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We evaluate the self-diffusion and transport diffusion of interacting particles in a discrete geometry

consisting of a linear chain of cavities, with interactions within a cavity described by a free-energy

function. Exact analytical expressions are obtained in the absence of correlations, showing that the self-

diffusion can exceed the transport diffusion if the free-energy function is concave. The effect of correlations

is elucidated by comparison with numerical results. Quantitative agreement is obtained with recent

experimental data for diffusion in a nanoporous zeolitic imidazolate framework material, ZIF-8.
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The equality of inertial and gravitational mass played a
crucial role in Einstein’s discovery of general relativity.
Similarly, Einstein’s work on Brownian motion is based
on the identity of the transport- and self-diffusion coeffi-
cients for noninteracting particles [1], leading eventually
through Perrin’s experiments [2] to the vindication of
the atomic hypothesis. In general, however, diffusion of
interacting particles is described by two different coeffi-
cients. The transport-diffusion coefficientDt quantifies the
particle flux j appearing in response to a concentration
gradient dc=dx:

j ¼ !Dt
dc

dx
: (1)

The self-diffusion coefficient Ds describes the mean
squared displacement of a single particle in a suspension
of identical particles at equilibrium: hx2ðtÞi / Dst. An
alternative way for measuring this coefficient is by label-
ing, in this system at equilibrium, a subset of these particles
(denoted by *) in a way to create a concentration gradient
dc%=dx of labeled particles under overall equilibrium
conditions. The resulting flux j% of these particles reads:

j% ¼ !Ds
dc%

dx
: (2)

Both forms of diffusion have been studied in a wide
variety of physical contexts, including continuum [3–10]
and lattice [11–13] models. Exact analytical results for the
diffusion coefficient of interacting particles are, however,
typically limited to a perturbation expansion, for example,
in the density of the particles. The effect of correlations
is notoriously difficult to evaluate in continuum models,
especially when hydrodynamic interactions come into
play, while they can play a dominant role, for example,
in lattice models with particle exclusion constraints.

In this Letter, we introduce a physically relevant model,
for which exact analytical results can be obtained at all
values of the concentration and for any interaction. It
describes the diffusive hopping of interacting particles in

a compartmentalized system, see Fig. 1 for a schematic
representation. It is assumed that the relaxation inside
each cavity is fast enough to establish a local equilibrium,
described by a free-energy function characterizing the
confinement and interaction of the particles. This model
describes diffusion in confined geometries [14]. Of particu-
lar interest are microporous materials [15,16], which are
widely used in industry, e.g., as catalysts in petrochemical
industry and as water softeners. Because of their high
thermal and chemical stability [17] and potential applica-
tions including carbon dioxide capture and storage [18] and
gas separation [19], zeolitic imidazolate frameworks (ZIFs)
have received considerable interest. As illustration, we
compare our predictions with experimental results [20] of
diffusion of methanol in ZIF-8. At variance with previous
experiments [21–26], it was found that the self-diffusion
could exceed the transport diffusion, a result confirmed
by molecular dynamics (MD) simulations [27–29]. We
corroborate the observation that this phenomenon is due
to clustering of the particles, and provide an analytical
argument and a simple interpretation for the inversion.
Our model in fact allows us to reproduce, in a quantitative
way, the loading dependence of the self-diffusion and

(a)

(b)

FIG. 1 (color online). The model: particles enter cavities
via particle reservoirs at certain chemical potential. Particles
jump between different cavities through narrow passages.
(a) Transport diffusion: a concentration gradient shows a current.
(b) Self-diffusion: a concentration gradient of labeled particles is
introduced under overall equilibrium conditions.
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transport diffusion for different interactions. Finally, we
mention that our model also serves an educational purpose,
as the distinction between the transport- and self-diffusion
coefficients, and the role and contribution of the correla-
tions therein can be identified explicitly.

