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ABSTRACT 
We describe FoodBoard, an instrumented chopping board 
that uses optical fibers and embedded camera imaging to 
identify unpackaged ingredients during food preparation on 
its surface. By embedding the sensing directly, and robust-
ly, in the surface of a chopping board we also demonstrate 
how surface contact optical sensing can be used to realize 
the portability and privacy required of technology used in a 
setting such as a domestic kitchen. FoodBoard was subject-
ed to a close to real-world evaluation in which 12 users 
prepared actual meals. FoodBoard compared favourably 
with existing unpackaged food recognition systems, classi-
fying a larger number of distinct food ingredients (12 incl. 
meat, fruit, vegetables) with an average accuracy of 82.8%. 
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INTRODUCTION & MOTIVATION 
Recognizing food in everyday contexts, such as kitchens, is 
a canonical problem for the ubiquitous computing research 
community [15], and an important component of systems 
that could potentially undertake automated dietary intake 
estimation, provide situated support for healthier eating 
habits, or automated assistance for meal preparation. Previ-
ous research in food recognition has typically used comput-
er vision techniques, i.e. physically remote camera imaging 
[10,11,13,17]. However, given the intrinsic complexity of 
the problem, even approaches that significantly restrict the 
context (by constraining the image capture configuration 
and/or range of foods) yield relatively unsatisfactory recog-
nition rates. In one of the most successful examples, Yang 
et al. [17] utilised a fast food database and used pair-wise 
local features to represent the spatial relationship between 
pixels of different food types. Yet even in this highly con-

strained context with only seven distinct food types (e.g. 
sandwich, salad & sides, bagel, donut and similar) SVM-
based classification yielded only a 78% accuracy rate. 

As an alternative to computer vision based approaches, and 
partly in response to inevitable concerns about users’ priva-
cy, a small number of food recognition systems have been 
based on acoustic data. For example, Amft et al. [1] used an 
in-ear microphone to classify different types of food based 
on the chewing sounds. Using a decision tree classification 
for 4 texturally distinct food items (chips, apple, pasta, and 
lettuce) a two-step acoustic analysis gave an accuracy of 
between 66-86% overall for a “single chew”, and between 
80-100% for a “chewing segment”. However, identification 
of food as it is about to be swallowed is too late for many 
applications. By contrast Kranz et al. [12] developed a mul-
timodal food recognition system that combined a micro-
phone installed in their Aware Kitchen, and a knife aug-
mented with force and torque sensors. An overall recogni-
tion rate of 85% accuracy for 6 food items demonstrated the 
potential for their food classification, although the obtrusive 
nature of the technologies used clearly indicated the need 
for more sensitive product design if such technology-
enhanced utensils are to be used in real-world settings.  

For classifying food in everyday settings such as a kitchen, 
traditional configurations of computer vision and acoustic 
sensing fall short on two related counts: (i) they involve 
obtrusive sensing technology (i.e., cameras or micro-
phones); and (ii) they pose significant privacy concerns for 
the people that use the space in which they are deployed. 
While RFID readers embedded in kitchen worktops have 
been shown to address these privacy concerns, they are un-
able to identify foods which do not have packaging in 
which tags can be embedded; in particular, fresh food in-
gredients such as meats, vegetables and fruits. In response 
to this challenge we describe FoodBoard, a pervasive sens-
ing and context recognition system developed to recognize 
unpackaged ingredients, as they are prepared on a chopping 
board. FoodBoard’s novel surface contact imaging tech-
nique is embedded within a custom-designed chopping 
board, thereby alleviating any potential privacy concerns 
and allowing the board to be freely moved and washed. 

