. This complicates

testing since (i) the GCPMS requires a critcal mass of

registered users in order to operate effectively and ef-

ficiently, (ii) performance and effectiveness need to be

evaluated on a running system because they are very

difficult to predict from design data only and finally

(iii) the behaviour of the advisor (with respect to ac-

curracy) during the initial phase is difficult to predict

and observations made are difficult to interpret; this

phase corresponds the startup transient phenomenon

where stable operation has not yet been reached.

Therefore we propose the use of an agent-based model

simulating the customer community in order to exercise

the matching service for testing and system validation.

This paper describes aspects of the combined setup of

the MAS exerciser and the GCPMS under test and fo-

cuses on the required matching component.

The remainder of the paper is organized as follows.

Section 2 presents related work. Section 3 explains the

principle of operation for the GCPMS and shows the

test environment setup using a multi-agent system (MAS ).

Section 4 discusses several functions used to model do-

main specific concepts and shows how different func-

tions can be required to implement a particular concept

in the GCPMS and the MAS respectively. Section 5

explains how the GCPMS determines the success prob-

ability for the negotiations to succeed. Section 6 de-

scribes the problem of matching along with some pro-

posed solutions. It also presents an early experiment to

estimate computational performance. Finally sections 7

and 8 present future research directions and conclusions

respectively.

2 Related Work

In recent years, agent-based simulation has entered the

field of transportation science because of its capability

to analyse aggregated consequences of individual spe-

cific behaviour changes.

Luetzenberger et al. (2011) investigates the effect of

environmental conditions and plans to incorporate the

agent interactions required when carpooling.

Kamar and Horvitz (2009) describes an agent-based

model aiming to optimally combine demand and supply

in an advisory system for repeated ride-sharing. The au-

thors focus on the mechanisms required to model users

cooperating on joint plans and focuses on the economic

value of the shared plans; this research focuses on the

fairness of the payment system but does not consider

the rideshare demand and supply change in time.

Agatz et al. (2010) focuses on dynamic non-recurring

trips which is related to commuting carpooling but re-

quires different solution concepts. Both maximal indi-

vidual advantage and system wide optimum are consid-

ered.

Chun and Wong (2003) describes a group negoti-

ation protocol for agreement on agenda schedules. A

group can consist of two or more agents. The nego-

tiation mechanism is based on ideas drawn from the

A* shortest path algorithm. Each agent is assumed to

specify its most preferred option first and to specify

consecutive new proposals in non-increasing order of

preference. Each one uses a private (i.e. not published)

utility function. The protocol initiator makes use of a

proposal evaluation function that is based on the as-

sumption that agents behave as mentioned before. Ver-
sions using preference feedback by agents and conflict

resolution by initiator are reported to result in nearly

optimal solutions using a quite small number of nego-

tiation rounds.

Knapen et al. (2012a) studies the problem of find-

ing an optimal route for co-traveling. The origin (home)

and destination (work) locations are given for each indi-

vidual as well as a set of carpool parkings. Each of those

home, work and parking locations are possible transfe-

ria (locations where to change travel mode or to change

vehicle) where one can join or leave a carpool. Each

individual declares the maximal time and/or distance

that is acceptable to move from origin to destination.

The combined route (co-route) that solves the problem

consists of a join part and a fork part. In the join tree,

carpoolers enter the main drivers car at several loca-

tions and times. In the fork tree they successively leave

the car and, if not at their destination, continue their

trip by other means. The paper proposes an algorithm

to find the optimal solution for the join tree.
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Varrentrapp et al. (2002) provides an informal and

formal problem statement for the LCPP (Long term

Car Pooling Problem). Then the soundness of the prob-

lem formulation is argued and some properties of the

LCPP are proved. Finally the problem is proved to be

NP-complete. This paper assumes that pools are sta-

ble in time and that every member in turn acts as the

driver (round robin concept).

Manzini and Pareschi (2012) describes an interac-

tive system to support the mobility manager (officer)

operating on the LTCPP (long term car pool problem).

The proposed methods and models make use of clus-

tering analysis (CA). The basic hypothesis is that in a

group the driver of the shared car turns among the par-

ticipants (similar to (Varrentrapp et al. 2002)). Clus-

tering procedures using methods available in standard

DSS (decision support system) are proposed. After clus-

tering, for each driver a TSP (traveling salesman prob-

lem) is to be solved. Similarity measures are used but

not discussed in the paper. The result is a GUI based

interactive system that can be applied to company em-

ployees. A case study for a public service in the city of

Bologna is presented. Experiments show that the over-

all relative saving in distance and time increases with

the number of participants.

Iwan and Safar (2010) describe mining algorithms

to discover user link and location link patterns respec-

tively. User link patterns focus on similarity between

the sequences of locations visited by individuals. User

link patterns apply to sequences of locations. Both are

relevant when trying to estimate the probability for

people to be able to carpool.

Trasarti et al. (2011) derives travel routine from sets

of GPS traces. Similar trips are extracted (based on

space and time-of-day). A routine is defined as a suf-

ficiently large set of similar traces belonging to an in-

dividual. A profile is a set of routines. Based on the

assumption that the passenger walks for a given maxi-

mal distance to (from) a location where (s)he is picked

up (dropped off) by a driver, an upper bond for car-

pooling is determined using travel profiles.

Person traces can provide more information than

car traces. Carpooling induces mutual dependency and

hence additional uncertainty about the driver’s and pas-

sengers timeliness. Exchanging location information is

used to help soving this problem. This however requires

energy efficient localization techniques and ubiquitous

coverage like the one presented in Papandrea and Gior-

dano (2013).

Xiao et al. (2012) infers social ties between people

from semantic location histories (SLH). GPS trajecto-

ries first are annotated by assigning a meaning to each

visited location. Then user’s movements are modeled

as sequences of semantically annotated locations. Fi-

nally, similarity between users is calculated by compar-

ing their semantic location sequences. The method is

demonstrated using the public GeoLife GPS trajecto-

ries dataset.