The model consists of a one-dimensional array of pair-
wise connected cavities, with particles entering in the outer
left and right cavities from reservoirs at chemical poten-
tials!l and!r, respectively (see Fig. 1). The entire system
is at temperature T. Particles stochastically jump between
cavities by moving through narrow passages. These tran-
sitions occur on a slow time scale compared to the relaxa-
tion time inside each cavity, ensuring that an equilibrium
distribution is effectively maintained in each cavity. It is
described by a free energy FðnÞ ¼ UðnÞ ! TSðnÞ, with n
the number of particles in the cavity, UðnÞ the energy, and
SðnÞ the entropy. Furthermore, the dynamics is Markovian
with a transition rate which has to reproduce the thermal
equilibrium state peq, when a cavity is connected to a
single reservoir at chemical potential !:

peq
n ð!Þ ¼ ðƵÞ!1e!"½FðnÞ!!n'; (3)

with " ¼ ðkBTÞ!1 and Ƶ!1 the normalization constant.
We first derive an exact expression for Dt and Ds, in a

limiting situation where correlations between particle
numbers in different cavities are absent (see also
Supplemental Material [30]). Consider a system consisting
of three cavities, with nl, n, and nr specifying the number
of particles inside the left, middle, and right cavity, respec-
tively. In the limit in which the exchange rates with the
middle cavity are small compared to the exchange rates
with the reservoirs, the left and right cavity are effectively
decorrelated from the middle cavity, and are characterized
by the equilibrium probability distribution peq

nl ð!lÞ and
peq
nr ð!rÞ, respectively. This setup allows us to obtain exact

analytical results at arbitrary particle density. The proba-
bility distribution pn for the middle cavity obeys the fol-
lowing master equation:

_pn ¼ kþn!1pn!1 þ k!nþ1pnþ1 ! ðkþn þ k!n Þpn; (4)

with kþn and k!n the rates to add or remove a particle from
the middle cavity containing n particles:

kþn ¼
X

nl

peq
nl ð!lÞknln þ

X

nr

peq
nr ð!rÞknrn; (5)

k!n ¼
X

nl

peq
nl ð!lÞknnl þ

X

nr

peq
nr ð!rÞknnr : (6)

The rate knm denotes the probability per unit time for a
particle to jump from a cavity containing n particles to a
neighboring cavity containingm particles. At this stage, we
do not need to specify its explicit form, but we request that
it obeys detailed balance:

knm=kmþ1;n!1 ¼ e!"½Fðmþ1ÞþFðn!1Þ!FðnÞ!FðmÞ': (7)

The particle flux and concentration difference between
the left and middle cavity read:

jð!l;!rÞ ¼
X

n;nl

ðknln ! knnlÞp
eq
nl ð!lÞpn; (8)

dcð!l;!rÞ ¼ ð1=#Þ
X

n;nl

ðn! nlÞpeq
nl ð!lÞpn; (9)

where # is the center-to-center distance between cavities.
The transport diffusion Dt, quantifying the linear response
of j with respect to dc, is found from the ratio !j=ðdc=#Þ
in the limit $ ¼ ð!l !!rÞ=2 ! 0. Introducing the aver-
age chemical potential ! ¼ ð!l þ!rÞ=2, one finds for
Eqs. (5) and (6) up to linear order in $:

kþn ¼ 2
X

m

peq
m ð!Þkmn; k!n ¼ 2

X

m

peq
m ð!Þknm: (10)

One concludes from Eq. (4) that at this order in $, the
steady state solution of the master equation is given by
pn ¼ peq

n ð!Þ. The corresponding current and concentra-
tion difference are obtained from the expansion of
Eqs. (8) and (9) to first order in $, resulting in

Dtð!Þ ¼ #2 P
n;m peq

n ð!Þpeq
m ð!Þknm

hn2i! hni2 ) #2hki
hn2i! hni2 ; (11)

where h*i denotes the average over peqð!Þ.
We next turn to the self-diffusion, using the labeling

procedure discussed in the introduction. Since the final
expression for Ds does not depend on the labeling percent-
ages, we consider a simple case: all particles in the left
reservoir are labeled, those in the right reservoir remain
unlabeled. As a result, all particles in the left and none in
the right cavity are labeled. The state of the middle cavity
is now described by two numbers, n (total number of
particles) and n%, the number of labeled particles. The
corresponding steady state probability distribution pn;n% is

pn;n% ¼ peq
n ð!Þ n!

n%!ðn! n%Þ!
1

2n
: (12)