Our design goal for FoodBoard was to develop a modular 
component of a monitoring system for domestic activities  
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(in this case for aspects of food preparation).Food recogni-
tion results are intended to inform a higher-level inference 
system that provides, for example, situated prompting to 
support the autonomy of people with cognitive impairment 
[6]), task-based language learning [7] or development of 
cooking skills [16]. In these application scenarios the em-
bedded nature of FoodBoard’s sensing has inherent ad-
vantages over more generically configured computer vision 
systems (e.g., an overhead camera) as: (i)  FoodBoard only 
senses objects and activities on the surface of the board and 
thus more fully respects the privacy of people in the kitch-
en; and (ii) by not relying on modifications to the infra-
structure of the kitchen (as camera setups required for oc-
clusion free capturing would) its deployment requires little 
or no more effort than that of a regular chopping board. 

FoodBoard  

(i) Design and Construction 
There is a technical challenge in creating an embedded sen-
sor capable of recognizing food: a certain minimum sensor 
area and resolution is required. Even with a special lens for 
a camera to image the underside of the chopping surface a 
greater distance between the camera and the surface is re-
quired than the thickness of a chopping board allows. While 
custom electronics incorporating many hundreds of (costly) 
colour optical sensing elements could be used, we instead 
utilize the approach used in FiberBoard, the first compact 
surface imaging sensor board based on fiber optics [8]. In 
FoodBoard a matrix of optical fibers (Error! Reference 
ource not found.) is used to channel light from the sensing 
surface to a camera attached below. Channelling light with 
optical fibers permits flexible placement of the camera to 
maintain a reasonable overall thickness for the chopping 
board (in practice this is limited only by the minimum bend 
radius of the fiber).  

Unlike FiberBoard, for which infrared light is channelled 
from a multi-touch surface, FoodBoard channels visible 
light from a support surface beneath the chopping board’s 
transparent upper surface. The measurement grid contains 
600 holes in a 30×20 matrix covering an area of 
315×210 mm, which is representative of the active area of 
chopping boards in everyday use. An optical fiber is insert-
ed into each of the holes and the unattached ends of all fi-
bers are gathered together into a bundle (50×30 mm). A 
camera is arranged so that it directly faces the bundle to 
capture the light reflected along the fibers by food on the 
chopping board surface. Synthesizing the image for recog-
nition requires a mapping to be constructed (during calibra-
tion) from the image of the fiber bundle to the sensor grid. 
This arrangement produces a compact on-surface imaging 
device, which intrinsically promotes privacy as a result of 
the extremely local imaging range and resolution. 

(ii) Calibration of Mapping and Image Synthesis 
The optical fiber bundle is incoherent, in that it has no de-
fined mapping between the fiber bundle and the sensing 
grid. Nevertheless, such a mapping must be produced in 

order to synthesize the images sensed by the receiving end 
of the fibers. This is achieved through a calibration proce-
dure. An effective calibration and synthesis mechanism 
significantly enhances the utility of low-cost fiber bundles, 
and allows the development of a whole class of thin form 
factor image processing applications..We modified the cali-
bration routine described in [9] to fit to our prototype. First, 
a visually opaque rectangular tool (e.g. a ruler) is moved at 
a roughly constant velocity in a direction perpendicular to 
each of the two orthogonal axes of the board’s surface. At 
the same time the camera’s images of the optical fiber bun-
dle are recorded. The timing, in both passes, of the resulting 
fluctuating light from each fiber now approximately identi-
fies the sensing coordinates of each image pixel.  

Next, pixels from a single fiber tip must be grouped togeth-
er – yet this cannot easily be done in the plane of the cam-
era image (as fiber tips with similar mapping results can be 
immediately adjacent, making them difficult to distinguish). 
Instead, the destination mapping is reverse-projected from 
the timing values, “blob detection” is used to label connect-
ed regions (the sensing grid), and the regions grown up to 
neighboring regions. Finally, these regions are used to 
group the pixels of a single fiber. 