Ronald (2012) presents a multi-agent system that

models joint social activity execution. Although not fo-

cusing carpooling directly, it is important in this con-

text because it focuses on cooperative activity execu-

tion while executing daily agendas which is related to

the concept of co-traveling (cooperative trip execution).

Finally, a large body of literature (Nijland et al.

(2009), Guo et al. (2012), etc) has been published about

the concept of rescheduling activities in a daily agenda.

This however, considers agenda adaptation to unex-

pected events as opposed to rescheduling in the con-

text of negotiation to cooperate. Arentze et al. (2005)

presents an overview of the Aurora activity-based model

for schedule generation and adaptation. People are sim-

ulated as individual agents. A comprehensive model

has been specified describing the insertion, reposition-

ing, deletion and substitution of activities as well as

changing locations, trip chaining options and transport

modes. Models of this level of detail are required to in-

tegrate carpooling concepts in a simulator. The paper

describes the use of Aurora in an experimental setup to

study schedules consisting of work activities and green

activities in several scenarios.

3 Carpooling Model

3.1 Problem Context

This paper focuses on carpooling for commuting i.e.

planned periodic cooperative traveling, not on ad-hoc

ridesharing where people try to find companions for

a single ride in the very near future (usually within

the same day). In order to find carpooling compan-

ions, people who did not find a suitable partner by ex-

ploring their private network, register themselves with

the GCPMS service. Registration implies first post-

ing some characteristics describing the individual like

age, gender, education level, special interests (like music

style preferences), job category, driver license availabil-

ity, etc. Those qualifiers are used because it is known

that continued successful cooperation between people

requires a minimal level of similarity (McPherson et al.

2001).

Secondly, people post information about each trip

they periodically plan to execute: those data consist of

source and destination locations, earliest and latest de-

parture and arrival times, the maximal detour distance
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and delay that are acceptable, as well as the availabil-

ity of a car (possibility to drive). Note that a particular

driver license owner can be unavailable for driving on a

specific day of the week because the family car on that

day is in use by her/his partner.

Periodic trip executions need to be matched, not

people. A periodic trip on Wednesday from A to B leav-

ing at about 08:30h needs to be matched with another

one having similar characteristics. Of course, the peo-

ple involved shall be mutually compatible but they are

not the primary subject of matching. A particular indi-

vidual can periodically carpool with several people for

different trips in the week (on Monday with colleague A,

on Tuesday with neighbour B who differs from A). Pe-

riodic trip execution is abbreviated by periodicTripEx

in the remainder of the text.

After having found a good match (details on how

to do so will be explained below) the matcher conveys

its advise to the candidates involved (the owners of the

matched periodicTripEx ); they evaluate the proposal,

negotiate about carpooling and possibly agree to co-

operate. Note that this negotiation is not guaranteed

to succeed. One of the reasons is that the individuals

dispose of more information during the negotiation pro-

cess than the service does during the matching process.

Therefore, the candidates convey the negotiation result

back to the matcher service. This paper assumes that

sufficient (financial) incentives are in place in order to

make this happen. The feedback is used by a learning

mechanism incorporated in the matching service. After

receiving the feedback, the matching service disposes of

the periodicTripEx and the individuals characteristics

as well as of the negotiation result; those are used to

train a predictor. Please refer to Fig. 1 for a high level

overview of dataflows, relations and method activation.

It is important to note that the first implementation

focuses on pairs of commuters carpooling. This is essen-

tial to the problem of edge weight determination and it

allows the advice to be based on binary matching.

The model used for matching consists of a directed

graph; by convention, each edge points to the period-

icTripEx whose owner will be the driver. Each vertex

corresponds to a periodicTripEx. A vertex for which

the owner is unable to become the driver, never can

be a target edge (its indegree equals zero). Every edge

is labeled with the estimated probability for the the

negotiation to succeed. Two vertices are connected by

an edge if and only if it is worth to advise the perio-

dicTripEx owners to start negotiating: in general the

graph is incomplete. The need to determine the proba-

bility threshold to include an edge in the graph is one of

Fig. 1 Application context: the right hand side shows the
matcher service. People register some descriptive data about
themselves and trips to be executed periodically (periodic-
TripEx). Those constitute a graph : the edges are labeled
with the probability that negotiation will succeed when the
trip owners are advised to carpool. Negotiation result is fed
back to train the logit predictor. The left hand side shows the
entities exercising the matcher service in consecutive phases.

the main reasons to use a MAS to exercise the GCPMS.

Note that

1. the set of vertices evolves over time because peo-

ple register and withdraw periodicTripEx as time

evolves and because people join and leave the car-

pooling candidates society (removing all their peri-

odicTripEx in the latter case).

2. edges emerge as soon as the negotiation success prob-

ability exceeds a given threshold; this can be caused

by changes in the periodicTripEx (e.g. by relaxing

the time constraints) and people characteristics re-

spectively (e.g. by reputation changes (see below)).

3. probability estimates can change over time by re-

training the predictor. Note that this can cause thresh-

old crossing and hence edge creation or deletion.

Finally the problem size can grow large when a nation-

wide service is considered. Large scale deployment prob-

ably is a necessary condition for both effective operation

(delivery of advice that has a high success probability)

and economic viability. The matcher needs to cope with

large networks whose topology and edge weights evolve

in time. This represents a complex problem and hence

thorough evaluation before deployment.

3.2 Basic Concepts - Definitions

Some definitions for concepts in the application domain

are required to explain the functions used to calculate

the edge weights for the periodicTripEx graph. Refer

to Fig. 2 for an overview of the datasets and relations



Exploiting Graph-theoretic Tools for Matching in Carpooling Applications 5

involved. Fig. 3 summarizes the essential application

domain functions.