The flux of labeled particles and concentration difference
between the left and middle reservoir read

j% ¼
X

nl;n;n
%

!
knln ! knnl

n%

n

"
pn;n%p

eq
nl ð!Þ ¼ hki

2
;

dc% ¼ ð1=#Þ
X

nl;n;n
%
ðn% ! nlÞpn;n%p

eq
nl ð!Þ ¼ !hni=2: (13)

Hence, the self-diffusion Ds ¼ !j%=ðdc%=#Þ reads
Dsð!Þ ¼ #2hki=hni: (14)

Equations (11) and (14) constitute the main analytical
results in this Letter. They are valid at all values of the
concentration and can be calculated for any interaction.
FromEqs. (11) and (14), one finds for the ratio ofDt andDs:
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Dtð!Þ
Dsð!Þ ¼ hni

hn2i! hni2 ¼
hni

VarðnÞ ¼ !ð!Þ; (15)

where !ð!Þ, the so-called thermodynamic factor, is an
equilibrium property. Equation (15) can be derived by a
general argument, when correlations are ignored [11,12].
We note that Eqs. (11) and (14) remain valid for any number
of cavities between the left and right cavities, provided
correlations in particle number are ignored [31].

We now comment on the effect of interaction, and in
particular of the shape of the free energy, on the thermo-
dynamic factor. In the absence of interactions, the free
energy is that of an ideal gas "FidðnÞ ¼ lnðn!Þ þ cn,
with c a constant [32]. The corresponding distribution
peq
n ð!Þ is Poissonian for which hni ¼ VarðnÞ and hence

! ¼ 1. One recovers the ‘‘Einstein’’ result that Ds ¼ Dt

for noninteracting particles. Note that adding an arbitrary
linear term / n to FðnÞ corresponds to a rescaling of the
chemical potential, see Eq. (3). Hence, a linear term in
FðnÞ does not influence the statistics at a given loading hni.
We now show that for deviations of the free energy from
the ideal gas value, fðnÞ ¼ FðnÞ ! FidðnÞ, the ratio of Dt

and Ds is determined by the convexity versus concavity of
fðnÞ, where we will call fðnÞ the interaction free energy.
We fix the loading hni and consider two neighboring
cavities containing, respectively, n1 and n2 (> n1) parti-
cles. A particle now jumps so that the new state becomes
n1 ! 1 and n2 þ 1. Such an event increases the local
density inhomogeneity. When fðnÞ is convex [f00ðnÞ> 0],
the interaction free energy is larger in the new state:
fðn1Þ þ fðn2Þ< fðn1 ! 1Þ þ fðn2 þ 1Þ. Therefore, its
probability is small compared to the situation with no
interactions. VarðnÞ decreases since particle numbers dif-
ferent from the average loading become less probable.
Hence, when fðnÞ is convex, VarðnÞ< hni, !> 1, and
Dt > Ds. When fðnÞ is concave [f00ðnÞ< 0] the opposite
happens. The interaction free energy of the new state is
smaller and both its probability and VarðnÞ increase, lead-
ing to !< 1 and Dt < Ds.

A few additional remarks are in order. First, a cavity can
typically contain a limited number of particles n + nmax.
This corresponds to fðnÞ ¼ 1 for all n > nmax, i.e., fðnÞ is
‘‘infinitely convex’’ at nmax. We conclude from the above
argument that a concave section is a necessary, but not
sufficient, condition for having VarðnÞ> hni, i.e., forDs to
exceedDt. Second, one can give an intuitive explanation as
to why a concave fðnÞ promotes Ds > Dt. Dt is measured
by a flux j. If fðnÞ is concave, particles tend to cluster,
which will mostly happen in cavities that are already high
in particle number. This causes the particles to be ‘‘pulled
back’’ towards the region of higher concentration. The net
effect is a force in the direction of higher concentration,
lowering the particle flux. Ds is measured by a flux of
labeled particles j%. Since the system is in equilibrium
there is no concentration gradient. As a result, there is no
preferential direction for clustering, and there will be no

force counteracting the current of labeled particles. Finally,
the experimental finding of Ds exceeding Dt [20] was
explained on the basis of MD simulations [27–29] as due
to clustering of particles. Our model corroborates this
conclusion but, in addition, provides a simple physical
interpretation and an analytical argument.
For systems containing an arbitrary number of cavities,

one has to take into account correlation effects. Finding
an exact solution becomes difficult. Instead, we have per-
formed kinetic Monte Carlo simulations (see Supplemental
Material [30]). Our choice of rates is

knm ¼ %ne!ð"=2Þ½fðn!1Þþfðmþ1Þ!fðnÞ!fðmÞ': (16)

