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SUMMARY 

 

Background and aims 

Evidence is growing that a myriad of health effects, ranging from respiratory to 

cardiovascular and neurological effects, are causally linked to exposure to air 

pollution. Annually an estimated number of 2 million premature deaths can be 

attributed to air pollution worldwide. In recent years, society has become 

increasingly sensitive to individual risks, and thus data on the exposure to air 

pollution needs to be personalized. Historically exposure of the population has 

been calculated by simply multiplying pollutant concentrations with population 

density at the same location, ignoring population movement. Obtaining personal 

exposure measurements has been hampered by the cost and complexity of the 

analyzing equipment. But accurate exposure assessment is critical to further 

reduce exposure misclassification in epidemiological studies. Alternatively, the 

risk of erroneously attributing health effects to a statistically associated but 

toxicologically harmless pollutant will be diminished if exposure is mapped more 

truthfully. 

The goals of this PhD project are firstly to demonstrate the feasibility of personal 

monitoring using innovative air quality monitors. Secondly, it will be shown that 

activity-based models are a promising new tool to model exposure to air 

pollution in populations; an existing framework was fundamentally adapted so 

that it can predict personal exposure. 

The newly developed methodologies are demonstrated by applying them for the 

air pollutant black carbon (BC), that is identified as an important proxy for 

traffic-related pollution and is a component of particulate matter. Over the last 

decades BC concentrations have declined in developed countries, although the 

air has still moderate to heavy BC pollution. It has been shown that BC has 

important health effects in humans, and it is a potent climate warmer, resulting 

in its inclusion in several recent high level policy documents. 

 

Materials and methods 

Personal exposure to air pollution can be determined using indirect exposure 

models or through a direct approach (i.e. air quality measurements). The newly 

developed Flemish activity-based model FEATHERS is used to model the 
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activities that people perform (e.g. work, shopping, sleeping, traveling) as well 

as the times and locations. Land use regression (LUR) models are built using 

measurements on 63 fixed locations in Flanders to estimate air pollution levels 

with a high spatial and temporal resolution. In a LUR model statistical 

associations are developed between potential predictor variables and measured 

pollutant concentrations as a basis for predicting concentrations at unsampled 

sites. LUR predictions are then combined with a fixed indoor/outdoor factor for 

exposure in indoor environments. To estimate exposure in transport, a separate 

model is developed taking into account transport mode, timing of the trip and 

degree of urbanization. The modeling framework is validated with personal 

measurements. This monitoring campaign in 62 volunteers included the 

weeklong measurement of BC using micro-aethalometers, and the collection of 

diaries and GPS logs on an electronic platform. This resulted in more than 

10,000 hours of data, and the registration of more than 1500 single trips. 

 

Results and conclusions 

Personal monitoring revealed that exposure to BC can differ between partners, 

living at the same address, by up to 30%. On average, homemakers are 

exposed to lower concentrations compared to full-time workers, mainly because 

of the difference in travel time and the elevated concentrations while traveling. 

In the study cohort, 6% of the time is spent in transport, but this accounts for 

21% of personal exposure to BC and approximately 30% of inhaled dose. 

Unfortunately travel time proved to be an unsatisfactory predictor of personal 

exposure because of the many factors influencing concentrations in transport. 

Concentrations are highest in motorized modes (car, bus, light rail / metro), and 

lowest for active modes and trains; but exposure in active modes becomes more 

important when inhalation is taken into account. In-vehicle BC concentrations 

are elevated on highways and on urban roads, during rush hour and on 

weekdays, at speeds <30 km/h and >80 km/h, and increases with increasing 

traffic intensities on the roads travelled. The latter proved to be the major 

explanatory variable for in-vehicle BC concentrations, together with timing of the 

trip and urbanization. For cyclists and pedestrians exposure is influenced by time 

of day and degree of urbanization. 
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Personal exposure was modeled by using the FEATHERS model, hourly LUR 

models, an indoor air model, and an in-traffic exposure model; combined into 

the AB²C framework (Activity-Based modeling framework for BC exposure 

assessment). Building independent hourly LUR models resulted in R² values 

mostly smaller than the R² of the annual model (R²=0.77), ranging from 0.07 to 

0.8. Between 6 a.m. and 10 p.m. on weekdays the R² approximates the annual 

model R². Even though models of consecutive hours are developed 

independently, similar variables turn out to be significant. Using dynamic 

covariates instead of static covariates, i.e. hourly traffic intensities and hourly 

population densities from FEATHERS, did not significantly improve the models' 

performance. 

The modeling framework AB²C is validated using time-activity diaries and BC 

exposure as revealed from the personal monitoring campaign with 62 

participants. For each participant in the monitoring campaign, a synthetic 

population of 100 model-agents per day was generated with all agents having 

the same characteristics as each real-life agent. The AB²C model then calculates 

for each individual a distribution of potential exposures. Average personal 

exposure was estimated more accurately by AB²C compared to ambient 

concentrations as predicted for the home subzone; however the added value of 

a dynamic model lies at the moment primarily in the potential to detect short 

term and repeated peak exposures rather than modeling average exposures. 

 

In summary, this dissertation demonstrates the potential, the advantages and 

the limitations of personalized exposure monitoring in a subset of the 

population. An activity-based exposure modeling framework was developed to 

estimate the exposure of individuals within a larger population. Several unique 

submodels were linked to result in the innovative exposure model AB²C. 
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SAMENVATTING 

 

Achtergrond en doelstellingen 

Er zijn steeds meer aanwijzingen voor een causale relatie tussen blootstelling 

aan luchtvervuiling en gezondheidseffecten bij de mens; zowel respiratoire 

aandoeningen als cardiovasculaire en neurologische effecten kunnen gelinkt 

worden aan luchtvervuiling. Wereldwijd kunnen jaarlijks naar schatting 2 miljoen 

vroegtijdige overlijdens toegeschreven worden aan een slechte luchtkwaliteit. 

Recent is de maatschappij meer gevoelig geworden aan individuele risico’s, en 

dus moeten ook data over blootstelling aan luchtvervuiling gepersonaliseerd 

worden. In het verleden werd de blootstelling van een populatie bepaald door 

concentraties simpelweg te vermenigvuldigen met de bevolkingsdichtheid op die 

locatie; het feit dat mensen niet altijd op dezelfde locatie verblijven werd 

gemakshalve genegeerd. Het meten van persoonlijke blootstelling werd beperkt 

door de beschikbaarheid, de kost en de complexiteit van meetapparatuur. Een 

nauwkeurige inschatting van blootstelling is nochtans belangrijk om 

misclassificatie van blootstelling te verminderen in epidemiologische studies. 

Anderzijds vermijden we zo ook dat gezondheidseffecten foutief aan een 

statistisch significante maar toxicologisch onschadelijke polluent toegeschreven 

worden. 

Een eerste doelstelling van dit doctoraat is om aan te tonen dat, door gebruik te 

maken van nieuwe en innovatieve meettoestellen, het meten van persoonlijke 

blootstelling haalbaar is en nuttige informatie oplevert. Daarnaast werd reeds 

aangetoond dat activiteiten gebaseerde modellen veelbelovend zijn bij het 

modelleren van de blootstelling van een populatie; in dit doctoraat zal deze 

modelketen fundamenteel gewijzigd worden voor het berekenen van 

persoonlijke blootstelling. 

Deze nieuw ontwikkelde methoden worden toegepast voor de polluent black 

carbon (BC), een component van fijn stof en in Vlaanderen hoofdzakelijk 

afkomstig van verkeer. Gedurende de laatste decennia zijn BC concentraties 

gedaald in geïndustrialiseerde landen, maar de lucht is toch nog steeds matig tot 

sterk vervuild. Meerdere studies tonen aan dat BC verantwoordelijk is voor 

gezondheidseffecten bij de mens, en BC speelt ook een belangrijke rol in de 
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opwarming van de aarde, mede daardoor is de polluent opgenomen in 

verscheidene actuele beleidsdocumenten. 

 

Materialen en methoden 

Persoonlijke blootstelling aan luchtvervuiling kan bepaald worden door middel 

van indirecte blootstellingsmodellen of door een directe aanpak 

(luchtkwaliteitsmetingen). Het nieuwe activiteiten gebaseerde model voor 

Vlaanderen FEATHERS wordt gebruikt om te modelleren waar en wanneer 

mensen activiteiten uitvoeren (vb. werken, winkelen, slapen, zich verplaatsen). 

Land use regression (LUR) modellen worden opgesteld om de luchtkwaliteit met 

een hoge ruimtelijke en tijds-resolutie in kaart te brengen. In een LUR model 

worden statistische associaties gezocht tussen potentiële predictorvariabelen en 

metingen, in dit geval op 63 vaste locaties, als basis voor het voorspellen van 

concentraties op locaties waar niet gemeten werd. LUR voorspellingen worden 

vervolgens gecombineerd met een indoor/outdoor factor voor blootstelling in 

indoor omgevingen. Blootstelling tijdens verplaatsingen wordt ingeschat door 

een speciaal daartoe ontwikkeld model dat rekening houdt met transportmiddel, 

tijdstip van de verplaatsing en urbanisatiegraad. De gehele modelketen wordt 

gevalideerd aan de hand van persoonlijke metingen van 62 vrijwilligers. Deze 

meetcampagne omvat het persoonlijk meten van BC met micro-aethalometers, 

en het verzamelen van dagboekjes en GPS logs op een elektronisch platform 

gedurende 7 opeenvolgende dagen. Dit resulteert in meer dan 10000 uren data, 

en de registratie van meer dan 1500 verplaatsingen. 

 

Resultaten en conclusies 

Uit de persoonlijke metingen is gebleken dat blootstelling aan BC tot wel 30% 

kan verschillen tussen partners die op eenzelfde adres wonen. Meestal zijn 

huisvrouwen of huismannen blootgesteld aan lagere concentraties in vergelijking 

met voltijds werkende personen, vooral door het verschil in reistijd en de 

verhoogde concentraties waargenomen tijdens verplaatsingen. De deelnemers 

aan de meetcampagne brachten gemiddeld 6% van hun tijd door in transport, 

maar dit zorgt wel voor 21% van hun blootstelling aan BC, en zelfs voor 30% 

van de dagelijkse ingeademde dosis. Helaas bleek reistijd geen goede 

voorspeller voor geaccumuleerde persoonlijke blootstelling omdat vele factoren 
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de blootstelling in transport mee bepalen. De blootstelling is het hoogst in 

gemotoriseerde modi (auto, bus, tram / metro), en het laagst voor fietsers, 

voetgangers en in treinen; blootstelling wordt belangrijker voor fietsers en 

voetgangers als er rekening wordt gehouden met de ingeademde dosis. In een 

voertuig zijn de concentraties het hoogst op snelwegen en in een stedelijke 

omgeving, op spitsuren en op weekdagen, bij snelheden <30 km/h en >80 

km/h, en de concentraties nemen toe wanneer men rijdt op wegen met druk 

verkeer. Deze laatste factor bleek de belangrijkste verklarende variabele voor 

blootstelling in een voertuig, samen met tijdstip van de verplaatsing en 

urbanisatiegraad. Voor fietsers en voetgangers wordt blootstelling vooral 

verklaard door tijdstip van de verplaatsing en urbanisatiegraad. 

Persoonlijke blootstelling wordt gemodelleerd door gebruik te maken van het 

activiteiten gebaseerde model FEATHERS, LUR modellen voor elk uur van de 

dag, een indoor luchtkwaliteitsmodel, en een model dat blootstelling in transport 

voorspelt. Deze componenten worden gecombineerd in AB²C (Activiteiten 

geBaseerde modelketen voor het bepalen van blootstelling aan BC). Het 

opstellen van onafhankelijke uurlijkse LUR modellen resulteerde in R² waarden 

die meestal kleiner waren dan de R² van het jaargemiddelde model (R²=0.77), 

namelijk tussen 0.07 en 0.8. Op weekdagen tussen 6u in de ochtend en 22u ’s 

avonds benaderde de R² de jaargemiddelde R². Zelfs al worden modellen voor 

opeenvolgende uren onafhankelijk van elkaar ontwikkeld, toch bleken 

gelijkaardige variabelen significant te zijn. Het gebruik van dynamische 

variabelen in plaats van statische, dit wil zeggen verkeersstromen en 

bevolkingsdichtheden voorspeld door FEATHERS voor elk uur van de dag, bleek 

de performantie van de LUR modellen niet te verhogen. 

De AB²C modelketen wordt gevalideerd met de tijds-activiteitenpatronen en de 

BC concentraties zoals gemeten bij 62 vrijwilligers. Voor elke deelnemer aan de 

meetcampagne wordt een synthetische populatie van 100 model-agents per dag 

samengesteld waarbij alle agents dezelfde kenmerken hebben als een real-life 

agent. Het AB²C model berekent vervolgens voor elk individu een verdeling van 

mogelijke blootstellingen. De inschatting van de gemiddelde persoonlijke 

blootstelling met AB²C blijkt iets nauwkeuriger in vergelijking met 

buitenluchtconcentraties zoals die voorspeld worden voor de woonzone. De 

meerwaarde van de AB²C modelketen ligt momenteel voornamelijk in de 
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mogelijkheid voor het detecteren van herhaaldelijke korte termijn piek 

bloostellingen, eerder dan in het modelleren van een gemiddelde blootstelling. 

 

In dit doctoraat wordt er aangetoond wat de mogelijkheden, de voordelen en de 

beperkingen zijn van gepersonaliseerde blootstellingsmonitoring. Er is een 

activiteiten gebaseerde modelketen ontwikkeld die persoonlijke bloostelling 

berekent, en die kan gebruikt worden voor het bepalen van de blootstelling van 

individuen in een populatie. Hiervoor zijn er submodellen ontwikkeld die op 

zichzelf uniek zijn, maar die ook gekoppeld zijn om te resulteren in het 

innovatieve persoonlijke blootstellingsmodel AB²C. 
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ABBREVIATIONS 

 

AB²C Activity-Based modeling framework for Black Carbon exposure 

assessment 

BC Black Carbon 

BS Black Smoke 

CH4 Methane 

CHD Coronary Heart Disease 

CI Confidence Interval 

CO Carbon Monoxide 

CO2 Carbon Dioxide 

DPM Diesel Particulate Matter 

EC Elemental Carbon 

EEA European Environment Agency 

ETS Environmental Tobacco Smoke 

EU European Union 

GIS Geographic Information System 

GPS Global Positioning System 

HIA Health Impact Assessment 

I/O-ratio Indoor/Oudoor ratio 

iF Intake Fraction 

IQR Interquartile Range 

IR Inhalation Rate 

LOOCV Leave-One-Out Cross-Validation 

LUR Land Use Regression 

NO Nitrogen Monoxide 

NO2 Nitrogen Dioxide 

NOx Nitrogen Oxides 

O3 Ozone 

OC Organic Carbon 

PDA Personal Digital Assistant 

PM10 Particulate Matter with an aerodynamic diameter of 10 µm or less 

PM2.5 Particulate Matter with an aerodynamic diameter of 2.5 µm or 

less 
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PM2.5abs PM2.5 absorbance 

PMcoarse Coarse Particulate Matter, difference between PM10 and PM2.5 

r Correlation Coefficient 

RMSE Root Mean Square Error 

SO2 Sulfur Dioxide 

TAZ Traffic Analysis Zone 

U.S. EPA United States Environmental Protection Agency 

UFP Ultrafine Particles (PM0.1) 

VIF Variance Inflation Factor 

VOC Volatile Organic Compounds 

WHO World Health Organization 

WKDY Weekday 

WKND Weekend 
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1. GENERAL INTRODUCTION 

 

1.1 PROBLEM STATEMENT 

 

Evidence is growing that a myriad of health effects, ranging from respiratory to 

cardiovascular and neurological effects, are causally linked to exposure to air 

pollution. Annually an estimated number of 2 million premature deaths can be 

attributed to air pollution worldwide. In recent years, society has become 

increasingly sensitive to individual risks, and thus data on the exposure to air 

pollution needs to be personalized. 

 

According to the National Research Council, Committee on Human and 

Environmental Exposure Science in the 21st Century (reported in Lioy and Smith 

(2013)), exposure science can be defined as: “the collection and analysis of 

quantitative and qualitative information needed to understand the nature of 

contact between receptors and physical, chemical, or biologic stressors. 

Exposure science strives to create a narrative that captures the spatial and 

temporal dimensions of exposure events with respect to acute and long-term 

effects on human populations and ecosystems”. Traditionally exposure of the 

population to air pollution has been calculated by ignoring spatial and temporal 

dimensions of exposure. More complex models, taking into account population 

movement and/or changing air quality, are challenging with respect to data 

requirements and are therefore rare. Obtaining personal air pollution exposure 

measurements has been hampered by the cost and complexity of the analyzing 

equipment. 

 

The association between health effects and specific sources of air pollution or 

specific air pollutants remains a source of scientific controversy and uncertainty 

for policy makers (Knol et al., 2009). By using novel methods and devices, it will 

be possible to estimate exposure to specific air pollutants more accurately. In 

the future this will reduce exposure misclassification in epidemiological studies, 

and the linkages between source – stressor – receptor – health outcome will be 

established with more certainty. As a result, public health and traffic policies 

aimed at reducing risks of air pollution will become more cost-efficient.  
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1.2 RESEARCH OBJECTIVES 

 

The overall objective of this dissertation is to develop and validate a chain of 

models that is able to estimate the accumulated exposure of an individual in the 

region of Flanders, Belgium. 

 

At the start of the project, the hypothesis was formulated that visiting certain 

microenvironments is the most important determinant of personal exposure, and 

that the movement between microenvironments differentiates exposure between 

people living in the same geographical zone. To test this hypothesis two 

complementary methodologies are used: modeling and measuring. 

- The newly developed Flemish activity-based model FEATHERS is used to 

model the activities that people perform (e.g. work, shopping, sports …) as 

well as the times and locations; 

- Newly developed portable monitors for air pollution are being deployed in a 

subgroup of the population to measure personal exposure to traffic-related 

air pollution. 

 

To reach the overall objective, four specific goals are defined: 

1. to demonstrate the feasibility of personal monitoring to assess exposure to 

air pollution; 

2. to develop and demonstrate the data-mining capabilities necessary to handle 

and analyze the datasets derived from mobile measurements; 

3. to produce hourly concentration maps using land use regression techniques; 

4. to take full advantage of the FEATHERS activity-based model so that it can 

predict personal exposure to air pollutants at the population level. 

 

Existing and newly developed models will be integrated in a modeling 

framework, with FEATHERS being the base model, to assess exposure of 

individual agents or groups of agents. The framework will be validated with 

personal measurements. 

The developed methodologies are applied for the air pollutant black carbon (BC), 

which is identified as an important proxy for traffic-related pollution. It is shown 

that BC has important health effects in humans, and it is a potent climate 
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warmer (Bond et al., 2013; Janssen et al., 2011). Because BC has steep 

gradients when moving away from roads (Karner et al., 2010; Zhu et al., 2002), 

detailed concentration maps are advantageous, and taking population mobility 

into account is highly relevant. BC can be measured both in a mobile and in a 

fixed setting using small monitors (AethLabs, 2011). 

 

The developed modeling framework can be used to evaluate the impact of policy 

measures on personal and population exposure to air pollution. This model will 

enable the assessment of general traffic policy measures on transport, 

concentrations, exposure, and human health. Next to transportation measures, 

activity-based models are able to calculate the effects of certain scenarios with 

no obvious relation to transport or air quality. Institutional changes (e.g., 

changing working hours, changing shop opening hours, congestion charging) or 

demographical changes (e.g., aging of the population, changing percentage of 

part-time workers, more one-adult households) can be assessed with an 

activity-based model; all are evolutions that are relevant to current policy. 
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1.3 OUTLINE OF THE THESIS 

 

This first introductory chapter gives a rough description of the problem and 

states the research aims. 

 

In chapter 2, current knowledge in the broader field of air pollution exposure 

assessment is summarized. This chapter provides details on exposure to air 

pollution in general, and then focuses on direct measurement and indirect 

modeling of exposure. Background information is presented on the techniques 

and models that will be used in chapters 3 and 4 of the dissertation. Chapter 2 

ends with a succinct overview of recent literature on the air pollutant black 

carbon (BC). 

 

Chapter 3 describes the results of a personal monitoring campaign. Volunteers 

were instructed to carry a device measuring BC and an electronic diary with GPS 

for 7 consecutive days, while performing their everyday activities. Part 3.1 

explores the impact of time-activity patterns on personal exposure. Results are 

presented from a pilot study in 8 couples and in one season. Part 3.2 elaborates 

on this first paper, with an expansion of the number of participants up to 62 and 

with measurements in two seasons. This chapter focuses on exposure while 

traveling and calculates inhaled doses in different transport modes. Part 3.3 

then investigates trip and road characteristics influencing in-vehicle 

concentrations and concentrations while cycling or walking. 

 

The aim of chapter 4 is to model the accumulated exposure of an individual to 

BC. Therefore BC measurements are carried out in the study area, both on 

urban and regional fixed locations in two campaigns. The land use regression 

technique is used to calculate multiple regression models using measurements 

from both campaigns; results are presented in part 4.1. Part 4.2 builds on these 

measurements, but calculates land use regression models with an hourly 

temporal resolution. As a final step, the hourly concentration maps are combined 

with other models in the AB²C (Activity-Based modeling framework for Black 

Carbon exposure assessment) modeling framework to predict personal exposure 
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in part 4.3. The model is evaluated by comparing the model estimates with 

revealed exposures from chapter 3. 

 

The last chapter, chapter 5, discusses the contributions of this dissertation to 

the state-of-the-science. The most important findings and knowledge gaps are 

discussed as well. The chapter concludes with recommendations for future 

health studies. 

 

FIGURE 1 gives a schematic overview of the outline of the dissertation. Chapters 

3 and 4 are largely based on published or submitted peer-reviewed papers as 

detailed below. 

 

 

FIGURE 1: Outline of the dissertation with references to the relevant chapters in 
this book and published or submitted peer-reviewed papers. 
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2. STATE OF THE ART 

 

2.1 PERSONAL EXPOSURE TO AIR POLLUTION 

 

Worldwide, air pollution causes an estimated 2 million early deaths each year 

(WHO, 2013). Air quality and the effects of typical ambient air pollution 

concentrations remain an important public health risk. Mortality, cancer, 

cardiovascular symptoms, respiratory and neurological effects have all been 

linked to air quality (Brook et al., 2010; Calderon-Garciduenas et al., 2008; 

Pope and Dockery, 2006). Improving air quality, both in the light of climate 

change mitigation and for the prevention of health effects, is a global challenge. 

 

 

2.1.1 AIR POLLUTION: THE BIGGER PICTURE 

 

An integrated approach to describe environmental problems is the DPSIR 

framework, based on a model of the OECD (EEA, 1999; OECD, 1993). The 

model describes the chain of environmental disturbances and causally links 

human activities and damage to the environment. Driving forces (D) like 

performing out-of-home activities, transport and industrial activities lead to 

environmental pressures (P) that degrade the state (S) of the environment. This 

state, e.g. the air quality, has an impact (I) on human health and the natural 

environment which provokes society to carry out a response (R).  

Being in transport is most of the time not an aim on itself, but this is driven by 

activities individuals wish or need to perform. The distance people need to travel 

depends a.o. on the spatial planning in a region; the combination of the demand 

for activities and the supply of services in a region can be described as the ‘trip 

market’. When making a trip from location A to location B at time t, one can 

choose from a number of different transport modes and services (transportation 

market). The resulting trips with each transport mode can then be assigned to 

available infrastructure, e.g. the road network, bus lines (traffic market). 

In FIGURE 2, the DPSIR framework and the 3-markets model are integrated in 

one framework that describes the chain of environmental disturbances from 

activities to impact and responses. 
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FIGURE 2: The DPSIR concept applied to air pollution, and extended with the 3-markets model to formulate transportation 
policy (adapted from (Jensen, 1999)) 
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One of the most important air pollution impacts is the impact on health. The 

process through which air pollution impacts human health, the ‘environmental 

pathway’, is presented in FIGURE 3. Upstream factors, e.g. land use, transport 

or energy policy; human activities including traffic, heating, and industrial 

activities; and natural sources of pollutants; all contribute to emissions. 

Emissions from point sources (smokestacks), line sources (roads) or area 

sources (cities) will disperse, transform, interact with other pollutants, and 

eventually disappear from the atmosphere. Dispersion of emitted pollutants will 

result in different levels of air pollution concentrations on every location, both 

indoors and outdoors: the ‘environmental intensity’. Individuals or receptors 

move through space and time and are exposed to local concentrations while 

performing activities. People are not only ‘externally exposed’, but pollutants can 

also enter the body mainly through inhalation in the case of air pollutants, 

resulting in an inhaled dose. A causal link is established between exposure to air 

pollution and certain health effects; for other health effects evidence is 

suggestive (HEI, 2010). The separation of time-activity into its own category 

emphasizes its importance in exposure science: exposure should be assessed by 

combining data on environmental intensity and time-activity profiles (Lioy and 

Smith, 2013). Feedback loop (1) shows that an outcome experienced by an 

individual could spread to others. Feedback loop (2) includes how health 

outcomes can alter activities and behaviors among individuals, for example 

susceptible populations are discouraged to exercise during ozone peaks. 

 

 

FIGURE 3: Causal network from activities to health outcomes via air pollution 
(Lioy and Smith, 2013)  
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2.1.2 AIR POLLUTION: EMISSIONS, DISPERSION AND LIMIT VALUES 

 

Air quality on a particular location at a certain point in time is the result of a 

combination of emissions and dispersion of the emissions. Gases or particles are 

put into the air by various sources, both from natural and from anthropogenic 

origin, and they are physically and chemically diverse and complex. The most 

important natural sources include sea spray, dust storms, volcanic eruptions, 

grassland and forest fires (EEA, 2012). But human activities are the main cause 

of poor air quality: traffic, industry, or biomass burning, are among the most 

important contributors.  

 

Atmospheric dispersion describes the transport of emitted pollutants in the lower 

atmosphere. Dispersion conditions are influenced mainly by local circumstances 

(e.g. street canyons versus open areas), weather conditions, and orography 

(elevation). Pollutants often transform during transport through coagulation 

processes, nucleation, deposition, condensation, or (photo)chemical reactions. 

Air pollution dispersion models describe these phenomena in mathematical 

functions; examples of widely used dispersion models are AERMOD, ADMS, 

CALINE4, IFDM and CALPUFF. Most of these models combine data on emissions 

(a.o. traffic emissions that depend on the volume and composition of traffic) 

with data on weather conditions (such as wind speed, wind direction and mixing 

height) to simulate dispersion processes. 

 

In developed countries, motor vehicles represent a major source of air pollutants 

that have a substantial impact on ambient air pollution, indoor air, and personal 

exposures. Traffic-related air-pollution is a complex mix of components and 

much is unknown about the toxicity of the different components (Laumbach and 

Kipen, 2012). Traffic emissions contribute to both primary air pollutant 

concentrations (BC, NOx, CO, benzene, UFP, PM, VOC) that are emitted directly 

from tailpipes, and to secondary pollutant concentrations (NO2, O3, secondary 

(in)organic aerosols) that are formed in the atmosphere from precursors 

(Erisman and Schaap, 2004; HEI, 2010; Int Panis, 2008; Marshall et al., 2005). 

Primary exhaust emissions in Europe are regulated via the EURO emission 

standards (IIASA, 2012). Non-exhaust emissions (PMcoarse, Cu, Zn, Fe) include 
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brake and tire wear, resuspended dust and road abrasion; non-exhaust 

emissions are currently beyond legislation (IIASA, 2012). 

 

When estimating the impact of traffic on ambient concentrations and exposure, 

most studies focus on single compounds, referred to as carriers or markers, 

although specific health effects may not be caused by just one component but 

by the collective attributes of the ‘cocktail’ (HEI, 2010). Alternatively, direct 

measures of traffic (traffic intensity on the nearest road, road length in buffers, 

etc.) are used to quantify exposure to traffic-related air pollution.  

 

The contribution of traffic to local air quality is largest in cities at locations near 

major roads. Concentrations measured can be decomposed in a transnational 

part (emissions from other countries), a national part (national emissions), an 

urban contribution (emissions from local industries, households, urban traffic), 

and a contribution of local sources (traffic in the direct vicinity). Depending on 

the pollutant, the location, and the time period, the relative contribution from 

each part can be very different. 

 

 

To limit the negative effects associated with air pollution, legally-binding limit 

values are formulated by different authorities. Primarily, emission ceilings 

regulate maximum emissions in different sectors and countries. In addition, air 

pollutant concentrations cannot exceed predefined limits (TABLE 1). Air quality 

standards are not globally harmonized, e.g. NO2 limit values are much stricter in 

Europe than in the United States, whereas for PM2.5 the opposite is true (in 

December 2012, U.S. EPA even strengthened the PM2.5 annual standard to 12 

µg/m³). The WHO has formulated its own standards based on scientific evidence 

in response to the real and global threat to public health (WHO, 2005). When 

countries or regions set or revise ambient air quality standards, air quality 

monitoring data are considered most frequently, followed by existing standards 

in other countries, environmental epidemiology studies, and the WHO guidelines 

(Vahlsing and Smith, 2012). 

Air quality standards are intended to protect people to exposures above a 

certain threshold; although there is no evidence of a level below which there is 
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no risk for adverse health effects (Lioy and Smith, 2013; U.S.EPA, 2012a). 

Compliance with the standards is controlled by fixed air quality monitoring 

stations continuously measuring a range of air pollutants. This includes traffic, 

urban and regional sites, but also industrial sites. As people are not always near 

a monitor representative for their exposure, it does happen that people are 

exposed to excessive concentrations. The EU has introduced the Exposure 

Concentration Obligation for PM2.5: a target solely based on concentrations on 

urban background sites better reflecting population exposure (limit value of 20 

µg/m³ to be met in 2015). 

 

 

TABLE 1: Air quality standards in Europe and the US, and guideline values from 
the WHO 

 EU US WHO 

NO2 200 µg/m³ (1h mean, 18 
times/year) 
40 µg/m³ (annual mean) 

191 µg/m³ (1h mean, 
98th percentile) 
100 µg/m³ (annual 
mean) 

200 µg/m³ (1h mean) 
40 µg/m³ (annual mean) 

PM10 50 µg/m³ (1day mean, 
35 times/year) 
40 µg/m³ (annual mean) 

150 µg/m³ (1day mean, 
1 time/year) 
50 µg/m³ (annual mean) 

50 µg/m³ (1day mean) 
20 µg/m³ (annual mean) 

PM2.5 25 µg/m³ (annual 
mean)a 

35 µg/m³ (1day mean, 
98th percentile) 
12 µg/m³ (annual mean) 

25 µg/m³ (1day mean) 
10 µg/m³ (annual mean) 

SO2 350 µg/m³ (1h mean, 24 
times/year) 
125 µg/m³ (1day mean, 
3 times/year) 

366 µg/m³ (1day mean) 
78 µg/m³ (annual mean) 

20 µg/m³ (1day mean) 

O3 120 µg/m³ (8h mean, 25 
days/year)a 

157 µg/m³ (8h mean) 100 µg/m³ (8h mean) 

a This is a target value rather than a limit value 

 

 

2.1.3 PERSONAL EXPOSURE AND DOSE 

 

Personal exposure can be defined as the true exposure experienced by 

individuals. When individual i is at location x,y,z, then the concentration on that 

location x,y,z is his personal exposure for a given time period. But when the 

individual travels from location A to location B, the exposure is determined by 

the time-weighted concentrations on both locations, increased with the exposure 

while in transport (WHO, 1999). The exposure of a complete population is the 

sum of all individual exposures.  
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Formally, personal exposure to air pollution can be presented as a multiplication 

of concentrations in microenvironment i (Ci) with the time spent in that 

microenvironment (timei) (Duan, 1991; Klepeis, 1999, 2006; Nethery et al., 

2008b; Ott, 1982; Sexton and Ryan, 1988). Integrated personal exposure is 

then the sum of the products of concentrations and the time spent in the 

respective microenvironments.  

                  ∑         
                       

   
 

 

The latter formula can be transformed into an algebraic function with Ci(t,x,y,z) 

being the concentration as experienced by individual i on time t on a location 

with geographical coordinates [x,y,z]. The start- and endpoint t1 and t2 mark the 

exposure episode (Klepeis, 2006). 
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In a figure, the integrated cumulative exposure can be presented as follows 

(exposure episode is marked with 0 and ta): 
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FIGURE 4: Definition of exposure (Monn, 2001) 

 

The formula can then be adapted again so that specific, and thus discrete, 

microenvironments are regarded as spatial variable, rather than the continuous 

space (Klepeis, 2006). Cij is the concentration experienced by the receptor in the 

discrete microenvironment j at a particular point in time t over the time interval 

defined by [tj1;tj2]. This can again be summed over all m microenvironments. 
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Personal exposure levels can be estimated directly or indirectly (Piechocki-

Minguy et al., 2006). The direct approach applies portable measurement devices 

that can be worn by individuals for a short time (‘external exposure’). In 

addition, exposure or dose biomarkers are defined, determining past exposures 

of individuals to air pollutants (‘internal exposure’). Unlike e.g. exposure to ETS 

that can be determined from cotinine levels in blood, urine or saliva (Benowitz, 

1999), few if any suitable biomarkers of exposure to traffic related air pollution 

exist (e.g. airway macrophage carbon in sputum (Nwokoro et al., 2012)). On the 

other hand, indirect approaches use various models that reconstruct exposure 

from time-activity databases and concentration maps. Because it is not realistic 

to use the direct approach in larger populations (air quality devices are 

expensive and cheaper sensors are not yet reliable, dose biomarkers use 

invasive and labor-intensive techniques), models should be applied to estimate 

personal exposure in larger cohorts. 

 

In the past, human exposure to air pollution was estimated by using 

concentrations measured at a few fixed air quality monitoring stations. 

Concentrations measured at the monitoring station(s) nearest to a person's 

home are assumed to be representative of exposure of an individual (Fenske, 

2010; Kaur et al., 2007; Lepeule et al., 2010; Park et al., 2010; Peters et al., 

2009; Sarnat et al., 2010). Unfortunately, the spatial density of fixed monitors is 

insufficient and the position of the monitoring sites is often not representative 

for the exposure of a population (Briggs et al., 2000). Personal exposure of 

individuals does not only depend on ambient concentrations, but also on the 

concentrations encountered in specific microenvironments (including indoor 

sources), and on the time-activity patterns of individuals (Boudet et al., 2001; 

Brown et al., 2008; Jensen, 1999; McKone et al., 2009). The correlation 

between personal exposure and concentrations measured at fixed sites is mostly 

low for pollutants with high spatiotemporal variability like NOx or BC, but can be 

better for PM2.5 or PM10 (Baxter et al., 2007; Sarnat et al., 2006), although 

significant differences exist between different studies (Avery et al., 2010). Some 

studies find that personal exposure is higher than ambient concentrations 

measured at fixed sites (Avery et al., 2010; Broich et al., 2012; Brown et al., 

2009b; Monn et al., 1997). Monn et al. (1997) and Wallace et al. (2006) refer to 
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this phenomenon as the ‘personal cloud’; the origin of this cloud is however 

unknown. Jerrett et al. (2005a) postulate that personal exposure measurements 

lead to lower exposure values compared to measurements at fixed sites because 

indoor concentrations tend to be lower. As people spent 80 to 90% of their time 

in indoor microenvironments (Klepeis, 2006), personal exposure tends to be 

better correlated to indoor concentrations compared to ambient concentrations 

(Brown et al., 2008; Koistinen et al., 2001; Piechocki-Minguy et al., 2006). 

 

The large variation in correlations between personal, ambient, and indoor 

concentrations, demonstrates that exposure misclassification can be significant 

when only using concentrations on fixed monitoring sites. If exposure is 

considered on the aggregated level of a population, these differences are 

probably averaged out, but exposure as experienced by individuals, including 

related health effects, will be strongly impacted by variations in personal non-

ambient concentrations (McKone et al., 2009). Only recently, Setton et al. 

(2011) and Baxter et al. (2013) confirmed that time away from home and time 

in transport are significant effect modifiers when determining health effects 

associated with exposure to air pollution. Von Klot et al. (2011) found an 

association between personal BC exposure and acute myocardial infarction, but 

not with ambient PM2.5 concentrations, suggesting that it is important to include 

out-of-home activities. The relationship between personal, ambient and indoor 

concentrations cannot be determined unambiguously, and depends on the 

individual, his/her time-activity pattern and the environment.  

 

Rather than focusing on exposure, the concept of ‘dose’ is important when 

considering health effects associated with air pollution. An individual may be 

exposed to a pollutant, but that pollutant does not necessarily enter the body of 

the individual (Ott, 1982). A dose only occurs when a pollutant crosses a 

physical boundary, i.e. when a person inhales or ingests the air pollutant. As an 

example: two individuals are present at the same athletics field, one person is 

running and the other one is watching, their exposure will be nearly the same as 

they are within meters of each other, but the runner inhales more particles due 

to his faster and deeper breathing. The amount of inhaled air depends partly on 

personal characteristics: e.g. gender, age, and weight (Oravisjärvi et al., 2011); 
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the other part can be explained by performing (physical) activities (Marshall et 

al., 2006; McConnell et al., 2010). The importance of breathing rates while 

traveling is shown by Int Panis et al. (2010) and Zuurbier et al. (2010). 

 

The amount of air moving through the lungs per time unit is expressed as 

minute volume (l/min). The amount of inhaled air during a day is estimated as a 

time-weighted average at different levels of effort. The 24-h inhalation rate with 

n different levels of effort can be determined as (Allan and Richardson, 1998):  

   
 

   
∑     

 

   

 

with IR = the 24-hour inhalation rate (m3/day); 

ti = the amount of time spent at activity level i (min/day); 

Vi = the minute volume at activity level i (l/min); 

103 = a conversion factor (L/m3). 

 

Several authors or institutions have determined breathing rates for different 

activities (Int Panis et al., 2010; Layton, 1993; U.S.EPA, 2011; Zuurbier et al., 

2010). In a paper of Allan and Richardson (1998), 5 different activity levels are 

defined with corresponding minute ventilation (TABLE 2).  

- Activity Level 1 - resting (e.g. sleeping, resting, watching TV, reading); 

- Activity Level 2 - very light activity (e.g. services, working); 

- Activity Level 3 - light activity (e.g. home activities, shopping, working); 

- Activity Level 4 - light to moderate activity (e.g. gardening, dancing); 

- Activity Level 5 - moderate to heavy activity (e.g. sports, walking). 

 

TABLE 2: Overview of minute volume assumptions in l/min for adults and seniors 
(Allan and Richardson, 1998) 

Activity 
Level 

Description Male adulta,b Female 
adulta,b 

Male 
seniora,b 

Female 
seniora,b 

1 Resting 8.3 ± 2.8 7.5 ± 2.5 8.2 ± 2.2 6.8 ± 1.9 
2 Very light activity 10.5 ± 3.3 12.5 ± 3.9 10.7 ± 3.1 10.1 ± 3.0 
3 Light activity 16.1 ± 4.1 13.0 ± 3.3 16.2 ± 3.8 13.2 ± 3.1 
4 Light to moderate 

activity 
30.2 ± 4.9 23.2 ± 3.8 31.1 ± 6.0 24.0 ± 4.6 

5 Moderate to 
heavy activity 

49.2 ± 10.6 39.8 ± 8.6 59.3 ± 10.0 49.2 ± 8.3 

a All lognormal distributions, except for activity level 5 (normal distribution) 
b Adults (20-59 years); seniors (60+ years)  
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Deposition models, like the models from the International Commission on 

Radiological Protection (ICRP) and the National Council on Radiation Protection 

and Measurements (NCRP), can be used to estimate in which part of the lung 

certain particles deposit. These models estimate the total and the regional lung 

deposition of aerosols of different sizes and under different breathing rates. For 

example, in a study of Oravisjärvi et al. (2011) the deposition of traffic-related 

particles from diesel buses in the lungs is simulated. Buonanno et al. (2011) 

determine the daily tracheobronchial and alveolar dose of ultrafine particles for a 

synthetic population in Italy. The exposure and the inhaled dose are determined 

by applying time-activity patterns and corresponding ventilation rates. 

 

The origin of inhaled pollutants is important when determining health effects of 

certain levels of air pollution. Particulate matter emissions from some natural 

sources are thought to be less damaging than traffic-related air pollution (EEA, 

2012). This can be explained by differences in toxicity (see next paragraph) and 

because of differences in the intake fraction (iF), which is defined as the ratio 

between the total amount of inhaled particles and the total amount emitted. An 

iF can be considered as a simplified combination of emission, dispersion and 

exposure models in one number. From this ratio it appeared that only a small 

portion of the particles emitted is in fact inhaled by an individual. The iF's of 

3646 cities from all over the world were reported by Apte et al. (2012); eleven 

Belgian cities have an average iF of 13 ppm (1 ppm = 1 g inhaled / t emitted). 