3.2.1 Symbols Used

A : the set of all agreements (see defini-

tion 2)

I : the set of all individuals

P : the set of all pools (see definition 3)

range(TOD) : 24 ∗ 60 ∗ 60 (time-of-day)

range(TOW ) : 7 ∗ range(TOD) (time-of-week)

T : The set of all periodicTripEx ’s (see

definition 1)

TOD : Time of day ; if expressed in seconds,

cardinal ∈ [0, range(TOD)− 1]

TOW : Time of week ; if expressed in sec-

onds, cardinal ∈ [0, range(TOW )−1]

t·,early, t·,late : Earliest resp. latest time

td,·, ta,· : Departure resp. arrival time

3.2.2 Definitions

Definition 1 (periodicTripEx) A periodicTripEx is

a tuple (i, O,D,w, td,early, td,late, ta,early, ta,late) where

i ∈ I, O and D denote the origin and destination loca-

tions respectively, t·,· ∈ TOW and w denotes a start-

of-week moment in time so that the first trip execution

for the given periodicTripEx starts in w,w + 1.

Notes:

1. A periodicTripEx denotes the weekly execution of a

trip with given characteristics by a specific individ-

ual. Individual i is called the owner of the periodic-

TripEx.

2. Examples:

(a) td,late is: Wednesday at 08:20h

(b) w = 2012-jun-04 00:00:00

(c) Refer to Fig. 4 to see intervals overlap.

Definition 2 (agreement) An agreement specifies op-

erational details about the collaborative execution of

all elements in the list of periodicTripEx to which the

agreement applies. An agreement specifies the moment

in time at which it starts to hold.

Notes:

1. An agreement has no termination time

2. A periodicTripEx is referred to by (belongs to) at

most one agreement

3. Agreement details cover: timing, routing and driver

selection.

Fig. 4 Activities (aA,0, aB,0, aC,0) for individuals A, B and
C and the associated trips. The valid departure intervals
id,A, id,B , id,C are shown. Note that B can choose to co-
travel with A or C but A and C cannot co-travel.

Definition 3 (pool) A pool is a tuple ({a}, T ) where

{a} denotes a set of agreements negotiated by the co-

operating partners and T is a nonempty set of perio-

dicTripEx so that ({a} = ∅ ∧ ‖T‖ = 1) ∨ (‖{a}‖ =

1 ∧ ‖T} > 1)

Notes:

1. The condition states that there is either a single

individual without any agreement or multiple coop-

erating individuals sharing a single agreement.

2. Each individual occurs in at most one periodicTripEx

in a specific pool :

∀t0, t1 ∈ T : (t0 6= t1)⇒ (t0.owner 6= t1.owner) (1)

where t.owner denotes the individual owning the

periodicTripEx.

Definition 4 (profile similarity) Profile similarity

is a value in [0, 1] assigned to a pair of individuals

that indicates to what extent the individuals are com-

patible for carpooling (homophily concept described in

McPherson et al. (2001)).

Definition 5 (pooled trip execution) A pooled trip

execution (abbreviated by pooledTripEx ) is the cooper-

ative execution of a set of trips using a single car and

a single driver.

Note: In this context, it is assumed that each pooledTripEx

is driven by exactly one driver. More complex cases are

covered by Knapen et al. (2012a).

Definition 6 (path similarity) Path similarity is a

value in [0, 1] assigned to an ordered pair (pte0, pte1) of

periodicTripEx that indicates to what extent the OD

(Origin, Destination) pairs involved in the respective

trips, are compatible for carpooling in case the owner

of pte0 is assigned to be the driver.



6 Luk Knapen et al.

Fig. 2 Overview of sets (individual, periodicTripEx and agreement) used in the model and relations those sets are involved
in.

Fig. 3 Overview of functions defined on the sets (individual, periodicTripEx and agreement) used in the model and functions
those sets are involved in. Continuous lines represent references, dashed lines represent functions.
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Notes:

1. Path similarity defines a function of periodicTripEx

that is not symmetric in its arguments. This is eas-

ily seen because the distance driven depends on the

driver selection; the driver needs a detour to pick

up passengers.

2. When the single driver constraint in pooledTripEx is

dropped, paths driven no longer are strings of path

segments but consist of join and fork trees which

requires a more advanced concept of path similarity

which has been discussed in Knapen et al. (2012a).

Definition 7 (tiSim) Time interval similarity (tiSim)

is a value in the range [0,1] assigned to a pair of time

intervals specified by different people, that indicates to

what measure the intersection of the intervals can be

used for a specific act of cooperation.

Definition 8 (depArr tiSim) Departure/arrival time

interval similarity (depArr tiSim) is a value in [0, 1] as-

signed to an ordered pair (pte0, pte1) of periodicTripEx

having identical origins and identical destinations; it in-

dicates to what extent the time intervals involved are

compatible for carpooling.

Notes:

1. Compatibility for car pooling requires a minimal

amount of intervals overlap (see Fig. 4).

2. Due to the single driver constraint (see definition 5,

the route for each passenger’s trip shall be included

in the route for the pooledTripEx which is the route

for the driver.

3. Time interval similarity can be calculated only for a

pair consisting of the passenger trip and the part of

the driver’s trip for which the route coincides with

the passenger trip route (because identical origins

and destinations are required).

Definition 9 (sReputation) Safety reputation is a

value in the range [−0.5, 0.5] assigned to an individual

(by the passengers) to qualify the individual as a safe

driver.

Notes:

1. sReputation is a characteristic of an individual be-

cause it is assumed that safe driving does not de-

pend on the periodic trip driven.

2. The initial value for individual i is i.sReputation =

0.0 (which means neutral).

Definition 10 (tReputation) Timeliness reputation

(or accuracy reputation) is a value in the range [−0.5, 0.5]

assigned (by the co-travellers) to a periodicTripEx in

an agreement : it indicates to what measure the own-

ing individual respects the timing when executing the

periodic trip in the agreement.

Notes:

1. tReputation is defined for both drivers and passen-

gers.