The factor % determines the time scale. In the limit of
infinite dilution, both Dt and Ds are equal to %#2 ) D0.
For an ideal gas fðnÞ ¼ 0, knm ¼ %n, i.e., the rates satisfy
the law of mass action [33]. The simulations presented here
are for 15 pairwise connected cavities, with nmax ¼ 13.
Ds=D0, Dt=D0, and !!1 are plotted in Fig. 2 for different
types of free energies, as a function of the loading
& ¼ hni=nmax. Both the simulation data and the analytical
curves of Eqs. (11) and (14) are shown. The stars in the
figures correspond to the ratio between the self- and trans-
port diffusion obtained from simulations. Since correla-
tions are included in the simulations but are absent in the
analytical result, the difference of the two curves is a
measure of the effect of correlations on the diffusion.
Figure 2(a) shows the diffusion for noninteracting particles
"fðnÞ ¼ 0, with confinement (presence of nmax). At low
and medium loadings the particles are not influenced by the

FIG. 2 (color online). Ds=D0, Dt=D0, and !!1 as a function
of loading & ¼ hni=nmax, nmax ¼ 13; for (a) "fðnÞ ¼ 0,
(b) "fðnÞ ¼ 0:2n2, (c) "fðnÞ ¼ !0:2n2, and (d) "fðnÞ that is
subsequently concave, convex, and again concave. The red
dashed lines (analytical solution) and squares (simulations)
show the transport diffusion, and the blue dotted lines (analytical
solution) and full circles (simulations) the self-diffusion (values
on lhs axis). The analytical !!1 (black full lines) are compared
with the ratio of Ds and Dt (black stars) from the simulations
(values on rhs axis).
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confinement; ! ¼ 1 and Ds ¼ Dt. At high loading, the
confinement comes into play: !!1 decreases, Dt rises,
and Ds lowers. The effect of correlations is negligible:
the simulation data and analytical results coincide almost
perfectly. Figure 2(b) shows the diffusion in the case of a
convex free energy "fðnÞ ¼ 0:2n2. !!1 is lower than one,
and Dt is always larger than Ds. Correlations have a
negligible influence. Figure 2(c) shows the diffusion for a
concave free energy "fðnÞ ¼ !0:2n2. As expected,
Ds > Dt for low to moderate loading. At moderate and
high loading the ‘‘convexity effect’’ of confinement takes
over: !!1 decreases and eventually becomes smaller than
one with Dt > Ds. This curve should be compared with
Figs. 3(a) and 3(c) in [20]. Noteworthy is the fact that the
transport diffusion shows a minimum when the thermody-
namic factor is around its maximum. This feature is in
agreement with experimental observations [20,34,35] and
with MD simulations [36]. It is now easily understood:
when !!1 is at its highest, the tendency to cluster is
maximal, therefore, the force opposing the current is also
at its strongest. Turning to the effect of correlations, we
note that they are quite strong: both Dt and Ds are signifi-
cantly lower than the analytical results. The effect is the
largest for self-diffusion. Nevertheless, the ratio of Dt and
Ds is still very close to !, again in agreement with what is
observed in experiments [20] and MD simulations in simi-
lar systems [37]. Figure 2(d) shows the diffusion for a free
energy that is first concave, then convex and then concave
(see Supplemental Material [30] for the exact form). For
the first concave part, the self-diffusion exceeds the trans-
port diffusion. For the second concave part, this is no
longer the case, due to the confinement and the influence
of the convex part in the middle. This is an illustration of
how concavity is necessary but not sufficient for Ds > Dt.
Dt shows a (local) maximum in the convex part, whereas
Ds shows a (local) minimum. Correlations have noticeable
effect, and are now more important for Dt than for Ds.
Notice that in all cases correlations lower the diffusion
coefficients.