Figure 1. FoodBoard schematic (top); Underside interior view 
of bundled fibers during construction (second row); Example 
captured image of the fiber bundle, reconstructed image us-
ing the calibrated mapping, and segmented result (third row, 
left-to-right); FoodBoard in use (bottom) 



 

At run-time, the input mapping is applied to the camera 
image, giving the average colour and brightness for each 
fiber. The individual fiber point values are then interpolated 
to synthesize the sensed image, which is then used as the 
input to the final processing stages: segmentation, smooth-
ing, feature extraction and matching. See Figure 1 for ini-
tial, intermediate and final images of the fiber bundle. 

(iii) Optical Food Recognition  
The synthesized image of the chopping board surface is 
first processed in two steps to optimize the food recogni-
tion: segmentation and smoothing. As the number of col-
ours of a natural food image is unknown, an unsupervised 
method is necessary to perform food image segmentation. 
Therefore, K-Means Clustering algorithm was implemented 
to perform real-time colour segmentation. When captured 
under realistic settings the images contain significant noise, 
which gives rise to some (small) clusters unconnected to the 
region of interest. To resolve this we applied a morphologi-
cal closing-opening operation to smooth the segmented 
image. The main region of interest that contains food will 
be extracted using colour and SURF features for food 
recognition (in the next step). 

The final step to be performed is the actual food recognition 
step based on the processed image generated by the Food-
Board fiber-based surface contact imaging system. The 
recognition algorithm utilizes SURF and colour features to 
classify food images and was implemented to allow for 
real-time food recognition.  

Feature extraction 
Speeded Up Robust Features (SURF) [2] is widely known 
as one of the most robust feature detectors and is used in 
numerous object tracking [5,14] and object recognition [4] 
applications. SURF is also well known to handle serious 
blurring. Moreover, SURF features are also invariant to 
rotation and scale. These characteristics are very important 
for classification of food ingredients processed on the 
chopping board, as the position of food will vary and they 
will have different sizes (e.g. a “baby” carrot is essentially a 
smaller version of a “large” carrot). While a SURF de-
scriptor includes the discriminating features one might ex-
pect, such as angle, edges and points, the standard SURF 
ignores colour. However, colour information is also very 
important for discriminating between food ingredients so, in 
addition to SURF features, we also extract colour features 
and use these in our recognition pipeline. 

To classify food, a feature extractor (FE) was implemented 
that comprised two main procedures. One is an implemen-
tation of Fast-Hessian detector, and the other is an RGB 
colour histogram. The input of FE is an image segmented 
by our implementation of the K-Means Clustering algo-
rithm, the output of which is two lists: one contains a 64-
element list of SURF interest points (SURF features) S=(s1, 
s2, ..., s64), and the other is a 64-element color histogram 
C=(c1, c2, …, c64). After normalization, these lists are com-
bined into a 128-element feature vector: 

V = [α*s1,α*s2,..,α*s64,(1−α)*c65,(1−α)*c66,…,(1−α)*c128]   

where α is a weight by which SURF and colour matching 
features are proportionately ranked. In our experiment, a 
value of α=0.4 was heuristically chosen (by evaluating dif-
ferent values of α in a pilot study). Thus colour features are 
slightly more heavily weighted than SURF features. 

Matching 
Two algorithms were compared for food image classifica-
tion: k-Nearest neighbour (k-NN) and Support Vector Ma-
chines (SVM). The former was implemented from scratch 
for real-time food recognition and the latter was based on 
libSVM [3]. The reasons for choosing k-NN and SVM are 
that both these algorithms can deal well with high dimen-
sional data (i.e. 128-d feature vectors) and both afford real-
time implementation. Furthermore, SVM is able to deal 
effectively with an unbalanced dataset (a typical character-
istic of real-world datasets).  