This ratio is not the same for particles from different sources: emissions from 

road traffic are more often inhaled than particles from airplanes (Tainio et al., 

2009). The health impact of a pollutant can be expressed in the following 

formula: 

 

                                                           

 

Pollutants with an important health impact have either an elevated iF or a higher 

toxicity or both. 
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2.1.4 HEALTH EFFECTS ASSOCIATED WITH EXPOSURE TO AIR 

POLLUTION 

 

Health effects that are linked to exposure to air pollution can be divided into 

short term acute effects and long term effects. Short term exposures are 

marked by a short episode of high concentrations, whereas long term health 

effects are a consequence of elevated concentrations over a longer time span. 

 

2.1.4.1 Short term health 

 

The earliest studies that evaluated short term health effects focused on severe 

air pollution episodes and mortality; examples are the Meuse Valley fog of 1930 

and the London fog of 1952 that caused hundreds of deaths (Bell and Davis, 

2001; Nemery et al., 2001). More recently, in a review paper from Pope and 

Dockery (2006) different US and European multicity studies are listed that all 

give similar results: a more or less linear rise in the number of deaths with 

increasing PM10 and black smoke concentrations. In the APHEA2 project, short-

term health effects of ambient particles on total nonaccidental mortality from 29 

European cities were reported (Katsouyanni et al., 2003). It was found that PM 

air pollution was significantly associated with both respiratory and cardiovascular 

daily mortality counts. Next to mortality effects, also effects on morbidity are 

observed. Nawrot et al. (2011) did a literature review on triggers of myocardial 

infarction: air pollution (a difference in PM10 concentrations of 30 µg/m³) is one 

of the most important triggers, next to participation in traffic, physical activity 

and alcohol. From a study of Peters et al. (2004) it appeared that the risk of 

myocardial infarction increases when a patient was in transport the hour before 

the incident (odds ratio = 2.92); the risk is largest when traveling by bike (odds 

ratio = 3.94) or by severe exertion (odds ratio = 6.38). The relative contribution 

of risk factors such as stress, traffic-related air pollution, or noise is impossible 

to determine from this study. Brook et al. (2010) summarized current 

knowledge on particulate matter exposure and cardiovascular disease: they 

concluded that exposure to PM2.5 over a few hours to weeks can trigger 

cardiovascular disease-related mortality and nonfatal events, and that this 

relationship is causal. Mills et al. (2007) found ischemic and thrombotic effects 
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after short term peak exposures to diesel exhaust in 20 patients with coronary 

heart disease. This study in a controlled environment with concentrations 

several times larger than ambient levels was important as it proved biological 

plausibility of acute health effects associated with air pollution. A similar study of 

Lucking et al. (2011) found that the presence of a particle trap on diesel engines 

prevents several adverse cardiovascular effects that did show when volunteers 

were exposed to unfiltered diesel exhaust (although NO2 concentrations were a 

factor 5 higher in filtered air). McCreanor et al. (2007) did a randomized 

crossover study in patients with asthma; clear respiratory effects were shown to 

be caused by exposure to diesel traffic. 

In Flanders, a relationship was found between daily mortality and PM10 

concentrations, especially during summer (Nawrot et al., 2007). From the same 

study, it was estimated that 630 premature deaths could be avoided when PM10 

did not exceed 20 µg/m³; this effect is largest in summer. 

 

 

2.1.4.2 Long term health 

 

In a CAFE (Clean Air For Europe) report from 2005, it is estimated that the 

statistical life expectancy of a European is shortened by on average 8.1 months 

because of exposure to the anthropogenic fraction of PM2.5 (Amann et al., 2005). 

In Europe, the largest loss in life expectancy is in Belgium, with an average loss 

of 13.2 months. A similar study in the United States showed that a decrease in 

PM10 concentrations of 10 µg/m³ was associated with an increase in life 

expectancy of 0.61 ± 0.20 years (Pope et al., 2009). 

The inhaled amount of particulate matter caused by exposure to ambient 

concentrations is many times smaller than exposure of active smokers. Long 

term effects of smoking, which can be considered as a worst case of exposure to 

air pollution, are shown by a.o. Doll et al. (2004): Cigarette smoking men, born 

between 1900 and 1930, died approximately 10 years earlier compared to a 

similar population that never smoked. Dockery et al. (1993) linked exposure to 

ambient PM2.5 to all-cause mortality, cardiovascular and lung-cancer mortality 

for the first time in the Six US Cities Study. Almost two decennia later, exposure 

to ambient PM2.5 concentrations was causally linked to cardiovascular morbidity 
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and mortality (Brook et al., 2010; Künzli et al., 2005). No threshold level could 

be determined: effects are measureable even with low ambient concentrations 

(Lepeule et al., 2012). The evidence on long term health effects caused by air 

pollution has grown steadily during the last ten years. The empirically estimated 

dose-response function for PM is not linear, as assumed earlier, but there is a 

steep increase at low levels of air pollution and it flattens out with elevated 

levels, e.g. in active smokers (Pope, 2007, 2010). It is hypothesized by Seaton 

et al. (1995) that ultrafine particles are the most harmful provoking alveolar 

inflammation. 

Susceptible groups, like children, elderly, diabetics or asthma patients, are often 

studied to discover effects of air pollution exposure. Gauderman et al. (2007) 

showed that when children lived within 500m of a motorway, this had a clear 

effect on lung function compared to children living more than 1500m from a 

motorway. Gehring et al. (2010) found a relationship between traffic-related air 

pollution and the prevalence of asthma in 8-year olds; several other respiratory 

effects have been linked to exposure to traffic-related air pollution (Laumbach 

and Kipen, 2012). 

 

 

Due to the large number of studies looking for a relationship between air 

pollution and health effects, is it very hard to present a concise overview of 

possible effects. Different studies differ in study design, methods and 

techniques. In spite of the large number of studies, it is still very difficult to link 

exposure to a certain compound (starting from the hypothesis that not all air 

pollutants are equally harmful) to a specific health effect. There is an important 

gap in knowledge on the linkages between health effects and toxicity of 

pollutants or the toxicity of mixtures. 
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FIGURE 5: Inhalation of particulate matter and suspected health effects 
(Aphekom, 2011) 
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2.1.5 EXPOSOME 

 

The concept of the exposome, representing lifelong exposures received by an 

individual from conception to death, encompasses all sources of exposure that 

may influence health (Betts, 2012; Rappaport, 2011; Wild, 2005). The 

exposome is regarded as a powerful tool to detect health effects, especially 

chronic diseases, caused by environmental exposures. It includes exposure via 

all relevant pathways: inhalation, dermal exposure, exposure through food or 

radiation, temperature or noise. Important confounders like stress, physical 

activity, or drug use are also taken into account. The exposome complements 

the genome: an individual gets sick either through genetic programming, 

through the interplay of environmental stressors, or through a combination of 

both. 

The exposome can be determined following a bottom-up approach or a top-down 

approach (Rappaport, 2011). The first approach starts from environmental 

monitoring of air, water, food etc.: this approach measures external exposures. 

For air pollution exposures, this means measuring time-space paths, physical 

activity and air pollution sensing. The top-down approach is based upon 

biomonitoring of subjects, e.g. by blood sampling. It is noted by Peters et al. 

(2012) that when applying the top-down approach, enough attention should be 

paid to the linkage between the internal exposure and the external environment. 

Determining the exposome requires interdisciplinary research, and in the future 

compound-by-compound assessments should be abandoned although they may 

remain useful for regulation purposes (Adler et al., 2010). The exposome is an 

‘ideal’, a ‘unifying concept’ rather than a true state, but it frames current 

research in exposure science nicely (Adler et al., 2010). 

Recently, Lioy and Smith (2013) introduced the eco-exposome; it is defined as 

the extension of exposure science “from the point of contact between a stressor 

and receptor inward into the organism and outward to the general environment 

including the ecosphere”; thus, embracing the use of both internal and external 

markers of exposure. 
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2.1.6 CONCLUSIONS 

 

- An ‘exposure’ has been defined as the occurrence of the event that a 

pollutant (at a particular concentration) comes into contact with the physical 

boundary of the individual, while a ‘dose’ has been defined as the occurrence 

of the event that the pollutant actually crosses the physical boundary (Ott, 

1982). 

- Concentrations measured on fixed sites are poorly correlated with true 

personal exposure, especially for pollutants with a high spatiotemporal 

variability. Inaccurate exposure assessment can lead to exposure 

misclassification in epidemiological studies. 

- Many components are associated with some endpoint somewhere at some 

lag (Brunekreef, 2013). There is still an important gap in knowledge on the 

linkages between health effects and toxicity of pollutants or the toxicity of 

mixtures. 
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2.2 MEASURING PERSONAL EXPOSURE 

 

Several dimensions can be identified when measuring personal exposure to air 

pollution. Not all of these facets need to be monitored, but the more parameters 

are measured, the more complete the exposure picture will look. 

 

A first factor is monitoring air quality. Member states of the EU are obliged to 

maintain a monitoring network measuring air quality at several locations. On 

these sites continuous measurements take place using reference devices. When 

interested in personal exposures, a specific monitoring campaign should be set 

up with portable air quality monitors. In recent years, air quality sensors are 

getting a lot of attention as the ultimate means to map personal exposure to air 

pollution in large populations. 

 

To enable a more thorough analysis of measured exposures, it is necessary to 

know which activity is executed when and where, and combine it with air quality 

levels. The time-activity pattern of an individual is unique and will differ 

between days; on the other hand people are subject to habitual behavior. An 

average daily pattern can be assumed based on large-scale time-activity studies 

like the Study on Travel Behavior (Onderzoek Verplaatsingsgedrag) in Flanders, 

NHAPS (National Human Activity Pattern Survey) in the United States, or CHAPS 

(Canadian Human Activity Pattern Survey) in Canada. Paper or electronic diaries 

can be used to get a detailed view of the diary of an individual. GPS-tracks can 

be collected to derive activity patterns in a relatively straightforward way. 

 

Physical activity is important to consider when calculating the amount of 

inhaled air and particles. Measuring breathing rates is in most cases not realistic 

because of the burden of the monitors. A heart rate monitor could be used 

alternatively as a proxy for minute ventilation. New health sensors try to use 

less invasive and more objective ways to measure level of effort (Butte et al., 

2012; Intille et al., 2012). Questionnaires are also being used to determine 

physical activity qualitatively.  
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2.2.1 AIR QUALITY 

 

Air quality monitors on fixed locations are used to measure ambient air quality in 

a region and to check compliance with (inter)national air quality standards; by 

extension these monitors are used to determine exposure of a population. In 

Flanders the Flemish Environment Agency continuously monitors the air quality 

using different networks (VMM, 2010). The telemetrical network watches the 

overall air quality and measures the most important gaseous and particulate 

pollutants: ozone (O3), sulfur dioxide (SO2), nitrogen oxides (NOx), particulate 

matter (PM10 and PM2.5), carbon monoxide (CO), BTEX (benzene, toluene, 

ethylbenzene and xylene), and black carbon (BC). Not every pollutant is being 

measured at each of the 60-70 monitoring sites. Monitoring stations are spread 

over Flanders, and they are grouped according to location type: rural stations, 

suburban stations, urban stations, industrial stations and traffic stations. Most of 

the monitors can measure with a time-resolution of up to 1-second, but 

currently measurements are saved on a 30-min time base, and are soon 

aggregated to hourly values. The spatial resolution of these monitors is however 

rather low, even when considering that Flanders has the most dense monitoring 

network of Europe. Through spatial interpolation, an area-wide map can be 

produced, although for certain pollutants the accuracy of such an approach can 

be questioned. 

 

Large static monitors can be used to temporarily measure air pollution in 

different indoor and outdoor microenvironments, rather than measuring ambient 

concentrations on a limited number of fixed locations (Brown et al., 2012). 

Several dedicated measurement campaigns already monitored concentrations in 

different microenvironments, but they still do not give a complete picture of 

personal exposure as it is impossible to measure simultaneously in all 

microenvironments visited by a person. 

 

Portable devices to measure air quality exist for almost 40 years in the form of 

passive diffusive samplers (Yu et al., 2008). These dosimeters are still in use 

today to measure a.o. NO2 concentrations; they are easy to deploy because they 

are small, unobtrusive, cheap and do not require power (Yu et al., 2008). Using 
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passive samplers for monitoring results in measurements with a high spatial 

resolution, but due to the diffusion principle temporal resolution is low (typically 

a few days to a few weeks). Different types of passive samplers exist, with 

Palmes tubes, Yanagisawa filter badges, Ogawa samplers and Radiello samplers 

being the most famous (Yu et al., 2008). 

 

Knowing where and when exposure occurs is crucial to determine causality 

between air pollution sources and health effects (Adams et al., 2009; HEI, 

2010). Active pumped samplers can measure with a much higher temporal 

resolution than passive samplers, and they can therefore detect air pollution 

peaks. Active monitors are expensive, require expert handling, and are often too 

large to use in true personal monitoring. Examples of popular portable active 

monitors include the DUSTTRAK aerosol monitor (PM10, PM2.5, PM1), GRIMM 

aerosol monitor (PM10, PM2.5, PM1), P-TRAK ultrafine particle counter (UFP), 

aethalometer (BC), Aerasense ultrafine nanoparticle monitor (UFP), particle soot 

absorption photometer PSAP (soot), and personal DataRAM (PM10). To limit 

possible confounding, the inlet of the monitor can be placed near the breathing 

zone of the individual (Adams et al., 2009; Broich et al., 2012; Fruin et al., 

2004).  

 

The ultimate air quality monitor can measure with a high temporal and spatial 

resolution, is affordable and is as little obtrusive as possible. A high spatial 

resolution can be achieved through either the portability of the instrument, or 

because monitors can be spread in large quantities across a study area. Air 

quality sensors can fill this gap (Mead et al., 2013). They measure with a high 

temporal resolution, sensors are small and portable, require no or little power, 

are cheap and quiet. Sensors that are commercially available for the moment 

are not yet reliable enough for portable deployment; it is especially very difficult 

to reproduce measurements from a reference monitor. Sensors used to be 

developed to measure peak concentrations, e.g. in vehicle exhaust, but they are 

not sensitive enough for detecting ambient concentration levels. Sensors that 

proved to be relatively good, e.g. CO-sensors, are unfortunately not very 

relevant for health at current ambient concentrations. 

 



47 

By deploying air quality sensors in large quantities, a wealth of data could be 

collected. Measurements with sensors should be combined in a database, and 

visualized, e.g. using Google Earth. Sensors communicate with a server and with 

each other; these systems are referred to as air quality sensor networks 

(Cordova-Lopez et al., 2007; Richards et al., 2006). In the future, individuals 

will be equipped with sensors measuring personal exposure to different air 

pollutants, and they will be able to consult and visualize the results themselves. 

Peak exposures can be detected or sources of air pollution could be identified: 

this information is valuable for an individual, but it could also help governments 

and scientists (Lioy and Smith, 2013). Empowering people to do research in 

their own environment, or ‘participatory sensing’ as it is called, has huge 

potential and is identified as a major research point in achieving the exposure 

science vision for the 21st century (Conrad and Hilchey, 2011; Lioy and Smith, 

2013; Loh et al., 2002). 

 

 

2.2.2 TIME-ACTIVITY PATTERNS 

 

One of the most important theories on the movement of people in time and 

space is the theory of Torsten Hägerstrand (1970). The time-geography theory 

describes consecutive activities on different locations, and the trajectories that 

link this activity chain. The space-time path can be represented graphically in a 

three-dimensional space, the ‘space-time aquarium’ (Kwan and Lee, 2003). A 

24h-period is presented in the aquarium as a continuous temporal sequence in 

geographical space (FIGURE 6). Individuals are limited while performing their 

daily activities by the amount of time available: their time-budget. Other 

constraints in time and space, linked to mandatory activities (e.g. work) or 

through interaction with other individuals, describe the potential activity-space 

of an individual. 

The emergence of geographical information systems has resulted in a 

materialization of the theories of Hägerstand in the '90 (Briggs, 2005). But to 

draw the ‘lifelines’ of an individual and gain insight into space-time paths, a 

time-activity survey needs to be conducted. 
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FIGURE 6: Space-time aquarium with ‘lifelines’ (Kwan and Lee, 2003) 

 

 

Collecting time-activity data lays a heavy burden on respondents. Filling in 

questionnaires, either on paper or in electronic format, asks time and dedication 

of the participants, and thus there is a high risk of non-participation or drop-out. 

A high degree of participation should be aimed for, e.g. by being respondent-

oriented (study design for example according to the New Kontiv Design), with 

clear questions, and with a follow-up of the participants. However, differential 

non-response does occur resulting in bias in activity pattern surveys, e.g. in 

lower socio-economic classes, short walking trips are not reported, busy 

participants with a lot of trips, children or elderly (Arentze et al., 2000). 

 

Traditionally time-activity patterns are collected with paper and pencil surveys 

(a.o. Dadvand et al. (2012) in an epidemiological study), sometimes 

supplemented with a telephone interview (a.o. Axhausen et al. (2002) and 

Delgado-Saborit (2012)). A reward or incentive can be presented to participants 

at the end of the survey. A major disadvantage of paper diaries is the poor data 

quality: gaps, overlaps and missing values frequently emerge in the diaries; the 

quality can be enhanced by going across the diary with the participant. 

Additional errors can be introduced when manually entering the data in a 

database. An advantage of a paper-and-pencil diary is that it can be filled in at 
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any time and at any place. Paper diaries can be aided by a voice recorder 

handed to the participants (Delgado-Saborit, 2012). 

 

Electronic diaries can be imputed in a computer directly by participants. iCHASE 

(Internet Computerized Household Activity Scheduling Elicitor (Lee et al., 2000)) 

was developed to enhance data quality (e.g. built-in consistency checks) and 

improve user guidance. A web-survey is cost-efficient and can reach a lot of 

participants in a short time span (Wu et al., 2011b). Diary data is immediately 

available; manual data-input is subject to human error and can be avoided when 

using electronic diaries. Mobile electronic diaries combine the advantages of the 

paper and pencil method, namely portability, with the advantages of an 

electronic survey. A first application of software to register activities and trips on 

a palm-sized computer or PDA was ‘EX-ACT’ (Rindsfüser et al., 2003), based on 

the previous iCHASE desktop software. Kochan et al. (2010) developed custom-

designed software ‘PARROTS’ to register activities on a PDA. Delfino et al. 

(2010) also used a PDA and every hour participants had to indicate which 

activity they were performing; the questionnaire was supplemented with 

questions on the emotional state and the level of physical activity. In the two 

latter studies, paper diaries were used instead of electronic diaries if preferred 

by the respondents. 

 

A GPS logger can be used complementary with a diary or as a means in itself. 

Gerharz et al. (2009) and de Nazelle et al. (2013) combined GPS loggers with 

paper diaries; Kochan et al. (2010) enriched data from an electronic diary with a 

built-in GPS receiver. Bohte and Maat (2009) and Wu et al. (2011a) solely used 

GPS tracks to trace back activity patterns and transport modes by using data 

fusion approaches. A web-interface was built to enable participants to validate 

the derived activities and trips, similar to Beusen et al. (2009) and Beckx et al. 

(2013). A GPS logger can track exact routes, although the GPS signal can be 

distorted or lost in urban and indoor environments (Beekhuizen et al., 2013; Wu 

et al., 2010). 

 

Each of the methods to collect time-activity diaries has its pros and cons. Biases 

or errors, like human error, recall error or other cognitive challenges, social 
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desirabilities, loss of GPS signal, are a larger problem in some of the methods. 

The longer the duration of the survey, a fatigue effect can be introduced: less 

activities or trips will be registered than performed in reality; in a worst case, 

participants will drop out. Usually a time-activity survey lasts for 1 day up to 1 

week, sometimes repeated in a contrasting season. 

 

 

2.2.3 PHYSICAL ACTIVITY 

 

Level of physical activity can be examined through self-reports or through 

wearable sensors. Several surveys exist that estimate physical activity by means 

of paper questionnaires (Baecke et al., 1982; IPAQ, 2005). Sensors can be 

grouped in two categories: monitors that register movement, and monitors that 

register body functions. 

 

Movement can be detected with GPS, accelerometers, or step counters. 

Accelerometric sensors can be placed on the body and they record 3 axes of 

movement (Rodes et al., 2012). Accelerometers are less sensitive for activities 

that incorporate increased skeletal movement, such as walking uphill (Delfino et 

al., 2010; Pober et al., 2006). More importantly, poorly conditioned subjects 

may experience a higher level of perceived exertion because relatively low levels 

of physical activity measured by the accelerometer are closer to their maximal 

level of performance than for subjects who are physically fit (Delfino et al., 

2010). As an alternative of placing sensors on the body, accelerometric sensors 

already present in a smartphone can be used (de Nazelle et al., 2013). 

Monitors that register body functions include a wide range of devices, from heart 

rate monitors, over face masks to novel integrated health sensors. Zuurbier et 

al. (2011) used heart rate monitors to measure level of effort while cycling; 

Holter monitors were used by Weichenthal et al. (2011) to continuously record 

electrocardiograms. Int Panis et al. (2010) measured minute ventilation, 

breathing frequency and tidal volume using a portable cardiopulmonary indirect 

breath-by-breath calorimetry system fixed into a chest harness. An actigraph 

placed near the waist combines movement sensors (accelerometer) and health 

sensors (heart rate) (Delfino et al., 2010; Patterson et al., 1993; Rodes et al., 



51 

2012). Additional physiological signals such as skin temperature, galvanic skin 

response, respiration rate, and foot pressure might be useful for improving 

physical activity or energy expenditure estimation when used with 

accelerometery or heart rate monitoring, and for monitoring wear time 

(Arvidsson et al., 2007; Butte et al., 2012; Intille et al., 2012). Several methods 

exist to objectively estimate ventilation or inhalation rate using activity monitors 

that can easily be deployed in the field (Dinesh et al., 2013). 

 

 

2.2.4 CONCLUSIONS 

 

- Because human activities are directly related to the timing, the location and 

the degree of pollutant exposure, all those factors have an important role in 

explaining variations in exposure (Klepeis et al., 2001). 

- Air pollution sensors are promising, but comparability of the measured 

pollution levels between sensors and reference monitors is still low. 

- Electronic diaries are being used to register time-activity patterns, but more 

traditional paper and pencil diaries are still used interchangeably. 

- A wide variety of physiological sensors, including monitors that measure 

movement or body functions, are commercially available to estimate 

physical activity and ventilation. 
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2.3 MODELING PERSONAL EXPOSURE 

 

The most straightforward method to model personal exposure to air pollution is 

combining a concentration map with high spatial resolution with the residential 

location of an individual. But this is only part of the story: individuals as well as 

pollutants are in constant motion. Therefore, personal exposure to air pollution 

should be modeled as a combination of two interacting geographies: a moving 

population and a continuously changing air quality (Briggs, 2005). 

 

By using geographical information systems, it is possible to develop exposure 

models that take into account population movement and changing pollution 

fields. Time-activity patterns and movement of people were formalized by 

Hägerstrand (1970): he developed the concept of individuals moving through 

space and time. Modeling time-activity patterns starts with the registration of 

hundreds of diaries, followed by the extrapolation of these diaries to the full 

study population. Activity-based traffic models estimate whereabouts and trips 

for a synthetic population and will be discussed in more detail in this chapter. 

 

Concentration fields with a high spatial resolution can be produced using 

different techniques: geostatistical interpolation based on measurements on 

fixed sites, dispersion modeling, land use regression, or hybrid modeling 

techniques (HEI, 2010; Jerrett et al., 2005a). Modeling concentrations with a 

high temporal resolution is often not aimed at, but hourly or daily 

measurements on fixed locations could be used, and also several examples exist 

of hourly dispersion models. Land use regression models will be applied in this 

PhD and current state-of-the-science is therefore presented hereafter. 

 

Existing modeling frameworks estimating population and/or personal 

exposure are reviewed in a third paragraph. These models have in common that 

the exposure is defined as a function of time spent in location i combined with 

the concentration on that location. But datasets used are diverse; some models 

need input from revealed diaries or GPS-tracks, while others are completely 

model-driven. 
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2.3.1 ACTIVITY-BASED MODELS 

 

Traditional transport models are trip-based: trips are considered as isolated 

events; the reason why people are traveling is ignored. Relationships between 

different trips are non-existent. Four aspects of travel are predicted separately: 

the number of trips, the origin and the destination of each trip, the transport 

mode, and the route. These so-called 4-step models have important limitations: 

through the spatial, demographic, and temporal aggregation it is impossible to 

analyze trip patterns on a disaggregated individual level (Kitamura et al., 2000). 

The sequential model structure results in little dynamics, and policy scenarios 

produce unrealistic outcomes. 

 

Because of the obvious limitations of 4-step models, tour-based models and 

finally activity-based models emerged (Axhausen and Gärling, 1992; Davidson 

et al., 2007; Kitamura et al., 2000). The main strength of these models is that 

the demand for trips is derived from activities that individuals wish or need to 

perform. A point of difference with trip-based models is that sequences of trips 

and activities are modeled: first activity x is performed, then your car takes you 

to the next activity while en route you stop at a shop, finally you return home 

using the same car. Spatial, temporal, personal and household, institutional, and 

transport constraints are taken into account in the modeling. This results in a 

model that estimates which activities are conducted where, when, for how long, 

with whom, the transport mode involved, and preferably also the route. 

 

Activity-based models are better suited for an evaluation of transportation 

control measures than 4-step models because secondary effects can be included 

in the analysis (Shiftan, 2000). Secondary effects are adjustments to the activity 

pattern because of a primary effect. For example, cheaper public transport can 

convince a commuter to switch from car to train: this is the primary effect of a 

public transport subsidy. But the commuter may have to make an additional trip 

for shopping, if it is impossible to do this on his way home: this is the secondary 

effect. 
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Most activity-based models start modeling activities at 3 a.m. until 3 a.m. the 

next day. This approach was introduced by Kitamura et al. (2000) as 98% of all 

participants filling out a diary indicated that they were at home at 3 a.m. 

Activity-based models are sensitive for time-of-day: all activity-based models 

have used at least 4 network assignment periods; but in most cases more 

precise time windows are used, e.g. 60-minute time intervals (Bradley and 

Bowman, 2006). Diaries are predicted for all days of the week; seasonal effects 

are included in only a minority of the activity-based models (Henson and 

Goulias, 2006; Kitamura et al., 2000). 

Activity-based models spatially aggregate data to the level of ‘zones’. 

Origin/destination matrices are made for TAZs or Traffic Analysis Zones (an 

individual travels from zone A to zone B, or performs an activity in a zone). Data 

is not available on a finer scale to more realistically model activity patterns. For 

example, from the national statistics agency data are available that describe 

how many people work in a certain zone; but data cannot be retrieved on which 

individual living in a specific house works in that specific zone. 

 

The characteristics of an activity-based model are summarized by McNally 

(2000): 

1. Travel is derived from the demand for activity participation; 

2. Sequences or patterns of behavior, and not individual trips, are the 

relevant unit of analysis; 

3. Household and other social structures influence travel and activity 

behavior; 

4. Spatial, temporal, transportation, and interpersonal interdependencies 

constrain activity/travel behavior; 

5. Activity-based approaches reflect the scheduling of activities in time 

and space. 

 

Several activity-based models have been developed: STARCHILD (Axhausen and 

Gärling, 1992), Portland (Shiftan and Suhrbier, 2002), AMOS/FAMOS (Pendyala 

et al., 2005), TASHA (Miller and Roorda, 2003; Roorda et al., 2007), 

ALBATROSS (Arentze and Timmermans, 2004). Henson and Goulias (Henson 
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and Goulias, 2006) and McNally (2000) give an overview of existing activity-

based models and their characteristics. 

 

For Flanders, FEATHERS (‘Forecasting Evolutionary Activity Travel of Households 

and their Environmental RepercussionS’) was developed (Bellemans et al., 

2010). FEATHERS is a simulation platform for implementing activity-based 

models in a predefined geographical area. FEATHERS has a module-based 

design, is agent-based and object oriented. By focusing on the disaggregated 

level of an individual, the added value compared to 4-step models is clear. Each 

member of the population is represented in the FEATHERS platform as an agent. 

Comparable to a real-life person, an agent autonomously performs certain 

activities during a simulation. 

 

 

2.3.2 LAND USE REGRESSION MODELS 

 

In a land use regression (LUR) model statistical associations are developed 

between potential predictor variables and measured pollutant concentrations as 

a basis for predicting concentrations at unsampled sites (Hoek et al., 2008; 

Ryan and LeMasters, 2007). Originally, this technique was called regression-

mapping and it was first applied for NO2 to estimate the long-term exposure in 

the SAVIAH project in four urban areas (Briggs et al., 1997). 

 

Air quality monitoring should take place on 20-100 different sites (Basagaña et 

al., 2012; Hoek et al., 2008). Jerrett et al. (2009) used measurements on 143 

locations to form a regression model for the city of Toronto. Occasionally routine 

air quality networks are used for this purpose, but because of the limited spatial 

density of these networks, a purpose-designed measurement campaign is often 

set up. Ryan and LeMasters (2007) showed that the fit (R²) of the final model 

not only depends on the number of measurement sites, but also on the 

positioning; this is confirmed by Johnson et al. (2010). There is no formal 

methodology to determine the minimum number of measurements required to 

build a proper land use regression model (Poplawski et al., 2009). When a 

monitoring campaign is designed, measurement sites should be as diverse as 
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possible with respect to expected concentration levels (Lebret et al., 2000). 

Moreover, measurement sites should be representative for the targeted study 

population (Wang et al., 2012). The selection of sites can be done using the 

formal location-allocation method (Kanaroglou et al., 2005), but in many cases 

an expert opinion is considered to be sufficient. Sites are often grouped 

according to location type, e.g. regional background sites (no impact of local 

sources within several km²), urban background sites (no impact of local urban 

sources, more than 50m away from major roads), traffic sites (located near a 

major road). If measurements on the different sites cannot run simultaneously, 

a correction for changing background concentrations should be made (Brauer et 

al., 2006). If there is not enough spatial variability in the sites, the final LUR 

model will not perform well on a local scale. Hystad et al. (2011) tried to 

compensate for that by adding deterministic gradients to capture local-scale 

variation based on the proximity of certain sources (i.e. traffic, industrial 

sources). 

 

Each measurement site is geocoded and for each coordinate a buffer with radius 

x is considered. Other forms than a circular buffer have been used, e.g. a wig 

(taking into account wind speed and wind direction) or a square (moving window 

technique (Vienneau et al., 2009)). The size of the buffer radii should depend on 

the pollutant and on the variable, but it is generally within 20m up to 10km. 

Buffer sizes should be based on the decay rate of a specific pollutant away from 

sources, e.g. buffers for PM2.5 should be wider than buffers for diesel particles; 

as well as on the density of the geographic variables surrounding the sampling 

location (Ryan and LeMasters, 2007; Su et al., 2009). If several buffers of the 

same variable are selected for inclusion in the final regression function, it is 

possible to keep only the inner buffer and use concentric rings or donuts for the 

wider buffers. The use of nested buffers or the donut-model will not affect the 

form of the final LUR model (von Klot, 2011). 

 

Independent variables that can be used in LUR models are traffic variables, land 

use variables, population variables, meteorology and geography, and possibly 

other variables (street canyon, season, distance to point source, concentration 

of other pollutants or noise maps). Neither of the variables needs to be forced in 
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the model, but not including traffic variables when modeling a traffic-related air 

pollutant will result in a LUR model with little predictive power. 

 

A widely used algorithm to build a land use regression model is presented in 

Henderson et al. (2007). 

(1) Rank all variables by the absolute strength of their correlation with 

the measured pollutant. 

(2) Identify the highest-ranking variable in each sub-category.  

(3) Eliminate other variables in each sub-category that are correlated 

(Pearson's r >= 0.6) with the most highly ranked variable.  

(4) Enter all remaining variables into a stepwise linear regression.  

(5) Remove from the available pool any variables that have (a) 

insignificant t-statistics (α=0.05) and/or (b) coefficients that are 

inconsistent with a priori assumptions.  

(6) Repeat steps 4 and 5 to convergence and remove any variable that 

contributes less than 1% to the R² value for a parsimonious final model. 

Adaptations to this methodology are possible, e.g. Johnson et al. (2010) initially 

removed variables that were highly correlated with another variable to prevent 

multicollinearity in regression models. 

 

The application of the methodology presented above, or alternative methods, 

results in a multiple linear regression model of the form: 

 

                                               

 

α is the model intercept; β1 is the coefficient of X1, for example a variable for 

population density in a buffer with radius 500m; β2 is the coefficient of X2, e.g. a 

variable for traffic intensity on the nearest road; β3 is the coefficient of X3, e.g. a 

variable for industrial land use within 5km; and β4 is the coefficient of X4, this 

can be for example altitude. A LUR model has on average 3 to 6 independent 

variables. 
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Air pollution models can be validated using different methods. LUR models are 

most often validated using leave-one-out cross-validation: the regression model 

is calibrated using n-1 locations and predicted concentrations are compared to 

observed concentrations on the nth location. This procedure is repeated n times 

and gives an indication of the performance of the model (Beelen et al., 2013; 

Brauer et al., 2003; Eeftens et al., 2012; Hoek et al., 2008; Johnson et al., 

2010). The leave-one-out cross-validation procedure should be used with 

caution if the number of sites is small (25 or less): cross-validation 

overestimates the predictive power of the model through overfitting (Wang et 

al., 2012). If enough measurement sites are used, hold-out validation is a good 

option. Observations not used for model fitting, are compared to concentrations 

predicted by the LUR model (Briggs et al., 1997; Johnson et al., 2010; Mölter et 

al., 2010a; Ryan et al., 2008). Two strategies are possible: part of the 

measurements from the campaign is left-out, or an external dataset is used 

(Wang et al., 2012). As a third option for LUR model validation, concentrations 

measured at the official air quality network can be compared to predictions of 

the LUR model (Brauer et al., 2006; Henderson et al., 2007; Mölter et al., 

2010a). Statistical indicators to evaluate air quality models include root mean 

square error (RMSE), bias, standard deviation (SD) and the correlation 

coefficient (r) (Thunis et al., 2012).  

 

Once the regression model is validated, the model can calculate a concentration 

for every point in the study area. In epidemiological studies, a concentration will 

be estimated for the residential location of each member of a cohort. 

Concentrations can also be calculated for additional locations where participants 

spend a considerable amount of time (Ryan et al., 2008). A concentration map 

can be produced by calculating concentrations for centroids of grid cells in a fine 

raster. 

 

Most LUR models estimate annual concentrations. Only a handful of models try 

to include temporal variation; e.g. calculating concentrations for previous years 

or through the inclusion of daily concentrations. Nethery et al. (2008a) and 

Slama et al. (2007) developed one annual LUR model and applied a correction 

factor that is representative for differences between seasons. Crouse et al. 
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(2009) made three different LUR models (winter, spring, summer) by doing 

measurements in different seasons and calculating separate models. From the 

previous studies, it appeared that concentration levels changed between 

periods, but the geographical pattern was very similar (hot spots versus cold 

spots). Most LUR models are built for an urban area; only a few models 

considered a national or transnational scale (Beelen et al., 2007; Beelen et al., 

2009; Janssen et al., 2008; Stedman et al., 1997; Vienneau et al., 2010). 

 

Alternatives to LUR models are dispersion models, geostatistical interpolation 

based on measurements on fixed sites, or hybrid models. Several studies 

compared LUR models with dispersion models and the performance of these 

models is similar (Beelen et al., 2010; Briggs, 2007; Briggs et al., 2000; 

Clougherty et al., 2008; Cyrys et al., 2005; Dijkema et al., 2011; Hoek et al., 

2008; Liu et al., 2012). Mercer et al. (2011) compared universal kriging with 

LUR: the R² and RMSE perform slightly better in the universal kriging, but the 

performance of the LUR model is also acceptable. Gulliver et al. (2011a) 

examined the performance of 10 different methods to assess exposure to PM10. 

Simple models (distance to the nearest road, traffic intensity on this road, 

fraction of heavy traffic, road density and traffic intensity within buffers, etc.) 

and more complex models (nearest fixed monitor, kriging, dispersion modeling, 

land use regression modeling) were developed, but only the LUR technique could 

predict concentrations on a fixed location with enough reliability. Simple 

techniques like interpolation or inverse distance weighting are based on Tobler's 

First Law of Geography: “Everything is related to everything else, but near 

things are more related than distant things”. This does not always hold true in 

air pollution mapping: e.g. with strong winds concentrations will be higher on 

one side of the street, or in the case of chimneys concentrations on ground level 

will not be elevated until several 100m further (Briggs, 2005). 
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2.3.3 EXPOSURE MODELS 

 

SHEDS / EMI SHEDS or the Stochastic Human Exposure and Dose Simulation 

Model (Burke et al., 2001) estimates average personal exposure based on 

ambient concentrations measured at a fixed monitoring station. Concentrations 

differ between different microenvironments because of changing air exchange 

rates. Activity diaries are composed for the study population and depend on 

personal characteristics. Diaries originate from the Consolidated Human Activity 

Database (CHAD) from U.S. EPA. Persons with the same characteristics will have 

the same agenda which is a drawback of this approach. Personal exposure is 

then modeled by multiplying the time spent in a microenvironment with the 

concentration in that type of microenvironment. The added value of this 

approach was in (1) the use of time-activity patterns instead of using a non-

mobile population, and (2) the use of air exchange rates. 

Recently EMI (Exposure Model for Individuals) was developed by the U.S. EPA in 

succession to SHEDS (FIGURE 7) (Breen et al., 2010). The approach is very 

similar, but both models differ in aim / applications. SHEDS primarily focuses on 

the exposure of a population using time-activity patterns from CHAD, whereas 

EMI is based on GPS tracks and diaries of individuals. The algorithms to 

calculate inhaled dose and indoor air quality are similar to the submodels used in 

SHEDS. 
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FIGURE 7: EMI – Exposure Model for Individuals (Vette et al., 2013)  
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pCNEM pCNEM (Probabilistic version of the Canadian version of NAAQS 

Exposure Model) or its earlier versions NEM and pNEM aim at predicting personal 

exposure (Zidek et al., 2003; Zidek et al., 2005). Personal characteristics (e.g. 

socio-economic data), ambient pollution levels, and the activity pattern of 

individuals all form the input of the pCNEM. Per population subgroup the same 

time-activity pattern is generated, originating from the National Human Activity 

Pattern Study (NHAPS). A major difference with SHEDS is the calculation of 

concentrations in different microenvironments: an individual is assigned to two 

grid cells; the first grid cell contains his residential location and the second grid 

cell his work location. The geographic zones are relatively large leading to 

unrealistic predictions on a fine spatial scale. Transport and exposure in different 

microenvironments are not taken into account. 

 

 

STEMS STEMS (Space-Time Exposure Modeling System) is a GIS-based 

dynamic exposure model for particles that estimates personal exposure on 

locations and while traveling (Gulliver and Briggs, 2005; Gulliver and Briggs, 

2011). STEMS includes four submodels: the traffic model SATURN, a dispersion 

model ADMS, a model estimating background concentrations, and a time-

activity-based exposure model TOTEM (FIGURE 8). From the traffic model 

emissions are calculated and used as an input in the dispersion model; 

afterwards hourly pollution maps are derived. Time-activity patterns are 

simulated for individuals over an appropriate period (e.g., week, day, or part 

day), based on results from time-activity surveys. The exposure model TOTEM 

takes into account the pollutant concentration during time i at location j, 

multiplied with a weighting factor specific for different environments. Exposure 

while traveling on foot or by bike is determined by the ambient concentration at 

that location. For in-vehicle exposure, a linear relationship between ambient and 

in-vehicle concentrations is assumed. 
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FIGURE 8: STEMS - Modeling structure (Gulliver and Briggs, 2005) 

 

 

SESM (Setton et al., 2008) Personal exposure is determined with SESM (Spatial 

Exposure Simulation Model) on the basis of concentrations and time spent in six 

microenvironments (home indoor, work indoor, other indoor, outdoor, in vehicle 

to work, in vehicle other). The time spent in each environment is derived from 

CHAPS (Canadian Human Activity Pattern Survey), and includes a stochastic 

component to be able to produce different diaries for people with the same 

characteristics. The activity data is then combined with geographical info on the 

location of work places in the study area. Individual trips are assigned to a road 

network according to the shortest path algorithm. Intrazonal trips and trips with 

origin or destination outside of the study area are excluded. An existing LUR 

model for NO2 was applied to estimate concentrations for microenvironments in 

each geographical zone. If individuals were in transport, concentrations in 

subzones were time-weighted for trips crossing different subzones. Indoor 

concentrations are determined by applying indoor/outdoor ratios from previous 

studies, and are specific for each microenvironment.  
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BESSTE (de Nazelle and Rodríguez, 2009; de Nazelle et al., 2009) The BESSTE 

(Built Environment Stochastic Spatial Temporal Exposure) model simulates 

energy expenditure and inhaled dose of air pollutants (PM10 and ozone) for 

residents of Orange County, North Carolina. The inhaled dose for the exposure 

event is defined as the product of the associated ventilation rate, the 

concentration of the pollutant in the microenvironment in which the activity 

takes place, and the duration of the event. 