Motivated by the qualitative agreement with experi-
ments, we have tried to reproduce the experimental results
from [20] quantitatively. Inspired by the form of the energy
function for Lennard-Jones crystals [38], we take "fðnÞ ¼
an2 þ bn3 for n + nmax, with nmax ¼ 13 taken from the
experimental data [39]. The parameters a and b are
determined by fitting the thermodynamic factor [Eq. (15)]
with the experimental data, resulting in "fðnÞ ¼
0:000 642n2 ! 0:0083n3. The parameters % and # only
appear in the combination %#2, which follows directly
from the experimental value of Dt at very low loading. In
Fig. 3, we compare the obtained simulation results for Ds

and Dt with experimental data of methanol in ZIF-8 [39].
Quantitative agreement is found for both Ds and Dt at all
values of the loading. This is remarkable since a and b are
determined from the equilibrium quantity !, and only the

experimental value of Dt at very low loading is used in the
fit of %#2. A similar quantitative agreement is also found for
ethanol in ZIF-8 (cf. Supplemental Material [30]).
To conclude, we have introduced a model describing

diffusion of interacting particles in discrete geometries.
Exact analytical expressions for the self- and transport dif-
fusion are given in the limiting case where correlations are
absent, but are otherwise valid at all values of the concen-
tration and for any interaction. We showed that the self-
diffusion can exceed the transport diffusion when the
free-energy function is concave as a function of the loading,
resulting in the clustering of particles. By comparison with
numerical simulations, the effect of the correlations is
elucidated. Their influence is found to be significant for a
free energy that is very concave or has several convex and
concave sections. Nevertheless, the ratio of self- and trans-
port diffusion is always close to the thermodynamic factor,
Dt=Ds , !, a result which is exact in the absence of
correlations. Finally, we obtained quantitative agreement
between numerical simulations of our model and experi-
mental results of diffusion in ZIF-8 from Ref. [20].
This work was supported by the Flemish Science

Foundation (FWO-Vlaanderen).
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I. SEPARATION OF TIME-SCALES

It is shown how to obtain the master equation for a system with time-scale separation,

Eq. (4) in the Letter. The theory and notation from [1] is used. The system consists of three

cavities. The left and right cavity are connected to particle reservoirs. The state is denoted

by (n
l

, n, n
r

), the number of particles in respectively the left, middle, and right cavity.

Following notation from [1], “microstates” are denoted by (n
l

, n, n
r

), and “mesostates” are

denoted by n, the number of particles in the middle cavity. By time-scale separation, we

mean that the dynamics between di↵erent microstates belonging to the same mesostate

is much faster than between microstates belonging to di↵erent mesostates. In our model,

this means that transitions between the reservoirs and the cavities are much faster than

transitions between the cavities. The probability to find the system in mesostate n equals

P
n

=
X

nl,nr

p(n
l

, n, n
r

). (1)

The conditional probability to be in microstate (n
l

, n, n
r

) being in the mesostate n is given

by

P
n

(n
l

, n
r

) = p(n
l

, n, n
r

)/P
n

. (2)
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Due to the time-scale separation, the P
n

(n
l

, n
r

) evolve much faster than the mesostate

probabilities P
n

. The P
n

(n
l

, n
r

)’s obey an almost isolated dynamics inside the mesostate n,

eventually relaxing to the stationary distribution Pst
n

(n
l

, n
r

):

X

n

0
l,n

0
r

W(nl,n,nr),(n0
l,n,n

0
r)P

st
n

(n0
l

, n0
r

) = 0, (3)

where W(nl,n,nr),(n0
l,n,n

0
r) is the rate to jump from (n0

l

, n, n0
r

) to (n
l

, n, n
r

). This rate can be

separated into a sum of rates due to the left and right reservoir

X

n

0
l,n

0
r

W(nl,n,nr),(n0
l,n,n

0
r)P

st
n

(n0
l

, n0
r

) (4)

=
X

n

0
l,n

0
r

⇣
W (l)

(nl,n,nr),(n0
l,n,nr)

+W (r)
(nl,n,nr),(nl,n,n

0
r)

⌘
Pst
n

(n0
l

, n0
r

), (5)

where transitions with the left (right) reservoir only change n
l

(n
r

). Because particles only

interact within the same cavity, transition rates of the reservoirs only depend on the particle

number of the cavity they are connected to. Eq. (5) can be rewritten as

X

n

0
l,n

0
r

⇣
W (l)

nl,n
0
l
+W (r)

nr,n
0
r

⌘
Pst
n

(n0
l

, n0
r

). (6)