As irrelevant objects unintentionally placed on the chop-
ping board (i.e. a knife or a user’s hand) must be rejected, a 
threshold ti was assigned for each training food class fi. The 
algorithm parameters (i.e. threshold) were manually defined 
as the result of a 4-fold cross-validation procedure on the 
Euclidean distance between test and training food images. 
Such a food recognition algorithm is simple, but fast 
enough for real-time image classification. A food is 
matched if the distance of at least one of k closest images is 
greater than a threshold for the food class; otherwise, fi is 
rejected (i.e. classified as an unknown food). 

EVALUATION 
A study was conducted to evaluate the food recognition 
algorithms performance of FoodBoard under realistic con-
ditions. We asked 12 participants to cook a full meal with 
all ingredients we provided. The preparation phase involved 
washing and chopping the ingredients on the board. The 
collected dataset is comprised of 1,800 images of 12 food 
ingredients. The number of each type of food image was 
randomly selected between 50 and 250. The collected food 
images were naturalistic, in that they varied in object posi-
tion, rotation, included hand “distractions”, and notably 
many also contained water-base reflections. The evaluation 
results from this study are presented in Table 1. 

Results 
As can be seen in Table 1, bacon and carrot have high 
recognition rates (over 90%). While the colour of bacon and 
carrot are similar, their SURF features are quite distinct, 
and consequently only very few of the images of carrots 
and bacon were misclassified. Images yielding large num-
bers of false positives (i.e. over 20%) included peeled on-
ions and yellow peppers, thus the misclassification of (and 
confusion between) peeled onions and yellow peppers was 
significant, as was the case for tomatoes and red peppers. In 
a few instances, sticks of celery and leaves of lettuce were 
misclassified as a result of having very similar colour and 
SURF features. However, the overall recognition precision 



 

and recall rate was approximately 80% on 1,800 images of 
12 food ingredients thereby demonstrating that the fiber-
based surface contact imaging method has genuine promise 
as a practical embedded food recognition technology. 

CONCLUSION & DISCUSSION 
We have presented FoodBoard, an augmented chopping 
board that uses fiber-based surface contact imaging tech-
nology to automatically recognize unpackaged food ingre-
dients. We have also demonstrated the viability of Food-
Board as a potential building block of kitchen activity mon-
itoring systems and its advantages over traditional direct 
sensing approaches in terms of the privacy conserving na-
ture of the embedded imaging, the modular nature of the 
chopping board (i.e. not requiring modifications to the 
kitchen environment) and more robust recognition.  

Our first FoodBoard prototype is comparable to a regular 
chopping board in terms of size, weight, and functionality, 
but the camera integrated into the FoodBoard for our eval-
uation study was wired (with a USB connector). This short-
coming has subsequently been addressed through the use of 
an integrated wireless webcam; although this design still 
presupposes a central computer capable of performing the 
requisite imaging processing operations we have described. 
What recognition performance is required for a genuinely 
useful unpackaged ingredient recognition technology such 
as FoodBoard can only be determined by reference to both 
the nature of the situated support or monitoring required by 
the overarching application in which it is a component, and 
by understanding the level of variety of unpackaged ingre-
dients that users of FoodBoard might actually use. Howev-
er, we have presented the design and development of a nov-
el augmented appliance with embedded context-recog-
nition, including our justification for the selection of mate-
rials and hardware, its design and construction, image cali-
bration, processing and food recognition algorithms.  
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Ingredient Precision Recall  

Bacon 85.23 %  96.15 % 

Carrot 90.08 % 92.18 % 

Celery 59.09 % 87.64 % 

Cucumber 87.30 % 88.00 % 

Dill 88.27 % 78.61 % 

Green pepper 85.29 % 88.46 % 

Lettuce 93.20 % 67.71 % 

Onion 75.00 % 60.78 % 

Red pepper 73.30 % 81.64 % 

Spring onion 83.33 % 87.12 % 

Tomato 89.20 % 69.27 % 

Yellow pepper 73.50 % 72.08 % 

Mean 82.76 % 78.77 % 

Table 1: FoodBoard evaluation results. 
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Figure 2: Confusion matrix for food recognition evaluation 