The modeling framework first develops diaries for each individual; activity 

patterns are drawn from the Consolidated Human Activity Database (CHAD) 

from U.S. EPA (FIGURE 9). Secondly, for every activity geographic locations are 

chosen using gravity models. A transport choice model is applied to predict the 

transport mode for a particular trip. Air pollutant concentrations are modeled by 

combining different sources of space-time information, including monitoring 

data, photochemical model outputs of ambient air pollution, and models of 

micro-scale dispersion around traffic roads. 

One of the limitations of the BESSTE model is that the air pollution map is 

‘external’, meaning that changes in the activity pattern (e.g. more pedestrian 

friendly neighborhoods) do not change air quality. Like most other exposure 

models, the BESSTE model is not yet validated using personal measurements. 

 

 

FIGURE 9: BESSTE - Built Environment Stochastic Spatial Temporal Exposure 
model (de Nazelle and Rodríguez, 2009)  
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Activity-based model / dispersion model In this study an activity-based 

model was used to estimate population exposure to NO2 (Beckx et al., 2009a; 

Beckx et al., 2009b; Beckx et al., 2009c). Besides the activity-based model for 

the Netherlands ALBATROSS, an emission model (MIMOSA) and a dispersion 

model (AURORA) were used (FIGURE 10). On the basis of traffic streams, which 

are an outcome of the activity-based model, spatially dispersed emissions were 

calculated. Hourly emissions served as an input for the dispersion model. 

Personhours in each zone from ALBATROSS were combined with hourly 

concentrations, and ‘dynamic’ population exposure was estimated. Policy 

scenarios can be calculated using this framework: changes in the activity pattern 

(e.g. because of fuel price increase, changing shop opening hours, etc. (Dhondt 

et al., 2012b; Dons et al., 2011a)) will impact both individual diaries, 

concentrations and exposure. A very similar approach was followed by 

Hatzopoulou et al. (2011) for the Greater Toronto Area. 

 

 

FIGURE 10: Schematic overview of the integrated activity-based modeling 
framework (adapted from Beckx et al. (2009a)) 

 

 

MEEM MEEM (MicroEnvironmental Exposure Model) aims to simulate exposure 

to NO2 by combining time-activity patterns, modeled outdoor and indoor 

concentrations (FIGURE 11) (Mölter et al., 2012). Outdoor concentrations are 

modeled with a LUR model; temporal variation is added by applying the hourly 

concentration pattern of a background monitor. The INDAIR model was 

parameterized for the UK and applied to estimate indoor concentrations in 
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multiple microenvironments. Exposure in transport was estimated using the 

same LUR model: each road segment was cut in 100 segments, on the center 

point of each of these segments the LUR model was run, finally the shortest 

route between two locations was calculated and was intersected with this 

polyline map of pollution (Mölter, 2012, personal communication). MEEM is 

validated by measuring personal exposure of 60 children to NO2 with passive 

samplers while registering the time-activity pattern in paper diaries. MEEM could 

predict personal exposure more accurately than ambient concentrations 

measured on a fixed monitoring location, and better than modeled LUR 

concentrations at the home location of the child. 
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FIGURE 11: MEEM – Flow diagram showing input data, modeling steps, 
intermediate and final output datasets (Mölter et al., 2012)  
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Personal exposure model Münster Personal exposure to air pollution is 

modeled using personal activity profiles, ambient air quality, and an indoor 

model (FIGURE 12) (Gerharz et al., 2013). Time-activity diaries were collected 

using paper diaries (to detect exposure-relevant activities with indoor emission 

sources), and GPS-loggers (to provide geographical positions) for 10 individuals. 

Ambient PM10 concentrations were modeled using a combination of kriging 

interpolation and a Lagrangian air pollution dispersion model. Indoor 

concentrations are estimated with a mass-balance model; exact parameter 

values for e.g. air exchange rate, room volume, and deposition rate cannot be 

achieved, so parameter distributions were derived from available studies in 

other countries. For the transportation environment, the distribution of the ratio 

between in-vehicle and ambient concentrations as measured in different 

exposure studies is multiplied with the ambient concentration modeled in 

Münster. The model approach is deployed as a web service to enhance 

accessibility and reusability. 
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FIGURE 12: Exposure modeling methodology as applied in Münster, Germany 
(Gerharz et al., 2013) 
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2.3.4 CONCLUSIONS 

 

- Many techniques exist to capture temporal and spatial variability in air 

pollution concentrations (interpolation, land use regression, dispersion 

modeling). Simulating time-activity patterns is more difficult; activity-based 

models are suitable but the spatial aggregation in zones contrasts with the 

highly accurate air pollution fields. 

- Activity-based models are not yet widespread; many areas do not have a 

working activity-based model. Developing such a model requires expert 

knowledge, is data-intensive, and cannot realistically be done in an exposure 

or epidemiological study. 

- Land use regression models become increasingly popular due to the many 

advantages of the model. Moreover, it appeared that land use regression 

models perform as good as or better than other more established techniques 

as kriging or dispersion modeling. 

- Exposure models such as SHEDS or pCNEM that estimate exposure, are 

valuable, especially when compared to the use of concentrations measured 

with fixed air quality monitors. Still many of these models make unrealistic 

assumptions. 

- SHEDS and pCNEM are examples of modeling frameworks that estimate 

population exposure. STEMS, BESSTE, MEEM and EMI are examples of 

models that estimate personal exposure. Most models estimating exposure 

of individuals are up till now not designed to model exposure of a full 

population as specific information on individuals, not available on an 

aggregated level, is required. 

- An important issue is that the final outcome of population exposure models 

has never been fully validated; the validation was limited to the validation of 

submodels. For population exposure models, this means that the space-time 

predictions need to be validated as well, together with the air quality 

models.  
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2.4 BLACK CARBON 

 

Soot, elemental carbon (EC), black smoke (BS), refractive carbon, light 

absorbing carbonaceous PM, absorption coefficient, diesel particulate matter 

(DPM): all these terms are used synonymously for black carbon (BC). But in fact 

they should not be used interchangeably as they are all measured and defined 

differently. Universally accepted nomenclature is still lacking; in recent 

documents, BC is defined as: 

 

- BC is often used interchangeably with soot, but more recently has been 

operationally defined as those PM emissions that are quantified in the 

exhaust using light attenuation techniques (CARB, 2010). 

- Operationally defined aerosol species based on measurement of light 

absorption and chemical reactivity and/or thermal stability (UNEP, 2011). 

- BC can be defined specifically as a solid form of mostly pure carbon that 

absorbs solar radiation (light) at all wavelengths (U.S.EPA, 2012b). BC is the 

most effective form of PM, by mass, at absorbing solar energy. BC is a major 

component of “soot”, a complex light-absorbing mixture that also contains 

organic carbon (OC).  

- BC is an operationally defined term which describes carbon as measured by 

light absorption (WHO, 2012). 

- BC refers to the dark, light-absorbing components of aerosols that contain 

two forms of elemental carbon (Han et al., 2007; WHO, 2012):  

o char-EC: the original graphite-like structure of natural carbon partly 

preserved, brownish color; 

o soot-EC: the original structure of natural carbon not preserved, 

black color. 

- Black carbon is a distinct type of carbonaceous material, formed only in 

flames during combustion of carbon-based fuels (Bond et al., 2013). It is 

distinguishable from other forms of carbon and carbon compounds contained 

in atmospheric aerosol because it has a unique combination of the following 

physical properties: 

o It strongly absorbs visible light with a mass absorption cross section 

of at least 5 m²g-1 at a wavelength of 550 nm. 
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o It is refractory; that is, it retains its basic form at very high 

temperatures, with a vaporization temperature near 4000K. 

o It is insoluble in water, in organic solvents including methanol and 

acetone, and in other components of atmospheric aerosol, 

o It exists as an aggregate of small carbon spherules. 

 

 

2.4.1 PROPERTIES OF BLACK CARBON 

 

Generally, more than 90% of BC is in the PM2.5 size fraction (Viidanoja et al., 

2002). BC contributes 5-10% to PM2.5 and somewhat less to PM10 at all sites 

(Hitzenberger et al., 2006a; U.S.EPA, 2012b; Viidanoja et al., 2002; WHO, 

2003). Its contribution to PM2.5 increases to 15-20% at some curbside sites 

(Viidanoja et al., 2002; WHO, 2003). BC particles near sources, e.g. in fresh 

engine exhaust, are smaller than BC particles further away from sources (Bond 

et al., 2013; Smith et al., 2009). BC is carbonaceous and the most strongly 

light-absorbing component of particulate matter (U.S.EPA, 2012b). 

 

BC is highly correlated with traffic-related pollutants like NO, NO2 and ultrafine 

particles (Beckerman et al., 2008; Westerdahl et al., 2005). The correlation with 

PM2.5 is much lower (Beckerman et al., 2008; Gan et al., 2011). These 

correlations do differ between different studies depending on the measurement 

location (close to traffic vs. background concentrations), and the geographical 

region. 

 

Atmospheric lifetime of BC is around one week to a few weeks (Bond et al., 

2013; Cape et al., 2012; Highwood and Kinnersley, 2006; Shindell et al., 2012). 

BC is removed from the atmosphere via precipitation and contact with surfaces / 

deposition (Bond et al., 2013). 
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2.4.2 MEASUREMENT OF BLACK CARBON 

 

Despite efforts during the past decennia, no standard method exists to measure 

BC or EC. All current analysis methods are operationally defined: some use the 

optical properties or light-absorbing characteristics, others use the thermal and 

chemical stability of carbon (FIGURE 13) (U.S.EPA, 2012b). 

 

Measurement of BC relies on the modification of the optical properties of a fiber 

filter matrix by deposited particles (Petzold et al., 2005; Quincey et al., 2009). 

Three methods can be distinguished: filter transmittance measurement, filter 

reflectance measurement, and a combination of transmittance and reflectance. 

The mass concentration is determined using a conversion factor from light 

absorbance to mass (Wallace et al., 2011). A BC reading can be calculated with 

a time resolution of up to 1 second. However, integration over longer time 

intervals is better as this increases the reliability of the measurement. 

Frequently used devices that calculate the transmittance of a filter are the 

aethalometer and the particle soot absorption photometer (PSAP). These devices 

detect the changing optical absorption of light transmitted through a filter ticket. 

A multiangle absorption photometer (MAAP) takes into account transmitted and 

reflected light. Comparisons between aethalometers, PSAPs and MAAPs showed 

that methods agreed well, with R² values of over 0.9 (Hitzenberger et al., 

2006b; Müller et al., 2011).  

 

 

FIGURE 13: Measurement of the carbonaceous components of particles (U.S.EPA, 
2012b)  
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EC is determined using a simple thermal or a thermal-optical method: particles 

are captured on a filter, and that filter is analyzed in a laboratory following 

different temperature protocols (Chi, 2009; Reisinger et al., 2008). The simple 

thermal method typically overestimates EC and underestimates OC because 

some organic compounds pyrolyze during the analysis (Chi, 2009). The thermal-

optical technique is similar to the thermal technique, but the reflectance (TOR) 

and/or transmittance (TOT) of light is continuously monitored. A major 

disadvantage of the thermal and thermal-optical methods is the low temporal 

resolution of the measurements: one filter integrates concentrations over at 

least several hours. There are currently two common techniques employed for 

the analysis of elemental carbon and organic carbon (ECOC) in atmospheric 

particulate matter samples: the IMPROVE ECOC method, and the NIOSH ECOC 

method (Schauer, 2003). Currie et al. (2002) and Schmid et al. (2001) have 

presented a comprehensive comparison of these methods and a large number of 

other EC analysis methods. An alternative to the off-line laboratory-based 

analysis of samples, is the semi-continuous ECOC analyzer that uses a 

methodology comparable to the NIOSH method. 

 

The analytical determination of EC is complex. It requires a non-carbon filter, 

the measurements are time-consuming, expensive, and filter destructing (Cyrys 

et al., 2003). Measuring the reflectance of PM filters is an alternative and 

cheaper way to assess exposure to traffic-related particulate matter. The 

absorbance of PM2.5 (PM2.5abs) can be determined by measuring the reflectance 

of filters used for mass determination, e.g. by using a Smoke Stain 

Reflectometer. Whereas BC and EC are determined as a mass (µg * m-3), 

PM2.5abs or reflectance is expressed in 10-5 * m-1. 

 

Although BC, EC and PM2.5abs are measured differently using optical and/or 

thermal methods, these pollutants are in most cases highly correlated (Cyrys et 

al., 2003; Schauer, 2003). From our own measurements in Flanders in two 

seasons, it appeared that BC ≅ 1.5 * EC, with an R² of >0.9 (EC determined by 

thermal-optical analysis using the NIOSH temperature protocol; and BC 

measured with a micro-aethalometer) (Van Poppel et al., 2012a). It is important 

to recognize that BC should not be used as a direct measure of EC, and that the 
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levels of BC, EC, or PM2.5abs measured in different studies using different 

measurement techniques are not directly comparable (Hitzenberger et al., 

2006b; Schauer, 2003). 

 

 

2.4.3 BLACK CARBON EMISSIONS AND DISPERSION 

 

Emissions inventories list major sources of BC, both anthropogenic and natural, 

and the trends in BC emissions over time (U.S.EPA, 2012b). Understanding the 

sources of BC is needed for designing mitigation strategies capable of achieving 

both climate and public health benefits (UNECE, 2010). 

 

In the past, BC emissions have increased almost linearly, totaling about 1000 Gg 

(approximately 1.1 million tons) in 1850, 2200 Gg (approximately 2.4 million 

tons) in 1900, 3000 Gg (approximately 3.3 million tons) in 1950, and 4400 Gg 

(approximately 4.8 million tons) in 2000 (Bond et al., 2007). However BC and 

OC inventories have an estimated uncertainty up to a factor of 2 (Bond et al., 

2004); e.g. the U.S. EPA estimates the global BC emissions at 7600 Gg (8.4 

million ton) for 2000 (U.S.EPA, 2012b). In Western Europe and North America, 

there has been a substantial decline of BC over the past decades, mainly 

because of a decrease in coal burning (Novakov and Hansen, 2004). In contrast, 

emissions of BC in developing countries (China, India, Latin America) have 

increased exponentially (Bond et al., 2007). The spatial distribution of these 

emissions shows Asia, parts of Africa, and parts of Latin America to be among 

the regions emitting the largest amounts of BC (75% of worldwide BC). 

Developed world regions like Europe, Japan, and the Middle East currently have 

lower BC emissions (U.S.EPA, 2012b). 

 

In Western Europe, the most important source of BC is transport, responsible for 

58% of the emissions (U.S.EPA, 2012b). Industry is responsible for 24% of BC 

emissions, residential and domestic sources for 11%. Open biomass burning, 

including wildfires and agricultural burning, is marginal in Europe (6%), but is a 

very important source in other regions of the world. Energy supply accounts for 

only 1% of emissions in Western Europe. 
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Incomplete combustion of fossil fuels is thus a major contributor in Western 

Europe (Kinney et al., 2000; Novakov and Hansen, 2004). Diesel cars emit lots 

of BC, although the implementation of emission controls, especially the 

introduction of (diesel) particle filters, are expected to reduce road vehicle 

exhaust emissions of BC by more than 80% and 95% until 2020 and 2030 

respectively, and even further until 2050 (IIASA, 2012). Non-exhaust emissions 

(tire and brake wear, road abrasion) will be the dominant source of BC in the 

future as no controls are in place for these emissions (IIASA, 2012). Compared 

to other sectors, the importance of BC emissions from incomplete combustion of 

fossil fuels will decrease in the future. 

Local sources of BC include smoking, candle burning, gas stove usage, and wood 

burning for residential heating (Lai et al., 2006; LaRosa et al., 2002). 

 

Meteorology influences ambient BC concentrations, next to local and regional 

emissions of BC. Increasing wind speed and increasing humidity, leads to a 

decrease in ambient BC levels (Lai et al., 2006; LaRosa et al., 2002; Zagury et 

al., 2000). Temperature and mixing height also affect BC concentrations (Jung 

et al., 2010; Lai et al., 2006). Wind direction is important on the local scale. 

 

Traffic is an important source of BC; moreover it is important when assessing 

personal exposure as these emissions occur close to people. BC or EC show a 

steep decline in concentrations when moving away from a road (Ducret-Stich et 

al., 2013; Karner et al., 2010; Padro-Martinez et al., 2012; Zhu et al., 2002). 

Karner et al. (2010) found that at a distance of 130m from a major road, BC 

concentrations have declined with 56%. These distance-decay gradients are 

much larger as compared to other pollutants like NO2, PM2.5 or PM10. 

 

Global ground-level BC measurements indicate estimated concentrations ranging 

from <0.1 μg/m³ in remote locations to ~15 μg/m³ in urban centers (U.S.EPA, 

2012b). Ambient levels in China are approximately 10 times higher (in both 

urban and rural areas) than those in North America or Europe (U.S.EPA, 2012b). 
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2.4.4 HEALTH EFFECTS 

 

In dedicated studies, it has been shown that traffic exposure may trigger health 

effects like myocardial infarction (Brook et al., 2010; Mills et al., 2007; Nawrot 

et al., 2011; Peters et al., 2004). BC or other traffic-related pollutants correlated 

with BC (NO2, CO, EC, UFP), may also provoke short or longer term health 

effects. Health outcomes associated with BC include cardiovascular effects (Adar 

et al., 2007; McCracken et al., 2010; Wellenius et al., 2012), respiratory effects 

(Lin et al., 2011; Patel et al., 2010), neurological effects (Power et al., 2011; 

Suglia et al., 2008), and mortality (Gan et al., 2011). Some of these effects can 

be demonstrated at ambient concentrations below 1 µg/m³ (Adar et al., 2007; 

Hoffmann et al., 2012; McCracken et al., 2010). There is not enough evidence to 

support a definitive causal association between exposure to BC (measured as 

EC) and increased risks for lung cancer (Gamble et al., 2012). 

 

An increase in annual BC with 250 ng/m3 was associated with a 7.6% decrease 

(95% CI, –12.8 to –2.1) in leukocyte telomere length (McCracken et al., 2010). 

Telomere length reflects biological age and is inversely associated with risk of 

cardiovascular disease. An IQR change in the 24-hour mean concentration (459 

ng/m³) results in a 19% decrease (95% CI, -21 to -17%) in high frequency 

power when studying heart rate variability (Adar et al., 2007). Baja et al. (2010) 

examined the effects of BC on heart-rate–corrected QT interval (QTc), an 

electrocardiographic marker of ventricular repolarization. An IQR change in BC 

cumulative during the 10 hours before the visit (550 ng/m3) was associated with 

increased QTc (1.89 msec change; 95% CI: –0.16 to 3.93). Ischemic stroke is 

linked to an increase in BC pollution of 600 ng/m³ 24 hours preceding the stroke 

onset (OR (95% CI): 1.08 (1.01-1.16)) (Wellenius et al., 2012). Long term 

exposure to BC (IQR increase of 800 ng/m³) was associated with a 3% increase 

in coronary heart disease (CHD) hospitalization and a 6% increase in CHD 

mortality (Gan et al., 2011). Zanobetti et al. (2006) found an 8.3% increase 

(95% CI, 0.2 to 15.8%) in the risk of emergency myocardial infarction 

hospitalization for an increase of 1700 ng/m³ the day and the day before the 

admission, and a 11.7% (95% CI, 4.8 to 17.4%) increase in the risk of 

pneumonia hospitalization for a 1700 ng/m³ increase in BC. Hoffmann et al. 
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(2012) found an absolute increase in systolic blood pressure of 2.2 mmHg (95% 

CI, 0.4 to 4.0 mmHG) with an increase in 5-day average BC (IQR = 250 ng/m³). 

Mordukhovich et al. (2009) found similar results: a 7-day average increase in BC 

of 430 ng/m³ was associated with an increase in systolic blood pressure of 1.5 

mmHG (95% CI, 0.1 to 2.8 mmHg). 

Patel et al. (2010) found that an increase in exposure to BC with 1200 ng/m3 led 

to significant acute respiratory effects in adolescents. BC averaged over 24 

hours was strongly associated with exhaled nitric oxide, an acute respiratory 

inflammation biomarker: a 16.6% increase (95% CI, 14.1 to 19.2%) per IQR 

increase in BC (4000 ng/m³) (2011). Cyclists are exposed to higher levels of BC 

during commute compared to non-cyclists; airway macrophage carbon was 

significantly associated with monitored commute BC in 28 healthy adults 

(Nwokoro et al., 2012). 

An IQR increase (400 ng/m3) of exposure to BC decreased cognitive function 

across assessments of verbal and nonverbal intelligence and memory constructs 

(Suglia et al., 2008). The odds of having a low score in the Mini-Mental State 

Examination test was 1.3 times higher for each doubling in 1 year BC 

concentration in a cohort of older men (95% CI, 1.1 to 1.6) (Power et al., 

2011). In the latter study BC exposure ranged from 30 ng/m³ to 1770 ng/m³. 

 

Janssen et al. (2011) compared the health effects of PM2.5 and BC (expressed as 

‘black carbon particles’), and the increase in life expectancy because of a 

decrease in PM2.5 and BC concentrations. It was calculated that a reduction in 

PM2.5 of 1 µg/m³ was equivalent to a reduction in BC of 0.4-0.7 µg/m³ (EC in 

roadside PM is estimated to be 40 to 70%). This reduction leads to a gain in life 

expectancy of 21 days when the effect of PM2.5 is considered. In contrast, a 

reduction in BC of 0.4-0.7 µg/m³ leads to a gain in life expectancy of 3.1 to 4.5 

months. Janssen et al. (2011) concluded that the estimated increase in life 

expectancy associated with a hypothetical traffic abatement measure was four to 

nine times higher when expressed in BC compared to an equivalent change in 

PM2.5 mass. BC is thus a useful additional indicator to evaluate health risks of 

airborne particles. 

 

 



76 

2.4.5 ENVIRONMENTAL EFFECTS 

 

BC is not a greenhouse gas, but as a solid particle or aerosol it contributes to 

warming of the atmosphere. CO2 is the most important human emission in terms 

of climate-forcing, but BC is estimated to come at a second place, before CH4 

and O3 (Bond et al., 2013; Hansen et al., 2005). BC has a unique and important 

role in the Earth's climate system because it absorbs solar radiation, influences 

cloud processes, and alters the melting of snow and ice cover (Bond et al., 

2013). The direct and snow/ice albedo effects of BC are widely understood to 

lead to climate warming (U.S.EPA, 2012b). The indirect effects of BC on climate 

via interaction with clouds are much more uncertain, but may partially offset the 

warming effects (U.S.EPA, 2012b). Concentrations respond quickly to reductions 

in emissions because BC is rapidly removed from the atmosphere by deposition: 

the atmospheric lifetime of BC is days to weeks, whereas CO2 stays in the 

atmosphere for up to millennia (U.S.EPA, 2012b).  

Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered 

(Jacobson, 2002). But BC emission reductions represent a potential mitigation 

strategy that could reduce global climate forcing from anthropogenic activities in 

the short term (due to the short lifetime of BC in the atmosphere) and slow the 

associated rate of climate change (Bond et al., 2013; Jacobson, 2002; Shindell 

et al., 2012). 

 

 

2.4.6 EFFECTS ON BUILDINGS AND MATERIALS 

 

An environmental impact close to sources in the urban environment is BC 

deposited on the lower levels of buildings (Highwood and Kinnersley, 2006; 

U.S.EPA, 2012b). Sýkorová et al. (2011) used benzonitrile as an indicator for BC 

in the analysis of materials, and it was shown that blackness of buildings is 

indeed caused by local BC emissions. In conclusion, deposition of BC darkens 

surfaces and has important aesthetic implications for buildings (U.S.EPA, 

2012b). 
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2.4.7 CONCLUSIONS 

 

- BC, EC or PM2.5abs can be measured using thermal or optical methods. As 

there is no universally accepted standard, no method can be labeled as the 

‘correct’ BC. 

- Emissions from mobile sources are the dominant BC source in Western 

Europe.  

- BC has steep distance-decay rates when moving away from roads: 

approximately 100m from a highway, concentrations are almost at 

background levels. 

- BC emission control measures have important climate benefits, but they also 

have substantial co-benefits for air quality and public health worldwide 

(Anenberg et al., 2012). 

- Health outcomes associated with BC include cardiovascular, respiratory, and 

neurological effects, and mortality. BC is also implicated in global warming. 

- BC has gained more attention in recent years, resulting in its inclusion in 

several high level policy documents (U.S.EPA, 2012b; UNECE, 2010; UNEP, 

2011; WHO, 2012).  
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3. MEASURING PERSONAL EXPOSURE 
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3.1 IMPACT OF TIME-ACTIVITY PATTERNS ON PERSONAL 

EXPOSURE TO BLACK CARBON 

 

 

 

 

This chapter is based on: 

 

Dons, E., Int Panis, L., Van Poppel, M., Theunis, J., Willems, H., Torfs, R., Wets, 

G., 2011. Impact of time-activity patterns on personal exposure to black carbon. 

Atmospheric Environment 45, 3594-3602.  
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3.1.1 INTRODUCTION 

 

Personal exposure can be defined as the real exposure as it is experienced by 

individuals. When an individual is present at a certain place or in a certain 

microenvironment, he or she is exposed to the pollutant concentrations at this 

specific place. When an individual makes a trip from location A to location B, his 

personal exposure can be defined as the weighted average of concentrations 

present at each single location (WHO, 1999). Up till now, personal exposure is 

often estimated through the use of concentrations measured at fixed monitoring 

stations (Kaur et al., 2007; Sarnat et al., 2010). This is an approximation, as 

not only the ambient concentration is relevant, but also concentrations in 

different microenvironments (including indoors) and the whereabouts of 

individuals (Boudet et al., 2001; Jensen, 1999; Klepeis, 2006). Several studies 

have already examined the correlation between personal exposure and 

concentrations measured at fixed monitoring stations (Avery et al., 2010; 

Boudet et al., 2001; Gulliver and Briggs, 2004). This correlation shows a large 

spread between different studies, but overall correlation is stronger for 

longitudinal within-person studies, compared to cross-sectional studies (Avery et 

al., 2010). This indicates that differences between people and a large part of the 

spread within a subject can be explained by the activity pattern of the 

individuals and their daily environment. 

 

Several studies are looking at the relationship between levels of exposure and 

health effects, but epidemiologists experience vast problems with exactly 

quantifying exposure. By using approximations for exposure, health effects can 

be wrongly assigned, or the strength of a relationship will not be sufficiently 

emphasized  (Jerrett et al., 2005b; Setton et al., 2011). Therefore researchers 

are looking at methods, either through direct measurements or indirect 

modeling, to reduce exposure misclassification (Int Panis, 2010). 

 

We hypothesize that people, who are living at the same location, can 

nevertheless have a different exposure profile. The driving force for this 

difference will be the activity pattern and the subsequent microenvironments 

visited during a day. Short term exposures may contribute significantly to daily 
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average exposure. The aim of this study is to look at week-long exposure 

profiles with a high temporal resolution. Linking these data with detailed time-

activity patterns will tell us what the impact is of an activity pattern on personal 

exposure. Two groups of people with a highly differential time-activity pattern 

were selected to demonstrate this. 

 

The pollutant looked at is black carbon (BC). BC has been used as an indicator of 

exposure to diesel exhaust (HEI, 2010), and it has been suspected as a 

contributor to global warming (Highwood and Kinnersley, 2006). Several 

researchers have recently stressed potential short and long term cardiovascular, 

respiratory and neurodegenerative health effects of BC (Baja et al., 2010; 

McCracken et al., 2010; Patel et al., 2010; Suglia et al., 2008). Over the last 40 

years BC concentrations have declined rapidly in Europe, although the air has 

still moderate to heavy BC pollution. In the last decade concentrations seem to 

have leveled off possibly because of increasing emissions of diesel passenger 

cars. 

 

 

3.1.2 MATERIALS AND METHODS 

 

3.1.2.1 Study design and sampling method 

 

Personal exposure measurements were performed in Belgium from May 2nd to 

July 8th 2010. 16 participants were asked to carry a device to measure BC-

concentrations and to record their activities and whereabouts in an electronic 

diary. The study population comprises 8 couples, consisting of a full-time worker 

and a homemaker. Participants performed their regular activities; there were no 

restrictions but weeks where respondents were abroad or planned a weekend 

trip were excluded. All participants had to be nonsmokers. The presence of 

children and several characteristics of the residence were recorded, but they 

were not exclusion criteria. Each couple was measured sequentially for a 7-day 

period. Since the devices had to be reconfigured after each use, at least one day 

was in between the measurements of two couples, preventing reoccurring 

potential bias towards the end of the week (e.g. less accurate registration of 
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activities (Bellemans et al., 2007)). In addition to the two personal 

measurements, a third measurement device was installed outside in front of the 

house of the couple, at the street side, to measure outdoor concentrations 

simultaneously. Two couples lived in an urban environment, two in a suburban 

zone and four couples were living in a more rural area. 

 

An aethalometer - microAeth Model AE51 (AethLabs, 2011) was used for 

personal monitoring of BC. This monitor is small and portable (250g) and has a 

battery autonomy of up to 24 hours when logging on a 5 minute basis, as in this 

study. Inside is a small teflon-coated borosilicate glass fiber filter where BC-

particles are captured. The aethalometer detects the changing optical absorption 

of light transmitted through this filter ticket. Every two days participants were 

asked to replace the filter to prevent saturation and to maintain measurement 

integrity. The pump speed was initialized at a rate of 100 ml per minute. One of 

the aethalometers was used for outdoor measurements at the place of 

residence. For this purpose a weather-proof housing was developed. For the 

personal measurements, participants could carry the aethalometer in their own 

backpack or handbag. Specific attention was drawn to the fact that the tube 

connected to the pump always had to be exposed to the air.  

 

Activities, trips and GPS-logs were recorded on a small handheld computer or 

PDA. PARROTS (PDA system for Activity Registration and Recording of Travel 

Scheduling) was developed to facilitate this process and to minimize respondent 

burden (Bellemans et al., 2008). This tool was already deployed in a large scale 

survey on 2,500 households, and a comparison was made with the traditional 

paper-and-pencil method. The electronic diary enforces all attributes of executed 

activities to be provided. Accordingly it resulted in a non-response of 0 and 

provides several consistency checks. It was concluded that PARROTS provides 

high quality time-activity data while no additional respondent attrition was 

observed (Kochan et al., 2010). A disadvantage is the limited battery autonomy 

of this device (approximately 4 hours), implying the need to recharge the PDA at 

the workplace, at a friend's residence or in the car, since a car charger was 

provided as well.  
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Participants to this study were instructed to report each activity by picking one 

of thirteen predefined categories. In addition, they had to indicate the date, the 

start and end times, and the location (choosing from 4 predefined categories). 

Start and end times were expected to be precise on a 5 minute time base. For 

trips, each respondent had to specify the start and end location and time, and 

the transport mode(s) used (choosing from 12 predefined categories). Finally, 

respondents had to indicate with whom they were performing an activity or trip. 

 

In addition to the PDA and the aethalometers, a short questionnaire was handed 

over to each couple at the start of the measurements. Personal and household 

characteristics, e.g. birth year or car ownership, and housing characteristics, like 

the presence of air conditioning or location of the home next to a busy street, 

were asked to get an idea of possible confounders. 

 

All participants were personally instructed on the aim of the study, how to use 

the devices and redirected to a help desk in case of problems during the week. 

No financial compensation was rewarded, but afterwards everyone received a 

personalized report. 

 

 

3.1.2.2 Quality assurance 

 

Three aethalometers were used during the study. For the comparison of the 

different devices, they were put next to each other for over a week to test their 

correspondence. We measured in the relevant range (0 - 10,000 ng/m3) in a 

real life situation, including indoor measurements and near transport. 

Correlation of the three devices was very high (r > 0.96). Further BC 

concentrations were compared with a fixed monitoring station using the MAAP 

technique (Multi-Angle Absorption Photometry; station 42R801 Borgerhout, 

urban location), which was used as a reference value. Concentrations measured 

at the monitoring station AL01 (Antwerpen-Linkeroever) were considered as 

background concentrations. 
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When both partners were at home, they were asked to put the two personal 

aethalometers next to each other in the living room. In that way at least 7 hours 

of common measurements were available for each day. Consequently we could 

do a daily check on the accuracy of these two aethalometers. This resulted in a 

Pearson correlation coefficient of 0.92, not knowing for sure that participants 

accurately followed our instructions. 

The accuracy of the recorded activities and trips was checked by consulting the 

GPS-logs. The diary of the partner was used to check for uniformity (e.g. if one 

person indicated that he was doing an activity with his/her partner, it had to be 

present in the other diary as well). If an inconsistency was detected, the 

participants were contacted shortly after the measurement period and asked to 

clarify the situation. 

 

 

3.1.2.3 Data analysis 

 

All devices, the three aethalometers and the two PDA's, were synchronized at 

the start of each week. Activities, trips, GPS-logs and BC-concentrations were 

directly loaded into a database to minimize manual work and counter possible 

introduction of errors. 

 

Negative measurements were included into the analyses (McBean and Rovers, 

1998). Because the aethalometer detects the change in optical absorption, small 

shifts in the light beam or the filter ticket can cause a temporary decrease in 

measured absorption. Since the aethalometer computes the difference with the 

previous measurement, negative measurements are offset in the next 

observation(s). Missing values were caused by low battery events or when 

devices were intentionally switched off for changing the filter ticket. We did not 

try to predict a value but rather kept the missing values and treated them as 

blanks. When directly comparing a full-time worker and a homemaker, we only 

used data for which simultaneous measurements were available. Aethalometers 

are suitable for personal measurements, but when switching from one 

microenvironment to another with different environmental conditions an 

adjustment effect can be observed (Wallace et al., 2011). This effect was 
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observed as well but to a lesser extent than in previous studies since a larger 

integration time was used. A sensitivity check excluding all first observations 

before and after switching to a different microenvironment changed the average 

concentrations by 5%, showing the limited impact of this effect. 

 

For the personal measurements, a total of 32,320 observations on a 5-minute 

timescale were conducted; 1352 values were missing. Of all valid observations, 

460 measurements or 1.5% were negative. An overall mean concentration of 

1578 ng/m3, a median of 1108 ng/m3 and a standard deviation of 2571 ng/m3 

are observed. There were 14,656 observations from the fixed outdoor 

aethalometers at the homes of the couples, 10.9% were missing and 2.1% were 

negative. The mean concentration is 1323 ng/m3 and the median is 1112 ng/m3. 

 

Statistical analysis was performed in SAS 9.2. 

 

 

3.1.3 RESULTS 

 

3.1.3.1 Questionnaire data and time-activity patterns 

 

The age of all sixteen participants was between 20 and 60 (since we recruited in 

the working population). Eight were male and eight female, with a small bias 

towards higher education. Everyone was in the possession of a driver's license. 

One household had no private car; other households had either one or two cars, 

all diesel. 

 

TABLE 3 shows the percentage of time spent by the participants on each 

activity. The initial 13 activities, plus ‘in transport’, are grouped in eight broader 

categories. The largest amount of time is spent at the home location (sleeping, 

home-based activities), followed by working, social and leisure activities, and 

time spent in transport. These results are similar to results from a time-use 

survey held in Belgium in 2005 among 6400 respondents (FPS Economy - 

Statistics Division, 2008). The latter shows 71% of the activities at the home 

location, 10% of time is spent at work and 6% of time in transport. 
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Full-time workers spend more time in transport (112 minutes) than people 

without a full-time job (67 minutes). Homemakers were, as expected, more at 

home. The activity ‘Work’ is also observed for homemakers; this is explained by 

the fact that half of these men and women worked part-time. 
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TABLE 3: Time spent on each activity and exposure to BC during each activity in the personal exposure measurement 

campaign. Only periods when both partners had measurements, are included in this table to enable direct comparison 
between partners. 

 
Total Full-time worker Homemaker 

 

Total # 
of 5 
minute 
observa-
tions (N) 

Average 
time (%) 

Average 
exposure 
(%) 

Average 
exposure 
(ng/m3) 

# of 5 
minute 
observa-
tions (N) 

Average 
time full-
time 
worker 
(%) 

Average 
exposure 
full-time 
worker 
(%) 

Average 
exposure 
full-time 
worker 
(ng/m3) 

# of 5 
minute 
observa-
tions (N) 

Average 
time 
home-
maker 
(%) 

Average 
exposure 
home-
maker 
(%) 

Average 
exposure 
home-
maker 
(ng/m3) 

Sleep 10,654 34.3 25.0 1153 5154 33.1 23.3 1195 5500 35.4 26.9 1114 

Home-
based 
activities 

9855 31.7 25.0 1223 4142 26.6 19.1 1192 5713 36.7 31.6 1246 

Work 4278 13.8 10.8 1276 3318 21.3 14.8 1219 960 6.2 6.3 1454 

Social 
and 
leisure 

2728 8.8 7.4 1525 1087 7.0 6.1 1728 1641 10.6 9.0 1400 

In trans-
port 

1933 6.2 25.6 6445 1206 7.8 31.5 6812 727 4.7 19.0 5858 

Other 964 3.1 3.0 1495 380 2.4 2.4 1661 584 3.8 3.6 1393 

Shopping 458 1.5 2.5 2584 141 0.9 2.0 3486 317 2.0 3.1 2183 

Go for a 
ride 

234 0.8 0.7 1723 124 0.8 0.9 2107 110 0.7 0.6 1282 
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3.1.3.2 Personal exposure measurements 

 

TABLE 4 presents the average personal exposure of all 16 participants over a 7-

day period. There are differences between the households and between 

members of the same household. The maximum difference between personal 

exposure of a full-time worker versus a homemaker of the same household 

amounts to 30%. In most cases the full-time worker is more exposed. The 7-day 

averages are more variable between weeks/locations than between members of 

the same household. 

 

TABLE 4: Average personal BC-exposure, outdoor concentration measured at the 
home location of 8 households and average background concentration (ng/m³). 
The outdoor measurements for household 1 are limited due to a technical failure 
of the aethalometer. 

 

Home 
location 

Average 
outdoor 
concentration 
at home 
(ng/m3) 

Average 
background 
concentration 
at fixed 
monitor c 
(ng/m3) 

Average 
exposure 
full-time 
worker 
(ng/m3) 

Average 
exposure 
homemaker 
(ng/m3) 

Difference 
between 
full-time 
worker and 
homemaker 

HH1  Suburban 1160 a 960 1465 1023 30% 
HH2  Urban 2138 1003 2079 1869 10% 
HH3  Urban 1694 1459 2071 1750 15% 
HH4  Rural 1313 1183 1428 1530 -7% 
HH5  Rural 1367 1559 2130 1830 14% 
HH6  Suburban 611 b 679 885 773 13% 
HH7  Rural 1130 2020 1929 1413 27% 
HH8  Rural 1200 1400 1580 1582 0% 
a N=561 
b at the back of the house 
c fixed monitoring site AL01 (Antwerpen-Linkeroever) 

 

 

A typical daily pattern of a couple, living in an urban area, is shown in FIGURE 

14. A first peak for the full-time worker is while commuting by car; in the 

evening another peak is observed during his return home, this time using a 

slightly different route (according to the GPS). During the day concentrations at 

the workplace, located in a rural area, are lower than concentrations at his home 

location. His wife is at home till the early afternoon, when she leaves by bike for 

a social activity (trip takes approximately 15 minutes). After returning home, 

she stays at home for about an hour and leaves again for a leisure activity, 

again by bike. From 8.30 p.m. onwards, both man and woman are at home. 
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FIGURE 14: Personal (homemaker (gray) and full-time worker (black)) and 
outdoor (at the front of the house (dashed line)) concentrations on May 19, 2010 

 

 

Differences in exposure between members of a family originate from differences 

between their time-activity pattern and the corresponding locations visited. 

When comparing exposure during different activities, BC concentrations vary 

substantially, both within one activity-category, and between different activities 

(FIGURE 15). Mean and median concentrations are higher in transport in 

comparison with all other activities; standard deviation is also largest in 

transport. Short activities (shopping, bring/get goods/people) may give slightly 

higher concentrations than in reality because of the difficulty in distinguishing 

those brief activities from the preceding or following transport activity. 