These rates are independent of n, so Pst
n

(n
l

, n
r

) does not depend on n, allowing us to

write Pst(n
l

, n
r

). Moreover, W (l)
nl,n

0
l
and W (r)

nr,n
0
r
are not influenced by each other. The

probabilities to have n
l

or n
r

particles are therefore uncorrelated, and we can write

Pst(n0
l

, n0
r

) = Pst(n0
l

)Pst(n0
r

). Eq. (6) can be written as

X

n

0
l,n

0
r

⇣
W (l)

nl,n
0
l
Pst(n0

l

)Pst(n0
r

) +W (r)
nr,n

0
r
Pst(n0

l

)Pst(n0
r

)
⌘

(7)

=
X

n

0
l

W (l)
nl,n

0
l
Pst(n0

l

) +
X

n

0
r

W (r)
nr,n

0
r
Pst(n0

r

) = 0. (8)

The rates of the left (l) and right (r) reservoir obey local detailed balance

W (l,r)
i,i+1

W (l,r)
i+1,i

= exp

✓
�
F (i)� µ(l,r)i� F (i+ 1) + µ(l,r)(i+ 1)

k
b

T

◆
. (9)

Pst(n
l

) and Pst(n
r

) are therefore equal to the equilibrium probability distributions peq
nl
(µ

l

)

and peq
nr
(µ

r

). The end result reads

Pst
n

(n
l

, n
r

) = peq
nl
(µ

l

)peq
nr
(µ

r

). (10)
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Using first-order perturbation theory (see Appendix A of [1]), one can show that the master

equation of P
n

is given by

Ṗ
n

= V st
n,n�1Pn�1 + V st

n,n+1Pn+1 � (V st
n�1,n + V st

n+1,n)Pn

, (11)

with

V st
n+1,n =

X

nl,nr,n
0
l,n

0
r

W(nl,n+1,nr),(n0
l,n,n

0
r)P

st
n

(n0
l

, n0
r

) (12)

=
X

nl,nr,n
0
l,n

0
r

W(nl,n+1,nr),(n0
l,n,n

0
r)p

eq
n

0
l
(µ

l

)peq
n

0
r
(µ

r

) (13)

=
X

n

0
l,n

0
r

(k
n

0
ln
+ k

n

0
rn
)peq

n

0
l
(µ

l

)peq
n

0
r
(µ

r

) (14)

=
X

n

0
l

peq
n

0
l
(µ

l

)k
n

0
ln
+
X

n

0
r

peq
n

0
r
(µ

r

)k
n

0
rn
, (15)

which is the equation for k+
n

in the Letter. k�
n

is found similarly. One then finds that Eq.

(11) equals Eq. (4) in the Letter.

II. SELF-DIFFUSION: ARBITRARY PERCENTAGES OF LABELED PARTI-

CLES

Again consider three cavities with the separation of time-scales discussed in the previous

section. Suppose ↵ percent of the particles is labeled in the left cavity, and � percent in the

right cavity. Due to the time-scale separation, these percentages are constant. The system

is in equilibrium at chemical potential µ. The stationary probability p
n,n

⇤ to find n particles

of which n⇤ are labeled in the middle cavity equals

p
n,n

⇤ = peq
n

(µ)

✓
n

n⇤

◆✓
↵ + �

2

◆
n

⇤ ✓
1� ↵ + �

2

◆
n�n

⇤

⌘ peq
n

(µ)B
n,(↵+�)/2(n

⇤). (16)

B
n,(↵+�)/2 is the binomial distribution with parameters n and (↵ + �)/2. The average

of B
n,↵

(n⇤) equals ↵n. One can understand that this is the correct distribution from a

combinatorial argument. The probability to have n particles is given by the equilibrium

distribution peq
n

(µ); the labeling of the particles has no influence on this result. What is the

probability to have n⇤ labeled particles if there are n particles in the cavity? A particle that

enters the middle cavity has equal probability to have come from the left or right cavity,
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since the system is in equilibrium. The probability that a particle entering from the left is

labeled equals ↵; when it enters from the right this probability is �. The total probability

that a particle entering the middle cavity is labeled is therefore (↵+ �)/2. The probability

to have n⇤ labeled particles when there are n particles in the middle cavity equals
✓
n

n⇤

◆✓
↵ + �

2

◆
n

⇤ ✓
1� ↵ + �

2

◆
n�n

⇤

⌘ B
n,(↵+�)/2(n

⇤). (17)