2. tReputation has been defined as a characteristic of a

tuple (periodicTripEx,agreement) and not as a char-

acteristic of an individual or of a periodicTripEx

because an individual can behave differently on a

specific periodicTripEx pte0 in different agreement

contexts (pools). Example: the interval between a

pick-drop activity to be executed by individual i0
and the start of the periodicTripEx in a given agree-

ment a0 is too short so that it is difficult for i0 to

meet the timing requirements of a0. Within a differ-

ent agreement a1 timing constraints for pte0 can be

less severe so that the owner can met them easily.

3. The initial value for periodicTripEx pte in a is given

by (pte, a).tReputation = 0.0 (which means neu-

tral)

Definition 11 (cohesion) Cohesion qualifies the strength

of an agreement using a value in [0, 1] that is a function

of attributes of the agreement only.

Notes:

1. An agreement with a high cohesion value is less

likely to be broken whenever some of its periodic-

TripEx get a proposal to set up a new cooperation.

Cohesion determines the resistance to breakdown in

case opportunities for recombination come available.

2. Cohesion does not depend on sReputation since that

is an attribute of an individual and not of an agree-

ment.

3. The matcher shall derive cohesion from individual’s

negotiation feedback since individuals are assumed

not to be prepared to specify and maintain cohesion

values; furthermore, they are unable to do so since

no universally valid scale or method is available.

Note: In order for carpooling (co-travelling) to be suit-

able, both the collective departure and arrival time in-

tervals shall be suitable for each participant.

3.3 Exploration/advisory and Negotiation Phases

Matching is applied in both local and global exploration

phases. In both cases, matching precedes the negotia-

tion phase where final decisions to carpool are taken.

Mechanisms used in the exploration/advisory phases

shall be consistent with mechanisms in the negotiation

phase. It is not possible to predict the negotiation phase

with certainty; reasons are:
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1. Negotiation covers driver selection, co-route deter-

mination and re-scheduling (daily planning adapta-

tion) for the cooperators. Schedule adaptation makes

use of VOT (individual specific Value Of Time).

An advisory mechanism does not have all required

data available nor has any knowledge of the private

goals (and in general the BDI (Beliefs, Desires, In-

tentions)) of the individuals (agents) involved in a

negotiation. Individuals need to adapt their daily

agenda because the decision to carpool introduces

mutual dependency and hence additional constraints.

On one hand, those constraints induce computa-

tional complexity at two levels: (i) agenda adapta-

tion for a particular individual, includes re-timing,

re-location, re-sequencing (combinatorial optimiza-

tion) of activities along with activity dropping and

replacement (Joh 2002), (Joh 2004),(Knapen et al.

2012b),(Arentze et al. 2005) and (ii) networked indi-

viduals need to take care of the agreements they are

involved in.On the other hand, constraints induced

my mutual agreements cannot be considered to be

fixed; under certain circumstances they evolve over

time. This induces the need for replanning. Relevant

literature has been mentioned in 2. Since planning

is involved, agents need to predict the near future.

Knapen et al. (2012b) predicts future travel times

using perception filters that actually implement part

of the belief of an agent.

2. The total distance driven cannot be predicted by

the matcher when carpool parkings are involved be-

cause in such cases the co-route can be tree struc-

tured: see note 2 for definition 6. Hence the path

similarity function delivers only an approximation

of the one involved in negotiation.

3. People are assumed to be prepared posting a min-

imal amount of data about the time intervals that

suit them for departure an arrival respectively; can-

didates are supposed to specify just the interval

boundaries. However, during negotiation, they can

make use of preferences to state that one of a set

of proposed intervals suits better than another one.

Hence, the trip times interval similarity function

available to the matcher is only an approximation

for the one used during negotiation (see Fig. 5).

4. The Cotravel Refused relation shown in Fig. 2 al-

lows individuals to unconditionally avoid any advise

to carpool with specific people. For privacy reasons,

it is not possible for a refused individual to know

the refusing party.

3.4 Principle of Operation of the Carpooling Model

1. An individual looks for other individuals to cooper-

ate while executing periodicTripEx ’s: this is called

exploration.

2. Local exploration within the private social network

(PrivNet) is applied before global exploration. If

carpool candidates can be found within an individ-

ual’s PrivNet, they will be contacted first (as pre-

ferred candidates).

3. Global exploration is applied only in a second stage

when no suitable pool was found in the PrivNet. In

the Global exploration phase, the matcher provides

advice about which pools an individual should nego-

tiate with. This corresponds to the use of an online

service by a candidate exploring the set of formerly

unknown carpooling candidates.

4. If an individual joins a pool, (s)he is added to the

PrivNet for all other participants in the pool (if still

required) so that if i0 and i1 cooperate in a pool,

(i0, i1) and (i1, i0) belong to each others PrivNet.

Because links never are removed from the PrivNet,

if i0 and i1 ever carpooled, (i1) ∈ PrivNet(i0, 1) ∧
(i0) ∈ PrivNet(i1, 1).

5. Candidates register, join and leave pools at random

moments in time. As a consequence the main data

structures dynamically change due to events exter-

nal to the matching process.

4 Functions related to Domain Concepts

A specific concept can be implemented by different func-

tions in MAS and GCPMS matcher.

4.1 Time Interval Based Functions

Table 1 contains a summary of the functions presented

in this section. Two kinds of function are used. The

tiSim and tiSuitFunc functions apply to a set of two

intervals of the same kind (i.e. both are departure or

both are arrival intervals) that correspond to two in-

dividuals considering to cooperate. The depArr tiSim

and depArr tiSuitFunc are define ver 4 time intervals

(i.e. both departure and arrival intervals for two people

considering to cooperate).

For the reason mentioned in Section 3.3 item 3, dif-

ferent time interval similarity functions are used in re-

spectively the agent-based exerciser and the matching

operational service.