Participants had to report executed activities on a 5 minute basis but some short 

activities will not fit into this time period. Social and leisure activities capture a 

wide variety in meanings and locations, in accordance there is a broad range in 

concentrations with important peaks during café visits. Lowest concentrations 

are observed during home-based activities and at night, when respondents are 

sleeping. 

 

FIGURE 15 also shows concentrations per location. Again it is very clear that 

concentrations in transport are highest. Concentrations in private homes are 

lowest, both in the residence of the participants as well as in residences from 

friends or family; although these differences are not significant.  
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FIGURE 15: Concentrations measured per activity (upper), per location (under, 
left) and per transport mode (under, right). Represented are P5, 1st quartile, 
median, 3rd quartile and P95. The asterisk mark shows the mean value. 
Categories with less than 100 observations are omitted. 

 

Concentrations in transport are higher than during any other activity, mainly 

caused by high exposure during car trips (both car driver and car passenger). 

When traveling by car, in-vehicle concentrations are on average 5 to 8 times 

higher than the average exposure at home and 4 to 7 times the average outdoor 

concentration at home. Concentrations on a train, and during walking or cycling 

trips are substantially lower, but still a factor 2 higher than the average 

concentration at the home location. A division can be made between 

concentrations during a functional and a recreational trip. Concentrations during 

a recreational bike trip (mean=1381 ng/m3, N=174) are substantially lower than 

during a functional bike trip (mean=3674 ng/m3, N=476).  
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When combining the exposure per activity with the time-activity data from the 

diaries, transport is the most important contributor to personal exposure (TABLE 

3, FIGURE 16). Although people spend only a modest amount of time in 

transport (6.2% or 89 minutes per day), this is responsible for a quarter of total 

exposure to BC. When sleeping, the exposure/time ratio is lowest. 

 

 

FIGURE 16: Average black carbon concentration (ng/m³) per activity is 
represented on the y-axis; average time spent doing a particular activity is 
represented on the x-axis. The area of the blocks signifies the total contribution 
of each activity to the personal accumulated exposure to BC. Blocks are arranged 
from left to right according to their surface area.  

 

(a) Full-time worker

(b) Homemaker
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The largest contribution to total exposure for full-time workers is by far ‘being in 

transport’, due to the larger fraction of time in transport. For homemakers the 

contribution of exposure at home is more important. 

 

Since some homemakers worked part-time, the difference in activity pattern 

with full-time workers may be blurred. For that reason a differentiation was 

made between working days, weekdays and weekends (TABLE 5). Working days 

were defined as 24h-periods where approximately 8 hours are spent on paid 

work, weekdays are Mondays till Fridays with no paid work at all, and weekends 

are all Saturdays, Sundays and public holidays. Average exposure on a working 

day is 24% higher than on a weekday. Comparing the 50th percentile and the 

95th percentile of a working day and a weekday clearly shows that the 5 to 10 % 

highest values present on a working day (mainly caused by commuting trips) 

explain this difference. From the fixed monitoring network a difference between 

weekends and weekdays of about 20% was observed, with lower concentrations 

during the weekend. 

 

 

TABLE 5: Average outdoor concentration (measured with the aethalometer at the 
front of each family's house), personal exposure, percentiles of personal 
exposure and average time in transport 
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Working daya  
1338 

1793 240 333 609 1132 1789 3021 5140 131 min 

Weekday b 1366 259 367 637 1042 1629 2410 3331 60 min 

Weekendc 1289 1527 182 306 642 1153 1782 2749 3917 69 min 

a Working day = Mon/Tue/Wed/Thu/Fri (person works for 8h – as a profession) 
b Weekday = Mon/Tue/Wed/Thu/Fri (person does not work) 
c Weekend = Sat/Sun or public holiday 
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Differences between households are larger than differences between partners, 

as shown in TABLE 4. Both background concentrations and urban/rural location 

will thus have a greater impact on personal exposure than the activity pattern. 

Households 2 and 3 live in a densely populated urban residential area with 

rather low traffic intensities on the nearest street (less than 5000 vehicles per 

day); this suggests a higher personal exposure when living in a city compared to 

more suburban or rural locations. The low values for household 6, living in a 

suburban region, are to a large extent explained by the low background values 

measured during that period at fixed monitoring stations. 

 

 

3.1.3.3 Outdoor measurements 

 

The dotted line in FIGURE 14 represents the concentrations measured by the 

fixed outdoor aethalometer at the front of the house. Outdoor concentrations 

show little variation, although in the morning concentrations are somewhat 

higher. This trend can be observed at all locations and in all eight measurement 

periods, most probably due to the relatively low traffic intensities at the home 

addresses of the participants in this study. In TABLE 5 a distinction is made 

between weekdays and weekends, showing higher concentrations on weekdays. 

Urban outdoor concentrations are higher than concentrations in suburban or 

rural areas, while during this period background concentrations are not 

significantly higher than during other weeks (TABLE 4). Average outdoor 

concentrations are lower than personal exposures, except for household 2. This 

can be explained by the location of this home in a dense urban area (urban 

background), while the inhabitants move out of the urban area to work and do 

leisure in less polluted areas. 

 

An indoor-outdoor infiltration factor was calculated at times when partners were 

both at home; so we could compare indoor measurements with the outdoor 

monitor at the front of the house. The Pearson correlation between indoor and 

outdoor measurements was 0.66; (unidentified) indoor sources lower this 

correlation (FIGURE 17). This coefficient differs from residence to residence, 

ranging from 0.1 to 0.87. The slope of the regression function is positive but for 
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every household smaller than 1, meaning that indoor concentrations are on 

average lower than outdoor concentrations. Correlation is higher for daily 

average indoor versus outdoor concentrations (r = 0.89). Overall we can 

conclude that higher outdoor concentrations correspond to increased indoor 

concentrations. 

 

 

FIGURE 17: Calculation of infiltration factor at the 8 homes of participating 
families, based on indoor and outdoor observations between 0 and 5,000 ng/m3. 
Indoor concentration is calculated based on the average of both personal 
aethalometers. Pearson correlation of all 5-minute observations is 0.66 (in gray); 
Pearson correlation of daily average indoor and outdoor concentrations is 0.89 
(in black). 

 

 

3.1.4 DISCUSSION 

 

For BC, our personal monitoring study did reveal an undeniable contribution 

from the transport microenvironment. The amount of time in transport and the 

transport mode are important determinants of personal exposure to BC. People 

living at the same location and in the same residence, as the couples in this 

study did, sometimes had a completely different exposure, largely explained by 

the difference in activity pattern and their corresponding time in transport. This 
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confirms earlier studies on the relationship between activities and air pollution 

that suggested a possibly important role for the traffic microenvironment, in 

contrast with the limited time spent in an outdoor or a traffic environment 

(Beckx et al., 2009b; Fruin et al., 2004). Time spent in or near transport may 

thus provoke a dissimilarity in personal exposure between 2 individuals living at 

the same location. When this can be demonstrated for a traffic-related pollutant 

like BC, it is most probably also the case for other pollutants that are highly 

correlated with BC or highly correlated with traffic. NO2, soot and ultrafine 

particles show a good correlation with BC; correlation with PM10 and PM2.5 is 

rather low (Beckerman et al., 2008; Berghmans et al., 2009; Hagler et al., 

2009; Hoek et al., 2008; Westerdahl et al., 2005).  

 

In-vehicle concentrations are higher than concentrations experienced on the 

bicycle, on foot or in a train. In a study of Fruin et al. (2004) the average in-

vehicle BC exposure was 4100 ng/m3. The large amount of diesel cars in 

Belgium (over 60% of all private cars are diesel (NIS, 2010)) is most likely 

responsible for the higher in-vehicle concentrations found in this study.  

Variations in concentrations in one transport mode and between transport 

modes will not be explained in detail, as this was not the aim of this study, but 

can be, at least partly, addressed when analyzing the GPS-tracks. Short term 

peaks in transport are more prevalent during bicycle trips than during car trips 

where levels are more smoothly elevated; this was also observed by Int Panis et 

al. (2010) and Zuurbier et al. (2010). Shorter peaks, e.g. caused by a passing 

truck, will be spread over a 5 minute period. It is unclear to what extent short 

term exposure is relevant for health: it might be the high peaks that cause 

health effects or the longer periods of exposure to elevated levels or a 

combination of both (de Hartog et al., 2010a; Int Panis et al., 2010; Jacobs et 

al., 2010; Peters et al., 2004). When analyzing the difference between a 

functional and a recreational bike trip, exposure in the latter is remarkably lower 

(the diary makes a distinction between a functional trip and ‘going for a ride’). 

This difference is probably due to the choice of route: As can be seen from 

Hertel et al. (2008) and Int Panis et al. (2010) proper choice of route can 

significantly lower exposure. The same conclusion holds for trips on foot 

although the difference is less pronounced.   
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Exposure in microenvironments different from the transport microenvironment is 

measured in several dedicated studies for a number of pollutants (Brown et al., 

2009a; Cyrys et al., 2010; McConnell et al., 2010; Wallace and Ott, 2011). A lot 

of different classifications of microenvironments have been used in the past. In 

this study 5 broader categories were picked: home, work/school, in transport, 

house of family/friends, other. A disadvantage of this classification is the 

inability to make a distinction between indoor and outdoor microenvironments. 

However, we know from the questionnaires that all full-time workers were 

employed in an indoor environment. In most studies on air quality in specific 

microenvironments only a few different shops, restaurants or homes could be 

measured because of the limited number of measurement devices. In this study 

concentrations in several different locations were measured, namely when 

participants were visiting these places. Higher than average concentrations were 

observed in shops, both for daily (food, newspaper,…) as for non-daily shopping 

(clothes, furniture,…). Concentrations in shops are still double the concentration 

in homes after the removal of the first and last 5 minute-observation. This 

sensitivity check was necessary because of our suspicion that transport was 

partly included in these typically short activities and because of the adjustment 

effect of aethalometers to new environmental conditions (Wallace et al., 2011). 

The lowest concentrations were observed inside homes. Indoor peaks at home 

mostly originate from candle burning or woodstoves, but since this is rarely done 

in summer, indoor concentrations are primarily influenced by ambient pollution 

that infiltrates in the residence (Lai et al., 2006; LaRosa et al., 2002). 

 

Suspicion of health effects is the main reason for calculating or measuring 

exposure. The more exact personal exposure can be determined, the less 

exposure misclassification will occur. Since we demonstrated that the maximum 

difference between 2 individuals living at the same location can differ by as 

much as 30%, using modeled or measured concentrations at the place of 

residence alone is neither accurate nor sufficient. Secondly, with the aim of 

calculating dose-response functions, it is necessary not only to calculate 

exposure, but also to correctly determine inhaled air, and subsequently to derive 

health effects for a specific dose. The fraction of inhaled air varies from person 

to person (e.g. influence of sex and age). But also performing certain (physical) 
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activities can affect breathing rates (Marshall et al., 2006; McConnell et al., 

2010). The importance of taking into account breathing rates, especially while in 

transport, is demonstrated by Int Panis et al. (2010) and Zuurbier et al. (2010). 

With the study design as it is here, it's relatively straightforward to relate 

breathing rates as stated in international literature, to one of 13 activities or to a 

transport mode. 

Epidemiologic studies relate BC exposure to cardiovascular, respiratory and 

neurodegenerative effects. An increase in annual BC with 250 ng/m3 was 

associated with a 7.6% decrease (95% confidence interval, –12.8 to –2.1) in 

leukocyte telomere length (McCracken et al., 2010). Telomere length reflects 

biological age and is inversely associated with risk of cardiovascular disease. 

Baja et al. (2010) examined the effects of BC on heart-rate–corrected QT 

interval (QTc), an electrocardiographic marker of ventricular repolarization. An 

interquartile-range change in BC cumulative during the 10 hr before the visit 

(550 ng/m3) was associated with increased QTc (1.89 msec change; 95% 

confidence interval: –0.16 to 3.93). Patel et al. (2010) found that an increase in 

exposure to BC with 1200 ng/m3 led to significant acute respiratory effects in 

adolescents. An interquartile-range increase (400 ng/m3) of exposure to BC 

decreased cognitive function across assessments of verbal and nonverbal 

intelligence and memory constructs (Suglia et al., 2008). An average difference 

between partners of 251 ng/m3, as observed in this study, can thus be relevant 

for health. 

 

It should be noted that we only did measurements in summer. Results need to 

be confirmed in other seasons. In a Californian study it is shown that monthly 

averaged BC-concentrations can be up to five times greater in winter than 

summer (Kirchstetter et al., 2008). Also in a European context concentrations in 

winter are greater than in summer (Adams et al., 2002; Kaur et al., 2007). 

Concentrations measured in weekends tend to be lower than concentrations on 

weekdays, consistent with the lower number of diesel trucks on the road 

(Kirchstetter et al., 2008). A weekly cycle is apparent in Belgium as well, both 

from our own outdoor measurements as from the fixed monitoring network. As 

concentrations in ambient levels vary over time, this will most likely have an 

effect on personal exposure as well. The design can be improved further by 
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deploying more instruments and measuring multiple families in urban and rural 

locations at the same time. 

 

To conclude, we can state that despite the important differences in background 

concentrations from week to week and the sequential measurement strategy, 

activities, microenvironments and transport modes with higher than average 

exposure can still be identified. Outdoor and personal exposure of men and 

women from the same household can be compared directly, since we measured 

simultaneously with the same equipment, thus ruling out potential bias related 

to temporal variation and sampling method. We can conclude that for certain 

households a considerable difference of up to 30% exists between both partners. 

This can be partially explained by the time in transport, and thus by the time-

activity pattern. Differences between households are to a large extent 

attributable to changing background concentrations (as a consequence of our 

sequential measurement strategy) and to the location of the residence in an 

urban, suburban or rural environment. 

 

Many models are built that use observed activity patterns or time-use data, e.g. 

activity patterns from NHAPS (National Human Activity Pattern Survey). Those 

activity patterns mostly lack the exact location (address, coordinate, 

municipality, etc.) where a specific activity is executed. That's why it is very 

difficult to link these patterns to air pollution concentrations with a high spatial 

and/or temporal resolution. The importance of detailed modeling of trips is 

underlined by this research, as we demonstrated that transport contributes 

significantly to total accumulated exposure. Activity-based models seem very 

promising in this area (Beckx et al., 2009a; Beckx et al., 2009c; Hatzopoulou 

and Miller, 2010; Marshall et al., 2006; Recker and Parimi, 1999; Shiftan, 

2000). An important advantage of these models is the emphasis on traffic, since 

these models originate from traffic science. Once personal exposure is modeled, 

validation of the modeling framework can be done by a personal monitoring 

study as described here.  
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3.2 PERSONAL EXPOSURE TO BLACK CARBON IN TRANSPORT 

MICROENVIRONMENTS 

 

 

 

 

This chapter is based on: 

 

Dons, E., Int Panis, L., Van Poppel, M., Theunis, J., Wets, G., 2012. Personal 

exposure to black carbon in transport microenvironments. Atmospheric 

Environment 55, 392-398.  
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3.2.1 INTRODUCTION 

 

In dedicated studies, it has been shown that traffic exposure may trigger health 

effects like myocardial infarction (Brook et al., 2010; Mills et al., 2007; Nawrot 

et al., 2011; Peters et al., 2004). Black carbon (BC), or other traffic-related 

pollutants correlated with BC (NO2, CO, Elemental Carbon, Ultrafine particles), 

may also provoke short or longer term health effects, e.g. cardiovascular 

disease (Baja et al., 2010; Gan et al., 2011; McCracken et al., 2010), adverse 

respiratory health outcomes (Lin et al., 2011; McCreanor et al., 2007; Patel et 

al., 2010) or neurological effects (Bos et al., 2011; Power et al., 2011; Suglia et 

al., 2008). Recently it has been stressed by Janssen et al. (2011) that BC is a 

useful new indicator for the adverse health effect of traffic-related air pollution. 

 

Typically epidemiological studies try to relate an exposure metric to certain 

health effects in exposed or less exposed people. If using a generic exposure 

metric like population exposure or air quality measured at one specific place, it 

neglects the large contrast and variation in personal exposures that is important 

in epidemiological studies. For example, individuals travelling from hot spot to 

hot spot or professional drivers will be exposed to far higher concentrations 

compared to a hypothetical static population. In previous studies using activity-

based models or personal monitors it is demonstrated that the transport activity, 

although short in duration, can be responsible for quite a large part of integrated 

personal exposure to combustion-related pollutants (Beckx et al., 2009b; Dons 

et al., 2011b; Fruin et al., 2004; Marshall et al., 2006). Understanding the 

variation in exposure can contribute to a more accurate exposure assessment 

and reduce misclassification of air pollution health effects. This is of major 

importance when trying to define the health effects of pollutants that are highly 

variable in time and space, like e.g. traffic-related air pollutants (Setton et al., 

2011; Strickland et al., 2011; Van Roosbroeck et al., 2008). 

 

In the light of understanding the role of transport activities on total accumulated 

exposure, a large personal monitoring campaign was set up. BC was measured 

on a 5-minute time resolution, allowing air quality data to be linked with 

reported activities. In this paper the focus will be on exposure in traffic 
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microenvironments; however transport is always considered as part of a 

complete 24h diary, enabling the identification of trip motives and the 

calculation of the contribution of transport to integrated exposure and inhaled 

dose. BC was chosen as a pollutant because of its relevance for health, and 

because of the availability of suitable measurement devices. Moreover the 

interest of policy makers in BC was aroused due to emerging evidence on health 

effects and the impact of BC on global warming. In developed countries, 

motorized transport, and mainly diesel vehicles, are considered to be the most 

important source of BC, whereas in developing countries biomass burning may 

be important (Highwood and Kinnersley, 2006; Kirchstetter et al., 2008). 

 

 

3.2.2 MATERIALS AND METHODS 

 

Personal exposure to BC is measured with portable aethalometers (microAeth 

Model AE51, (AethLabs, 2011)), carried by 62 individuals for 7 consecutive days. 

During the sampling, participants were urged to meticulously keep track of their 

executed activities by reporting them in an electronic diary fitted with a GPS. On 

top of that, a short questionnaire asked for characteristics of the individual, the 

household and the residence. More details on the configuration of the devices, 

quality assurance and data analysis can be found in chapter 3.1. Sixteen people 

took part in a pilot study in summer 2010; half of them participated again in a 

more elaborate campaign in winter 2010-2011. The other half was either 

unwilling or unable to participate a second time. The winter campaign was 

supplemented with 38 new volunteers. Because we wanted to focus primarily on 

the impact of the time-activity pattern on personal exposure, we measured two 

people sharing the same residence. In summer 2010 all 8 couples were 

measured sequentially; in the winter campaign a maximum of three couples 

were measured simultaneously each week, for eight weeks in a row. 

 

Some small adaptations were made in the winter campaign compared to the 

summer. The PARROTS software installed on a small handheld computer 

(Kochan et al., 2010), to fill in executed activities and trips, was somewhat 

simplified to further reduce respondent burden, without significant data loss. In 
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the first campaign couples consisted of a full-time worker and a homemaker or 

part-time worker; in winter we relaxed this constraint: there was no further 

limitation on the work schedule. Other adaptations all concerned quality 

assurance and quality control (e.g. additional comparison with filter-based EC 

analysis and with a Multi-Angle Absorption Photometer (MAAP) measuring BC 

simultaneously at the official air quality monitoring stations). 

 

To maintain data integrity, we corrected the aethalometer readings in different 

ways. First, all data showing an error code were excluded from the dataset 

(except for low battery events). In addition, we excluded data when the 

attenuation was above 75, whereas the instrument only gives an error code if 

attenuation is around 100. The value of 75 is a conservative lower limit as 

proposed by Virkkula et al. (2007); Hansen (2005) proposed the range of 75 to 

125 as a suitable advisory limit for aethalometers. Finally we did an 

intercomparison between all 13 devices used, to correct for device specific 

deviations (appendix FIGURE A1, corrections were between 1% and 23%). The 

sample flow of all instruments, set at 100 ml/min, was checked before the 

measurement campaign.  

During the sampling campaign, data from a fixed BC monitor on a suburban 

background location (station 40AL01 – Antwerpen Linkeroever, operated by the 

Flemish Environment Agency) was used to correct for non-simultaneous 

measurements (for the methodology, see appendix A.1). 

Negative measurements were included into the analysis, because a temporary 

false decrease in measured absorption is offset in the next observation(s) 

(McBean and Rovers, 1998; Wallace, 2005). Only deleting the negative values 

would overestimate average BC concentrations. 

 

To calculate the contribution of each activity to dose, a translation of exposure 

to inhaled dose is made by defining a minute ventilation per activity and per 

transport mode; gender was also taken into account. Inhalation rates are based 

on Allan and Richardson (1998) and Int Panis et al. (2010) (appendix TABLE 

A2). 

 

SAS 9.2 was used for data processing and statistical analysis.  



104 

3.2.3 RESULTS 

 

3.2.3.1 Study characteristics and time-activity patterns 

 

All 62 volunteers participating in the measurement campaign measured their 

personal exposure for 7 consecutive days, 24 hours a day, on a 5-minute time 

resolution. This resulted in 124,992 single measurements, or more than 10,000 

h of data. Some technical failures or human errors resulted in a data loss of 

approximately 4%. After data cleaning (excluding measurements with high 

attenuation or error signal), 17% of all data was not considered for further 

analysis. This is a rather high number, but it was necessary to maintain data 

integrity and, because of the very large dataset, a conservative limit could be 

used setting a high standard for the data analysis.  

All volunteers were nonsmokers and not exposed to secondhand smoke at 

home. Everyone was of working age and there was a small bias toward higher 

education. Most participants worked in an office, and everyone worked in an 

indoor environment. All 62 participants had a driving license, but not all couples 

owned a car. Participants were living in Flanders, Belgium (appendix FIGURE 

A4). An overview of personal and household characteristics is given in TABLE 6 

and car attributes are summarized in the appendix TABLE A3. 

 

TABLE 6: Characteristics of the study participants 

    Summer Winter 

Personal characteristics 

Gender * Male 8 23 

 
Female 8 23 

Year of birth * 1951-1960 2 6 

 
1961-1970 7 12 

 
1971-1980 5 14 

 
1981-1990 2 14 

Education / Highest degree * Primary or secondary school 2 3 

 
Higher education, non-university 6 10 

 
Higher education, university 8 33 

Working status * Full-time worker 8 32 

 
Part-time worker 3 8 

 
Non-worker 5 6 

Household characteristics 

Average household size * 3.88 3.65 
Average number of cars per household * 1.38 1.48 

* Results based on questionnaires filled in by the participants  
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Based on the activity diaries, it was calculated that volunteers spend 6.3% of 

their time (90 minutes per day) in transport; 35.5% of the day is spent sleeping 

(TABLE 7). The majority of trips were by car; but one third of all travel time was 

by active modes (bike, on foot). There are relatively more trips as car passenger 

in the weekend and on off-peak hours compared to car drivers. Train and metro 

are generally used by commuters, with a large share of trips in traffic peak 

hours and on weekdays. Trips as car driver, cyclist, bus passenger or walking 

are spread in the same way throughout the day and throughout the week. All 

light rail and metro trips are in urban areas, whereas car trips are often on 

highways (>25% of total time) and on rural roads (>30% of total time). More 

than 70% of the time, trips by bike or on foot are on urban or suburban roads. 

 

TABLE 7: Time-activity pattern, contribution of each activity to total BC exposure, 
and contribution to inhaled dose (average of 62 participants) 

Activity type Time-activity 
pattern 

Contribution to 
exposure 

Contribution to 
dose 

Home-based activities 29.9% 26.7% 21.8% 
Sleep 35.5% 25.0% 13.9% 
Work 17.0% 12.2% 12.8% 
Social and leisure 6.3% 8.9% 12.8% 
Shopping 1.1% 2.0% 3.2% 
Other 3.9% 4.3% 5.6% 
In transport 6.3% (100%) 21.0% (100%) 29.8% (100%) 

Car driver 2.9% (45.3%) 12.3% (58.6%) 10.5% (35.2%) 
Car passenger 0.7% (11.4%) 2.2% (10.3%) 1.7% (5.8%) 
Bike 1.0% (15.7%) 2.5% (11.8%) 9.1% (30.5%) 
On foot 1.0% (16.4%) 2.2% (10.5%) 6.6% (22.3%) 
Train 0.5% (7.9%) 0.9% (4.2%) 0.9% (3.0%) 
Light rail / metro 0.1% (0.8%) 0.2% (1.0%) 0.2% (0.7%) 
Bus 0.2% (2.4%) 0.7% (3.6%) 0.7% (2.5%) 

 

 

3.2.3.2 Personal exposure measurements 

 

Average personal exposure was 1592 ng/m³, with a standard deviation of 468 

ng/m³. This is comparable with the average concentration measured by the 

fixed suburban monitor (1620 ng/m³). The volunteer with the lowest personal 

exposure was exposed to 652 ng/m³ on average and the highest exposed 

participant to the study had a personal exposure of 2773 ng/m³. BC 

concentrations are lognormally distributed within each participant, meaning that 
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there are a lot of 5-min observations with relatively low concentrations, and 

some observations where participants are highly exposed. 

 

Lowest average concentrations were observed during home-based activities 

(1360 ng/m³), working (1077 ng/m³) and sleeping (1090 ng/m³). The highest 

average concentrations by far, were encountered while in transport (5132 

ng/m³). High peaks are especially prominent in transport: 95th percentile is 

15,569 ng/m³. Elevated average concentrations of 2445 ng/m³ and 2540 ng/m³ 

are observed for social and leisure activities, and for shopping respectively. 

Looking at microenvironments instead of activities, shows the same trends: high 

exposure in transport, lowest concentrations in private homes (1255 ng/m3) and 

at work locations (1068 ng/m3). Concentrations in transport were 2 to 5 times 

higher compared to concentrations encountered at home (appendix FIGURE A5 

and FIGURE A6). Although the amount of time spent in transport is relatively 

small, this nevertheless corresponds to 21% of personal exposure to BC due 

merely to the high concentrations measured in transport (TABLE 7).  

 

The transport category can be subdivided in different classes according to 

transport mode (FIGURE 18). Lowest concentrations were measured in trains, 

with a mean of 2394 ng/m³. Volunteers traveling with active modes, by bike or 

on foot, were confronted with higher average exposures ranging from 3175 

ng/m³ to 3555 ng/m³. It should be noted that the average exposure of cyclists 

and pedestrians was 62% lower when the trip was a leisure trip, indicating the 

use of alternative routes instead of using the shortest (not seldom the most 

polluted) route as is more often the case for commute trips (see chapter 3.1). 

The exposure of volunteers traveling by motorized transport was highest (car 

driver: 6432 ng/m³; car passenger: 5583 ng/m³; bus passenger: 6575 ng/m³; 

and light rail / metro passenger: 5066 ng/m³). The results of the light rail / 

metro category are indicative since they only encompass 23 trips, although 

spread over different cities and weeks. In summary, the exposure-ratios of BC in 

different transport modes, in typical Belgian conditions, are: automobile:bicycle 

ratio = 1.77; automobile:foot ratio = 2; automobile:bus ratio = 0.96; and 

automobile:train ratio = 2.63.  
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FIGURE 18: Personal exposure (black box plot) and dose (gray box plot) in 
different transport modes. The ‘N=’ indicates the number of 5-minute 
observations used to calculate the average and the percentiles. Represented are 
P5, 1st quartile, median, 3rd quartile and P95. The cross marks the average. 

 

 

More than 65% of all trips were made either as car driver or as car passenger. 

An important determinant of the concentrations measured inside a car is the 

timing of a trip. FIGURE 19 shows the hourly variation in average 

concentrations: highest in-vehicle concentrations are observed during traffic 

peak hours (morning peak between 7 and 10 a.m., evening peak between 4 and 

7 p.m.). This trend is less pronounced in other transport modes, probably 

because traffic congestion on rush hours affects car users more than e.g. cyclists 

or pedestrians. The impact of time-of-day on concentrations in 

microenvironments different from transport, is more limited although 

concentrations are still 33% higher in the evening (17-22 h) than during the day 

(8-16 h). 
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FIGURE 19: Timing of a car trip and the impact on in-car BC-concentrations. The 
black line shows the in-vehicle concentrations for every hour of the day. Each trip 
is assigned to the start hour of the trip. If less than 10 trips are available, the 
average was not included. The dashed line represents the average BC 
concentrations in all other microenvironments, excluding transport. The bars 
indicate the number of car trips and the corresponding trip motives on which the 
average concentration is based. 

 

 

Day of the week affects personal exposure encountered in a car. We corrected 

the personal measurements for daily differences in background concentrations, 

but still differences between days appeared (FIGURE 20). Between working 

days, there are only minor differences in in-vehicle concentrations (from 5366 

ng/m³ on Wednesday, to 5893 ng/m³ on Thursday), but they are in line with the 

traffic intensity on these days. Concentrations are lower on Saturdays (4459 

ng/m³) and Sundays (3830 ng/m³). This difference between in-car 

concentrations on weekdays and weekend days was found to be statistically 

significant. A paired test was used to limit the influence of specific characteristics 

of each car: we assume that individuals drive the same car on all days of the 

week. 
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FIGURE 20: Timing of a car trip (day of the week) and the impact on in-car BC-
concentrations. The ‘N=’ indicates the number of trips used to calculate the 
average and the percentiles. Represented are P5, 1st quartile, median, 3rd quartile 
and P95. The cross marks the mean value. In-car concentrations are significantly 
lower in the weekend than on weekdays (Paired T-test p<0.01). 

 

3.2.3.3 Inhaled dose 

 

Inhaled dose of the participant with the lowest average exposure to BC was 

14,134 ng/day. The highest exposed individual inhaled on average 77,698 

ng/day. In our study, the lowest and highest exposed individual also had the 

lowest and highest BC intake (dose), but this is not necessarily the case and 

depends on the executed activities. 

 

When comparing exposure and inhaled dose in FIGURE 18, it immediately shows 

up that the active modes contribute more to inhaled dose than to exposure. The 

highest dose is encountered on a bike, with an average dose of almost 200 

ng/min. For inhaled dose, the ratios between different transport modes become: 

automobile:bicycle ratio = 0.41; automobile:foot ratio = 0.56; automobile:bus 

ratio = 0.82; and automobile:train ratio = 2.16. 

 

On average the relative importance of the transport activity increases, up to 

30%, when incorporating inhalation rates (TABLE 7). This difference is due to 

lower respiration during sleeping and higher respiration during active travel (e.g. 
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on a bike minute ventilation is 6 to 7 times higher compared to ventilation 

during sleep). The average daily dose incurred during transport is therefore 

similar to the average dose incurred from home-based activities, and much 

larger than the inhaled dose during the sleep activity. 

 

 

3.2.3.4 Approximations for exposure and dose 

 

Because multiple factors influence exposure in transport, it is not 

straightforward to relate a simple metric such as travel time to integrated 

personal exposure or inhaled dose (FIGURE 21). We demonstrated that average 

exposure in transport is very high, but also highly variable between individuals 

depending on the transport modes used, the timing of trips (time-of-day, day of 

the week), and possibly the geographical location of the trip (chapter 3.3). 

Limiting travel time to travel time by car reveals an equally poor correlation with 

personal exposure (appendix FIGURE A7). On the other hand, our results show a 

better correlation between average exposure in transport and average personal 

exposure (appendix FIGURE A8). Because we know that trips are responsible for 

30% of daily inhaled dose, the relationship between travel time and dose is 

expected to be somewhat better: with 6% of explained variance, travel time is 

not very predictive for inhaled dose either. For comparison, the correlation 

between residential outdoor concentrations and personal exposure is 0.32 

(appendix FIGURE A9). 

 

 

FIGURE 21: Correlation between personal exposure, daily dose and travel time. 
Each mark represents one of 62 volunteers.  
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3.2.4 DISCUSSION 

 

In chapter 3.1 we already indicated that transport is responsible for almost a 

quarter of accumulated exposure, although individuals travel no more than 6% 

of the day. The results of the present more elaborate study confirm that 

transport indeed accounts for 21% of personal exposure. Our results further 

show that transport contributes up to 30% to the inhaled dose. In spite of the 

limited time spent in transport, more BC particles are inhaled during, on 

average, 90 minutes of transport compared to e.g. >500 minutes of sleeping or 

even during all other home-based activities combined. Nevertheless many 

epidemiological and HIA studies only include residential exposure and ignore 

exposure in transport; just recently several studies started to assess the health 

effects of in-traffic exposure to air pollution (McCreanor et al., 2007; Strak et 

al., 2010; Zuurbier et al., 2011).  

The levels of exposure in transport depend on several factors; some of which 

were studied in depth in this paper: transport mode choice and timing of a trip. 

The most obvious factor influencing exposure during travel is transport mode 

choice. The highest average concentrations are encountered in motorized 

transport: car and bus. This is in line with findings of Adams et al. (2002) 

measuring Elemental Carbon in different transport modes, and with the review 

paper of Kaur et al. (2007) stressing the general trend in multi-mode exposure 

assessments on fine particulate matter: pedestrians and cyclists experience 

lower exposure concentrations than individuals inside vehicles. Zuurbier et al. 

(2010) measured soot in three different transport modes: car, bus and bicycle. 

Soot levels were highest in cars and buses, and lowest by bike along a low-

traffic street. A review on ultrafine particle (UFP) exposure in the transport 

microenvironment, encompassing approximately 3000 individual trips in total, 

but originating from different studies, found overall mean UFP concentrations of 

3.4; 4.2; 4.5; 4.7; 4.9 and 5.7 x 104 particles/cm³ for the bicycle, bus, car, rail, 

walking and ferry modes, respectively (Knibbs et al., 2011). Boogaard et al. 

(2009) and Int Panis et al. (2010) reported smaller and inconsistent car/bicycle 

ratios for UFP in different towns. Particle number counts (PNC) were 5% higher 

on average in cars than on bicycles but this hides important local differences in 

either direction. In-vehicle BC concentrations were measured during 29 car trips 
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by Rodes et al. (1998). Concentrations ranged from below the detection limit to 

23,000 ng/m³; with an average of 6000 ng/m³ in urban Los Angeles, and 4000 

ng/m³ as the statewide in-car average (Fruin et al., 2004). Sabin et al. (Sabin et 

al., 2005a; Sabin et al., 2005b) measured BC levels inside school buses between 

900 ng/m³ and 19,000 ng/m³; this is comparable to concentrations measured in 

this study although our measurements were not limited to school buses or 

school bus hours. Bizjak and Tursic (1998) measured BC in buses as well and 

found higher concentrations in diesel buses (10,000-50,000 ng/m³), and lower 

concentrations inside a new gas-powered bus (5000-15,000 ng/m³). The 

portable aethalometer model AE51 was used by Weichenthal et al. (2011) to 

measure concentrations on a bike. Two types of routes were cycled: a high-

traffic route (mean = 2520 ng/m³ (range 890-5670 ng/m³)) and a low-traffic 

route (mean = 1079 ng/m³ (range 173-3197 ng/m³)). These concentrations are 

lower than our mean concentrations for cyclists, but the trips in the study of 

Weichenthal et al. all took place outside peak hours (between approximately 

11.30 a.m. and 12.30 p.m.), only in the warmer season and in an area with 

lower background concentrations. Apte et al. (2011) used the aethalometer 

model AE51 to determine BC exposure in auto-rickshaws in New Delhi, India. 

The geometric mean was 42,000 ng/m³, which is several times higher than BC 

concentrations observed in high-income countries. No studies were identified 

measuring exposure to BC in multiple modes, although the last study mentioned 

some limited in-car measurements. Because in FIGURE 18 the results were 

corrected for changing background concentrations, a direct comparison of 

absolute concentrations might be difficult (uncorrected concentrations are 

presented in the appendix TABLE A1). The overall ratios between modes of 

transport, presented in the previous section, can be biased by the fact that some 

modes of transport might be used preferentially in conditions that also affect 

ambient BC concentrations, e.g. in specific locations, rural versus urban, 

workdays versus weekend days, time-of-day or weather conditions. In the 

appendix TABLE A4 and A5 exposure ratios are split up for morning rush hours, 

evening rush hours and non-rush hours. The ratio automobile:(active modes) is 

lower on non-rush hours which probably reflects the fact that traffic congestion 

affects car users more than cyclists and pedestrians, as they are directly 

exposed to exhaust from preceding cars. 
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Clear differences in exposure between different transport modes appeared in our 

measurement campaign, but the large variation in BC concentrations in each 

transport mode reveals that multiple factors affect these concentrations. The 

timing of a trip seemed an evident, but little explored, parameter influencing in-

transit concentrations. We saw elevated in-car concentrations on traffic peak 

hours, compared to off-peak hours; and elevated levels on working days 

compared to the weekend. Apte et al. (2011) looked at day of week differences 

in BC exposure; in line with our results, they found no consistent differences 

between working days. Sampling was limited to Monday through Friday, so any 

weekend effects could not have been detected. They did find time-of-day trends 

for BC: concentrations were 32% lower during the morning commute as 

compared to the evening commute, mainly attributable to the on-road 

environment. Hertel et al. (2008) looked at the impact of time-of-day on NOx 

concentrations on bike and bus. Higher than average concentrations were 

observed during morning rush hour compared to off-peak hours. The evening 

rush hour peak was less pronounced, probably because the period with high 

traffic intensities was also spread over more hours. The time-of-day variation in 

concentrations was mainly observed in buses on highly trafficked streets; the 

trend was less noticeable for bike trips on quieter streets. From Fruin et al. 

(2004) we know in-vehicle BC concentrations are highest when directly following 

diesel-powered vehicles. Considering the large number of diesel vehicles on 

Belgian roads (over 60% of all private cars in Belgium are diesel (NIS, 2010), a 

number that is remarkably higher than in neighboring countries), there is a high 

chance that participants drove behind diesel vehicles during rush hour. 

According to Westerdahl et al. (2005), on road BC concentrations also appeared 

to increase sharply as diesel truck traffic increased. A high proportion of traffic in 

Belgium is transit diesel truck traffic, especially on highways. 

 

Trip motive can be defined as the activity that is performed on the destination 

side of a trip unless this is a ‘home-based activity’: in that case the activity at 

the origin side is defined as the trip motive (Cools et al., 2011). From FIGURE 19 

it became clear that there are many work trips in the morning peak hours and 

there is a large share of leisure trips in the evening. Fewer trips have motive 

‘work’ in the evening peak hour because of trip chaining. If we combine previous 
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findings, it is straightforward to conclude that average in-car exposure is highest 

for trips with motive ‘Work’ (appendix FIGURE A10): these trips are often in 

traffic peak hours and on weekdays; and we know that during these time-

periods the in-car concentrations are highest. Leisure trips are mainly in the 

evening or in weekends, and thus lower average exposure can be expected. 

 

It is dose that is directly linked to health endpoints and thus relevant in 

epidemiological studies. Nevertheless many of these studies derive exposure and 

exposure-response functions based on the residential location only. In our study, 

we found that participation in traffic, especially active transport as a cyclist or 

pedestrian, increases inhaled dose more than proportionally. On average inhaled 

dose is clearly larger for active modes compared to all other modes, but on an 

individual basis the height of the dose depends on several factors. As already 

stated, it is very important to take timing and location into account. Breathing 

rates can also differ by individual and by the degree of physical exertion. 

Assumptions on minute volume were made based on literature and are an 

approximation of real minute volume. The question remains whether short 

periods exposed to elevated concentrations have any significant health effect on 

an individual. Weather (rain or heavy wind) might be a factor that shifts cyclists 

to days with higher BC concentrations. On the other hand, cyclists themselves 

try to avoid busy traffic or hilly terrain, take the least polluted and thus 

‘healthiest’ route, and that way they decrease their exposure to traffic-related 

air pollution (Hertel et al., 2008; Int Panis et al., 2010; Zuurbier et al., 2010). 

Several studies already demonstrated that potential health effects caused by air 

pollution in traffic, are more than offset by the positive effects of active travel 

(de Hartog et al., 2010b; Rabl and de Nazelle, 2012; Woodcock et al., 2009).  

 

Integrated weeklong personal exposure is highly variable between individuals, 

ranging from 652 ng/m³ to 2773 ng/m³. Those individual differences are much 

larger than population based estimates that take activities into account (Beckx 

et al., 2009b). Accurate exposure assessment, focusing on personal exposure 

rather than population based estimates, is thus critical to further reduce 

exposure misclassification in epidemiological studies. Personal measurements, 

as shown in this paper, are one way of estimating personal exposure more 
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accurately. However, a methodology taking background variation into account is 

essential to compare measurements performed at different times. A combination 

of air quality models and activity-based models, producing time-activity 

schedules for every individual actor in a population, seem promising since 

models will be less hampered by sample size limitations than measurements. 