This is the binomial distribution B
n,(↵+�)/2(n⇤). It should be interpreted as to probability

to win n⇤ times out of n tries, when the probability to win equals (↵+ �)/2. p
n,n

⇤ is found

by multiplying Eq. (17) with peq
n

(µ). For ↵ = 1 and � = 0 one recovers the result from the

Letter.

To verify this is the correct solution, one can solve the master equation for p
n,n

⇤ . The

rate for an unlabeled particle to enter the middle cavity equals k+
n

(1� (↵ + �)/2); a labeled

particle enters with rate k+
n

(↵ + �)/2. The rates to leave the middle cavity depend on

the state (n, n⇤): An unlabeled particle leaves the middle cavity at rate k�
n

((n� n⇤)/n); a

labeled particle leaves the middle cavity with rate k�
n

(n⇤/n). The master equation reads

ṗ
n,n

⇤ =

✓
1� ↵ + �

2

◆
k+
n�1pn�1,n⇤ +

↵ + �

2
k+
n�1pn�1,n⇤�1

+
n+ 1� n⇤

n+ 1
k�
n+1pn+1,n⇤ +

n⇤ + 1

n+ 1
k�
n+1pn+1,n⇤+1

�
�
k+
n

+ k�
n

�
p
n,n

⇤ . (18)

Using the probability distribution Eq. (16) for p
n,n

⇤ , this equation reduces to

ṗ
n,n

⇤ = k+
n�1p

eq
n�1 + k�

n+1p
eq
n+1 �

�
k+
n

+ k�
n

�
peq
n

= ṗeq
n

= 0. (19)

One finds

�dc⇤ =
X

nl,n
⇤
l ,n,n

⇤

(n⇤ � n⇤
l

)peq
nl
(µ)peq

n

(µ)B
nl,↵

(n⇤
l

)B
n,(↵+�)/2(n

⇤) (20)

=
� � ↵

2
hni, (21)

and

j⇤ =
X

nl,n
⇤
l ,n,n

⇤

✓
k
nln

n⇤
l

n
l

� k
nnl

n⇤

n

◆
peq
nl
(µ)peq

n

(µ)B
nl,↵

(n⇤
l

)B
n,(↵+�)/2(n

⇤) (22)

= �� � ↵

2
hni. (23)

The end result reads

D
s

= �2hki/hni. (24)
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III. SIMULATION DETAILS

A. Putting the system at a certain loading

On the left and right, the system is connected to particle reservoirs. The rates to jump

from/to a reservoir at chemical potential µ equal

k(n ! n+ 1) = ⌫ exp

✓
��

2
[f(n+ 1)� f(n)] + �µ

◆
(25)

k(n ! n� 1) = ⌫n exp

✓
��

2
[f(n� 1)� f(n)]

◆
, (26)

where n is the number of particles in the connected cavity.

The loading hni(µ) =
P

i

ipeq
i

(µ) of the system is determined by the chemical potentials

of the reservoirs, and can be calculated analytically from peq
n

(µ). It is however not possible

to calculate the inverse of hni(µ), i.e., to find µ corresponding to a given hni. We therefore

do this numerically. We write a program which takes as input the desired loadings that need

to be simulated and gives as output the associated chemical potentials. This list of chemical

potentials is used as input for the program.

In the limit of an infinite number of cavities the self-di↵usion and transport di↵usion

converge to a limiting value. The di↵usion curves in the paper are obtained from a line of

15 cavities. For this length, the di↵usion coe�cients have almost completely converged to

the limiting value.

We have also done simulations where the cavities on the boundaries exchange particles

with the reservoirs on a much faster timescale than particles are exchanged between the

cavities, similar to the theory in the letter. The di↵erence between the di↵usion curves for

the two situations was negligible.