Remember that the trips considered shall have iden-

tical origins an destinations respectively (hence the time
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Context
Function type MAS (function of

time)
GCPMS (con-
stant)

2 time intervals of same kind (either departure or arrival time intervals for 2 agents) tiSuitFunc tiSim
2 pairs (departure and arrival) of time intervals for 2 agents are considered depArr tiSuitFunc depArr tiSim

Table 1 Summary of the time interval functions used.

intervals stated by the participants shall apply to a sin-

gle origin-destination pair which implies that the pas-

senger trip embedded in the driver’s trip is to be con-

sidered: see note 2 with definition 8).

4.1.1 Time Interval Based Functions for Negotiation

1. This section define the tiSuitFunc (time interval suit-

ability) and depArr tiSuitFunc (departure/arrival time

interval suitability) functions.

2. The departure (arrival) interval for a trip (periodic-

TripEx ) is the time interval that suits the traveller

to start (end) the trip. Let pte.id() and pte.ia() de-

note respectively the departure and arrival intervals

of the periodicTripEx pte.

3. Individual p0’s preference for a given moment in

time is given by the function fp0 : R ⇒ R : t 7→
fp0(t) ∈ [0, 1]. The function is not required to be

differentiable or continuous but the product of two

such functions shall be integrable. For each moment

in time belonging to the departure and arrival in-

tervals, the preference value needs to be specified.

4. The combined preference function is the product of

the preference functions associated with two period-

icTripEx ’s. It is essential to the negotiation process.

5. The time interval suitability is the integral of the

combined preference over a fixed time interval. The

length of the interval has a pre-specified constant C

value; a suitable choice is the expected duration of

the trip interruption to get someone on/off board

of the vehicle. Let tiX ,0 and tiX ,1 denote the be-

gin en end times for a time interval specified by

agent X. The time interval suitability is denoted

by S(C, iA, fA, iB , fB), where iA = [tiA,0, tiA,1] and

iB = [tiB ,0, tiB ,1] are intervals specified by individu-

als A andB; fA and fB are the associated preference

functions. The suitability function is given by

t0 = max(tiA,0, tiB ,0) (2)

t1 = min(tiA,1, tiB ,1) (3)

S(t;C, iA, iB , fA, fB) ={
1
C

∫ t+C
t

fA(x) · fB(x)dx if t ∈ [t0, t1 − C]

0 otherwise

(4)

where t denotes the start of the boarding/alighting

operation. The dimension of the time interval suit-

ability value is [prefUnit2]. In this context, pref-

erence is assumed to be dimensionless, hence the

suitability is dimensionless. During negotiation,

S(t;C, iA, iB , fA, fB) is used to find a suitable time

to board/alight.

6. Piecewise linear functions are used because they are

flexible, they can easily be specified by the user

(in charge for the configuration of the agent-based

model) and integration is computationally cheap.

An example is shown in Fig. 5. The left hand part

shows piecewise linear preference functions, their

product and the associated time interval suitabil-

ity (proportional to the crosshatched area under the

product function).

7. Time interval suitability is a value in [0, 1].

8. The departure/arrival time interval suitability

depArr tiSuitFunc is defined as

f(t) =Sdep(t;C, iA,dep, iB,dep, fA,dep, fB,dep)·
Sarr(t+ d;C, iA,arr, iB,arr, fA,arr, fB,arr)

(5)

where d is the expected trip duration.

4.2 Time Interval Similarity Evaluation for Matching

1. It is not feasible to ask the individuals to register

the piecewise linear preference function mentioned

in Section 4.1.1. People are assumed to be prepared

to register simply a time interval only. Hence the

preference value is assumed to be a constant f over

the time interval specified.

The right hand part in Fig. 5 shows case for the

same intervals where the preference function is as-

sumed to equal one everywhere: this is the assump-

tion made by the matching service due to lack of

information: the user only specifies the boundaries

for the departure and arrival intervals.

2. The negotiation outcome is assumed to be posi-

tively correlated with the length of the intersection

of the intervals associated with the periodicTripEx ’s

to compare. The value is not compared to the con-

stant C mentioned above because this comparison

would only imply a linear scaling of an independent
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Fig. 5 (Left) Time similarity used while negotiating: fA,N (t) and fB,N (t) are time preference functions for specific intervals.
FN (t) is the combined preference and the size of the cross-hatched area is the resulting time interval suitability function.
(Right) Time similarity used by the matcher: all preference functions equal 1 because users are expected to only submit
feasible time intervals.

variable which has no effect on the logit estimator.

The time interval similarity tiSim is given by

t0 = max(tiA,0, tiB ,0) (6)

t1 = min(tiA,1, tiB ,1) (7)

tiSim(iA, iB) = t1 − t0 (8)

3. For a given pair of periodicTripEx ’s, tiSim values

are fed into the logit estimator as two independent

variables; combining them into a single value would

cause a loss of information.

4.3 Path Similarity

4.3.1 Path Similarity in MAS

The first version of the agent-base exerciser takes does

not take carpool parkings into account. As a conse-

quence, path similarity is calculated in the same way

as for the GCPMS.

4.3.2 Path Similarity in GCPMS

1. The GCPMS per hypothesis has no information about

carpool parkings potentially being used (because

that is not specified by the candidates). Therefore,

it is assumed that people board and alight at home

and work locations only.

2. The owner of the first periodicTripEx is the driver.

Let
Oi, Di denote respectively the origin

and destination locations for in-

dividual i (e.g. home and work

locations)

r(a, b, t) denote the route from a to b

when starting at time t that is

optimal with respect to some

cost function c(r) based on dis-

tance and travel time

d(r, t) denote the duration to travel

the route r starting at time t

l(r, t) denote the length of the route r

starting at time t
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c(r) denote a cost function based on

route length l(r, t) and route

travel duration d(r, t)

pi,solo(Oi, Di, t) denote the optimal path from

Oi to Di when individual i

drives alone (solo) and starts at

time t

pi,solo(Oi, Di, t) denote the optimal path from

Oi to Di when individual i

drives alone (solo) and ends at

time t

pi,carpool(Oi, Di, t) denote the optimal path from

Oi to Di when individual i

drives the carpool trip via Oj
and Dj for i 6= j and starts at

time t

pi,carpool(Oi, Di, t) denote the optimal path from

Oi to Di when individual i

drives the carpool trip via Oj
and Dj for i 6= j and ends at

time t

pathSimd() denote the path similarity func-

tion for the case where the ear-

liest departure is given

pathSima() denote the path similarity func-

tion for the case where the lat-

est arrival is given

3. Note that the minimal cost depends on the start

moment in time. Also note that the optimal path

can be determined either by fixing the time for the

first departure or by fixing the time for the latest

arrival.