Using an activity-based model, exposures can be turned into inhaled doses in a 

straightforward way by assigning a minute ventilation to every activity. 

 

It was impossible to relate in-vehicle concentrations to certain characteristics of 

the car since it is not known which trip is undertaken by exactly which car. This 

is a major drawback of this study, together with the lack of control over the 

routes taken, and the ventilation settings of the car. On the other hand we 

randomly selected different cars that were driven in a real-life setting, and from 

the questionnaires we had some basic information on the cars. This resulted in a 

very large and representative dataset, e.g. trips of different durations, trip 

chaining behavior was included, trips were geographically dispersed over a wider 

region, etc. The choice of volunteers participating in this study was somewhat 

biased, although a comparison of the activity diaries with a large cohort (over 

1600 families) of the Flemish Travel Behavior Survey reveals good 

correspondence (Cools et al., 2011). Time in transport and the percentage of 

time in each transport mode, are also comparable to the Flemish average. We 

used only one monitor to correct for changing background concentrations; these 

measurements may not be completely representative for background 

concentrations in the entire study area. Unfortunately other fixed monitors, e.g. 

on rural background locations, were not available at the time of the 

measurements. Seasonal effects on BC exposure were not considered because 

we scaled the background-part of all observations based on concentrations 

measured at a fixed suburban background monitor. In contrast, we did observe 

a weekend – weekday effect because it was unrelated to changes in background 

concentrations. 

 

In our study highest exposures were observed during travelling (especially car 

driving). Transport mode choice and timing of a trip proved important variables 

influencing exposure in transport. It was demonstrated that trips with motive 
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‘work’ had highest average in-car concentrations because they are mainly driven 

during peak hours. Inhaled dose per minute is highest during cycling and 

walking, but can be influenced by taking an appropriate route. We provided 

evidence that travel time is an unsatisfactory parameter to predict personal 

exposure to BC. 

High peak hour concentrations may, at least partially, be caused by more 

frequent use of highways or urban roads (Sabin et al., 2005a). Westerdahl et al. 

(2005) suggested an impact of diesel truck volume on BC concentrations inside 

vehicles and the speed of a car may have an impact on the air exchange rates 

(Fruin et al., 2004), thereby influencing in-vehicle exposure to particles. Further 

research will therefore focus on these aspects as well as on the geographical 

location and road characteristics of the trips. 
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3.3 STREET CHARACTERISTICS AND TRAFFIC FACTORS 

DETERMINING ROAD USERS' EXPOSURE TO BLACK CARBON 

 

 

 

 

This chapter is based on: 

 

Dons, E., Temmerman, P., Van Poppel, M., Bellemans, T., Wets, G., Int Panis, 

L., 2013. Street characteristics and traffic factors determining road users' 

exposure to black carbon. Science of the Total Environment 447, 72-79.  
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3.3.1 INTRODUCTION 

 

Black carbon (BC) is a component of both fine and coarse particulate matter 

(PM), though because of its small size, it is most strongly associated with the 

fine particle (PM2.5) fraction (Smith et al., 2009; Viidanoja et al., 2002). 

Incomplete combustion of wood and diesel engine exhaust are the major 

environmental sources of BC pollution, respectively in rural and urban areas. 

Health effects of PM2.5 are well documented (Brook et al., 2010) and BC is 

suspected to be one of the most harmful fractions responsible for health effects 

in exposed individuals (U.S.EPA, 2012b) and is a suitable indicator for assessing 

the health risks of traffic related air pollution (Janssen et al., 2011). Health 

outcomes associated with BC include cardiovascular effects (Adar et al., 2007; 

McCracken et al., 2010; Wellenius et al., 2012), respiratory effects (Lin et al., 

2011; Patel et al., 2010) and mortality (Gan et al., 2011). Some of these effects 

can be demonstrated at ambient concentrations below 1 µg/m³ (Adar et al., 

2007; McCracken et al., 2010). In addition BC contributes to global warming and 

has therefore gained more attention in recent years, resulting in its inclusion in 

several high level policy documents (UNECE, 2010; UNEP, 2011; WHO, 2012). 

BC is not yet regulated, but many PM2.5 reduction measures, especially in the 

transportation field, should lead to reductions in BC exposure as well. 

 

Although short in duration, exposure during transport can be important in 

integrated daily exposure to BC. In a personal exposure study in Belgium 

covering different degrees of urbanization and with a fleet dominated by diesel 

cars, concentrations of BC in transport have been shown to be a factor 2 to 5 

higher compared to concentrations at home (see chapter 3.1 and 3.2). People 

spend on average 6% of their time in transport, but this leads to over 20% of 

daily integrated exposure, and up to 30% of the inhaled dose when taking 

breathing rates into account (see chapter 3.2). Travel behavior (Dhondt et al., 

2012b), exposure in transport (Dons et al., 2012) and factors influencing in-

vehicle air pollution (Fruin et al., 2004), are thus relevant factors to consider in 

integrated exposure assessment. 
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The mass of BC particles is measured in some stations of the national air quality 

network using an optical technique: MAAP (Multi-Angle Absorption Photometer). 

This technique is based on the measurement of the absorption and scattering of 

particles collected on a filter tape (Petzold et al., 2005); it thus relies on the 

optical properties of particulate matter. Atmospheric elemental carbon (EC) is a 

product of incomplete combustion. The terms EC and BC are often used 

interchangeably; however they are defined by the different measurement 

method applied (Quincey et al., 2009). EC is measured based on its chemical 

stability using thermal techniques. Fixed measurement stations are required to 

check compliance with national or international legislation. Many epidemiological 

studies use fixed site measurements as a surrogate measure of exposure. 

Unfortunately, fixed stations are a poor marker for personal exposure, especially 

for pollutants highly variable in time and space like BC (Koutrakis et al., 2005).  

According to Ott (1982) a person i is exposed to concentration c of a pollutant at 

a particular instant of time when person i comes into contact with the pollutant 

at concentration c. This definition can be decomposed into two events occurring 

at the same time: person i is present at location x,y,z at time t, and 

concentration c is present at location x,y,z at time t. Whether an individual is 

highly exposed, thus depends on the concentration levels the person encounters 

in the microenvironments visited over a day. Improving exposure estimates has 

been recognized as an important topic (Int Panis, 2010) and the US EPA has 

launched several programs to achieve better indoor (SHEDS) and personal (EMI) 

exposure estimates (Breen et al., 2010). For static microenvironments (‘places’), 

it is fairly straightforward to model outdoor concentrations by using an air 

quality model, and if desirable supplemented with an indoor air model (Burke et 

al., 2001). For mobile environments (‘in transport’) estimating concentrations is 

much more difficult because the location and conditions are constantly changing. 

One possible approach is to calculate concentrations on center points of road 

segments using a land use regression or dispersion model, and to intersect this 

polyline map of pollution with trips (Mölter et al., 2012). A similar approach uses 

a concentration grid, e.g. as an output of a dispersion model, and time-weights 

this grid with trips crossing different grid cells (Marshall et al., 2006). Other 

studies either ignore exposure in transport (Hatzopoulou and Miller, 2010), or 

use concentrations modeled (Dhondt et al., 2012b) or measured (Beckx et al., 
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2009b) at fixed stations near busy roads. Kaur et al. (2007) stated that four 

factors can contribute to BC levels in transport: personal factors, mode of 

transport factors, traffic factors and meteorological factors. The impact of 

personal factors (time-activity pattern, timing of trips and breathing rates) and 

transport mode factors are discussed in chapter 3.2. The aim of the current 

analysis is to determine traffic factors influencing exposure to BC in transport 

and to derive an ‘in-transport exposure model’. The analysis is based on 

measurements of BC in Flanders, Belgium. Road and traffic data associated with 

a road network were linked in a GIS with geocoded BC-measurements. Relevant 

factors are identified and discussed. A simple set of models is constructed to 

estimate average BC exposure during trips based on data that is readily 

available from most traffic models.  

 

 

3.3.2 MATERIALS AND METHODS 

 

A set of mobile measurements was collected between April 2010 and July 2010, 

and between December 2010 and February 2011. Sixty-two volunteers 

measured their personal exposure to BC continuously for 7 days, while also 

logging GPS positions and reporting detailed time-activity patterns. All 

participants were living in Flanders, an urbanized region in the north of Belgium 

(13,521 km²; 6,251,983 inhabitants). A description of the study set-up is given 

below; technical specifications of the portable devices used are summarized in 

TABLE 8. 

 

TABLE 8: Technical specifications of the portable devices 

 Time base Tech Specs 

GPS receiver 1-s GPS receiver integrated in PDA (Personal 
digital assistant, type MIO 168, weight 147 
g, 4 hour run time on single battery charge 
if in use, 12 GPS channels) 

Electronic diary 5-min Custom designed software installed on PDA  
Micro-aethalometer AE51 5-min Flow rate 100 ml/min, weight 280 g, 24 

hour run time on single battery charge, 
optical measurement of BC 
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3.3.2.1 Time-activity diary and GPS logging 

 

A handheld computer or PDA (Personal Digital Assistant) was equipped with the 

software tool PARROTS (PDA system for Activity Registration and Recording of 

Travel Scheduling) to facilitate the registration of activities and locations visited 

(Kochan et al., 2010). The GUI of PARROTS was developed as a continuous 

timeline, and participants had to build and annotate time blocks in a visually 

appealing way by using drop-down menus, check boxes, etc. The data provided 

had to be accurate to within 5 minutes. Start time and end time of each activity 

had to be indicated, together with the type of activity choosing from 13 

predefined activity categories. PARROTS offers a choice of several transport 

modes: car driver, car passenger, motorcycle, bike, on foot, bus, train, light rail 

/ metro, taxi, or ‘other’. Trips during which participants used multiple modes had 

to be reported as one trip, but each part of the trip had to be detailed (transport 

mode, travel time, waiting time). During the week, every diary was repeatedly 

checked on consistency and completeness: no gaps or overlaps were allowed. 

Afterwards the time-activity data was automatically processed in SAS 9.2. 

 

A GPS receiver was integrated in the PDA, logging positions on a one second 

time base. Participants had to initiate the GPS each time they started a trip, and 

stop it when the trip was finished to prevent unnecessary logging and to 

conserve the battery. Sporadically volunteers forgot to start or stop the GPS, 

resulting in loss of information on certain trips. Since the accuracy of the GPS 

signal is influenced by the number of satellites in view, GPS waypoints were 

cleaned such that each observation was made with at least 5 satellites: this was 

the case for 88.6% of all observations in transport. Rail-based modes are not 

explored further because of regular failure of reception of satellite signals (also 

observed by Bohte and Maat (2009) and Beekhuizen et al. (2013)). If GPS 

coordinates indicated a trip, but the diary reported an activity on a fixed 

location, the observation was omitted because the lack of information on e.g. 

transport mode. 

 

 



122 

3.3.2.2 BC exposure monitoring 

 

A portable aethalometer, MicroAeth Model AE51, measured BC on a 5-min time 

resolution (AethLabs, 2011). This aethalometer can monitor with a higher 

temporal resolution, up to 1 second, but a 5 minute time base was used to 

improve precision and to extend battery life and run time. A short tube was 

attached to the inlet of the aethalometer giving volunteers the possibility to put 

the aethalometer in a purse or backpack while still measuring ambient air. The 

teflon-coated borosilicate glass fiber filter was replaced every two days by the 

participants to prevent filter saturation. Clear instructions were provided to do 

this correctly. Volunteers were instructed to take the aethalometers wherever 

they went, although indoors it was allowed to keep it static in a room where the 

majority of the time was spent (e.g. in the living room, in the office). Despite 

the obtrusive nature of personal exposure monitoring, this study tried to be as 

least demanding as possible and participants were encouraged to follow their 

daily habits and execute their regular activities. 

 

Before analyzing the BC data, several data cleaning steps were necessary. BC 

measurements with high attenuation (ATN > 75) and measurements showing an 

error code were excluded, as described in chapter 3.2. An intercomparison of the 

thirteen micro-aethalometers resulted in correction factors for device specific 

deviations in the range of 1 to 23%. Before each measurement campaign, the 

air flow of the aethalometers was checked and fixed at 100 ml/min. Because not 

all measurements were made simultaneously (16 weeks, 112 different days), a 

daily rescaling was applied to account for changing background concentrations. 

More details on the methodology can be found in chapter 3.2. 

 

 

3.3.2.3 Data integration 

 

Individual waypoints were combined with data from the electronic diary and with 

BC concentration information. Travel speed was automatically calculated based 

on the GPS data. Due to the different temporal resolution of the datasets, up to 

300 waypoints are attributed to the same BC concentration (FIGURE 22). 
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FIGURE 22: Top: Overview of all GPS logs captured by 62 volunteers. Bottom: excerpt of a single car trip illustrating the 
different temporal resolution between GPS waypoints and BC measurements (trip starts on a major road, continues on a 
highway and ends on local roads). 
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In ArcGIS 10 waypoints were joined to the nearest road (details of the road 

network are given in the appendix TABLE A6 and FIGURE A11). The average 

distance to the nearest road gradually decreased when the number of satellites 

increased to level off from 8 satellites onward; waypoints based on fewer than 5 

satellites were excluded (appendix FIGURE A12). If the distance to the nearest 

road was larger than 30 m, no road characteristics were linked to the BC-

observation assuming that this was not the road where participants were 

traveling on. The 30 m cut off was decided arbitrarily, but based on decay rates 

for BC near roads (Beckerman et al., 2008; Karner et al., 2010; Zhu et al., 

2002) and also taking into account the known inaccuracies in the road network 

(appendix FIGURE A13). Trips outside of the study area, in casu Flanders, were 

automatically excluded by using the above criterion. The conversion steps 

between the datasets are summarized in FIGURE 23. 

 

GPS coordinates

(sec)

Diary data

(5 min)

BC concentrations

(5 min)

Speed-BC analysis

Road characteristics-

BC analysis

GPS cleaning (remove 

3&4 satellites)

Diary location = ‘In 

transport’

Remove rail transport

Remove if GPS 

coordinate > 30m from 

nearest road

 

FIGURE 23: Schematic overview of available datasets, data cleaning, and data 
analysis 

 

 

Annual average daily traffic, associated with every road link, was converted into 

instantaneous traffic intensities (using standard factors see appendix TABLE A7) 

taking into account the hour and day a person was present at a certain link. We 

thus introduced a link between traffic intensity and hour of the day. 
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Eight road types were identified and grouped in three broader categories: 

highways, major local roads (primary and secondary roads) and other local 

roads (based on road classification; appendix FIGURE A11). Additionally the 

variable ‘urbanization’ was used to assign every road to one of four categories: 

highway, urban, suburban or rural (appendix FIGURE A11). Traffic on every 

network link has a modeled speed; this speed slightly deviates from the 

maximum (free flow) speed. All map attributes were linked with BC 

concentrations measured in transport. 

 

 

3.3.2.4 Statistical analysis 

 

In the analysis, motorized modes (car, bus) and active modes (bike, on foot) are 

combined to ensure data representativeness; the groups were formed taking 

into account the position of each road user on the road, and the enclosed nature 

of vehicles. Descriptive statistics are calculated primarily; afterwards simple 

models are selected using the forward stepwise regression technique, with the 

adjusted R² as entry criterion. This procedure is very similar to the land use 

regression (LUR) technique frequently used to model air pollution at residential 

addresses, but it is now used with mobile measurements. A precondition for 

using regression models is the absence of autocorrelation in the dataset; this is 

examined by calculating the correlation between a measurement at time t and 

measurements at time t-1, t-2, etc. Model results are summarized in a tree 

using logical if-then conditions. 

 

 

3.3.3 RESULTS 

 

3.3.3.1 Dataset 

 

Our dataset contains 7039 BC measurements (5-min average) when 

participants' diaries indicated they were ‘in transport’. For approximately 70% of 

all motorized trips and 60% of all active trips registered in the diary, GPS logs 

were recorded. In total, 906,112 GPS waypoints (1-s) were registered while 
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traveling with motorized transport (car or bus), and 385,453 waypoints were 

logged while traveling on foot or by bike (FIGURE 22). Main reasons for missing 

GPS data are not initiating the PDA or signal loss. This resulted in a dataset of 

4462 geocoded 5-min BC-measurements. Overall, 18% of the original data were 

lost because BC measurements were missing; another 30% of the observations 

were lost because no GPS-data was available; because of the removal of points 

>30m of a road with known traffic intensities 33% of all GPS logs were not 

included in the analysis. Almost a quarter of the remaining observations in 

motorized modes was on highways, whereas 28% was on major roads and 48% 

on local roads; most trips with active modes were on local roads (88%). The 

range in BC exposure is larger for participants traveling by motorized transport 

(IQR=6930 ng/m³) compared to exposure of active travelers (IQR=3439 

ng/m³). 

 

 

3.3.3.2 Timing of a trip 

 

During traffic peak hours (morning peak between 7 and 10 a.m., evening peak 

between 4 and 7 p.m.) exposure of motorists is higher than during off-peak 

hours (Peak: 9708 ng/m³ - Off-peak: 6957 ng/m³ - Weekend: 6078 ng/m³). 

The hour-to-hour variation in in-vehicle concentrations is presented in chapter 

3.2. For the active modes a similar peak/off-peak pattern emerges (Peak: 4827 

ng/m³ - Off-peak: 4310 ng/m³ - Weekend: 3353 ng/m³), however the 

difference between peak and off-peak is smaller. 

 

 

3.3.3.3 Travel speed and traffic speed 

 

FIGURE 24 shows the BC exposure related to transport mode, travel speed (GPS 

speed) and modeled road speed. No distinction is made for road types. We 

observed a nonlinear relationship between in-vehicle BC concentrations and 

GPS-based travel speed (FIGURE 24, left): there are peaks at approximately 20 

km/h and 100 km/h and lower concentrations at speeds around 50-70 km/h for 

car drivers. Lower speeds are encountered in urban stop-and-go traffic. 



127 

Acceleration and proximity to other vehicles subsequently result in higher BC 

emission and higher exposure of following car drivers. Above 80 km/h, there is a 

steep increase. These speeds are typically linked to driving on primary roads and 

highways where traffic intensities are higher and a larger fraction of heavy traffic 

is present. At very high speeds, over 130 km/h BC exposure decreases again, 

probably because cars only get to this speed at off-peak hours when no other 

traffic is nearby. A similar pattern emerges for motorized traffic and (GIS-based) 

road speed, as vehicles often drive close to maximum speed (FIGURE 24, right).  

 

For active modes, the relationship is clearly different for driving speed (the 

speed of the cyclist/pedestrian) and road speed (the speed of the motorized 

traffic). Driving speed (GPS speed) does not influence BC concentrations for the 

active modes. Cycling or walking on roads with low modeled car speeds, results 

in higher than average exposure as a result of higher emissions and closer 

proximity to motorized traffic. When the road speed increases, exposure of the 

cyclist or pedestrian decreases; this can be explained by lower emissions and 

the increasing lateral distance to the roadway. At higher road speeds (+60 

km/h) an increase in exposure of active travelers is seen similar to the increase 

in exposure of motorists, indicative of increasing emissions although the 

uncertainty is larger because of the limited number of observations. 

 

On highways, the relationship between speed and BC concentrations is different 

compared to the general speed-BC association presented above: highest 

exposures are observed at very low speeds and exposure continuously 

decreases from there. The average in-vehicle concentrations on highways 

decline from 15,517 ng/m³ (speeds up to 20 km/h) to 9754 ng/m³ at speeds 

over 120 km/h (appendix FIGURE A15). For major and local roads a similar BC 

increase at lower speeds is observed; although the absolute height of 

concentrations is lower (for major roads: 9768 ng/m³ for speeds up to 20 km/h, 

to 7623 ng/m³ at speeds over 80 km/h; for local roads: 7147 ng/m³ for speeds 

up to 20 km/h, to 6034 ng/m³ at speeds over 60 km/h). A combination of these 

three relationships results in the general BC-speed relationship (FIGURE 24), but 

taking into account frequency of use of different road types. 
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FIGURE 24: BC exposure (ng/m³) is presented on the y-axis and this is related to 
transport mode, travel speed, and modeled road speed on the x-axis. Motorized 
modes (car, bus) are shown in darker gray, active modes (bike, on foot) in 
lighter gray. Represented are P5, 1st quartile, median, 3rd quartile and P95. The 
cross marks the mean value. 

 

 

3.3.3.4 Urbanization, road type, and traffic intensity 

 

The degree of urbanization correlates with air pollution levels; it is thus expected 

that degree of urbanization also affects in-traffic BC exposure. Average in-

vehicle exposure is highest in urban areas and lowest in rural areas (Urban: 

9568 ng/m³ - Suburban: 7208 ng/m³ - Rural: 6105 ng/m³; figure 4). In this 

study, 24% of all observations were on highways, 15% on urban roads, 29% on 

suburban roads and 32% on rural roads. A similar trend in exposure can be 

observed for the active modes, although the absolute and relative differences 

are smaller. The largest fraction of active trips was observed in urban (38%) and 

suburban areas (40%). 

 

On highways, exposure of motorists is higher compared to exposure on major 

roads, and almost double the in-vehicle concentrations measured on local roads 

(Highways: 10,680 ng/m³ - Major roads: 8359 ng/m³ - Local roads: 6501 

ng/m³; FIGURE 25). For active modes the relationship is less intuitive: it 

appears that the exposure of cyclists and pedestrians is lower near major roads 

compared to local roads. 

 

BC exposure also shows a clear increasing trend with traffic intensity: the more 

vehicles travel on the same road the higher the in-vehicle BC concentrations, 

only the highest category (+4000 veh/h) deviates slightly from this line. Large 
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differences exist between quiet roads and busy roads: the average concentration 

in cars changes from 5646 ng/m³ to 13,623 ng/m³. For active modes a similar 

trend was observed on local roads although absolute concentrations are much 

lower (appendix FIGURE A16). On major roads exposure of cyclists/pedestrians 

is constant with increasing traffic intensities. This can probably be explained by 

the increasing lateral distance between the active travelers and the main 

roadway.  

Traffic intensity is positively linearly related to in-vehicle BC exposure; moreover 

this relationship holds for every road type (appendix FIGURE A17). There are 

two exceptions: highway entries and exits have low traffic intensities but have 

an elevated in-vehicle concentration (due to heavy acceleration and proximity to 

the highway), and at very high traffic intensities above 4000 veh/h 

concentrations seem to level off (possibly influenced by the lower and less 

representative number of observations in this group). 

 

 

FIGURE 25: BC exposure (ng/m³) is presented on the y-axis and this is related to 
transport mode, urbanization, road type, and instantaneous traffic intensities on 
the x-axis. Motorized modes (car, bus) are shown in darker gray, active modes 
(bike, on foot) in lighter gray. Represented are P5, 1st quartile, median, 3rd 
quartile and P95. The cross marks the mean value. 

 

 

3.3.3.5 Associations between variables 

 

Because of the abrupt changes in exposures while in transport, sequential 5-min 

measurements were not autocorrelated (correlation with previous 

measurements dropped quickly). For motorized transport, instantaneous traffic 

intensity, timing (peak, off-peak, weekend; as indicator variables), and 
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urbanization respectively, explain concentrations (model R²=0.17) (appendix 

TABLE A8). If traffic intensities are unknown, timing and urbanization determine 

BC concentrations but the model loses explanatory power (R²=0.12). Trip 

duration and road type (correlated with traffic intensity and urbanization, TABLE 

9) don't contribute in a multiple regression model. Speed is offered to the model 

as a categorical variable but it was not included in the final model. The effect of 

speed on BC exposure is small in absolute numbers compared to the effect of 

some other variables; furthermore speed is highly correlated with road type. If 

urbanization type is unclear or unknown, trip duration (available from most 

traffic models) could be used as a proxy for the use of different degrees of 

urbanization (e.g. longer trips (>45min) are on highways for at least 45% of 

total time, whereas short trips (<30min) use highways only sporadically). 

Models perform worse for active modes when considering Pearson correlation: 

only timing and urbanization are associated with BC exposure (model R²=0.02) 

(appendix TABLE A9). Results can be presented as a tree, enabling fast and easy 

to use reference values for exposure in transport (appendix FIGURE A18 and 

A19). 

 

TABLE 9: Correlation matrix between BC levels and individual variables 
(Spearman's rank correlation coefficient) for motorized and active modes (italic) 
respectively. 

Motorized 
Active 
 

BC Traffic 
intensity 

Urbani-
zationa 

Road 
typeb 

Road 
speed 

Travel 
speed 

Timec 

BC 1       
Traffic intensity 0.42* 

0.17* 
1      

Urbanizationa -0.32* 
-0.20* 

-0.45* 
-0.25* 

1     

Road typeb -0.30* 
0.02* 

-0.66* 
-0.43* 

0.62* 
0.06* 

1    

Road speed 0.20* 
-0.03* 

0.50* 
0.22* 

-0.27* 
0.61* 

-0.74* 
-0.37* 

1   

Travel speed 0.11* 
0.09* 

0.31* 
0.02* 

-0.30* 
-0.06* 

-0.55* 
0.003 

0.55* 
0.04* 

1  

Timec -0.27* 
-0.21* 

-0.15* 
-0.17* 

0.03* 
0.03* 

0.08* 
0.08* 

-0.08* 
-0.07* 

-0.05* 
-0.09* 

1 

* significant at 1%. 
a 4 classes: Highway, urban, suburban, rural 
b 3 classes: Highway, major road, local road 
c 3 classes: Peak, off-peak, weekend 
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3.3.4 DISCUSSION 

 

Numerous variables influence personal exposure in transport. Kaur et al. (2007) 

classified potential confounders in four categories: personal factors, mode of 

transport factors, traffic factors and meteorological factors. Personal factors 

(e.g. breathing rates) and the impact of transport mode choice are discussed in 

chapter 3.2. There it was found that exposure in motorized transport is clearly 

higher than exposure while walking or biking (avg: 6323 ng/m³ versus 3365 

ng/m³), although when accounting for inhaled doses, this relationship is 

reversed. The impact of timing of a trip on exposure was also explored. On 

traffic peak hours in-car BC concentrations are ~2000 ng/m³ higher than 

average. Differences in in-car concentrations between weekdays and weekend 

days are prominent, even when correcting for differences in background 

concentrations; this temporal trend is in accordance with concentrations 

measured on fixed locations near highways in Flanders (Van Poppel et al., 

2012b). The focus in this paper is on traffic factors, like traffic intensity or road 

type, and their impact on personal exposure in transport microenvironments. 

Meteorology is not considered since all observations are adjusted for changes in 

background BC concentrations, which includes corrections for most meteorology 

effects except for the very local. 

 

Travel speed is related to BC exposure: for motorized transport in-vehicle 

concentrations are elevated at lower speeds (up to 30 km/h) and at speeds 

above 80 km/h. Using road speed instead of travel speed does not influence our 

results significantly. The speed-exposure function shows a similar pattern than 

the BC emission function with a trough at speeds around 70 km/h, and with a 

sharp increase at higher speeds (Kristensson et al., 2004). At lower speeds in 

urban traffic, or when congestion is present on highways, following distance to 

other vehicles decreases and emissions can infiltrate in vehicles nearby. This 

results in higher BC exposure, since Fruin et al. (2004) concluded that the main 

source of BC in a car, are the emissions of the car followed. For active travelers, 

travel speed and BC exposure are unrelated (speed dependent breathing rates 

affect dose not exposure); the speed of motorized traffic on the other hand does 

seem to influence exposure of cyclists and pedestrians. In-vehicle exposure is 
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highest while driving on highways and lowest on local roads. For cyclists and 

pedestrians, exposure on local roads tends to be higher compared to exposure 

when moving near major roads. In Flanders, cyclists on local roads are often 

mixed with motorized traffic and thus closer to the most important source of BC, 

while on major roads ‘cycle tracks’ are used to physically separate cyclists from 

faster (motor vehicle) traffic, resulting in lower exposures (de Hartog et al., 

2010b; Int Panis et al., 2010; Thai et al., 2008). Cycle tracks are always located 

within 30 m of the main road to which the concentration was attributed. 

Dedicated off-road bike paths without any motorized traffic, or small local roads 

are not included in the digital road network, and thus not included in the dataset 

studied here. However it is expected that exposure will be at background levels 

on these roads. Concentrations presented here for local roads, either urban or 

rural, are therefore slightly overestimated (appendix FIGURE A14). In urban 

areas exposure is higher compared to more rural areas, this holds for both 

motorists and for cyclists and pedestrians. In-traffic exposure increases with 

traffic intensities for all road users, although this increase is much steeper for 

motorists. In several studies it is shown that higher traffic intensities lead to an 

increase in concentrations inside vehicles, particularly because of the increase in 

the number of pollution sources and a reduction in the distances between the 

vehicles (Chan and Chung, 2003; Zagury et al., 2000). A deviation from the 

linear function between traffic flow and BC exposure, are highway entries and 

exits: they are categorized as ‘highway’ on the digital map, have low traffic 

intensities, but are nevertheless associated with high BC concentrations. 

Probable causes are the extra emissions during acceleration and the presence of 

a nearby highway with heavy traffic flows. The traffic flow – BC exposure 

function seems to flatten out on highways with very high traffic intensities at 

concentration levels of ~13,000 ng/m³, but this might be influenced by the 

lower number of observations at high traffic intensities. Overall, concentrations 

are always higher for motorists than for active travelers on roads with similar 

characteristics. 

 

Traffic intensity and timing of a trip are the main drivers for BC exposure during 

motorized transport. For active travelers, traffic intensity is not very predictive, 

probably caused by the greater distance of biking facilities to busy roads and 
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they are thus further away from the most important source of BC. Urbanization 

proves to be predictive in both models, reflecting regional background 

concentrations on top of the local contribution caused by traffic. Road type is not 

included in the models, but this variable is highly correlated to both traffic 

intensity and urbanization (TABLE 9). R² values are low because of the broad 

range in measured concentrations within each category, but on the other hand 

the models are capable of predicting average concentrations with high precision. 

The LUR-like models can be applied to estimate exposure in transport at a 

certain point in time, but they can also be used to estimate exposure during a 

complete trip.  

 

The results presented here summarize ‘external’ exposure of travelers and do 

not take into account inhaled doses: active travelers had a median exposure of 

3547 ng/m³ and motorists had a median exposure of 6146 ng/m³. This is 

remarkably higher than the average in-home exposure for the same 62 

volunteers (1255 ng/m³) (see chapter 3.2). Elevated exposure to BC comes at a 

cost: important health effects are associated with small increases in exposure, 

both over longer time periods and during short exposure peaks, e.g. in traffic. 

McCracken et al. (2010) found that an IQR increase in annual BC of 250 ng/m³ 

was associated with a 7.6% decrease (95% CI, –12.8 to –2.1%) in leukocyte 

telomere length, a marker for biological age and inversely associated with risk of 

cardiovascular disease (CVD). An IQR change in the 24-hour mean concentration 

(459 ng/m³) results in a 19% decrease (95% CI, -21 to -17%) in high 

frequency power when studying heart rate variability (Adar et al., 2007). BC 

averaged over 24 hours was strongly associated with exhaled nitric oxide, an 

acute respiratory inflammation biomarker: a 16.6% increase (95% CI, 14.1 to 

19.2%) per IQR increase in BC (4000 ng/m³) (Lin et al., 2011). Patel et al. 

(2010) found that an increase in exposure to BC with 1200 ng/m³ led to 

significant acute respiratory effects in adolescents. Long term exposure to BC 

(IQR increase of 800 ng/m³) was associated with a 3% increase in coronary 

heart disease (CHD) hospitalization and a 6% increase in CHD mortality (Gan et 

al., 2011).  
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This study has some strengths and weaknesses. Performing an analysis with 

GPS-data, inherently leads to at least two sources of error: signal and map 

(Marchal et al., 2005). The accuracy of the GPS signal can be influenced by the 

number and the constellation of satellites, and the built environment (Kerr et al., 

2011; Schuessler and Axhausen, 2009). When the GPS device is trying to get a 

fix, or physical structures block a clear view from the sky, e.g. in tunnels, a 

temporary interruption of the signal is probable. As pointed out by e.g. Morabia 

et al. (2009) and Beekhuizen et al. (2013), GPS signal errors in cities often are 

due to the urban canyon multipath-effect of tall buildings near the GPS receiver. 

If the number of visible satellites increases, e.g. more than 4 (cut-off value used 

in this study), the reliability of the signal improves. The inaccuracy of the road 

map is a second source of error. The digital road network regularly cuts off 

corners or oversimplifies neighborhoods with low traffic intensities; on most 

roads this error is limited to 30m. One of the consequences is that points are 

deleted because the nearest road is further than 30m, although the GPS position 

was correct. A potential improvement to the current data analysis is the use of 

more complex map matching algorithms instead of using the nearest road 

(Marchal et al., 2005). But although even if a person is not present on a road 

where he is mistakenly linked to, that person will be in close vicinity to this road 

and feel it's impact (e.g. on a bridge over a highway). Due to the 30m-

restriction, only a small portion of our data will be linked to a wrong road 

segment, and the errors will be limited. The signal, map and map matching 

errors do not influence our overall conclusions but they may reduce the power to 

detect subtle effects or interactions among predictors. Most GPS-studies are 

constrained by the use of a GPS logging device only (Steinle et al., 2013). Single 

trajectories need to be analyzed and annotated using semantic trajectories data 

mining techniques, while in this study the transport mode and trip motive were 

reported by the volunteers (Bohte and Maat, 2009; Schuessler and Axhausen, 

2009; Wu et al., 2011a). Modes were afterwards aggregated in two groups (i.e., 

car/bus, walk/bike) because average concentrations were similar and because of 

the common enclosure in a vehicle cabin; when taking into account breathing 

rates a disaggregated approach is advisable. 
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In our survey setup we gave priority to battery lifetime of the micro-

aethalometers by measuring on a lower time resolution, combined with an 

intermediate sampling rate for audible noise constraints. This resulted in a 

temporal resolution mismatch with the 1-second GPS data. As illustrated in 

FIGURE 22, immediate impacts on BC exposure, for example when changing 

from a local road to a highway, are blurred by the lower time resolution; 

therefore we needed more measurements to draw the same conclusions. A 

sensitivity analysis excluding BC measurements with less than 75% of GPS 

points on the same road type nevertheless showed very similar results 

(appendix FIGURE A20 and A21). Future research should focus on measuring air 

pollution with a higher temporal resolution to improve the spatial resolution, to 

narrow the concentration range in each category and to improve the model R². 

 

Impacts of the road environment on in-vehicle concentrations are immediate. 

There is no build-up of particles in a vehicle because of the fast exchange 

between indoor and outdoor air (Fruin et al., 2004). Without the recirculation 

setting switched on, the air inside a vehicle is renewed 63 times/h, but this may 

depend on ventilation settings, vehicle type and travel speed (Hudda et al., 

2012; Knibbs et al., 2009). People who are not enclosed in vehicles, but are 

walking and cycling experience a similar effect, making it beneficial for health to 

take a parallel but quieter route where the cycle track is preferably located away 

from traffic (Delgado-Saborit, 2012; Zuurbier et al., 2010). 

 

In conclusion, there exists a positive association between in-vehicle BC exposure 

and traffic intensity. In urban areas exposure of motorists and active travelers is 

higher compared to exposure in more rural areas; the same holds for highways 

versus local roads for motorists. In-vehicle exposure is highest while driving with 

speeds around 20 km/h and 100 km/h. There is no build-up of particles inside 

vehicles, but the duration of a trip is linked to the time spent on each road type. 

Traveling in traffic peak hours, increases exposure of all road users. Simple 

linear regression models can be built to predict exposure in transport based on 

widely available data. Because of the high variability of BC concentrations and 

the 5-min temporal resolution of the measurements, such models have a 

relatively low predictive power for specific conditions (low R²), but are 
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nevertheless very good in predicting average concentrations. On the other hand 

these regression models may still drastically improve personal exposure 

estimates because the concentrations in transport are much higher than 

residential concentrations. In future work we plan to use these estimates in 

combination with a classic LUR model to make integrated estimates of personal 

exposure based on activity-based models. 
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4. MODELING PERSONAL EXPOSURE 

 

  



138 

4.1 URBAN AND REGIONAL LAND USE REGRESSION MODELS FOR 

AIR POLLUTION EXPOSURE ASSESSMENT 

 

 

 

 

This chapter is partly based on work performed in: 

 

Van Poppel, M., Dons, E., Peters, J., Brabers, R., Damen, E., Daems, J., Van 

Laer, J., Berghmans, P., Int Panis, L., 2012. Metingen van ultrafijn stof in 

Vlaanderen op hotspot(s) voor de blootstelling aan verkeerspolluenten. VITO, p. 

220. 
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4.1.1 INTRODUCTION 

 

Exposure of a population to air pollution can be modeled by combining two 

datasets: predicted concentrations and time-activity patterns of individuals 

(Beckx et al., 2009a; Briggs, 2005; Int Panis, 2010). The latter can be obtained 

through large scale and lengthy questionnaires studying the time use of 

individuals in a population. Based on these revealed diaries probabilities can be 

assigned to individual decisions while building a diary: an individual with certain 

characteristics is working or not, decision on work location, length of a shopping 

activity, whether a trip is necessary, transport mode choice, etc. These so called 

activity-based models thus predict diaries of virtual agents (Davidson et al., 

2007; Kitamura et al., 2000). Nowadays GPS loggers are a less intrusive and 

relatively cheap way of effectively measuring revealed time-activity patterns and 

the activity space of real-life individuals (Wu et al., 2011a). The first dataset 

needed to estimate exposure, ambient air pollution, can be measured at 

selected locations, but in larger cohorts concentrations need to be modeled with 

geostatistical techniques or physico-chemical models. Dispersion models predict 

concentrations on a grid; in an urbanized region and for traffic-related 

pollutants, large grid cells (with sides of 100-3000m) are problematic because 

concentrations change very locally. In epidemiology, land use regression (LUR) 

models are often used to predict exposure on residential locations. This 

methodology is preferred over dispersion models because of its flexibility, good 

performance, and transparency. LUR models establish a link between air 

pollution measurements on fixed locations and geographical variables (Briggs et 

al., 1997; Hoek et al., 2008). Because continuous measurements of the official 

air quality network are not spatially dense enough, a purpose designed network 

is often set up to develop LUR models. Study areas range from smaller urban 

areas up to international LUR models (Beelen et al., 2009). In peer-reviewed 

literature, it is generally accepted that the transferability of LUR models between 

study areas is rather limited (Clougherty et al., 2008; Johnson et al., 2010; 

Smith et al., 2006). LUR models use area specific predictors, and they often 

differ from one region to another or between countries (e.g. distance to the 

shore, impact of altitude, percentage of diesel traffic in a country). Vienneau et 

al. (2010) compared LUR models for the Netherlands and Great Britain. They 
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conclude that cautiousness is warranted when transferring LUR models to other 

regions or when transboundary models are built. On the other hand, the 

performance of models based upon common data or applied in very similar 

areas is only slightly worse than models optimized with local data. An additional, 

but limited, measurement campaign may help to improve transferability of a 

LUR model (Briggs et al., 2000; Poplawski et al., 2009). Dijkema et al. (2011) 

did a comparable exercise, but they put their focus on the correspondence 

between an urban and a regional LUR model in the Amsterdam region. 

 

The aim of this study is to develop a LUR model for black carbon (BC) for the 

urbanized region of Flanders in Belgium. From the measurement campaign 

described in chapter 3, some fixed site measurements (21) are available, but 

these measurements were initially not intended to build a LUR model. More 

measurements (42) are available for a small part of the study area, namely for 

the city of Antwerp. These were collected in the framework of the HEAPS study 

with the explicit intention of building an urban LUR model (Van Poppel et al., 

2012a). Using both available datasets, it will be explored whether an urban 

model is capable of predicting regional concentrations, or whether a regional 

model can predict concentrations in the urban area with sufficient accuracy. 

Combining both datasets, either in a new LUR model with 63 measurements, or 

in an urban or rural LUR model with recalibration of the coefficients, are options 

that will be studied. 

BC is measured as this pollutant is highly relevant in the study area because of 

the high share of diesel cars. Moreover this pollutant is suspected to be 

responsible for important health effects (Janssen et al., 2011; WHO, 2012). 