B. Measuring the self-di↵usion

The chemical potentials of both reservoirs are taken equal, bringing the whole system at

the same loading hni. Particles entering from the left reservoir are labeled with a certain

percentage, and particles entering from the right reservoir are labeled with a di↵erent per-

centage. The flux of labeled particles and concentration di↵erence of labeled particles are

measured between all cavities. These values are averaged, and are used to calculate D
s

. We
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have chosen to label all particles in the left reservoir and none in the right reservoir. It was

checked that the percentages at which the particles are labeled is of negligible influence on

the end result.

C. Measuring the transport di↵usion

To measure D
t

at a certain loading hni, one puts the left and right reservoir at di↵erent

chemical potentials. One chooses µ
l

that gives a loading hni + �hni, and µ
r

that gives a

loading hni � �hni, with �hni small. This assures that one is still in the regime of linear

response. (In our simulations �hni ⇡ 0.2 for n
max

= 13.) The particle flux and concentration

di↵erence are measured between all cavities. These values are averaged, and are used to

calculate D
t

. The loading is taken as the average loading of all cavities, and will be ⇡ hni.

D. Number of iterations

When measuring the self-di↵usion, the system starts being empty. The smallest loading

is measured first. We do 1.107 iterations (Monte Carlo steps) to equilibrate the system to

the first loading. Then the measurement is started. This measurement consists of 2.109 iter-

ations, for which the average flux and concentration di↵erence of labeled particles between

all the cavities is calculated. For the second loading, which is a bit higher than the first,

we start from the first loading, equilibrate 1.107 iterations and do a measurement of 2.109

iterations. This continues until the last loading.

For the transport di↵usion, the cavities at each loading are filled according to peq
n

((µ
l

+

µ
r

)/2), after which 2.106 iterations are done to equilibrate. The measurements are also done

for 2.109 iterations.

This simulation is done 4 separate times. The first two and last two results are averaged.

These two numbers give the error bars. The error bars are smaller than the symbols for

all curves in the letter. Equilibration plus measurement takes around 30 minutes for one

loading.
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

FIG. 1: �f(n) of Fig. 2(d) in the letter.

IV. f(n) OF FIG. 2(d).

The free energy of Fig. 2(d) is given in table I. A plot of this free energy is given in figure

1. From 0 to 6 f(n) is concave, between 5 and 7 it is convex, and between 6 and 13 it is

concave (n
max

= 13).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

�f(n) 0 0 0 0 -0.2 -0.6 -4.0 -0.6 -0.2 0 0 0 0 0

TABLE I: �f(n) used in Fig. 2(d)

V. FIT WITH ETHANOL IN ZIF-8

To find a good free energy function for ethanol, we used a di↵erent fitting procedure

than in the Letter. Using the analytical results for the thermodynamic factor and the

di↵usion coe�cients as a guide, several free energies where tried until a good resemblance

with experiment was found. Since calculation of the analytical results for di↵erent free

energies requires no computation time, this resemblance can easily be checked ’by hand’.

D0 is taken slightly higher than the experimental value of D
t

for the lowest measured loading

(D0 = 9.6 10�13 m2/s). n
max

is taken equal to 9. The values of �f(n) are given in table II.

The first part of f(n) is constant, after which it becomes (very) concave. The last part is
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FIG. 2: Di↵usion of ethanol in ZIF-8. The experimental self-di↵usion is given by the blue full circles

and the results from simulations by the blue dotted line. The experimental transport di↵usion is

given by the red squares and the results from simulations by the red dashed line (values on lhs

axis). The free energy function is shown in the inset. �f(n) is represented by the black open

triangles, the black line serves as a guide to the eye. The ratio between the self-di↵usion and

transport di↵usion taken from the simulations is given by the black stars. The experimental �

�1

is given by black open circles, the analytical result is given by a full black line (values on rhs axis).

Experimental data from [2].

convex. The simulation results and experimental data are given in figure 2. Good agreement

is found with experiment, except for the outlier for ��1 around hni ⇡ 1.6.

n 0 1 2 3 4 5 6 7 8 9

�f(n) 0 0 0 0 -0.2 -6.8 -13.6 -19.0 -21.0 -21.0

TABLE II: �f(n) used in simulations for ethanol in ZIF-8.
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