4. The ratio between the lengths of the optimal routes

for the driver is used as a path similarity function.

For the given earliest departure case (starting at t0)

where A is the driver and the trip is OA → OB →
DB → DA, this leads to

t1 = t0 + d(r(OA, OB , t0)) (9)

t2 = t1 + d(r(DB , DA, t1)) (10)

pathSimd(pteA, pteB , c()) =

c(OA, DA, t0)

c(OA, OB , t0) + c(OB , DB , t1) + c(DB , DA, t2)
(11)

Note that t1 denotes the time at which the carpool

trip leaves OB and t2 denotes the time at which the

carpool trip leaves DB . Also note that in general

pathSimd(pteA, pteB , c()) 6=
pathSima(pteA, pteB , c()) (12)

since the departure times can differ. Finally note

that in general

pathSima(pteA, pteB , c()) 6=
pathSima(pteB , pteA, c()) (13)

since the routes differ.

5. The departure time can have a large effect on the

trip duration. In the first GCPMS this dependency

is ignored due to lack of data. Because of the avail-

ability of speed profiles registered using GPS navi-

gators, it will become feasible to take the time de-

pendency into account (which will lead to more ac-

curate negotiation outcome prediction) in the near

future although that will require a large amount of

data pre-processing and data storage. By ignoring

time dependency, the equation 11 is reduced to

pathSimd(pteA, pteB , c()) =

c(OA, DA)

c(OA, OB) + c(OB , DB) + c(DB , DA)
(14)

4.4 Profile Similarity

The candidate carpooler specifies the value for a set of

NA attribute values: those constitute the candidate’s

profile.

1. The attributes can be: (a) continuous variables lim-

ited to a finite interval (b) discrete quantities for

which a total order relation exists, also limited to a

finite interval and (c) enumerations (discrete quan-

tities without an intrinsic order relation).

2. Attributes that are ordinal values (cases (a) and (b))

are handled in the same way; case (a) is expected

not to occur in practice. The domain is mapped onto

[0, 1]. The distance between two attribute tuples a0
and a1 having NOA ordinal attributes, is the Euclid-

ian distance divided by a scale factor to normalize

the distance (map to interval [0, 1]).

d(a0, a1) =

√√√√ ∑
i∈[1,NOA

(a0[i]− a1[i])2

NOA
(15)

Continuous variables are combined into a single dis-

tance value dC and discrete ordinal values are com-

bined into another one dD. The range of dD is a

finite subset of [0, 1].

3. All attributes have an equal weight.

4. The distance dE between two vectors constituting

of enumeration variables, is the number of differing

attributes divided by the total number of attributes

for normalisation.
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5. Both MAS and GCPMS use the same mechanisms

to calculate profile similarity. However, the MAS

can make use of particular attributes that have not

been registered in the GCPMS.

4.4.1 Profile Similarity in GCPMS

1. The first model uses the similarity between two pro-

files as a predictor (one independent variable) for

the logit model. It is to be investigated under what

conditions its is more efficient (in terms of predic-

tion accuracy) to feed NA variables into the logit

independently, each one of which is the difference

between the values for a given attribute in the re-

spective profiles.

2. The similarity values sC = (1− dC), sD = (1− dD)

and sE = (1−dE) are used as independent variables

for the logit estimator.

4.5 Reputation

Both sReputation and tReputation are handled in the

same way.

4.5.1 Reputation in MAS

1. In the agent based exerciser a gossip based mecha-

nism is modeled. In this case the social network is

considered; the set of carpooling based connections

(links) is a small subset of the social network for

each individual. People keep a qualification for ev-

eryone they ever carpooled with. Furthermore, an

individual can keep a qualification for another one

that has been derived from gossip; this is a transi-

tive mechanism. The credibility of the qualification

decreases with each intermediate step involved.

2. Every agent keeps list containing a perceived safety

reputation value for a limited set of other agents.

In the exerciser, a specific agent can be qualified

by zero or more safety reputation values (each one

of which is owned by a peers). Every agent can

determine the reputation of another agent using a

method that is not specified in this section and over-

riding the value already in place (if any). Further-

more, everyone can adjust the reputation of peers

based on gossip as follows. At a random moment

in time, an emitter agent ae can multicast its rep-

utation value Re(q) to qualify agent aq to a subset

agents directly connected to it in the social network.

The receiver ar

(a) retransmits the reputation message with a given

probability pr (hence simply drops it with prob-

ability (1− pr)

(b) adjusts its own perception of aq with a given

probability pa (hence simply ignores it with prob-

ability (1− pa)

Consider agents ae, aq, ar, av that are all pairwise

different. ae emitted a qualification about aq that

reaches ar via its neighbour av. If ar did not yet

have registered an opinion about aq, the value for

Rr(q) = 0. Reputation update by receiver aa is done

by

α = 2−d(e,r) (16)

βr,v ∈ [0, 1] (17)

R′rq ←
Rr(q) + α · β ·Re(q)

1 + α · βr,v
(18)

where d(e, r) is the distance between emitter and

receiver in the network and βr,v is the strength of

the link between ar and av.

4.5.2 Reputation in GCPMS

1. The GCPMS allows for controlled mutual evalua-

tion of individuals with respect to timeliness and

safety. Only individuals cooperating in an agree-

ment can qualify each other; this means that the

reputation mechanism in the matching service is not

transitive.