Karner et al. (2010) showed that there are steep spatial gradients of BC near 

roads, so a model should be able to take these local differences into account. 
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4.1.2 MATERIALS AND METHODS 

 

4.1.2.1 Study area 

 

A regional LUR model will be developed for the Flemish Region, the northern 

part of Belgium, including the city of Brussels. The study area has a population 

of over 7 million, and a total area of 13,684 km². There are several larger cities 

in the area with 100,000 to 500,000 inhabitants and a population density of 

approximately 1000 inh/km², but also in between these cities the region is 

rather urbanized. The area is predominantly flat, and is situated along the North 

Sea in the west. Due to its central orientation in Europe, Flanders is one of the 

most important traffic hot spots in Western Europe. A peculiarity of the study 

area is the high share of diesel fueled passenger cars (62% in Belgium (NIS, 

2010)). A separate LUR model is developed for the city of Antwerp (1 million 

inhabitants, approximately 1000 km²) one of the largest cities in the study area.  

 

 

4.1.2.2 Air quality measurements 

 

Two independent BC monitoring campaigns were conducted: (i) 42 sites in 

Antwerp, majority of sites in the city center and 2 sites on a suburban/rural 

location, measurements made in May-June 2011 and November-December 

2011, during one week, all measurements in both seasons; (ii) 21 sites spread 

over Flanders, both in urban, suburban and rural environments, measurements 

made in May-July 2010 and December-February 2010-2011, during one week, 

repeated in a contrasting season on two locations. The first campaign was 

performed for the purpose of LUR modeling; the other covered residential 

locations of people participating in the personal monitoring study (chapter 3). 

 

Sampling sites were selected based on traffic intensity and population density in 

the neighborhood. This was done to ensure enough spatial variation in measured 

concentrations (Lebret et al., 2000), while ensuring that measurement sites are 

representative for the area where the final model will be applied (Wang et al., 

2012). Sites were grouped in four classes (TABLE 10; FIGURE 26): street 
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locations (N=13), urban traffic locations (N=25), urban background locations 

(N=11) and rural locations (N=14). All BC monitors were located on the facade 

of mainly residential buildings or on street lights. Aethalometers, type AE51 

(AethLabs, 2011), were placed in a weatherproof housing, and were mounted at 

a height of 2-3m. Aethalometers measured BC with a temporal resolution of 5-

min. Measurements with highly loaded filters (attenuation>75) or with an error 

signal were omitted (similar to the approach reported in chapter 3.2). 

 

TABLE 10: Definition of different location classes for sampling site selection 

S Street location Adjacent road > 10000 vehicles/day 

UT Urban location with 
important traffic influence 
within 300m 

Adjacent road < 10000 vehicles/day; less than 300m 
from a road > 10000 vehicles/day 

UB Urban location without 
important traffic influence 
within 300m 

Adjacent road < 10000 vehicles/day; more than 300m 
from a road > 10000 vehicles/day; population density 
> 2000 inhabitants/km² 

R Rural location Adjacent road < 10000 vehicles/day; more than 300m 
from a road > 10000 vehicles/day; population density 
< 2000 inhabitants/km² 

 

 

 

FIGURE 26: Study area with measurement campaign (i) (in extent rectangle) and 
campaign (ii) (large map), grouped by location class  
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Measurements were done simultaneously at 3 to 10 sites (mostly from a 

different type) during each week. Due to the limited availability of 

aethalometers, non-simultaneous measurements were re-estimated to account 

for relative differences in background concentrations. Continuous measurements 

at a fixed monitoring station were used for this, after checking for 

correspondence between the AE51 aethalometers and the MAAP (Multi-Angle 

Absorption Photometers) used in the official network (R²winter2010-2011=0.90; 

R²spring 2011=0.78; R²autumn 2011=0.89). TABLE 11 shows the BC concentrations 

measured on sites of the official air quality network throughout the monitoring 

periods. The correlation (R²) between concentrations measured in 2010 and 

2011 at 8 sites of the official air quality network was 0.91 with a slope of 1.03, 

indicating that year of sampling was probably not important (see also chapter 

4.2). Seasonal measurements were rescaled to represent annual average 

concentrations, and the annual concentrations were used as input in the LUR 

models. 
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TABLE 11: Period averaged hourly BC concentrations [µg/m³] measured during our campaigns at all measurement stations 

in the official monitoring network in Flanders measuring BC (at least 90% available data based on hourly measurements, 
unless indicated differently) 

Location 
ID 

Description Location 
type 

  Campaign (i) Campaign (ii) 

2010 (P25-
P75) 

2011 (P25-
P75) 

May 16, 2011 – 
June 28, 2011 
(P25-P75) 

November 15, 
2011 – 
December 20, 
2011 (P25-P75) 

May 2, 2010 – 
July 8, 2010 
(P25-P75) 

December 9, 
2010 – February 
25, 2011 (P25-
P75) 

42M802 Antwerpen-

Luchtbal 

Industrial 2.4 (1.1-3.0) 2.6 (1.1-3.3) 1.65 (0.80-1.97) 3.52 (1.18-4.37) 1.89 (0.89-2.31) 2.95 (1.35-3.87) 

42R801 Borgerhout Urban 3.0 (1.4-3.9) 2.9 (1.3-3.7) 1.84 (0.96-2.33) 3.89 (1.41-5.22) 1.96 (1.04-2.44) 3.43 (1.65-4.59) 

42R815 Zwijndrecht Industrial 2.2 (0.9-2.8) 2.2 (0.9-2.8) 1.26 (0.66-1.54) 3.25 (0.92-3.72) 1.53 (0.76-1.99) 2.71 (1.13-3.62) 

44M705 Roeselare-
haven 

Industrial 2.0 (0.8-2.5) 2.1 (0.7-2.8) 1.06 (0.40-1.38) 3.05 (0.88-3.64) 1.72 (0.82-2.20) 2.32 (0.95-3.05) 

40AB01 Antwerpen-
Boudewijnsluis 

Industrial 2.0 (0.8-2.5) 2.2 (0.8-2.8) 1.28 (0.63-1.52) 2.88 (0.91-3.54) 1.38 (0.69-1.71) 2.60 (1.15-3.48) 

40AL01 Antwerpen-
Linkeroever 

Suburban 1.8 (0.8-2.3) 1.9 (0.7-2.4) 1.03 (0.51-1.30) 2.64 (0.67-3.02) 1.30 (0.69-1.66) 2.19 (0.94-2.95) 

40SZ01 Zaventem Suburban 2.0 (0.9-2.6) 2.0 (0.9-2.5) 1.14 (0.64-1.44) 3.14 (1.08-3.51) 1.44 (0.73-1.77) 2.39 (1.15-3.25) 

40R833 Stabroek Suburban 1.7 (0.8-2.1)a 1.8 (0.8-2.3) 1.10 (0.61-1.39) 2.67 (0.83-3.23) 1.16 (0.53-1.47)a 2.14 (0.94-2.85) 

a Measurements starting from June 8, 2010 
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4.1.2.3 Geographical covariates 

 

Potential variables that may be correlated with measured BC concentrations 

include traffic variables, population variables, and land use variables (TABLE 

12).  

 

Traffic data is available from numerous datasets: detailed road maps, 

incomplete road maps with linked traffic intensities, road maps with information 

on heavy traffic. Detailed road maps are used to calculate total road length in 

buffers with different sizes. This map is also used to determine the distance to 

the nearest highway. Traffic intensity data originate from the activity-based 

traffic model FEATHERS built for Flanders and Brussels (Bellemans et al., 2010). 

Trips are considered as necessary if sequential activities are performed on 

different places. On a population level, these patterns result in origin/destination 

matrices that are assigned to a somewhat less detailed road network. Certain 

traffic variables are calculated for major roads only: these roads are defined as 

having a traffic intensity >10,000 veh/day. The AB model does not predict 

heavy traffic, but it includes heavy traffic from an external source as initial load 

on the road network, necessary for a realistic equilibrium assignment. Heavy 

traffic streams and fraction of heavy traffic on a route (based on automated 

traffic counts in the study area) are included in the LUR model development; 

these data are from a different source as the heavy traffic streams used in 

FEATHERS.  

 

Population variables from two sources were used. The first dataset contains 

static address information, and it is based on information from the national 

bureau of statistics. Secondly, the dynamic population density is calculated. 

Dynamic population density is also an output of the AB model: personhours in 

every subzone are estimated for every hour of the day. This metric takes into 

account realistic population densities, e.g. in industrialized areas people are 

present during the day although no one lives there, at night population density 

is thus zero. 
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Land use variables are compiled from the CORINE land cover dataset (EEA, 

2004), freely available from the EEA-website, and include build-up area, green 

area, industrial sites and (air)ports. 

If applicable, variables were computed in several circular zones around 

measurement sites. The size of buffers for land use variables can be larger than 

buffers for traffic variables, as traffic factors have a local effect on air quality 

(Hoek et al., 2008; Su et al., 2009) and land use variables are often more 

representative of background concentrations. The size of the buffers should also 

be based upon the decay of the modeled pollutant, i.e. wider for PM10 and 

narrower for estimates of diesel (Ryan and LeMasters, 2007; Su et al., 2009). 

Our study area has a short coastline, and therefore a variable denoting the 

distance to the sea corresponding to higher wind speeds could be added 

(Henderson et al., 2007; Wilton et al., 2010). Because there is only one 

measurement site near the coastline, this was considered to be insufficient to 

catch this phenomenon. As the study area is predominantly flat, distance to the 

shore does not reflect height differences (Wilton et al., 2010). Distance to shore 

was therefore not included in the models. 

 

 

TABLE 12: List of covariates 

Variable name Description Buffer sizes 

ROADLENGTH_XX Total road length in a buffer with size XXm 
[m] 

50, 100, 300, 500, 
1000 

D_HIGH Distance to the nearest highway [m]  

D_HIGH_LT1000 Distance to the nearest highway < 1000m a  

ADDRESS_XX Number of addresses in a buffer with size 
XXm 

50, 100, 300, 500, 
1000, 3000 

HDRES_XX High density residential in a buffer with size 
XXm (CORINE Class 111) [m²] 

100a, 300a, 500a, 
1000, 3000, 5000 

LDRES_XX Low density residential in a buffer with size 
XXm (CORINE Class 112) [m²] 

100, 300, 500, 1000, 
3000, 5000 

IND_XX Industrial or commercial units in a buffer 
with size XXm (CORINE Class 121) [m²] 

1000a, 3000, 5000 

Port_XX Port area in a buffer with size XXm 
(CORINE Class 123) [m²] 

3000, 5000 

Airp_XX Airport in a buffer with size XXm (CORINE 
Class 124) [m²] 

1000a, 3000, 5000 

UrbGr_XX Urban green in a buffer with size XXm 
(CORINE Classes 141, 142) [m²] 

300a, 500a, 1000a, 
3000, 5000 

NATURE_XX Natural land in a buffer with size XXm 
(CORINE Classes 141, 142, 211, 231, 242, 
243, 311, 312, 313, 322, 421, 511, 512, 
522) [m²] 

300a, 500, 1000, 
3000, 5000 
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PEOPLE_XX_WKDYx Number of people in a buffer with size XXm 

at hour x (WKDY weekday; WKND 
weekend) 

50, 100, 300, 500, 

1000, 3000 

Q_NEAR_WKDYx Traffic intensity (private cars) on the 
nearest road at hour x (WKDY weekday; 
WKND weekend) [veh/h] 

 

DIST_NEAR Distance to the nearest road [m] b  

D_NEAR1 1 / Distance to the nearest road  [1/m] b  

D_NEAR2 1 / (Distance to the nearest road)²  [1/m²] 
b 

 

QD_NEAR1_WKDYx Traffic intensity (private cars) on the 
nearest road at hour x / distance to the 
nearest road b 

 

QD_NEAR2_WKDYx Traffic intensity (private cars) on the 
nearest road at hour x / (distance to the 
nearest road)² b 

 

TRAFLOADXX_WKDYx Sum of (traffic intensity (private cars) at 
hour x * road length) in a buffer with size 
XXm 

50, 100, 300, 500, 
1000 

Q_NEAR_MAJOR_WK
DYx 

Traffic intensity (private cars) on the 
nearest major road at hour x (WKDY 
weekday; WKND weekend) [veh/h] c 

 

DIST_NEAR_MAJOR Distance to the nearest major road [m] c  

D_NEAR_MAJOR1 1 / Distance to the nearest major road  
[1/m] c 

 

D_NEAR_MAJOR2 1 / (Distance to the nearest major road)²  
[1/m²] c 

 

TRAFLOADMAJOR_XX
_WKDYx 

Sum of (traffic intensity on major roads 
(private cars) at hour x * road length of 
major roads) in a buffer with size XXm c 

50a, 100a, 300, 500, 
1000 

Q_NEAR_HEAVY Traffic intensity (heavy traffic) on the 
nearest road [veh/h] d 

 

QD_NEAR1_HEAVY Traffic intensity (heavy traffic) on the 
nearest road / distance to the nearest road 
d 

 

QD_NEAR2_HEAVY Traffic intensity (heavy traffic) on the 
nearest road / distance to the nearest road 
d 

 

TRAFLOAD_XX_HEAV
Y 

Sum of (traffic intensity (heavy traffic) * 
road length) in a buffer with size XXm d 

50a, 100, 300, 500, 
1000 

TRAFLOADHV_FRACT
ION_XX 

Fraction of heavy traffic in a buffer with 
size XXm e 

100, 300, 500, 1000 

TRAFLOADHV_FRACT
ION_XX_2 

Fraction of heavy traffic  squared in a 
buffer with size XXm e 

100, 300, 500, 1000 

a Variable is indicator variable 
b Minor roads are not included in the traffic intensity network. If the distance between the 
nearest road of the traffic intensity network and the detailed network is larger than 20m, 
the distance to the detailed network is selected as the distance to the nearest road. Traffic 
intensity on a road with unknown intensities is set to 500 veh/day. Hourly traffic 
intensities are calculated based on 500 veh/day and hourly factors as defined in 
http://www.tmleuven.be/project/car/Handleiding_CAR-Vlaanderen_v2.0.pdf (In Dutch). 
c Major roads are roads with annual average daily traffic of private cars > 10,000 vehicles 
d Heavy traffic only in Flanders (not in Brussels) 
e All data originate from the multimodal traffic model (traffic load of all traffic and traffic 
load of heavy traffic) 
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4.1.2.4 LUR model development 

 

Initially, the correlation between all potential predictor variables was calculated; 

if two variables were highly correlated (|r|>0.95), one of the variables was 

omitted to prevent multicollinearity in regression models (Henderson et al., 

2007). Variables correlated (|r|>=0.6) with the most significant variable in one 

category, were omitted, again to prevent multicollinearity issues in further 

stages of the LUR model development. Remaining variables were entered in a 

supervised forward stepwise regression; variables were selected based on the 

adjusted R². Only variables that are likely to contribute to BC concentrations 

were allowed in the model. It would be possible to develop statistically 

significant models but that clearly violate physical laws. This was avoided by 

choosing realistic covariates and by forcing selected coefficients to be consistent 

with a priori assumptions on the direction of effect (Johnson et al., 2010). 

Additional criteria that needed to be met include: the variable had to contribute 

at least 1% to the adjusted R²; and the direction of effect of variables already 

selected should not change when including an additional variable (Dijkema et 

al., 2011; Eeftens et al., 2012). One variable could be included in the final 

model in multiple buffer sizes; it was preferred to include the original nested 

buffers rather than using concentric adjacent rings (von Klot, 2011). Finally, all 

variables included in the model needed to have significant t-statistics (α=0.05) 

or they were removed from the model. Variance inflation factors (VIFs) were 

calculated to check for multicollinearity between variables (Beelen et al., 2013; 

Eeftens et al., 2012; Johnson et al., 2010). This procedure is similar to methods 

used in previous LUR studies (Eeftens et al., 2012; Henderson et al., 2007). 

 

In this chapter we discuss seven different LUR models: M1 to M7. Independent 

models were developed for the 2 datasets: a model based on repeated 

measurements from the first campaign on 42 sites in and around the city of 

Antwerp (M1); and a model based on 21 measurements from the second 

campaign spread over Flanders (M4). Additionally, both of these models were 

recalibrated with the results of the other measurement campaign by keeping the 

significant variables, but by reassessing the coefficients (M2, M5), in analogy 

with methods used by Briggs et al. (2000) and Poplawski et al. (2009). Instead 
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of using only the urban or regional dataset for recalibration of the model, both 

models were also reassessed using all 63 measurements as all those points are 

geographically situated in same the study area (M3, M6). The final model (M7) 

considered measurements from both campaigns as interchangeable and this 

model was built using all 63 measurements. All models developed (M1-M7) are 

validated against three datasets: 42 measurements from campaign (i), 21 

measurements from campaign (ii), and 63 measurements from both campaigns 

together. Leave-one-out cross-validation (LOOCV) is used to validate single 

models using (n-1) measurements by comparing the measurement at the left-

out site with the model prediction; this is repeated n times (Brauer et al., 2003; 

Hoek et al., 2008). 

 

 

4.1.3 RESULTS 

 

In the first campaign, including mostly urban sites, an annual average 

concentration of 2452 (±528) ng/m³ was measured. In the second campaign, 

consisting of measurements at 21 urban and regional sites in Flanders, the 

average concentration was lower: 1735 (±807) ng/m³ after rescaling. Minimum 

and maximum values for selected predictor variables are mostly comparable 

between the two campaigns (TABLE 13). As the second campaign also included 

several rural sites, the lowest concentrations are measured in this second 

campaign; the maximum concentration is comparable in both campaigns. 

 

 

TABLE 13: Minimum and maximum values for a selection of dependent and 
independent variables in both measurement campaigns (TRAFLOAD_50_HEAVY 
and UrbGr_1000 are indicator variables). 

Variable Campaign (i)  
mostly urban sites (N=42) 

Campaign (ii)  
regional and urban sites 
(N=21) 

Measured BC concentrations [1522; 4184] [846; 3865] 
TRAFLOAD_50_HEAVY [0; 1] [0; 1] 
TRAFLOADHV_FRACTION_100 [0; 0.28] [0; 0.08] 
ROADLENGTH_1000 [20,405; 64,003] [9809; 62,952] 

ADDRESS_50 [1; 53] [1; 47] 
UrbGr_1000 [0; 1] [0; 1] 
DIST_NEAR [1; 100] [1; 36] 
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The first model M1 is a classical LUR model using repeated measurements from 

42 sites, rescaled to represent annual average concentrations (campaign (i)). 

The R² of the model is 0.73, with a LOOCV R² of 0.46 (TABLE 14). This model 

consists of 4 significant variables, of which 3 are traffic variables (road length 

within 1000m, and heavy traffic variables in smaller buffers). There is no spatial 

autocorrelation in the residuals (Moran's I=-0.12, p=0.21). Models M2 and M3 

retain the significant variables of M1, but coefficients are re-estimated. This 

results in a negative effect of ‘fraction of heavy traffic’ which is counter-intuitive 

because increased heavy traffic emissions should result in increased 

concentrations. The heavy traffic-variables in model M2 lose their significance at 

the 95% level. Heavy traffic in 50m and the ‘fraction of heavy traffic in 100m’ 

both have inflated variance inflation factors (VIF=4.17) in model M2. Residuals 

show a rather dispersed pattern (Moran's I=-0.30, p=0.20). In model M3 all 

variables have the expected direction of effect. The R² and adjusted R² are 

similar to model M1, but the RMSE is larger due to the larger spread in 

concentrations. LOOCV R² is 0.63, which is higher than the validation R² of 

model M1.  

Model M4 is built using measurements at 21 sites from campaign (ii). Compared 

to M1, this model includes a land use variable, urban green in 1000m, and two 

traffic variables (road length within 1000m and fraction of heavy traffic in 100m; 

see TABLE 14). VIFs of the variables in models M4, M5 and M6 are well below 2. 

Model M4 shows a borderline significant negative spatial autocorrelation of the 

residuals, suggesting a dispersed pattern of the residuals. M4 has high R², 

adjusted R² and LOOCV R² values. The R² of model M5 is much lower 

(R²=0.54). All variables in models M5 and M6 have the expected direction of 

effect, although the effect sizes differ between models. 

Model M7, using 63 measurements from both campaigns, again consists of 4 

variables; most of them were also present in previous models. This model only 

includes traffic variables, although total length of roads in 1km is expected to be 

more representative for urbanization than for traffic. All variables have VIFs 

below 1.4 and the residuals show no spatial autocorrelation (Moran's I:-0.06, 

p=0.53). The difference between the R² and the validation R² is small; this also 

holds for the RMSE. 
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To further evaluate the performance of the LUR models, measured and modeled 

concentrations are compared. Models M1 to M7 are applied to all 63 points, and 

to the 42 measurements of the first campaign and the 21 measurements of the 

second campaign separately (TABLE 15, FIGURE 27). Models estimated with 21 

measurements are less efficient in estimating concentrations for the other 42 

sites, than for the 21 sites used to select significant variables. Model M1, based 

on 42 mostly urban sites, cannot predict concentrations for urban and regional 

sites in Flanders with enough reliability (R²=0.50). Model M2, with urban 

variables and recalibrated using measurements of the regional measurement 

campaign, has a low R² of 0.24 when reapplied to the 42 urban sites of the first 

campaign. It seems that the three significant variables from the regional model 

using 21 urban and rural sites, cannot capture enough variability necessary to 

accurately predict concentrations at many of the urban sites. Model M7, 

estimated using measurements on 63 sites, performs well in total and in both 

subsets. 
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TABLE 14: Overview of 7 LUR models built to model BC concentrations in Flanders 

 R² Adj 
R² 

RMSE LOOCV 
R² 

LOOCV 
RMSE 

LUR model a 

M1 Urban LUR model (42 
sites) 

0.73 0.70 290.15 0.46 384.47 cBC = 1242 + (619*TRAFLOAD_50_HEAVY) + 
(3960*TRAFLOADHV_FRACTION_100) + 
(0.015*ROADLENGTH_1000) + (8.8*ADDRESS_50) 

M2 Urban LUR model 
recalibrated with 21 
regional sites  

0.82 0.78 380.02 0.63 486.37 cBC = 156 + (709*TRAFLOAD_50_HEAVY) - 
(2396*TRAFLOADHV_FRACTION_100) + 
(0.066*ROADLENGTH_1000) - (31.7*ADDRESS_50) 

M3 Urban LUR model 
recalibrated with 63 sites 

0.74 0.72 375.59 0.63 429.82 cBC = 641 + (437*TRAFLOAD_50_HEAVY) + 
(4753*TRAFLOADHV_FRACTION_100) + 
(0.031*ROADLENGTH_1000) + (2.47*ADDRESS_50) 

M4 Regional LUR model (21 
sites) 

0.88 0.85 309.24 0.76 387.17 cBC = 385 + (0.052*ROADLENGTH_1000) - 
(740*UrbGr_1000) + 
(14214*TRAFLOADHV_FRACTION_100) 

M5 Regional LUR model 

recalibrated with 42 urban 
sites  

0.54 0.50 372.67 0.44 390.73 cBC = 1286 + (0.022*ROADLENGTH_1000) - 

(144*UrbGr_1000) + (7023*TRAFLOADHV_FRACTION_100) 

M6 Regional LUR model 
recalibrated with 63 sites 

0.71 0.69 397.12 0.67 407.35 cBC = 757 + (0.034*ROADLENGTH_1000) - 
(212*UrbGr_1000) + (7865*TRAFLOADHV_FRACTION_100) 

M7 Urban and regional site 
LUR model (63 sites) 

0.77 0.75 356.84 0.72 373.88 cBC = 812 + (0.031*ROADLENGTH_1000) + 
(4569*TRAFLOADHV_FRACTION_100) + 
(394*TRAFLOAD_50_HEAVY) - (8.06*DIST_NEAR) 

a Traffic load of heavy traffic in a buffer with radius 50m – indicator variable (TRAFLOAD_50_HEAVY), Fraction of traffic load that is heavy 
traffic in a buffer with radius 100m (TRAFLOADHV_FRACTION_100), Total road length in a buffer with radius 1km (ROADLENGTH_1000), 
Number of addresses in a buffer with size 50m (ADDRESS_50), Urban green in a buffer with size 1000m (UrbGr_1000), Distance to the 
nearest road (DIST_NEAR) 
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TABLE 15: Comparison of 7 different LUR models applied to regional and/or urban locations (Y=modeled; X=measured) 

 Campaign (i)  
mostly urban sites (N=42) 

Campaign (ii)  
regional and urban sites 
(N=21) 

Campaign (i) + (ii) 
regional and urban sites 
(N=63) 

Regression function R² Regression function R² Regression function R² 

M1 Urban LUR model (42 sites) Y = 0.73x + 667 0.73 Y = 0.39x + 1320 0.50 Y = 0.57x + 1042 0.67 

M2 Urban LUR model recalibrated with 21 
regional sites  

Y = 0.77x + 919 0.24 Y = 0.82x + 308 0.82 Y = 0.96x + 329 0.52 

M3 Urban LUR model recalibrated with 63 
sites 

Y = 0.77x + 570 0.67 Y = 0.57x + 737 0.70 Y = 0.74x + 572 0.74 

M4 Regional LUR model (21 sites) Y = 1.17x - 84 0.50 Y = 0.88x + 217 0.88 Y = 1.12x - 35 0.68 

M5 Regional LUR model recalibrated with 
42 urban sites 

Y = 0.54x + 1131 0.54 Y = 0.40x + 1267 0.81 Y = 0.52x + 1147 0.69 

M6 Regional LUR model recalibrated with 
63 sites 

Y = 0.68x + 791 0.52 Y = 0.57x + 746 0.82 Y = 0.71x + 650 0.71 

M7 Urban and regional site LUR model (63 
sites) 

Y = 0.83x + 420 0.69 Y = 0.60x + 705 0.77 Y = 0.77x + 516 0.77 
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FIGURE 27: Results of 7 different LUR models applied to campaign (i) (42 mostly 
urban sites) and campaign (ii) (21 regional and urban sites)  
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4.1.4 DISCUSSION 

 

In this chapter, 7 different land use regression models for BC were developed 

and validated. All models, M1-M7, were estimated using either 42 mostly urban 

measurements (campaign (i)), 21 regional and urban measurements (campaign 

(ii)), or both datasets together. It was tested whether the LUR model with 

mostly urban measurement sites was able to predict concentrations in other 

cities and on more rural locations. Alternatively, it was examined whether 

measurements at just 21 sites in a relatively large area, would suffice to predict 

concentrations in a small urban zone located inside the larger study area.  

 

The transferability of LUR models from one study area to another is enhanced 

when covariates originate from the same dataset in the different areas (Hoek et 

al., 2008; Poplawski et al., 2009; Vienneau et al., 2010). In our study area, all 

variables met this precondition (traffic intensities, road network, land use, 

address density); moreover the urban area is geographically situated inside the 

regional study area. BC was measured using the same study protocol in both 

measurement campaigns: outdoor measurements with aethalometers type AE51 

at the facade of residences, for 7 consecutive days, on a 5-min time resolution. 

A drawback of the second sampling campaign is the limited number of locations 

(N=21) and the fact that only on 2 locations the weekly measurement was 

repeated in a different season. In the first campaign with many urban sites, all 

locations were measured twice: once in spring/summer and once in 

autumn/winter. The first campaign was executed between May 2011 and 

December 2011, the second campaign between May 2010 and February 2011; 

therefore attention should be paid to potential changes in background 

concentrations over the years, although this is not considered a major issue in 

this study (TABLE 11). Taking these factors into account, it should be possible to 

merge both datasets into one larger dataset with 63 observations.  

 

A list of potential covariates was composed with traffic, land use and population 

variables. Variables were selected based on a literature review on significant 

variables in LUR models for BC, black smoke, elemental carbon, or absorbance 

of PM (TABLE 16). Traffic variables are dominant in most published LUR models; 
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a population variable is often included; whereas land use variables only 

sporadically turn out to be significant predictors. Meteorological variables are 

included in one model (Gryparis et al., 2007), ‘season’ in another one (Levy et 

al., 2010). Traffic variables are often  included at short distances of 50-100m, as 

the effects of traffic are very local, especially in Europe (Hoek et al., 2008). 

Traffic variables in larger buffers will be more representative of the degree of 

urbanization rather than of local traffic (Beelen et al., 2013). Performance of the 

models reported in literature ranges from R²=0.39 to R²=0.82; the results 

achieved in this study are at the higher end of this interval. Most models are 

based on 40 or less measurement sites, while several models are built with 

measurements on just 25 sites. A minimum of 40-80 sites has been suggested 

for estimating robust LUR models depending on the size and diversity of the 

study area (Hoek et al., 2008); with a lower number of measurement sites the 

LOOCV R² will be an overestimation of the hold-out validation R² (Basagaña et 

al., 2012; Wang et al., 2012). To minimize problems of over fitting, the set of 

potential covariates should be limited, or an a priori selection should be made, 

e.g. by removing highly correlated variables (Basagaña et al., 2012; Eeftens et 

al., 2012). Preference should be given to models with at least 40 measurement 

sites, in this study this excludes models M2, M4, M5, and M6. 

Model M1 was capable of predicting concentrations at sites outside of the urban 

region with an acceptable accuracy (R²=0.50, compared to LOOCV R²=0.46). 

Unfortunately, lower concentrations, in this case on rural locations, are 

overestimated because of the absence of rural sites in campaign (i). This was 

also reported by Dijkema et al. (2011) when applying a city specific LUR model 

for Amsterdam to rural sites. The use of model M1 would lead to an 

overestimation of BC concentrations in rural areas, affecting lots of people in 

Flanders. Utilizing campaign (ii) to validate model M1 or campaign (i) to validate 

model M4 can be considered as an external and independent validation, but 

while taking into account that the validation dataset consists of sites with partly 

different characteristics than the calibration dataset. Local recalibration of 

models M1 and M4 with respectively measurements from campaign (ii) and 

campaign (i) (M2 and M5) improves the performance of the original model in the 

new study area. In this study though, a model that performs well in both urban 

and regional areas, and can reproduce measurements from both measurement 
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campaigns is necessary. Multiple variables in models M2, M3 and M5, lose their 

significance at the 95% level; this corresponds to observations from Poplawski 

et al. (2009) when transferring a LUR model from Vancouver to Seattle and 

Victoria. Model M3 and model M7 are very much alike, with M7 having slightly 

better performance and validation criteria. In internal LOOCV, the percentage of 

explained variability was very close to the model R², suggesting good 

applicability of the model to unmeasured locations. The variable ‘Addresses 

within 50m’ is not significant anymore in model M3, and is replaced by ‘distance 

to the nearest road’ in model M7 resulting in a better model. 

 

In our study set up, both campaigns were geographically overlapping, but one 

campaign was centered around an urban area, while the other also contained 

rural and regional sites. Ideally, one integrated monitoring campaign in Flanders 

with at least 40 measurements at representative sites should be aimed at. 

However purpose-designed monitoring campaigns are expensive and using 

available data proved to be a good alternative. Measurements took place in 

consecutive years, but background concentrations remained stable over two 

years. After rescaling of the non-simultaneous measurements, there was no 

apparent reason why not to combine measurements from both measurement 

campaigns into one dataset. Developing a new LUR model based on 63 

measurements is therefore preferred over the use of an existing urban LUR 

model. It was already shown in literature that transferability is unpredictable 

and other variables might be more predictive for a new study area. 

 

In the remainder of this book we will continue the work towards an integrated 

exposure model by designing a LUR model applicable to the whole study area of 

Flanders. 
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TABLE 16: Land use regression models for BC or correlated pollutants (PM2.5 absorbance – PM2.5 abs, Elemental Carbon - EC, 

Black Smoke - BS) 

Author Pollutant Number of 
measurement 
sites 
 

Study area Predictor variables Model performance 

(Gryparis et 
al., 2007) 
 

BC 30 (BC outdoor) 
+ 15 (BC 
ambient) + 23 
(EC outdoor) 

Boston, 
Massachusetts, 
USA 

- Meteorology (e.g., wind speed, temperature) 
- Traffic density within a 100-m radius 
- Population density 
- Distance to nearest major roadway 
- Percent urbanization 
- BC concentrations at a central monitor 
- Other (e.g., year, day of the week, longitude, 
latitude)  

R²=0.82 

(Brauer et 
al., 2008) 

 

BC 39 Vancouver, 
British Columbia, 

Canada 

- Length of major roads within a 100-m radius 
- Distance to nearest highway 

- Area of industrial land within a 750-m radius 

R² = 0.56 

(Brauer et 
al., 2003) 

PM2.5 
abs 

40 
 
 
 
40 
 
 
 
42 

Netherlands 
 
 
 
Munich, Germany 
 
 
 
Stockholm 
County, Sweden 

- Number of high-traffic roads in 250-m buffer 
- Household (address) density in 300-m buffer 
- Distance major road 
- Region 
- Traffic load (50-250m) 
- Traffic load (50m) 
- Population density (300m) 
- Population density (300-5000m) 
- Traffic flow on nearest road 
- Population density (1000-5000m) 

R²=0.81  
 
 
 
R²=0.67  
 
 
 
R²=0.66  

(Hochadel et 
al., 2006) 

PM2.5 
abs 

40 North Rhine-
Westphalia, 
Germany 

Model (a): homogenous rural area 
- Daily traffic in 250-m radius 
- Maximum traffic intensity in 50-m radius 
- Distance to highway 
Model (b): range of urbanization degrees & traffic 
densities 
- Daily traffic heavy vehicles (100m-10km) 
- Daily traffic in 100m radius 
- Distance to highway 

R²=0.65 
 
 
 
R²=0.82 
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(Morgenstern 

et al., 2007) 
 

PM2.5 

abs 

40 Munich, Germany - Household density (2500-5000m) 

- Distance to nearest federal roads 
- Land coverage factor (100-250m) 
- Length of county roads (0-1000m) 

R²=0.42 

 

(Henderson 
et al., 2007) 

PM2.5 
abs 

25 Vancouver, 
British Columbia, 
Canada 

- Length of highways in 1000-m radius 
- Length of major roads in 100-m radius 
- Distance to highway 
- Open area in 500-m radius 
- Truck density in 1000-m radius 

R²=0.39 (model 
with first 4 
variables) 
R²=0.41 (model 
with ‘truck density’ 
variable) 

(Levy et al., 
2010) 

PM2.5 
abs 

44 Boston, 
Massachusetts, 
US 

- ln(EC) concentrations at a central monitor * 
cooling season 
- Roadway length in 200-m radius * % hours of 
still winds 
- Cooling season 

R²=0.52 

(Eeftens et 
al., 2012) 

PM2.5 
abs 

20 (for 18 study 
areas)  
40 (for 2 study 
areas) 

Europe - Traffic load 
- Traffic load of heavy traffic 
- Road length 
- Land use 

R²=0.56-0.97 
 

(Clougherty 
et al., 2013) 

PM2.5 
abs 

155 New York City, 
New York, US 

- Concentration at a reference site 
- Truck traffic in 1-km radius 
- Number of oil-burning units in 200-m radius 
- Area of industrial land within a 1-km radius 
- Kernel-weighted traffic within 100m 

R²=0.65 

(Beelen et 
al., 2007) 

BS 23 Netherlands - (Number of inhabitants/1000) in a 1000-m radius 
- Region 
- Traffic intensity in a 100-m radius 

R²=0.59 

(Carr et al., 
2002) 

EC 34 Munich, Germany - Traffic intensity in 50-m radius 
- Traffic intensity between 50m and 300m 
- Traffic jam in 50-m radius 
- Traffic jam between 50m and 300m 

R²=0.80 

(Ryan et al., 
2007) 

EC  24 Cincinnati, Ohio, 
USA 

- Elevation 
- Avg daily truck count on major roads within 400-
m radius 
- Length of bus routes within 100-m radius 

R²=0.75 
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4.2 MODELING TEMPORAL AND SPATIAL VARIABILITY OF 

TRAFFIC-RELATED AIR POLLUTION: HOURLY LAND USE 

REGRESSION MODELS FOR BLACK CARBON 

 

 

 

 

This chapter is based on: 

 

Dons, E., Van Poppel, M., Kochan, B., Wets, G., Int Panis, L., 2013. Modeling 

temporal and spatial variability of traffic-related air pollution: Hourly land use 

regression models for black carbon. Atmospheric Environment 74, 237-246. 
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4.2.1 INTRODUCTION 

 

Black carbon (BC) is the dark carbonaceous component of particulate matter 

(PM). It was recently implicated in global warming (Jacobson, 2002; Shindell et 

al., 2012) and as a key component in the health effects associated with PM 

exposure (Janssen et al., 2011; von Klot et al., 2011). Exposure to BC is very 

variable in space and time and specific locations and activities may contribute a 

large share of total exposure (see chapter 3.1 and 3.2). Hence epidemiological 

studies of BC need to take into account exposure at different indoor and outdoor 

locations other than the home address. Using atmospheric dispersion models to 

achieve this, comes at a large cost in times of data collection, model set-up and 

computing times (Beckx et al., 2009c; Beckx et al., 2009d) and given the need 

for an extremely high spatial resolution, only few have been built for BC 

(Lefebvre et al., 2011). 

Land use regression (LUR) modeling is a convenient statistical technique often 

used to determine exposure to air pollutants in epidemiological studies. In short, 

a LUR model tries to predict concentrations measured at 20 to 100 monitoring 

stations, by using traffic, land use or population density parameters as 

explanatory variables in a multiple linear regression model (Briggs et al., 1997; 

Hoek et al., 2008; Jerrett et al., 2005a). Once the model is developed, 

concentrations can be determined for any other location in the study area. Most 

LUR models consider annual average concentrations. 

In epidemiological studies, time-activity diaries are used in combination with 

LUR models to estimate exposure: concentrations are determined at each 

location visited throughout the day, weighted for the time spent at each location 

(Ryan et al., 2008; Setton et al., 2011). A critique to this approach is that, as 

concentrations vary over a day, 24h-averages are used instead of real-time 

concentrations. Exposure at home tends to be overestimated (because people 

are at home during night hours) and exposure at work locations is 

underestimated (people are at work during the day) (Dhondt et al., 2012a). This 

is especially relevant for traffic-related air pollutants that are highly variable in 

time and space, such as BC or NO2 (nitrogen dioxide). The aim of this study is to 

build hourly LUR models for BC by using both high-resolution monitoring and 

high-resolution covariates to better capture exposure at different times and 
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locations. In the recent past, efforts have been made to incorporate a time-

resolution into LUR models. The most straightforward way being the application 

of a temporal trend observed at a fixed monitoring station to the LUR predictions 

(Gan et al., 2011; Nethery et al., 2008b; Slama et al., 2007). Secondly, a 

temporal resolution can be introduced into a LUR model by including a dummy 

variable reflecting different time periods (e.g. season (Clougherty et al., 2009; 

Crouse et al., 2009), month (MacIntyre et al., 2011), weekday/weekend (Noth 

et al., 2011), day of the week (Maynard et al., 2007)). These approaches 

assume the same temporal trend at every site, whereas it is expected that 

during the day BC concentrations at street-locations will fluctuate much more 

than concentrations at background locations. Another approach is to recalibrate 

an existing LUR model with new measurements at the same monitoring stations 

to reflect different time periods (Mölter et al., 2010b; Wang et al., 2013), or to 

allow that model variables and coefficients change over different time periods 

and build several unique models (Gulliver et al., 2011b). 

 

 

4.2.2 MATERIALS AND METHODS 

 

4.2.2.1 BC measurement data 

 

Continuous BC measurements were performed at 63 fixed locations on a 5-min 

time base. Measurement sites were chosen at building facades or on street 

lighting (height approximately 2-3m), using aethalometers model AE51 

(AethLabs, 2011) in a weatherproof housing (appendix FIGURES A22 and A23). 

Twice or three times a week filters were replaced to prevent saturation of the 

filter strip. During sampling site selection, sites were grouped in 4 classes to 

ensure enough variation in expected concentrations (13 street sites, 25 urban 

traffic sites, 11 urban background sites, 14 rural sites; definitions in TABLE 10 

(chapter 4.1). A first set of measurements consisted of BC measurements at 21 

sites, spread over the Flemish region in Belgium (FIGURE 28). Both urban and 

rural sites were included in this monitoring campaign. Measurements were made 

either in May-July 2010, or in December 2010-February 2011. On two sampling 

locations measurements took place in both seasons. A second campaign 
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consisted of measurements on 40 urban and 2 suburban locations (FIGURE 28). 

The measurements lasted for one week, and were repeated in a contrasting 

season (May-June 2011, November-December 2011). The second campaign was 

performed for the purpose of LUR modeling; the other covered residential 

locations of people participating in a personal monitoring study.  

 

 

FIGURE 28: Study area Flanders with 63 measurement sites. Red dots indicate 
the 42 locations of the urban measurement campaign; the 21 locations of the 
regional measurement campaign are indicated by green triangles. 

 

 

Measurements are too few to derive average concentrations over each hour of 

the week (i.e. 168 hours);local events would significantly influence the hourly 

concentration. Therefore 5-min measurements were aggregated to 24 hourly 

values for weekdays and 24 values for weekend days (appendix FIGURE A24). 

Because not all measurements were done simultaneously, hourly measurements 
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from a reference monitor from the official air quality network were used to 

rescale the measurements based on variations in background concentrations 

(ratio of the measurement hour and the average concentration on that hour 

during the whole measurement period (measurement period either Summer and 

Winter 2010, or Summer and Winter 2011)). Air quality in 2010 and 2011, and 

in both summer and winter seasons was comparable; this was checked by 

consulting concentrations measured at 8 monitoring stations of the official air 

quality network (TABLE 11, chapter 4.1). Seasonal measurements were not 

analyzed separately, and only one annual average or hourly average 

concentration per location was used as dependent variable in the model 

development stage, summing to 63 sites. 

 

 

4.2.2.2 GIS covariates 

 

Both static and dynamic variables are used in this study to build hourly LUR 

models.  

- Traffic variables: Hourly traffic streams are derived from the activity-based 

model for Flanders, FEATHERS (Bellemans et al., 2010). Hourly values are 

summed to derive daily traffic volumes. Heavy duty traffic is not included in 

FEATHERS; traffic streams of heavy goods vehicles originate from the 

Flemish multimodal traffic model (base year 2007). Detailed road maps are 

used to calculate total road length in buffers. 

- Population variables: Population density and address density are two distinct 

layers. Address density is a point layer with static information on addresses. 

Population density originates from the FEATHERS model: for each subzone 

the size of the population present in that subzone is modeled for each hour. 

Population in buffers is then area-weighted. 

- Land use variables: CORINE land cover data (EEA, 2004) are used for land 

use variables (base year 2000). 

Altitude / elevation data are not collected since there are no major height 

differences in Flanders (<150m). Meteorological variables were not included 

because they are not readily available in the study area, although some studies 

indicate that meteorology can cause a small but significant improvement in LUR 
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models (Arain et al., 2007; Wilton et al., 2010). Smaller buffer sizes are chosen 

for traffic variables and larger buffer sizes for land use variables. Variables are 

required to have values different from zero for at least 45% of locations; 

otherwise the variable is transformed into a binary indicator variable. If over 

90% of the values for a variable equal zero, that variable is deleted. A complete 

list of predictor variables is included in TABLE 12 (chapter 4.1). All GIS 

calculations were performed in ArcGIS 9.3. 

 

 

4.2.2.3 Model development algorithm 

 

There is not yet a universal procedure to develop a LUR model, meaning that 

another procedure could lead to a more predictive model. The procedure 

followed in this study, is a combination of methods used by Henderson and 

others (2007) and Eeftens and others (2012). In step 1 the correlation between 

predictor variables is calculated; variables that are highly correlated are omitted 

(|r|>0.95), i.e. the variable that shows the least correlation with the measured 

concentration. Secondly, the independent variable with the highest correlation 

with the dependent variable in each sub-category is identified. If other variables 

in the same sub-category are correlated (|r|≥0.6) with the most highly ranked 

variable, they are removed. Remaining variables are entered in a supervised 

forward stepwise regression, with selection criterion ‘adjusted R²’. Other criteria 

that need to be met: the variable has to contribute at least 1% to the adjusted 

R²; coefficients are consistent with a priori assumptions (direction of effect); the 

direction of effect of variables already selected does not change (Dijkema et al., 

2011; Eeftens et al., 2012). As a final step, all variables with insignificant t-

statistics (α=0.05) are removed. The final equation is of the form BC = β0 + 

β1X1 + β2X2 + … + βxXx. 

 

Hourly LUR models are developed using multiple approaches. A first option is to 

include dummy variables in a LUR model representing different hours of the day 

(DM – Dummy model). Therefore the input dataset is transformed into a dataset 

with 3005 cases (63 sites x 48h, excluding 19 missing hours). Weekday hour 0 

is chosen to be the reference hour and not included in the model, the other 47 
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hourly dummy variables are forced into the model. The model is then estimated 

according to the selection criteria used for the annual model. The second 

method to derive hourly LUR models is to use static covariates and hourly 

concentration measurements, but building different hourly models instead of one 

annual model. Models can be developed by forcing the predictor variables from 

the annual model into the hourly models and by using the hourly concentration 

measurements for the prediction of the coefficients (HM1 – Hourly model 1). 

This technique was already proposed by Briggs and others (Briggs, 2005; Briggs 

et al., 2000) to develop LUR models for different seasons, and applied by Mölter 

and others (2010b). A similar approach develops models, independent of each 

other, by changing the dependent variable to reflect different hours of the day; 

but, in contrast with the previous method, significant variables may vary from 

hour to hour (HM2 – Hourly model 2). If dynamic variables (i.e. variables that 

change on an hourly basis) are available, they can be used instead of the static 

variables (HM3 – Hourly model 3). Predictor variables representing land use 

categories or road length will be constant over different hours; traffic intensity 

and population density will change during the day and can be predicted by an 

activity-based model (Beckx et al., 2009d). In this study we use predictions of 

the Flemish activity-based model FEATHERS (Bellemans et al., 2010). Instead of 

just replacing each static variable with its dynamic complement, the LUR model 

was estimated all over again to permit changes in other variables of the model 

or to omit the dynamic variable if it is no longer significant. Lagged effects, i.e. 

the impact of emissions of a previous hour on current concentrations, were also 

considered. 

SAS 9.2 was used for model development. 

 

 

4.2.3 RESULTS 

 

4.2.3.1 Environmental sampling 

 

Observed annual average concentrations ranged from 846 ng/m³ to 4184 

ng/m³, with a mean value of 2213 ng/m³ (TABLE 17). The highest concentration 

was measured during the urban measurement campaign, and the lowest 
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concentration during the regional campaign. The street site with the lowest 

mean concentration (1034 ng/m³) is further away (approximately 20m) from 

the adjacent road than other street sites, which explains lower concentrations. 

One urban traffic site with elevated concentrations is identified to have a high 

fraction of heavy traffic from a nearby factory passing through the street, yet 

the total traffic intensity is not exceeding 10,000 veh/day. There is significant 

spatial autocorrelation with elevated concentrations clustered in urban areas 

(Moran's I = 0.21; p<0.05). 

 

 

TABLE 17: Results of BC sampling [ng/m³] at four different location types 

 
N Mean Median StdDev Min Max 

Street 13 2654 2713 766 1034 3828 

Urban Traffic 25 2417 2363 660 1327 4184 

Urban Background 11 2224 2212 297 1884 2954 

Rural 14 1433 1464 308 846 2069 

 

 

Valid hourly concentrations are obtained at all 63 locations on weekdays 

(appendix TABLE A10). On one site, measurements are missing for weekend 

days from midnight through 5 p.m., on another location measurements are 

missing for weekend days at 11 p.m.; both gaps are caused by instrument 

failure. Highest hourly concentrations are measured on street sites, with 

concentrations of nearly 10,000 ng/m³. The variability of spatial patterns during 

the day was explored and it appeared that the diurnal pattern changes when 

considering different locations (appendix FIGURE A25): a traffic site has high 

concentrations on traffic peak hours and low background concentrations at night 

(camelback pattern); a rural site has uniformly low concentrations. This also 

appeared from the Spearman rank correlation coefficients: on weekdays 

between 7 a.m. and 10 p.m. correlations are larger than 0.6, but at night 

coefficients even turn negative. In the weekend the pattern is dispersed all day 

long. This finding implies that annual LUR models are not sufficient to capture 

intra-day variation in BC concentrations. 
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4.2.3.2 Annual LUR model for BC 

 

TABLE 18 shows the intercept and coefficients of the LUR model for BC based on 

annual average concentrations at 63 monitoring sites. R² of the model is 0.77. 

The RMSE (356.84 ng/m³) is approximately half the standard deviation (714.68 

ng/m³) of the monitoring data, comparable to results presented by Mölter and 

others (2010b). Only traffic variables enter this model. Heavy duty traffic is 

influential in small buffers; total road length determines BC concentration in 

buffers with radius 1km. Variance inflation factors (VIF) are well below 3 

indicating only limited collinearity (Eeftens et al., 2012; Johnson et al., 2010). 

Residuals show no spatial autocorrelation (Moran's I = -0.06; p=0.53) (Hoek et 

al., 2008; Ross et al., 2007). The model is validated using leave-one-out cross-

validation (Brauer et al., 2003; Hoek et al., 2008); this results in a cross-

validation R² of 0.72 and RMSE of 374 ng/m³ (appendix FIGURE A26). 

 

 

TABLE 18: Annual LUR model for BC [ng/m³] (R²=0.77; Adj R²=0.75; 
RMSE=356.84; highest Cook's D=2.58) 

Variablea Estimate StdErr tValue Probt VIFb Variable range 

Intercept 811.67 150.13 5.41 0.00* -  

ROADLENGTH_1000 0.03 0.00 10.28 0.00* 1.024 9809 – 64,003 

TRAFLOADHV_FRACTION_100 4569.04 1286.25 3.55 0.00* 1.327 0 – 0.36 

TRAFLOAD_50_HEAVY  393.99 112.98 3.49 0.00* 1.330 0 – 1 

DIST_NEAR -8.06 3.14 -2.56 0.01* 1.041 0.6 – 100.8 

* significant at 0.05 
a Total road length in a buffer with radius 1km (ROADLENGTH_1000), Fraction of traffic 

load that is heavy traffic in a buffer with radius 100m (TRAFLOADHV_FRACTION_100), 
Traffic load of heavy traffic in a buffer with radius 50m – indicator variable 
(TRAFLOAD_50_HEAVY), Distance to the nearest road (DIST_NEAR) 
b Variance Inflation Factor 

 

 

4.2.3.3 DM - Dummy model 

 

In the model using dummy variables only two variables are included: total road 

length within 1km, and traffic load of heavy traffic in a buffer with radius 50m 

which is also a dummy variable. Both variables are significant predictors in the 

annual LUR model; the other two variables from the annual model do not meet 
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the criterion of adding at least 1% to the adjusted R², although they are 

significant at the 5% level and meet predefined conditions concerning the 

direction of effect . The DM LUR model has an R² of 0.44, while the RMSE is 

785.64 ng/m³ (TABLE 19). The RMSE is smaller than the standard deviation of 

the hourly measurements (1036.6 ng/m³). 

 

 

TABLE 19: LUR model for BC [ng/m³] with ‘hour’ as a dummy variable 
(R²=0.435; Adj R²=0.426; RMSE=785.64; Cook's D<1 for all observations) – DM 

Variablea Estimate StdErr tValue Probt VIFb Variable range 

Intercept 527.34 106.99 4.93 0.00* -  
ROADLENGTH_1000 0.02 0.00 23.42 0.00* 1.008 9809 – 64003 
TRAFLOAD_50_HEAVY 447.04 31.30 14.28 0.00* 1.008 0 – 1 
WKDY1 -257.92 139.98 -1.84 0.07 1.958 0 – 1 
WKDY2 -457.85 139.98 -3.27 0.00* 1.958 0 – 1 
WKDY3 -483.21 139.98 -3.45 0.00* 1.958 0 – 1 
WKDY4 -454.27 139.98 -3.25 0.00* 1.958 0 – 1 
WKDY5 -186.01 139.98 -1.33 0.18 1.958 0 – 1 
WKDY6 355.79 139.98 2.54 0.01* 1.958 0 – 1 

WKDY7 892.36 139.98 6.37 0.00* 1.958 0 – 1 
WKDY8 1267.74 139.98 9.06 0.00* 1.958 0 – 1 
WKDY9 749.18 139.98 5.35 0.00* 1.958 0 – 1 
WKDY10 554.41 139.98 3.96 0.00* 1.958 0 – 1 
WKDY11 461.49 139.98 3.30 0.00* 1.958 0 – 1 
WKDY12 365.14 139.98 2.61 0.01* 1.958 0 – 1 
WKDY13 246.89 139.98 1.76 0.08 1.958 0 – 1 
WKDY14 359.80 139.98 2.57 0.01* 1.958 0 – 1 
WKDY15 738.84 139.98 5.28 0.00* 1.958 0 – 1 
WKDY16 1047.44 139.98 7.48 0.00* 1.958 0 – 1 
WKDY17 1473.00 139.98 10.52 0.00* 1.958 0 – 1 
WKDY18 1439.28 139.98 10.28 0.00* 1.958 0 – 1 
WKDY19 1347.90 139.98 9.63 0.00* 1.958 0 – 1 
WKDY20 1056.67 139.98 7.55 0.00* 1.958 0 – 1 
WKDY21 887.31 139.98 6.34 0.00* 1.958 0 – 1 
WKDY22 799.27 139.98 5.71 0.00* 1.958 0 – 1 
WKDY23 469.90 139.98 3.36 0.00* 1.958 0 – 1 
WKND0 542.63 140.54 3.86 0.00* 1.943 0 – 1 
WKND1 370.92 140.54 2.64 0.01* 1.943 0 – 1 
WKND2 -28.91 140.54 -0.21 0.84 1.943 0 – 1 
WKND3 -234.19 140.54 -1.67 0.10 1.943 0 – 1 
WKND4 -307.28 140.54 -2.19 0.03* 1.943 0 – 1 
WKND5 -212.78 140.54 -1.51 0.13 1.943 0 – 1 
WKND6 -85.61 140.54 -0.61 0.54 1.943 0 – 1 
WKND7 -137.58 140.54 -0.98 0.33 1.943 0 – 1 
WKND8 -176.82 140.54 -1.26 0.21 1.943 0 – 1 
WKND9 54.17 140.54 0.39 0.70 1.943 0 – 1 
WKND10 -85.63 140.54 -0.61 0.54 1.943 0 – 1 
WKND11 -834.82 140.54 -5.94 0.00* 1.943 0 – 1 
WKND12 -409.00 140.54 -2.91 0.00* 1.943 0 – 1 
WKND13 -90.11 140.54 -0.64 0.52 1.943 0 – 1 
WKND14 -77.28 140.54 -0.55 0.58 1.943 0 – 1 
WKND15 -550.33 140.54 -3.92 0.00* 1.943 0 – 1 
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WKND16 184.78 140.54 1.31 0.19 1.943 0 – 1 

WKND17 345.73 140.54 2.46 0.01* 1.943 0 – 1 
WKND18 107.39 139.98 0.77 0.44 1.958 0 – 1 
WKND19 169.75 139.98 1.21 0.23 1.958 0 – 1 
WKND20 203.32 139.98 1.45 0.15 1.958 0 – 1 
WKND21 243.87 139.98 1.74 0.08 1.958 0 – 1 
WKND22 208.17 139.98 1.49 0.14 1.958 0 – 1 
WKND23 28.06 140.54 0.20 0.84 1.943 0 – 1 

* significant at 0.05 
a Total road length in a buffer with radius 1km (ROADLENGTH_1000), Traffic load of heavy 
traffic in a buffer with radius 50m – indicator variable (TRAFLOAD_50_HEAVY), weekday 
hour 0-23 (WKDYx), weekend hour 0-23 (WKNDx) 
b Variance Inflation Factor 

 

 

4.2.3.4 HM1 – Hourly model 1 

 

In TABLE 20 (weekday) and in the appendix TABLE A11 (weekend day) an 

overview is given of 48 hourly LUR models always using the same predictors. R² 

values range from 0.05 to 0.73; RMSE ranges from 321 ng/m³ to 1567 ng/m³. 

The R² of hourly models is always smaller than the R² of the annual model, 

although between 6 a.m. and 10 p.m. on weekdays the R² approximates the 

annual model R². Variables that are significant in the annual LUR model are not 

necessarily significant in an hourly LUR model. The direction of effect of 

parameters in the hourly model sometimes changes, in a way that is 

inconsistent with a priori defined conditions. Models for night hours have lower 

R² values caused by the smaller range in concentrations between different 

locations. 

 

 

4.2.3.5 HM2 – Hourly model 2 

 

Because significant variables are selected per hour, this leads to higher hourly 

R² values (0.07 – 0.8) and lower RMSE (287 ng/m³ - 1407 ng/m³) compared to 

HM1 (TABLE 21 (weekday) and appendix TABLE A12 (weekend day)). Between 2 

p.m. and 4 p.m. on weekdays individual hourly models perform better than the 

annual model for the R², however the RMSE is larger. During the day traffic 

variables (heavy traffic and distance to the nearest (major) road) often enter the 

model. Traffic intensity (light traffic only) is significant on peak hours (8 a.m., 9 
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a.m., 5 p.m., 7 p.m.). On weekday nights, land use variables in larger buffers 

come into the model, but the limited concentration contrast results in low R², 

and the concentrations are mainly predicted by the intercept. On weekend 

nights BC concentrations were elevated and traffic variables are significant, 

indicative of busy traffic on weekend nights. 

 

 

4.2.3.6 HM3 – Hourly model 3 

 

Results of the hourly LUR models using dynamic covariates are presented in 

TABLE 22 (weekday) and in the appendix TABLE A13 (weekend day). Dynamic 

variables that enter the models are indicated in bold. The selected covariates 

and the models' performance are very similar to those of the previous models 

(TABLE 21). Adding the dynamic complement of the static variables does not 

really improve, and sometimes even deteriorated the hourly LUR models. On 

weekdays at 4 a.m. traffic intensity on the nearest major road was included in 

the LUR model, but in the model with dynamic variables this variable turned out 

to be not predictive. On weekdays at 9 p.m. and 10 p.m. population density was 

removed from the model and other variables became significant and improved 

the model. Since population density was the first variable to enter the model, it 

interacted with the other significant variables. Because the dynamic complement 

of the population variable was not significant anymore, other variables or other 

groups of variables became significant and even improved the model. This 

illustrates that the forward stepwise regression procedure does not automatically 

select the best model. A lagged effect of dynamic variables was considered, but 

hourly variables are highly correlated (e.g. correlation between People_1000 on 

different hours is always > 0.99; correlation between QD_near1 on different 

hours is always > 0.95), making it very hard to detect a real effect. When 

selecting for example traffic on weekdays at 8 a.m. and traffic at 7 a.m. in one 

model, this leads to very high VIFs. 
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TABLE 20: Hourly LUR models for BC [ng/m³] while keeping the significant variables of the annual LUR model (weekday 

hours) – HM1 

  

 

  

 Highest 

Cook's D  

ROADLENGTH_1000 a TRAFLOADHV_FRACTION_100 a TRAFLOAD_50_HEAVY a DIST_NEAR a 

Day hour N R² Adj R² RMSE β0 β1 prob1 β2 prob2 β3 prob3 β4 prob4 

WKDY 0 63 0.14 0.08 451.18 <1 1155 0.01 0.01 -2129.02 0.20 163.05 0.26 1.03 0.80 

WKDY 1 63 0.09 0.03 351.81 1.11 1141 0.00 0.15 -2161.40 0.09 75.81 0.50 2.84 0.36 

WKDY 2 63 0.11 0.05 327.38 <1 1290 0.00 0.43 -2621.30 0.03 16.61 0.87 -0.10 0.97 

WKDY 3 63 0.10 0.04 390.09 <1 1420 -0.01 0.13 -1904.14 0.18 -65.20 0.60 -1.74 0.62 

WKDY 4 63 0.05 -0.02 320.60 <1 1192 0.00 0.82 -1797.70 0.13 132.48 0.20 -1.24 0.66 
WKDY 5 63 0.21 0.15 367.35 2.36 1198 0.00 0.29 2695.68 0.05 175.15 0.14 -1.57 0.63 

WKDY 6 63 0.46 0.43 432.62 1.50 1196 0.01 0.00 3027.30 0.06 472.37 0.00 -1.80 0.64 

WKDY 7 63 0.53 0.50 607.65 <1 1243 0.03 0.00 4568.74 0.04 575.40 0.00 -8.92 0.10 

WKDY 8 63 0.43 0.39 962.82 <1 1392 0.03 0.00 6873.58 0.05 562.59 0.07 -17.06 0.05 

WKDY 9 63 0.55 0.52 604.92 1.90 1002 0.03 0.00 5715.53 0.01 336.62 0.08 -10.61 0.05 

WKDY 10 63 0.46 0.42 653.51 2.44 892 0.03 0.00 5491.59 0.02 163.44 0.43 -8.84 0.13 

WKDY 11 63 0.64 0.62 585.29 1.07 281 0.04 0.00 4999.53 0.02 562.17 0.00 -6.35 0.22 

WKDY 12 63 0.59 0.57 661.00 1.96 230 0.04 0.00 6267.88 0.01 550.19 0.01 -7.46 0.21 

WKDY 13 63 0.60 0.57 625.99 3.18 145 0.04 0.00 3002.61 0.19 763.64 0.00 -5.41 0.33 

WKDY 14 63 0.69 0.66 511.55 1.88 266 0.04 0.00 2577.89 0.17 601.31 0.00 -8.81 0.06 
WKDY 15 63 0.73 0.71 606.42 1.86 96 0.05 0.00 4811.63 0.03 776.25 0.00 -8.69 0.11 

WKDY 16 63 0.72 0.70 679.66 3.27 130 0.06 0.00 3986.39 0.11 907.84 0.00 -10.32 0.09 

WKDY 17 63 0.67 0.65 831.74 2.18 518 0.06 0.00 -800.48 0.79 1092.14 0.00 -19.50 0.01 

WKDY 18 63 0.60 0.57 883.51 1.63 706 0.06 0.00 -2146.18 0.50 962.51 0.00 -17.47 0.03 

WKDY 19 63 0.58 0.55 759.48 <1 935 0.05 0.00 -3163.64 0.25 749.10 0.00 -12.20 0.07 

WKDY 20 63 0.57 0.54 580.46 <1 1053 0.04 0.00 -1622.53 0.44 526.89 0.01 -5.75 0.27 

WKDY 21 63 0.49 0.46 551.40 <1 1242 0.03 0.00 -2246.63 0.26 544.82 0.00 -5.48 0.26 

WKDY 22 63 0.40 0.36 575.80 <1 1241 0.03 0.00 -785.90 0.71 320.55 0.08 -3.98 0.44 

WKDY 23 63 0.20 0.15 603.70 <1 1473 0.02 0.00 -2832.36 0.20 84.08 0.66 -6.05 0.26 

Year 

 

63 0.77 0.75 356.84 2.58 812 0.03 0.00 4569.04 0.00 393.99 0.00 -8.06 0.01 
a Total road length in a buffer with radius 1km (ROADLENGTH_1000), Fraction of traffic load that is heavy traffic in a buffer with radius 100m 

(TRAFLOADHV_FRACTION_100), Traffic load of heavy traffic in a buffer with radius 50m – indicator variable (TRAFLOAD_50_HEAVY), Distance to the nearest 
road (DIST_NEAR)  
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TABLE 21: Hourly LUR models for BC [ng/m³] using hourly monitoring data and static independent variables: independent 

models (weekday hours) – HM2 

hour N R² Adj R² RMSE 

Highest 

Cook's D β0 β1 X1 
a β2 X2 

a β3 X3 
a β4 X4 

a β5 X5 
a β6 X6 

a 

0 63 0.24 0.22 415.89 <1 1601 2.6 x 10-4 HDRES_1000  -4.5 x 10-2 D_HIGH         

1 63 0.18 0.17 325.04 <1 1264 2.3 x 10-4  HDRES_1000           
2 63 0.16 0.13 311.92 <1 1335 -7.4 x 10-5 URBGR_3000 -200 URBGR_500         

3 63 0.15 0.14 369.00 <1 1366 -1.3 x 10-4 URBGR_3000           

4 63 0.23 0.19 286.84 <1 1412 -1.6 x 10-4 URBGR_3000 -7.0 x 10-4 NATURE_50

0 

6.3 x 10-3 Q_NEAR_M

AJOR 

      

5 63 0.30 0.27 342.01 <1 1164 4409 TRAFLOADHV

_FRACTION_1

00 

289 HDRES_500 1.2 x 10-4 IND_3000       

6 63 0.54 0.51 399.21 1.34 1761 451 TRAFLOAD_5
0_HEAVY 

-14.1 x 10-2 DIST_NEAR
_MAJOR 

2.8 x 10-4 HDRES_100
0 

3560 TRAFLOADH
V_FRACTIO

N_100 

    

7 63 0.59 0.56 573.65 <1 967 1.7 x 10-² ROADLENGTH

_1000 

688 TRAFLOAD_

50_HEAVY 

2.7 x 10-2 TRAFLOADH

V_FRACTIO
N_100_2 

5.2 ADDRESS_1

00 

1.8 x 

10-4 

IND_3000   

8 63 0.60 0.57 814.40 <1 1293 40.9 x 10-

2 

ADDRESS_10

00 

3.5 x 10-2 TRAFLOADH

V_FRACTIO

N_100_2 

-2.2 x 10-4 URBGR_500

0 

6.9 QD_NEAR1_

HEAVY 

2.4 x 

10-2 

Q_NEAR_M

AJOR 

  

9 63 0.64 0.61 543.37 <1 1268 27.8 x 10-

2 
ADDRESS_10
00 

3.7 x 10-2 TRAFLOADH
V_FRACTIO

N_100_2 

-1.0 x 10-4 URBGR_500
0 

1.5 x 
10-2 

Q_NEAR_M
AJOR 

-9.7 DIST_NEAR   

10 63 0.54 0.52 595.30 <1 1270 12.0 x 10-

2 

ADDRESS_10

00 

8665 TRAFLOADH

V_FRACTIO
N_100 

4.3 x 10-4 HDRES_100

0 

      

11 63 0.75 0.73 492.70 <1 379 4.3 x 10-2 ROADLENGTH

_1000 

13454 D_NEAR_M

AJOR1 

8655 TRAFLOADH

V_FRACTIO

N_100 

-2.2 x 

10-4 

URBGR_300

0 

    

12 63 0.68 0.65 589.63 1.67 336 4.3 x 10-2 ROADLENGTH

_1000 

4.0 x 10-2 TRAFLOADH

V_FRACTIO

N_100_2 

12015 D_NEAR_M

AJOR1 

-2.4 x 

10-4 

URBGR_300

0 

    

13 63 0.74 0.72 504.07 <1 838 17223 D_NEAR_MAJ

OR1 

23.4 x 10-2 ADDRESS_1

000 

8720 TRAFLOADH

V_FRACTIO
N_100 

-2.3 x 

10-4 

URBGR_300

0 

    

14 63 0.79 0.76 428.76 1.55 504 3.4 x 10-2 ROADLENGTH

_1000 

10316 D_NEAR_M

AJOR1 

339 TRAFLOAD_

50_HEAVY 

-8.3 DIST_NEAR 4236 TRAFLOADH

V_FRACTIO

N_100 

-283 URBG

R_100

0 
15 63 0.80 0.78 524.30 1.87 78 4.2 x 10-2 ROADLENGTH

_1000 

417 TRAFLOAD_

50_HEAVY 

14083 D_NEAR_M

AJOR1 

6354 TRAFLOADH

V_FRACTIO

N_100 

592 D_NEAR1   

16 63 0.79 0.77 602.37 2.55 712 2.7 x 10-2 ROADLENGTH
_1000 

612 TRAFLOAD_
50_HEAVY 

11486 D_NEAR_M
AJOR1 

5003 TRAFLOADH
V_FRACTIO

N_100 

5.1 x 
10-2 

PEOPLE_10
00 

-
11.3 

DIST_
NEAR 

17 63 0.72 0.70 772.92 <1 941 3.4 x 10-2 ROADLENGTH

_1000 

797 TRAFLOAD_

50_HEAVY 

-17.9 DIST_NEAR 32.5 x 

10-2 

QD_NEAR1 8.2 x 

10-5 

HDRES_500

0 
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18 63 0.63 0.61 844.24 <1 1741 11.4 x 10-

2 

PEOPLE_1000 888 TRAFLOAD_

50_HEAVY 

-18.6 DIST_NEAR       

19 63 0.59 0.57 737.64 1.05 1708 9.5 x 10-2 PEOPLE_1000 45.2 x 10-2 QD_NEAR1         

20 63 0.55 0.54 579.17 <1 927 3.8 x 10-2 ROADLENGTH

_1000 

480 TRAFLOAD_

50_HEAVY 

        

21 63 0.49 0.47 543.38 <1 1669 5.9 x 10-2 PEOPLE_1000 483 TRAFLOAD_

50_HEAVY 

        

22 63 0.42 0.41 555.35 <1 1661 5.7 x 10-2 PEOPLE_1000 313 TRAFLOAD_

50_HEAVY 

        

23 63 0.33 0.30 545.80 3.10 2015 4.6 x 10-4 HDRES_1000 -5.6 x 10-2 D_HIGH         

Year 63 0.77 0.75 356.84 2.58 812 3.1 x 10-2 ROADLENGTH

_1000 

4569 TRAFLOADH

V_FRACTIO

N_100 

394 TRAFLOAD_

50_HEAVY 

-8.1 DIST_NEAR     

a High density residential in a buffer with size XXm (HDRES_XX), Distance to the nearest highway (D_HIGH), Urban green in a buffer with size XXm (URBGR_XX), Natural land in a buffer 

with size XXm (NATURE_XX), Traffic intensity (private cars) on the nearest major road (Q_NEAR_MAJOR), Fraction of heavy traffic in a buffer with size XXm 
(TRAFLOADHV_FRACTION_XX), Industrial or commercial units in a buffer with size XXm (IND_XX), Sum of (traffic intensity (heavy traffic) * road length) in a buffer with size XXm 

(TRAFLOAD_XX_HEAVY), Distance to the nearest major road (DIST_NEAR_MAJOR), Total road length in a buffer with size XXm (ROADLENGTH_XX), Fraction of heavy traffic  squared in a 

buffer with size XXm (TRAFLOADHV_FRACTION_XX_2), Number of addresses in a buffer with size XXm (ADDRESS_XX), Traffic intensity (heavy traffic) on the nearest road / distance to 

the nearest road (QD_NEAR1_HEAVY), Distance to the nearest road (DIST_NEAR), 1 / Distance to the nearest major road (D_NEAR_MAJOR1), Number of people in a buffer with size XXm 
(PEOPLE_XX), Traffic intensity (private cars) on the nearest road / distance to the nearest road (QD_NEAR1) 
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TABLE 22: Hourly LUR models for BC [ng/m³] using hourly monitoring data and dynamic independent variables: independent 

models (weekday hours) – HM3 

hour N R² Adj R² RMSE 

Highest 

Cook's D β0 β1 X1 
a β2 X2 

a β3 X3 
a β4 X4 

a β5 X5 
a β6 X6 

a 

0 63 0.24 0.22 415.89 <1 1601 2.6 x 10-4 HDRES_1000 -4.5 x 10-2 D_HIGH         

1 63 0.18 0.17 325.04 <1 1264 2.3 x 10-4  HDRES_1000           
2 63 0.16 0.13 311.92 <1 1335 -7.4 x 10-5 UrbGr_3000 -200 UrbGr_500         

3 63 0.15 0.14 369.00 <1 1366 -1.3 x 10-4 UrbGr_3000           

4 63 0.16 0.14 295.51 <1 1504 -1.5 x 10-4 UrbGr_3000 -6.5 x 10-4 NATURE_50

0 

        

5 63 0.30 0.27 342.01 <1 1164 4409 TRAFLOADHV

_FRACTION_

100 

289 HDRES_500 1.2 x 10-4 IND_3000       

6 63 0.54 0.51 399.21 1.34 1761 451 TRAFLOAD_5
0_HEAVY 

-14.1 x 10-2 DIST_NEAR
_MAJOR 

2.8 x 10-4 HDRES_100
0 

3560 TRAFLOADH
V_FRACTIO

N_100 

    

7 63 0.59 0.56 573.65 <1 967 1.7 x 10-2 ROADLENGTH

_1000 

688 TRAFLOAD_

50_HEAVY 

2.7 x 10-2 TRAFLOADH

V_FRACTIO
N_100_2 

5.2 ADDRESS_1

00 

1.8 x 

10-4 

IND_3000   

8 63 0.58 0.54 836.08 <1 1376 39.9 x 10-

2 

ADDRESS_10

00 

3.5 x 10-2 TRAFLOADH

V_FRACTIO

N_100_2 

-2.2 x 10-4 URBGR_500

0 

6.8 QD_NEAR1_

HEAVY 

29.9 

x 10-

2 

Q_NEAR_M

AJOR_WK

DY8 

  

9 63 0.64 0.61 543.40 <1 1270 27.9 x 10-

2 
ADDRESS_10
00 

3.6 x 10-2 TRAFLOADH
V_FRACTIO

N_100_2 

-1.0 x 10-4 URBGR_500
0 

25.8 x 
10-2 

Q_NEAR_M
AJOR_WK

DY9 

-9.9 DIST_NEAR   

10 63 0.54 0.52 595.30 <1 1270 12.0 x 10-

2 

ADDRESS_10

00 

8665 TRAFLOADH

V_FRACTIO
N_100 

4.3 x 10-4 HDRES_100

0 

      

11 63 0.75 0.73 492.70 <1 379 4.3 x 10-2 ROADLENGTH

_1000 

13454 D_NEAR_MA

JOR1 

8655 TRAFLOADH

V_FRACTIO

N_100 

-2.2 x 

10-4 

URBGR_300

0 

    

12 63 0.68 0.65 589.63 1.67 336 4.3 x 10-2 ROADLENGTH

_1000 

4.0 x 10-2 TRAFLOADH

V_FRACTIO

N_100_2 

12015 D_NEAR_MA

JOR1 

-2.4 x 

10-4 

URBGR_300

0 

    

13 63 0.76 0.74 490.92 1.59 789 8.0 x 10-2 PEOPLE_10

00_WKDY13 

368 TRAFLOAD_

50_HEAVY 

13083 D_NEAR_MA

JOR1 

19.7 x 

10-4 

IND_3000 6470 TRAFLOADH

V_FRACTIO
N_100 

-2.1 

x 10-

4 

URBGR

_3000 

14 63 0.79 0.76 428.76 1.55 504 3.4 x 10-2 ROADLENGTH

_1000 

10316 D_NEAR_MA

JOR1 

339 TRAFLOAD_

50_HEAVY 

-8.3 DIST_NEAR 4236 TRAFLOADH

V_FRACTIO

N_100 

-283 URBGR

_1000 

15 63 0.80 0.78 520.77 <1 137 4.2 x 10-2 ROADLENGTH

_1000 

1546 TRAFLOAD

MAJOR_50

_WKDY15 

8338 TRAFLOADH

V_FRACTIO

N_100 

672 D_NEAR1     

16 63 0.79 0.77 604.58 2.62 698 2.8 x 10-2 ROADLENGTH
_1000 

609 TRAFLOAD_
50_HEAVY 

11420 D_NEAR_MA
JOR1 

4958 TRAFLOADH
V_FRACTIO

N_100 

4.8 x 
10-2 

PEOPLE_1
000_WKDY

16 

-
11.4 

DIST_
NEAR 

17 63 0.73 0.70 769.86 <1 970 3.3 x 10-2 ROADLENGTH

_1000 

773 TRAFLOAD_

50_HEAVY 

-18.0 DIST_NEAR 3.5 QD_NEAR1

_WKDY17 

0.8 x 

10-4 

HDRES_500

0 
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18 63 0.65 0.63 821.32 <1 1775 10.9 x 10-

2 

PEOPLE_10

00_WKDY18 

609 TRAFLOAD_

50_HEAVY 

-17.8 DIST_NEAR 3.8 QD_NEAR1

_WKDY18 

    

19 63 0.62 0.60 716.14 <1 1937 9.3 x 10-2 PEOPLE_10

00_WKDY19 

7.2 QD_NEAR1

_WKDY19 

-13.0 DIST_NEAR       

20 63 0.55 0.54 579.17 <1 927 3.8 x 10-2 ROADLENGTH
_1000 

480 TRAFLOAD_
50_HEAVY 

        

21 63 0.50 0.48 538.87 <1 1528 17.3 x 10-

2 

ADDRESS_10

00 

508 TRAFLOAD_

50_HEAVY 

        

22 63 0.43 0.41 550.86 <1 1822 1.3 x 10-4 HDRES_3000 1.6 x 10-3 TRAFLOAD_
100_HEAVY 

        

23 63 0.33 0.30 545.80 3.10 2015 4.6 x 10-4 HDRES_1000 -5.6 x 10-2 D_HIGH         

Year 63 0.77 0.75 356.84 2.58 812 3.1 x 10-2 ROADLENGTH

_1000 

4569 TRAFLOADH

V_FRACTIO

N_100 

394 TRAFLOAD_

50_HEAVY 

-8.1 DIST_NEAR     

Dynamic variables that enter the model are indicated in bold. 
a High density residential in a buffer with size XXm (HDRES_XX), Distance to the nearest highway (D_HIGH), Urban green in a buffer with size XXm (URBGR_XX), Natural land in a buffer 

with size XXm (NATURE_XX), Fraction of heavy traffic in a buffer with size XXm (TRAFLOADHV_FRACTION_XX), Industrial or commercial units in a buffer with size XXm (IND_XX), Sum of 

(traffic intensity (heavy traffic) * road length) in a buffer with size XXm (TRAFLOAD_XX_HEAVY), Distance to the nearest major road (DIST_NEAR_MAJOR), Total road length in a buffer 

with size XXm (ROADLENGTH_XX), Fraction of heavy traffic  squared in a buffer with size XXm (TRAFLOADHV_FRACTION_XX_2), Number of addresses in a buffer with size XXm 
(ADDRESS_XX), Traffic intensity (heavy traffic) on the nearest road / distance to the nearest road (QD_NEAR1_HEAVY), Traffic intensity (private cars) on the nearest major road at hour 

x (Q_NEAR_MAJOR_WKDYx), Distance to the nearest road (DIST_NEAR), 1 / Distance to the nearest major road (D_NEAR_MAJOR1), Number of people in a buffer with size XXm at hour 

x (PEOPLE_XX_WKDYx), Sum of (traffic intensity on major roads (private cars) at hour x * road length of major roads) in a buffer with size XXm (TRAFLOADMAJOR_XX_WKDYx), 1 / 

Distance to the nearest road (D_NEAR1), Traffic intensity (private cars) on the nearest road at hour x / distance to the nearest road (QD_NEAR1_WKDYx)  
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4.2.4 DISCUSSION 

 

LUR models for the carbonaceous component of particulate matter, BC, were 

developed. Due to the difficulty of measuring BC (labor intensive and expensive 

measurement techniques), only very few LUR models for BC exist (Brauer et al., 

2008; Gryparis et al., 2007). Reflectance of PM filters is often used more or less 

synonymously of BC. Models for PM2.5 absorbance (PM2.5abs) are more 

widespread and regularly made together with models for PM10 and PM2.5 

(Clougherty et al., 2008; Eeftens et al., 2012; Henderson et al., 2007; 

Morgenstern et al., 2007). The R² of the annual model in this paper (R²=0.77) is 

similar to explained variances in other study areas. The number of measurement 

sites is larger than in previous LUR models for BC or PM2.5abs (63 compared to 

~40 sites), and that probably results in slightly lower R² values (Basagaña et 

al., 2012; Wang et al., 2012), although the model developed here will be better 

when applying it to a hold-out sample. The study is restricted by the rather 

short sampling period. On most locations, only 2 weeks of measurements were 

available and that might limit the validity of the resulting models. Because 

measurements originated from two different campaigns, the first one in 2010 

and the second one in 2011, comparability of annual average concentrations was 

a necessary precondition for joining both datasets. 