2. Similar mechanisms are for sReputation and tRep-

utation. Qualifications received are registered in a

dedicated qualifications list assigned to the entity

they apply to; for each issuer, only the most recent

qualification is kept. sReputation qualifications are

registered with individuals and tReputation qualifi-

cations are registered with periodicTripEx.

3. Each individual has reputation values that evolves

over time due to qualification by cooperators (i.e.

individuals who participated in an agreement with

the person being evaluated). Passengers can qualify

sReputation for drivers. Every cooperator can qual-

ify every other cooperator’s periodicTripEx ’s with

respect to tReputation.

4. The attributes for a qualification are: (i) the gen-

eration timestamp q.ts(), (ii) the issuer q.iss() and

(iii) the specified value q.rep().

5. In both cases, the reputation is calculated as a weighted

average of the values posted in the qualification list:

the weight decreases with age of the qualification

and increases with the duration of the cooperation

(the agreement lifetime) a.dur(q.ts()) up to the mo-

ment of qualification. Note that the cooperation du-

ration in the case of sReputation is to be summed

over a set of agreements. Let Qi0 be the qualifica-

tions list for individual i0. Let ai0j denote an agree-

ment in which individuals i0 and j cooperated. Let
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and axy .dur(t) denotes the lifetime of agreement be-

tween the qualified agent x and the qualifying agent

y a at time t. Let Ayx denote the set of all agreements

in which individual x and y cooperate. Then follow-

ing equations determine the sReputation:

age = now − q.ts() (19)

coopDur =
∑

a∈Ai0
q.iss()

a.dur(q.ts()) (20)

wi0q.iss() = exp(−α · age) · (1− exp(−β · coopDur))
(21)

sReputationi0 =

∑
n∈Qi0

q.sRep() · wi0q.iss()∑
n∈Qi0

wi0q.iss()
(22)

4.6 Cohesion of an Agreement

1. Cohesion is supposed to be a monotonically decreas-

ing function of the time t elapsed since the creation

of the agreement. Cohesion is a monotonically de-

creasing function of pool size s (large pools are more

likely to disintegrate). Note that cohesion does not

depend on mutual evaluation of carpoolers; cohe-

sion and reputation shall be independent concepts

because all of them are fed into a probability esti-

mator. The cohesion value is given by:

c = eα·t · eβ·(s−1) (23)

2. In the pairwise case, when considering a specific

edge, exactly two cohesion values apply (one for

each of the vertices (periodicTripEx ’s)). Each of the

cohesion values possibly applies to an agreement.

For a given periodicTripEx pair (pte0, pte1), the c0
and c1 can relate to either different agreements or

to a single one. The meaning of the tuple (c0, c1)

depends on number of agreements involved. There-

fore, cohesion values are combined into a single co-

hesion based indicator using the function given in

equation 26; the second case in equation 26 corre-

sponds to the case where both periodicTripEx are

members of an agreement (but not necessarily to the

same one). Let pte0, pte1 ∈ T the periodicTripEx s

involved. Let c0 and c1 denote the respective corre-

sponding cohesion values and p.T () denote the list

of periodicTripEx involved in pool p. Let pte.a() de-

note the agreement covering pte when it belongs to

a pool. The cohesion indicator c(pte0, pte1) is a mea-

sure for the cohesion between two periodicTripEx ’s

when they already form a pair and for the feasibility

to get them released when they are bound in pairs

with others.

ptex.a() =

{
nil if 6 ∃p ∈ P|ptex ∈ p.T ()

p.a() if ∃p ∈ P|ptex ∈ p.T ()
(24)

cx =

{
0 if ptex.a() = nil

ptex.a().c() else
(25)

c =


(1− c0) ∗ (1− c1) if pte0.a() 6= pte1.a()

c0 ∗ c1 if pte0.a() =

pte1.a() 6= nil

(26)

In case both periodicTripEx belong to the same agree-

ment, the cohesion values are taken from that agree-

ment and in fact c0 = c1. In the other case (which

also covers the case where at least one of the pe-

riodicTripEx is not covered by an agreement), the

complement of the cohesion values is used. When

neither of the periodicTripEx belongs to an agree-

ment, c = 1.

5 Weights Determination

The weights used to label the edges in the graph, are

probability values associated with the success of the

negotiation process between individuals. Those prob-

abilities are calculated by means of logistic regression

(logit) fed by results of negotiations who have been ad-

vised by the carpoolMatcher.

Edges are not removed from the graph when they

become member of a pool (agreement). They are la-

beled with a weight in exactly the same way as free
edges. As soon as their weight becomes lower than the

weight of other edges involving the same vertices, some

of the carpool members will get an advice to negotiate

with non-pool-members to setup a new agreement.

5.1 Negotiation Outcome Prediction

Fig. 6 summarizes the data dependencies relevant to

edge weight determination. From the point of view of

the matcher service, the outcome of a negotiation pro-

cess is a discrete variable with values : success (yes)

and failure (no). Independent variables influencing the

negotiation are continuous : profSim, pathSim, tiSim,

cohesion and sReputation. A logit model will be used

to predict the negotiation outcome. Negotiation results

fed back to the Global CarPooling Matching Service

(GCPMS) are used to determine the coefficients for the

logit model by linear regression.
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Fig. 6 Dependencies between concepts used to calculated the weight for a edge connecting two periodicTripEx ’s

5.2 Dynamic Actor and Agreement Attributes

While evaluating the success probability for a pool, ex-

actly one sReputation value applies since only the sRep-

utation for the driver is relevant.

The tReputation of an individual i0 applies to an

existing agreement and only exists as long as the agree-

ment holds. It can only be affected by the partners in

the agreement different from i0 (in the pairwise case,

there is only one such partner). The tReputation is an

evaluation score assigned by the partners; the default
value equals the neutral value : see definition 10.

6 Matching using dynamically updated Edge

Weights

We now show how to apply graph matching techniques

to find optimal carpooling (see also Agatz et al. (2011)).

We are also interested in quickly updating the result,

when the weights of the edges (which correspond to the

result of negotiation between the users) slightly change

(as opposed to running the entire matching from scratch

whenever such changed occur). We proceed to introduce

the graph structure. In this paper, we deal with the case

in which the periodicTripEx ’s belong to either drivers or

non-driving passengers, and we try to optimally match

each driver trip with a passenger trip; in the future

we plan to tackle more general problems. Note that

this case requires the set of candidate carpoolers to be

partitioned a priori.

We quickly introduce some notations: a graph G

consists of a set of nodes, V , and a set of edges, E, such

that each edge is associated with a pair of nodes. Denote

G = (V,E). A directed graph is the same as above, but

where each edge is associated with an ordered pair of

nodes. In a weighted graph, each edge has an associated

non-negative real number with it, defined as its weight.

Given a graph G = (V,E), a matching M in G is

a set of pairwise non-adjacent (disjoint) edges . that is,

no two edges share a common node. The weight of a

matching M is the sum of the weights of the edges in

M . A maximum (optimal) matching is a matching such

that it obtains the maximum weight of all matchings.

It does not have to be unique.

A special case of the matching problem is when the

graph is bipartite, that is, its nodes can be partitioned

into two disjoint sets, L and R, such that all edges are

between a node in L and a node in R. For the carpool-

ing problem, this may correspond to the case in which

the periodicTripEx set is composed of trips owned by

drivers (L) and trips owned by non-drivers (R). For a

schematic example, see Fig. 6.

In order to solve the carpooling problem when rep-

resented by a bipartite graph, denote the weight of the

edge between i ∈ L and j ∈ R by cij , and define vari-

ables xij . To find an optimal matching, solve the follow-

ing optimization problem: maximize
∑
ij

cijxij , subject

to the constraints xij ≥ 0, ∀j
∑
i

xij ≤ 1, ∀i
∑
j

xij ≤ 1.

According to Section 5, the cij values are the proba-
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Fig. 7 A schematic example of a graph used for the carpool-
ing problem. c21 stands for the weight of the match between
trip owned by driver number 2 and trip owned by passenger
number 1.
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Fig. 8 Running times [sec] for various values of σ and num-
bers of nodes.

bilities for the negotiation to succeed when i and j are

advised to carpool.

To test the algorithm, data was simulated as fol-

lows. Weights were chosen as the absolute values drawn

at random from a normal distribution with mean µ = 0

and given standard deviation σ, and then those smaller

than a certain threshold (0.2 for the experiments re-

ported here) were thresholded to 0. Fig. 8 shows run

times for different numbers of nodes and values of σ.

As discussed in the introduction, the input to the

carpooling problem is highly dynamic. This necessitates

developing, in addition to the well-studied batch solu-

tion described above, algorithms which are incremental.

An incremental algorithm assumes that the optimal so-

lution of the carpooling for some input was computed

already, and then it attempts to solve (either accurately

or approximately) the problem for the same input but

under a small perturbation.

Here we present an analysis which, given a solution

to the optimization problem, allows to determine how

far this solution is from the optimal one to the per-

turbed problem. Assume that the solution for the orig-

inal (unperturbed) problem, with weights cij , is x0ij ,

and that x1ij is the solution for the perturbed weights

cij + εij . Then the following holds:∑
i,j

(cij + εij)x
1
ij =

∑
i,j

cijx
1
ij +

∑
i,j

εijx
1
ij ≤ (27)

∑
i,j

cijx
0
ij +

∑
i,j

εijx
1
ij (28)

where the inequality follows from the optimality of x0ij
for the unperturbed weights cij . Hence, the solution

for the perturbed weights is better than the old by an

error term of at most
∑
i,j

εijx
1
ij . Since ∀j

∑
i

x1ij ≤ 1 and

∀i
∑
j

x1ij ≤ 1, this term can be bounded by
∑
i

max
j
|εij |.

7 Future Research Directions

7.1 Ongoing research

Network characteristics are studied for the graph con-

necting the trips that have been posted for carpooling in
order to find out how partitioning (number of indepen-

dent components) depends on the probability threshold

used.

The carpooling problem has been formulated in a

general way. This leads to an assignment problem in a

directed weighted graph and no longer requires a priori

drivers-passengers partitioning for matching in a bipar-

tite graph. More than two periodicTripEx can be part

of an agreement. Research now focuses on the complex-

ity of the assignment problem. First results have been

presented in Knapen et al. (2013) (accepted conference

paper, to be presented). Although a straightforward for-

mulation as an integer programming problem has been

given, graph theoretical metods are focused in order to

find out whether results from graph theory can provide

solutions to mitigate the problem size explosion.

A Janus (Gaud et al. 2009) based experiment us-

ing 10000 agents has produced preliminary results. It

includes negotiation and trip execution simulation in

order to generate reputation feedback.
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7.2 Research for the longer term

Negotiation for agreements involving more than two

people (some of who can already be involved in an exist-

ing agreement) requires cooperative adjustment of more

than two schedules and needs additional attention.

Determination of agent profiles needs improvement;

in particular semantic-based models will be evaluated

to replace the basic method now used in the model.

The cohesion function used in the MAS needs to ac-

count explicitly for private social network membership

of participants in an agreement.

Finally, in order to achieve the ultimate goal of re-

placing a real testers community by a community of

agents in a MAS, several coefficients used in the be-

havioural models, need to be quantified by means of

surveys and appropriate statistical methods.

8 Conclusions

In order to evaluate a carpooling advisory service, a

MAS is used as an exerciser. Large scale simulation

is required in order to analyse the advisor behaviour.

Agents are required to accurately mimic real individ-

uals. Thereto the process has been analysed in depth

and model components have been proposed. Preliminar

experiments show that computational problems are to

be expected due to combinatorial explosion. Several re-

search paths to explore possible solutions to handle that

problem have been identified.
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