 

Hourly LUR models for BC are developed using different strategies: by means of 

dummy variables, with time-resolved dependent variables and/or with dynamic 

independent variables. Low Spearman coefficients (Avg=0.38; SD=0.26) 

suggested that one annual LUR model was not sufficient to capture variations in 

BC concentrations during the day. This is in contrast to other studies defining 

LUR models on different time scales (e.g. season): in those study areas it was 

demonstrated that spatial variability in NO2 concentrations remained consistent 

across the sampling periods (Beelen et al., 2007; Crouse et al., 2009; Wheeler 

et al., 2008). Covariates that often proved significant were traffic variables 

(heavy traffic in smaller buffers, total road length within 1km and distance to the 

nearest (major) road), population variables (number of addresses or number of 

people in a buffer with radius 1km), and land use variables (residential land use, 

nature or urban green, in buffers > 1km). Light and heavy traffic originate from 
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a different dataset because for light traffic we had the opportunity to use hourly 

traffic streams. Yet light and heavy traffic streams were highly correlated and 

heavy traffic variables were often excluded before the regression model was 

estimated. The fraction of heavy traffic was less correlated to other traffic 

variables, and seemed to replace the absolute number of passing trucks in the 

models. Moreover by using the fraction, it was assumed that not only the 

number of trucks, but also the environment (highway versus urban road) 

influences air quality; e.g. local urban roads with a high fraction of heavy traffic 

but a low number of trucks might still cause an important impact. Distance to 

the nearest road has been used as a predictor variable in many published LUR 

studies (Brauer et al., 2008; Hochadel et al., 2006; Mölter et al., 2010a). In this 

study, it was offered to the model in a linear form and in an exponential form, 

and both also in combination with traffic intensity. Linear distance was only 

included in the model when a traffic intensity variable (light or heavy traffic) in a 

small buffer was also included. In the hourly LUR models with significant 

variables of the annual model (HM1), distance to the nearest road was only 

significant on traffic peak hours and the coefficient was more influential on those 

peak hours, illustrating the relationship between distance and traffic intensity. A 

model where distance to the nearest road is included, can be applied solely to 

predict concentrations at the facade of houses, whereas at larger distances 

concentrations can become negative. Traffic volume of all traffic is expected to 

be significant in several LUR models, especially on traffic peak hours and in 

smaller buffers (Kim and Guldmann, 2011). The insignificance of traffic intensity 

variables for light traffic in the annual model is caused by the sparseness of the 

road network used to assign traffic streams from the FEATHERS model: too 

many locations have no predicted traffic intensities on the nearest road. Forcing 

traffic volume on the nearest road into the annual model (variable is not 

significant at 0.05) increases the R² from 0.7668 to 0.7745, but the new 

variable only contributes between 4 ng/m³ and 441 ng/m³ to the modeled 

concentrations (on average 32 ng/m³). Meteorological variables were not 

collected, although by rescaling the measurements based on hourly variations in 

background concentrations, meteorological effects near the reference monitor 

are taken into account. 
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During model development, we encountered high Cook's D values in some 

models, pointing to influential observations. Removing the observation that 

substantially influences the model is one option, although in this study we 

cannot motivate this decision. Another option is to exclude a variable from 

model development: remove the variable that is not significant anymore when 

holding out the influential observation (Eeftens et al., 2012). In our case, the 

variable that influences the model, often fraction of heavy traffic, also returns in 

other hourly models without a high Cook's D value for the same observations; 

this suggests that the variable is not accidentally included. Besides when 

building an annual LUR model based on the urban measurement campaign alone 

(42 mostly urban locations; R²=0.73 and RMSE=290 for model with an 

influential observation; R²=0.68 and RMSE=311 for model without influential 

observation; appendix FIGURE A27), and applying the model to the hold-out 

regional sample (21 urban and regional locations), the model with a high Cook's 

D value was much better in predicting concentrations compared to the reformed 

model with all Cook's D's < 1 (validation R²=0.50, validation RMSE=627.69; 

compared to validation R²=0.21, validation RMSE=822.51). Therefore it was 

decided not to correct for high Cook's D values in this sample. 

 

Temporal variation from a continuous background monitoring station can be 

applied to an existing annual LUR model (similar to Gan and others (2011), 

Nethery and others (2008b), and Slama and others (2007)), but in this case the 

temporal trend of only one station is implemented to all other locations in the 

study area. This method is easy and effective when one is interested in 

concentrations on a specific date, although ignoring the intra-day variation in 

concentrations on different types of locations (Wang et al., 2013). Retrieving 

hourly values with this method would inherently lead to large uncertainties; e.g. 

if a local event impacts the concentrations near the background monitor, 

predicted concentrations on all other locations would be affected. Another 

straightforward method to add a temporal trend to a LUR model, would be to 

simply replace a variable with its dynamic complement, at least if in the annual 

model a population density variable or traffic intensity variable (light traffic) is 

inserted (Chen et al., 2010). 
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Comparing between different methodologies to develop hourly LUR models is 

difficult. With ‘hour’ as a dummy variable, one LUR model is developed, with one 

set of model performance criteria. In the other methodologies hourly models are 

constructed with hourly performance criteria. The R² of the dummy model 

(0.44) is remarkably lower than the R² of the annual model (0.77), but this is 

still acceptable taking into account that the number of observations is multiplied 

by 48. The same spatial pattern is assumed all day long in the dummy model, 

which conflicts with our findings based on the hourly measurements of BC. 

Moreover hourly concentrations are not independent of each other, violating the 

assumption of independence in linear regression. Keeping significant variables of 

the annual LUR model and estimating coefficients again with hourly observations 

(HM1), results in several insignificant variables, and the variables often do not 

meet a priori defined conditions with respect to direction of effect. Building new 

hourly LUR models independent of each other (HM2) solves the issue of 

insignificant variables or variables with a wrong direction of effect. Even though 

the hourly LUR models are developed independently of adjacent hours, in fact 

similar variables often return in consecutive models demonstrating the 

robustness of the models. This also suggests that hourly models could be 

combined and that less than 24 unique models are necessary to capture intra-

day variation in concentrations. Grouping of hours could be based on the 

correlation between measurements on different hours, or it could be based on 

the similarity of the developed hourly LUR models: this should be explored 

further. Adding dynamic predictor variables instead of static variables (HM3) did 

not drastically improve the hourly LUR models, and sometimes even 

deteriorated the models. Lagged effects were considered, but a major problem is 

the high correlation between the hourly dynamic variables. For BC, a lagged 

effect is probably not present because BC from traffic has a very local effect and 

concentrations tend to decrease very fast when moving away from the source. 

For secondary pollutants like NO2, including lagged effects could be more 

promising and worth considering in future work. 

An important advantage of LUR models is the good cost-benefit ratio compared 

to dispersion models; but building 48 single LUR models might undermine this 

point. In our experience, hourly LUR models are not more data-demanding than 

annual LUR models, except for the models with dynamic covariates (HM3). 
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Time-resolved measurements should be available, but the use of an active 

monitor does not necessarily require more supervision than passive samplers 

once in place. Estimating 48 LUR models obviously takes more time than 

developing one annual LUR model, but model development can be largely 

automated and running the script takes only seconds, even on a laptop 

computer. 

 

The hourly LUR models developed in this study can be considered as annual 

average models with an hourly temporal resolution. Seasonal variability is not 

accounted for as this variability is mostly driven by meteorological conditions 

and wood smoke, whereas diurnal variability is principally derived from human 

activities. Covariates explaining diurnal variability, e.g. traffic flows, are included 

as covariates in the models. Hourly LUR models are useful in determining long or 

medium term personal exposure to air pollution more accurately when combined 

with time-activity data. Agent-based models, like activity-based traffic models, 

are capable of predicting those diaries; in the future the whereabouts will be 

linked to the hourly LUR models to predict exposure of modeled agents (Int 

Panis, 2010). For long term epidemiological studies, the added value of using 

hourly LUR models should be investigated, although it is clear that this method 

will be able to capture personal exposure in more detail. Alternatively, hourly 

LUR models can also improve epidemiological studies focusing on acute health 

effects. Diaries or GPS loggers can be deployed in large quantities to register the 

movement of individuals (de Nazelle et al., 2013; Dons et al., 2013a) and hourly 

LUR models can then be used to estimate personal exposure. 
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4.3 IMPLEMENTATION AND VALIDATION OF A MODELING 

FRAMEWORK TO ASSESS PERSONAL EXPOSURE TO BLACK 

CARBON 

 

 

 

 

This chapter is based on: 

 

Dons, E., Van Poppel, M., Kochan, B., Wets, G., Int Panis, L., 2013. 

Implementation and validation of a modeling framework to assess personal 

exposure to black carbon. Submitted to Environment International.  
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4.3.1 INTRODUCTION 

 

High-resolution personal measurements are the best way of getting information 

on the exposure of individuals; which combined with geo-information enables 

exposure to be assessed in space and time. Unfortunately personal 

measurements are expensive and a burden to individuals; therefore most 

current studies are limited to short periods of personal measurements in a small 

sample. These snapshots of exposure are not sufficient to provide 

epidemiologists with data on long term exposure of large cohorts. Building 

exposure models is an obvious alternative, but this often results in simple 

models not capable of estimating exposure with enough reliability. 

Ideally personal exposure to air pollution should be modeled as a combination of 

two interacting geographies: a moving population and a continuously changing 

air quality (Briggs, 2005). Many studies only take into account residential 

location and ignore time-activity patterns while air pollution is typically modeled 

using annual average concentrations without any daily variation. Several more 

complex exposure models have been developed: e.g. SHEDS (Stochastic Human 

Exposure and Dose Simulation Model, (Burke et al., 2001)), pCNEM 

(Probabilistic Version of the NAAQS Exposure Model, (Zidek et al., 2005)), 

STEMS (Space-Time Exposure Modeling System, (Gulliver and Briggs, 2005)), 

EMI (Exposure Model for Individuals, (Breen et al., 2010)), MEEM 

(MicroEnvironmental Exposure Model, (Mölter et al., 2012)). The first two 

models estimate population exposure; the other models assess exposure of 

individuals. Models estimating exposure of individuals are up till now not 

designed to model exposure of a full population as specific information on 

individuals, not available on an aggregated level, is required. Population 

exposure models generate diaries from activity databases, often without a 

geographical dimension, and often deterministic in nature. Beckx et al. (2009b) 

and Hatzopoulou et al. (2011) were the first to use an activity-based 

transportation model to predict stochastic time-location-activity diaries and use 

them in an air pollution exposure model. Lefebvre et al. (2013a) and Dhondt et 

al. (2012b) used activity-based models to evaluate the effect of air quality 

measures on population exposure and health. An important issue is that the final 

outcome of the aforementioned population exposure models has never been 
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fully validated; the validation was limited to the validation of submodels. 

Personal monitoring of a random sample of n individuals from a target 

population is a valuable tool to examine the validity of human exposure models 

(Duan, 1991; Gerharz et al., 2013; Mölter et al., 2012). Models for individual 

exposure assessment expect diaries or GPS tracks to be known: validating these 

kinds of models in fact means validating only the air quality models, and not the 

diaries themselves. In the case of population exposure models, the space-time 

predictions need to be validated as well, together with the air quality models. 

 

In this study, a personal exposure modeling framework using an activity-based 

model will be implemented and its performance will be compared to real-life 

personal exposures. Most submodels have already been presented elsewhere 

(Bellemans et al., 2010; Dons et al., 2013a; Dons et al., 2013b), but in this 

study all the models are integrated in one framework for the first time: the AB²C 

model (An Activity-Based modeling framework for Black Carbon exposure 

assessment). Personal measurements are compared against a distribution of 

personal exposure estimates and serve as a validation for the complete 

framework. The AB²C model is developed to estimate population-wide exposure 

to black carbon (BC), a pollutant suspected of having health effects (WHO, 

2012; Zanobetti and Schwartz, 2006). Introducing individual mobility in 

population exposure models for BC is highly relevant because moving from one 

place to another can significantly alter exposure through the steep concentration 

gradients observed near BC sources. Individual exposure assessment on a 

population level, as aimed for by the AB²C model, can contribute to health 

policy: highly exposed individuals or groups of individuals can be identified; the 

impact of age, gender or socio-economic class on exposure can be verified or 

the number of individuals exposed to levels above a certain threshold can be 

determined. Moreover policy scenarios can be calculated and the effect on 

personal and population exposure to BC can be assessed, and ultimately 

extended with appropriate exposure-response functions to perform health 

impact assessments. 
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4.3.2 MATERIALS AND METHODS 

 

The modeling framework AB²C consists of an activity-based model, hourly land 

use regression models, an in-traffic personal exposure model, and an indoor air 

model. Separate models are described first; how models fit in a consistent 

framework is discussed afterwards. Real-life measurements serve as a validation 

of the entire model chain. 

 

 

4.3.2.1 Activity-based model 

 

Activity-based models simulate activities and trips for a synthetic population 

based on thousands of revealed diaries (Arentze and Timmermans, 2004; 

Davidson et al., 2007). Trips are derived from the activities performed and their 

physical location: if subsequent activities are in a different geographical zone, a 

trip between the origin and the destination is required. In Flanders, FEATHERS 

(Forecasting Evolutionary Activity-Travel of Households and their Environmental 

RepercussionS) was developed as a simulation platform to implement activity-

based models (Bellemans et al., 2010; Kochan et al., 2013). For every adult in 

the population, approximately 6 million people, a diary is built using a series of 

decision trees and constraints. It results in a model predicting activities (home-

based activities, work/education, business, bring/get, shopping, services, social, 

leisure, touring, other), their timing, duration and location for 24h for every 

agent in a synthetic population. The study area is divided into 2386 subzones, 

also called Traffic Analysis Zones (TAZ; terminology used in transportation 

planning models), with an average size of 5.7 km²; the size of a subzone is 

related to the number of inhabitants. The subzone where an activity will be 

performed is determined in FEATHERS by taking into account land use data such 

as the number of work places and the number of inhabitants in each TAZ to 

estimate the level of production and attraction. Agents have a preference of 

performing an activity closer to home for shopping trips, but the distance can be 

larger for work locations, etc.. For all 168 hours of an average week, a dynamic 

population density is calculated, not based on static addresses, but based on the 

locations that agents actually visit during each hour. For trips, the transport 
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mode (car driver, car passenger, bike/walk, public transport), the duration of 

the trip, and subzone of origin and destination will be predicted by FEATHERS. 

Those trips are then assigned to a road network using an equilibrium 

assignment, thus taking into account congestion effects, in TransCAD software 

(Caliper, 2013). Outputs from the FEATHERS model used in subsequent steps 

are: hourly traffic flows for motorized trips, hourly dynamic population densities 

taking into account population mobility, and 24h-diaries for a subset of agents 

with specific characteristics (see appendix TABLE A14 for an example output of a 

modeled diary). 

 

 

4.3.2.2 Hourly LUR models 

 

In a land use regression (LUR) model statistical associations are developed 

between potential predictor variables and measured pollutant concentrations as 

a basis for predicting concentrations at unsampled sites (Hoek et al., 2008; 

Ryan and LeMasters, 2007). In 2010 and 2011, BC was measured on 63 

locations in Flanders with a high temporal resolution (5-min) using micro-

aethalometers (AethLabs, 2011; Dons et al., 2013b). Annual average 

concentrations ranged from 846 ng/m³ to 4184 ng/m³, with hourly 

concentration peaks of nearly 10,000 ng/m³. Hourly LUR models were derived 

for weekdays (Mon-Fri, 24 models) and for the weekend (Sat-Sun, 24 models) 

to capture intraday variation in the spatial concentration pattern of the study 

area (chapter 4.2). Seasonal variability is not accounted for as this variability is 

generally driven by meteorological conditions and meteorological variables are 

not collected, whereas diurnal variability is principally derived from human 

activities. The hourly models were estimated independent of each other 

according to a fixed model development algorithm (Eeftens et al., 2012; 

Henderson et al., 2007). Weekday hourly models performed well during the day 

and on traffic peak hours, explaining 60 to 80% of variability using mainly traffic 

variables (chapter 4.2). At night and in the weekend the models were less 

predictive using only 1 or 2 predictors, but RMSE values were low indicative of 

homogeneous BC concentrations (chapter 4.2). Traffic and population variables 

from the activity-based model were only sporadically included. 
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In this study, concentrations were calculated for 10 randomly chosen buildings 

in each subzone using the hourly LUR models; the median concentration is the 

exposure assigned to people present in that subzone during that hour (10 

buildings proved to be sufficient to reliably estimate median concentrations, see 

appendix A.4 for details on the methodology). 

 

 

4.3.2.3 In-traffic personal exposure model 

 

While exposure in geographical places can be modeled using hourly LUR models, 

simple LUR-like regression models were also developed to estimate yearly 

average exposure in transport (chapter 3.3). Mobile monitoring data was 

available from a personal monitoring campaign in 62 individuals, simultaneously 

measuring BC and GPS positions. Exposure in motorized modes can be predicted 

by using information on timing of the trip (peak, off-peak, weekend), degree of 

urbanization (highway, urban, suburban, rural), and instantaneous traffic 

intensity (vehicles per hour). For active modes timing and urbanization are 

significant predictors. Because FEATHERS combines all public transport modes, 

one constant concentration is applied here for all trips with public transport 

(3521 ng/m³) although it is known that for example exposure in buses is much 

higher than exposure in trains (chapter 3.2). 

Output from the activity-based model FEATHERS includes information on 

transport mode, timing, origin and destination. Individual trips are not assigned 

to a road network, so no information on the exact route is available. Because 

urbanization type is thus unknown, in chapter 3.3 we suggested using trip 

duration of motorized trips as a proxy for the use of roads with different degrees 

of urbanization (e.g. longer trips (>45min) are on highways for at least 45% of 

total time, whereas short trips (<30min) use highways only sporadically). For 

trips by bike or on foot, the urbanization type of the subzone of origin is 

extended to the whole trip. Datasets and model development are described in 

detail in chapter 3.3 and in appendix A.4. 
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4.3.2.4 Indoor air model 

 

No parameterized indoor air model, like the INDAIR model or alternatives 

(Dimitroulopoulou et al., 2006; Gerharz et al., 2013) was applied because there 

is no detailed info on housing characteristics neither for the complete study 

area, nor for individual subzones. As outdoor particles are the largest contributor 

to indoor air pollution, an indoor/outdoor-ratio (I/O-ratio) was calculated and 

applied to estimate exposure in indoor microenvironments. The I/O-ratio is 

based on facade-measurements and simultaneous indoor measurements in 24 

houses in the study area. Residences with tobacco smoke were excluded. 

Specific indoor sources of BC, like candles or cooking (LaRosa et al., 2002; 

Wallace, 2005), were ignored, although they were inherently included in the 

calculation of the I/O-ratio. An I/O-ratio of 0.76 was determined with indoor 

concentrations being lower than outdoor concentrations, and based on 

measurements in cold and warm seasons (appendix FIGURE A31). In warmer 

seasons, the ratio was higher (0.84) representative of better ventilation, 

although ambient concentrations were generally lower. 

 

 

4.3.2.5 Integration of models: AB²C 

 

Four data sources/models are used to predict personal exposure to BC: 

individual diaries from FEATHERS, hourly LUR models, the in-traffic exposure 

model, and an I/O-ratio (FIGURE 29). Predicted hourly BC concentration fields 

are combined with information on people's locations to calculate their minute-to-

minute exposure (FIGURE 30). The activity-based model does not discriminate 

between indoor and outdoor activities; but as 87% of the time is spent in indoor 

environments (Klepeis et al., 2001), all activities (except trips) are assumed to 

be indoors and the I/O-ratio was applied to the ambient LUR predictions. When 

agents are traveling, the in-traffic exposure model representing yearly averages 

is applied taking into account transport mode, timing, location and duration of 

the trip. For touring activities, the in-traffic exposure model for active modes is 

used (these are activities where people are in transport but without a specific 

destination and with the same start and end point). 
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Several exposure metrics were calculated: for each modeled agent, (i) ambient 

concentration at the residence was calculated using the hourly LUR models for 

the relevant subzone, (ii) static exposure was calculated multiplying the ambient 

concentration with the I/O-ratio, and (iii) dynamic exposure was calculated 

making full use of the AB²C model, i.e. by including population mobility. The 

FEATHERS model simulates one diary for every agent in the population, for 

every day of the week, and the AB²C model can calculate exposures from these 

data. Alternatively, the FEATHERS model can produce a predetermined number 

of diaries for one individual or for a subset of individuals. The latter enables an 

estimation of a range of potential exposures for one agent using AB²C while 

meeting specific preconditions (subzone where the residence is located, 

household composition, household income, age of the oldest adult, age of the 

youngest child, the number of adults in the household, the number of cars in the 

household, age and gender, work status: homemaker or worker, possession of 

driver's license). 

 

 

 

FIGURE 29: Integration of submodels to predict personal exposure to BC: the 
AB²C model. 
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FIGURE 30: Example of personal exposure estimation for one agent using the 

AB²C model. 

 

 

4.3.2.6 Validation dataset 

 

A personal monitoring campaign was carried out in 62 volunteers (54 unique 

participants) from 31 families (27 unique families), exactly half of them were 

male (chapter 3.2). All were living in Flanders, the northern part of Belgium, in 

urban as well as in suburban or rural zones (appendix FIGURE A32). There is a 

slight overrepresentation of people working in a rural environment because 12 

colleagues from our institute were recruited as well. All volunteers were between 

20 and 60 years of age, but 10 participants were not working at the time of the 

personal monitoring campaign. Participants were asked to carry a portable 

aethalometer to measure BC (model AE51 (AethLabs, 2011)), an electronic diary 

and a GPS logger for 7 consecutive days to capture weekday-weekend 

differences in time-location-activity patterns. BC measurements had a time-

resolution of 5-minutes, activities also had to be reported with an accuracy of 5-

minutes, and GPS position was logged during trips on a 1-second basis. 

Measurements were done in May - July 2010 and December 2010 - February 

2011. Up to three couples participated in the same week, and 4 couples 
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participated twice: once in summer and once in winter. As measurements were 

not always simultaneous, personal measurements were rescaled to account for 

changing background concentrations (chapter 3.2). 

The characteristics of each real-life volunteer (N=54) were loaded in FEATHERS 

and 100 diaries were stochastically simulated for each weekday and for each 

model-agent, resulting in a synthetic population (54*700 modeled diaries in 

total). Characteristics that could technically be taken into account were limited 

(see ‘preconditions’ described in previous paragraph); and thus do not include 

subzone of work location, or time in transport. Again, from these diaries 

personal exposure to BC was estimated for each 24h-period using the AB²C 

model. The model provides a range of potential exposures for that individual, 

and also the likelihood of exposures above a particular level. 

There is a small bias in our validation sample: volunteers in the monitoring 

campaign worked more (17% versus 13%), were less at home (65% versus 

76%) and spent more time in transport (6.3% versus 4.8%) than the model-

agents (appendix FIGURE A33). The modal split is rather similar between the 

modeled and the revealed diaries for car (57% versus 51%), active modes (31% 

versus 39%) and public transport (12% versus 10%). 

 

 

4.3.3 RESULTS 

 

4.3.3.1 Predicted and observed exposures: aggregated analysis 

 

Average modeled 24h exposures compare well with measured values (FIGURE 

31). But neither of the three exposure metrics can properly capture the full 

exposure range as experienced by volunteers (FIGURE 31). Ambient 

concentrations at home are more similar to measured personal exposures than 

static indoor concentrations. This is surprising since static indoor concentrations 

represent more the actual exposure, taking into account the majority of time is 

spent indoor. It is hypothesized that due to the high BC concentrations 

encountered in traffic, the ambient model overestimates exposure at home but 

this is counterbalanced by not taking into account increased exposure in traffic. 

Ambient exposure modeling overestimates exposure of people spending a lot of 
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time indoors. Static exposure is in most cases lower than dynamic exposure, 

except for agents living in high concentration zones. Moving out of a highly 

polluted area may lower exposure; even if a trip is necessary (Dhondt et al., 

2012b). 

 

 

FIGURE 31: Daily average personal BC exposures measured in 62 volunteers, 
ambient exposure (modeled outdoor at home), static exposure (modeled indoor 
at home) and dynamic exposure estimates from the AB²C modeling framework. 
The box-and-whiskers represent 5th, 25th, median, 75th and 95th percentile; the X 
denotes the average. 

 

 

An analysis on the level of single activity types reveals that the AB²C model 

overestimates exposure in transport and during touring activities. This also 

reflects the use of different transport modes in the model and the real-life 

sample, and a difference in location and timing of the trips. Exposure during 

social activities and shopping is underestimated by almost 50% because indoor-

sources are not included in our model. Exposure at work is overestimated by 

200 ng/m³, but this can be explained by the bias in our validation sample: too 

many participants work in remote areas. It holds for all activities and modes 

that the modeled and measured values are not entirely comparable as timing 

and location of the activities/trips might differ (appendix TABLE A15 and A16). 
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square error (RMSE) is 438 ng/m³. The correlation between observed exposures 

and static and ambient exposure is 0.451, with RMSE's of 537 ng/m³ and 489 

ng/m³. Using the dynamic exposure estimation marginally lowers the 

uncertainty on the estimation, but the dynamic AB²C model is better in 

explaining the variability in the observations than ambient or static exposure 

models. 

FIGURE 32 estimates the fraction of persondays above a certain BC 

concentration using both the AB²C model and personal monitoring. The fraction 

of people exposed to levels higher than 2250 ng/m³ (comparable to 1500 ng/m³ 

elemental carbon, conversion ratio estimated for the study area (Van Poppel et 

al., 2012a)) is zero when ignoring population mobility and assuming everyone 

indoors, whereas measurements show that 18% of the persondays have 

exposure levels above 2250 ng/m³. Dhondt et al. (2012b) did a similar 

estimation for Flanders using a dynamic population exposure model, resulting in 

14.2% of the population being exposed to elemental carbon levels above 1500 

ng/m³. 

 

 

FIGURE 32: For every agent (real-life and modeled) annual average daily 
exposures are measured or estimated. The likelihood of 24h-averaged BC 
exposures above a particular level is presented for different exposure metrics 
(ambient, static and dynamic exposure estimates, and measured exposure). 
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4.3.3.2 Predicted and observed exposures: individual agents 

 

Instead of focusing on the performance of the model on an aggregated level, 

namely for all 62 agents together, one can also analyze model performance for 

individual agents. The AB²C-model was run 700 times (100 times for each day 

of the week) to obtain a distribution of potential exposure levels for each of 62 

synthetic agents with the same attributes (age, gender, work status, etc.) as the 

62 participants whose personal exposure was measured (FIGURE 33). 

Average modeled concentrations range between 1203 ng/m³ (household 15, 

person 2) and 2129 ng/m³ (household 2, person 2) using the dynamic exposure 

from the AB²C model. The interquartile range (IQR) is rather small with an 

average IQR of 352 ng/m³. Volunteers living in urban areas have the highest 

predicted average exposures to BC (FIGURE 33), and the largest IQR. The range 

between the minimum and maximum predicted exposure is much larger: 2306 

ng/m³. The upper tails are caused by hypermobile agents; this includes agents 

performing recreational touring activities. From FIGURE 33 it is clear that the 

intra-individual variability in potential exposure levels exceeds inter-individual 

variability.  

 

Eight volunteers participated twice in the personal monitoring campaign, and 

their measured personal exposure during both weeks differs up to 40%, even 

after rescaling to account for changing background concentrations. This reflects 

a different activity pattern, or indicates that volunteers came into contact with 

different sources. FIGURE 33 presents a distribution of daily predicted dynamic 

exposures, consisting of 100 Mondays, 100 Tuesdays, etc., whereas the 

measured exposure is averaged over one week to prevent single activities 

distorting average concentrations. In all cases, except for one volunteer, the 

measured exposure (temporal adjustments were made on measured values to 

represent annual average exposure) falls within the modeled exposure range. 

This one person has low average concentrations at home, at work and in 

transport which the model cannot capture; the I/O-ratio of 0.76 is an 

overestimation for this one volunteer at home (I/O-ratio of 0.59 measured for 

this specific house). 

 



195 

 

FIGURE 33: Predicted dynamic exposure using AB²C for every volunteer; the 
diamond shows the observed exposure (adjusted for changes in background 
concentrations). All observed exposures are within the predicted ranges except 
for household 15, person 1. Households 2, 3, 10, 17 and 27 live in an urban area. 
The box-and-whiskers represent minimum, 25th percentile, median, 75th 
percentile and maximum; the X denotes the average. 

 

 

4.3.4 DISCUSSION 

 

In the AB²C modeling framework a bottom-up approach was pursued, starting 

from the exposure of individual agents in specific microenvironments and aiming 

to evaluate 24h-exposure of a full population. Persondays with high levels of 

predicted exposure were traced as the upper tails are the most important 

portion for many risk assessments. This is also the first paper to actually 

validate the final outcome of a personal exposure model using novel monitoring 

techniques. 

 

 

4.3.4.1 AB²C model 

 

The AB²C model consists of several submodels, a.o. an activity-based model, 

hourly LUR models, an in-traffic exposure model and an indoor air model. Single 

submodels can be replaced with other models, making this a flexible framework. 

The hourly LUR-models could be replaced with emission and dispersion models 

(Beckx et al., 2009b), other agent-based models or revealed GPS tracks could 

be used instead of whereabouts from FEATHERS (de Nazelle et al., 2013; 
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Gerharz et al., 2013; Newth and Gunasekera, 2012). Separate modules can be 

adapted to use AB²C for additional air pollutants. 

Seasonal differences are not taken into account in neither of the submodels; 

although personal BC measurements showed that the exposure of one individual 

can vary significantly between weeks or seasons. Time-activity patterns also 

differ between seasons (Isaacs et al., 2013; McCurdy and Graham, 2003). But 

because the FEATHERS model cannot distinguish between different seasons, our 

modeling framework predicts annual average exposures. The hourly LUR 

models, the in-traffic exposure model, and the indoor air model are tailored to 

the needs of the activity-based model, and thus none of these models are 

currently set up to be season-specific. 

 

Activity-based models were previously used in population exposure studies: 

Beckx et al. (2009b) used ALBATROSS in the Netherlands, Hatzopoulou et al. 

(2011) used TASHA for the Greater Toronto Area, Lefebvre et al. (2013a) and 

Dhondt et al. (2012b) used the same activity-based model as in this study, 

FEATHERS, but they focused on population exposure. Activity-based or agent-

based models are still rather scarce, but promising environmental and health 

applications using such type of models are emerging (Int Panis, 2010). 

 

 

4.3.4.2 Modeling exposure on fixed locations 

 

The FEATHERS model builds a diary and assigns activities to a subzone. The 

exact address or position of the modeled activity is therefore not specified and 

exposure on fixed locations cannot be directly determined using high resolution 

LUR data. Therefore exposure was calculated for a random selection of 

addresses in each subzone; the median concentration was then assumed to be 

representative for exposure on all addresses in the subzone. The true value can 

deviate from this median for a specific house, e.g. a building next to a major 

road. For the validation dataset, it would have been possible to use the precise 

geographic location of the home, but then this would not be a validation of the 

complete model chain because exact residential locations are not known from 

FEATHERS.  
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4.3.4.3 Modeling in-traffic exposure 

 

In other exposure studies, in-traffic personal exposures are either ignored 

(Hatzopoulou and Miller, 2010), concentrations were modeled (Dhondt et al., 

2012b) or measured (Beckx et al., 2009b) at fixed stations near busy roads, or 

dispersion or LUR models were used to estimate exposure while traveling 

(Marshall et al., 2006; Mölter et al., 2012; Setton et al., 2011). For the AB²C-

model, dedicated in-traffic exposure models representing annual average 

concentrations were developed for the study area and incorporated in the model 

(chapter 3.3). It was shown before that the performance of the in-traffic model 

for motorized modes could be further improved when traffic intensity is also 

taken into account. To be able to apply this extended version of the in-traffic 

exposure model in AB²C, traffic intensities would have to be calculated by 

assigning all the single trips on a road network. For the moment, the information 

on which agent makes which trip is lost when all trips predicted by FEATHERS 

are assigned to a road network, keeping only aggregated trip information. 

Assigning a single trip to a road network is also possible, but then traffic flow 

dynamics cannot be included. From chapter 3.2, it is known that exposure in 

traffic is responsible for 21% of total exposure to BC. As the difference between 

the average predicted exposure and the observed exposure is often larger than 

21%, the application of a better in-traffic exposure model will not eliminate all 

deviations. It is also shown that with the current in-traffic exposure model 

spending more time in transport, leads to higher total exposures. However, 

spending a lot of time in transport is not a necessary condition to be highly 

exposed: personal exposure can be elevated without being in transport for a 

long time, i.e. when living in a polluted subzone. 

 

 

4.3.4.4 Modeling indoor concentrations 

 

In 24 residences of participants in the personal monitoring campaign, indoor and 

outdoor measurements were performed that resulted in an I/O-ratio of 0.76. 

This ratio is in line with values reported in previous studies and in other regions 

(LaRosa et al., 2002; Lunden et al., 2008; Stranger et al., 2008; Viana et al., 
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2011; Wichmann et al., 2010). Lunden et al. (2008) compared several studies 

and concluded that I/O-ratios for BC were primarily at or <1.0. More recent 

studies confirm these numbers (Viana et al., 2011; Wichmann et al., 2010); 

Wichmann et al. (2010) even found exactly the same ratio of 0.76 for soot. The 

use of an I/O-ratio instead of a parameterized indoor air model is a strong 

simplification and will result in over- and underestimations of exposure in certain 

microenvironments, e.g. restaurants, pubs, environments with tobacco smoke, 

mechanically ventilated buildings with air filters, etc. (Brown et al., 2012; 

Wichmann et al., 2010). Comparable to the inclusion of the precise geographical 

location of homes in the AB²C model validation, I/O-ratio's specific for each 

home could have been used. Again, it was preferred not to do this, to be sure to 

validate the complete modeling framework. 

 

 

4.3.4.5 Model validation 

 

The validation dataset comprises revealed diaries, exposures and GPS routes for 

62 volunteers, and suffers from biases in the participant selection. Participants 

were urged to follow their habitual daily activities, but still many volunteers did 

not experience an annual average week: activities and locations visited were 

specific for that week, they came into contact with specific sources of BC, or 

they spent more time in transport than they usually do. To avoid this, longer 

personal monitoring campaigns would be necessary. Nevertheless, despite these 

disadvantages, the validation dataset used in this study is relatively large, both 

in number (54 unique participants) and in duration (7 consecutive days per 

participant) (Duan, 1991; Gerharz et al., 2013; Mölter et al., 2012).  

For 54 unique individuals, different exposure metrics were computed based on a 

very limited number of characteristics of an individual (i.e. those used by the 

FEATHERS decision trees). Mean exposures were not that different using the 

different exposure metrics, but the exposure contrast was larger using the 

dynamic method. Dynamic exposure takes into account trips and activities 

performed at locations other than the home, and this exposure metric predicted 

observed personal exposure slightly better than ambient or static exposure 

measures. However, the added value of a dynamic model lies in the possibility of 
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detecting short term peak exposures, high exposure activities and exposure 

contrasts rather than in only reproducing average exposures. It should be noted 

that what is called the ambient/static approach in this study is based on one 

concentration per subzone, which is less detailed than in recent epidemiological 

studies that are based upon address level. 

For all participants in the personal monitoring campaign, 700 diaries (100 diaries 

for every day of the week) were produced by the activity-based model and then, 

using the AB²C model, this resulted in distributions for BC exposure for every 

agent. This large intra-individual variability in time-activity patterns is largely 

ignored in existing exposure models. Given our results, we think it should be an 

important aspect of these models, something that was also stressed by Isaacs et 

al. (2013). The large whiskers in Figure 5 represent the exposure of a minority 

of hypermobile agents (people spending a lot of time in transport): this is not an 

artifact of the model, but this is indeed observed in field studies as well (Klepeis 

et al., 2001). 

The AB²C model showed relatively good model performance, but in some cases 

there were larger differences between the predicted and observed 

concentrations. An explanation is that the LUR models and the in-traffic 

exposure model are based on the normal distribution and therefore will perform 

best when predicting concentrations close to the mean (similar to (Mölter et al., 

2012)). Extreme conditions could be predicted better by using a stochastic I/O-

ratio or by including stochastic parameters in the in-traffic exposure model. This 

would not influence average personal exposures based on hundreds of diaries, 

but the variation would be larger. 

 

 

4.3.4.6 Limitations 

 

The rather coarse resolution, 2386 subzones of 5.7 km² on average, of the 

FEATHERS predictions contrasts with the highly detailed air pollution surfaces 

produced by the LUR models. The activity-based model FEATHERS could be 

applied to zones smaller than the subzone-level (the so-called ‘building block’ 

level), but the essential underlying data is not available on this level (e.g. 

number of work places, composition of the population). By predicting 
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concentrations for existing addresses in a subzone, the exposure of individuals 

in a subzone was approximated. 

The fact that the validation dataset is not completely independent of the 

calibration dataset is a drawback of the study. The in-traffic exposure model is 

built with travel information from the same 62 volunteers that serve as a 

validation, although the in-traffic models are estimated with information of all 

individuals and is then applied to single trips. In the development of the hourly 

LUR models, measurements at 63 sites were used to calibrate the model. From 

these 63 sites, 21 sites were home locations from participants in the personal 

monitoring campaign; all the other measurements came from an independent 

purpose-designed monitoring campaign. The I/O-ratio applied to all activities 

excluding traveling, is estimated with information from 24 residences: these are 

all home locations from the volunteers serving as validation. The I/O-ratio of 

0.76 showed quite some differences between homes and between days; using 

the average ratio in the AB²C model will not bias the validation for single agents. 

In the future, the AB²C model or single submodels should be validated with a 

fully external validation dataset. 

 

 

4.3.4.7 Future prospects 

 

In the future traffic should be assigned more accurately, e.g. using micro-

simulation models, to make FEATHERS variables more predictive in LUR models, 

but applying micro-simulation models on a national scale is not yet possible. The 

inclusion of FEATHERS variables in the hourly LUR models would open up a 

myriad of possibilities in calculating the effect of policy scenarios that, by 

changing the time-activity pattern of individuals, affect concentrations, personal 

exposure and health. 

Steinle et al. (2013) designed a conceptual model to use individual exposure 

estimates to derive population-wide exposure estimates and investigate their 

implications for public health. The AB²C model has this potential to calculate 

exposure for a complete population or for a subset of the population using only 

very limited input-data. Not only long term exposures can be calculated or the 

fraction of a population exposed to levels above a certain threshold, but also the 
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frequency of short term exposures above a certain level can be determined. The 

latter may bring new opportunities to epidemiologists: studying the effect of 

frequently repeated but short exposure peaks on long term exposure and health. 
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5. DISCUSSION AND FURTHER RESEARCH 

 

5.1 DISCUSSION 

 

5.1.1 MEASURING PERSONAL EXPOSURE 

 

5.1.1.1 Air quality sensing 

 

Air quality measurements with portable fast response instrumentation are 

essential to understand personal exposure to air pollution. Unfortunately, 

devices or sensors that are cheap, are not overburdening participants, and 

reliably measure a selected air pollutant, are not yet developed. Micro-

aethalometers are used in a personal monitoring campaign in this PhD: this 

device measures BC, is small and mobile, but rather expensive. Micro-

aethalometers can be transported in a backpack or handbag, as long as the inlet 

of the monitor is exposed to ambient air. The inlet should be placed as close to 

the breathing zone of the individual as possible to limit possible confounding 

(Adams et al., 2009; Fruin et al., 2004). To extend battery lifetime, it was 

necessary to measure on a lower time-resolution (5-min), combined with an 

intermediate sampling rate to limit audible noise. Application of a smoothing 

algorithm is not required when measuring on this time resolution: only a small 

percentage (approximately 2%) of the readings were negative (Hagler et al., 

2011). Filters had to be replaced twice per week to prevent saturation and to 

maintain data integrity. Still, additional post-processing on the data was 

necessary: 1) all data showing an error code were excluded, except for low 

battery events; 2) BC readings were excluded when the attenuation was above 

75; and 3) corrections for device specific deviations were made based on an 

intercomparison of all devices. Overall, the use of a mobile platform for 

weeklong personal exposure assessment in 62 volunteers was innovative both in 

setup and in size (Steinle et al., 2013). 

In complement to the personal measurements, fixed outdoor measurements 

were done at the residence of the couples. It allowed to calculate I/O-ratios 

whenever participants were at home with their personal aethalometer. 
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5.1.1.2 Time-activity patterns 

 

Time-activity diaries used to be collected in paper format, but electronic diaries 

are slowly gaining in popularity. Small electronic devices, PDA's or smartphones, 

make data recording more flexible in space and time, and minimize the burden 

for study participants (Delfino et al., 2010). In this PhD, a PDA application called 

PARROTS was used for the registration of weeklong time-activity diaries in 62 

participants (Kochan et al., 2010). An electronic diary enforces all attributes of 

executed activities to be provided on a 5-min resolution and it includes 

consistency checks; accordingly it results in high-quality data with a non-

response of zero. Fewer drop-outs were registered in case of the PDA survey, 

indicating that the burden for filling in this kind of survey is lower in comparison 

with the traditional paper-and-pencil approach (Kochan et al., 2010). The 

reported number of executed trips is more stable throughout a survey using 

PARROTS and on average more trips per person were reported for surveys using 

PARROTS compared to the paper-and-pencil method (Kochan et al., 2010).  

 

Movement of participants can be tracked with a GPS, and the space-time path or 

time-activity pattern can be reconstructed afterwards (de Nazelle et al., 2013; 

Gerharz et al., 2009). Problems include interruption or inaccuracy of the GPS 

signal due to the number and constellation of satellites and the built 

environment, or inaccuracy of the maps that the GPS coordinates are linked to 

(Marchal et al., 2005). In studies measuring GPS only, single trajectories need 

to be analyzed and annotated using semantic trajectories data mining 

techniques (Bohte and Maat, 2009; Wu et al., 2011a), while in this PhD the 

transport mode and trip motive were reported by the volunteers. Nevertheless, 

GPS tracking, both with and without activity annotation, has the potential to 

significantly reduce respondent burden. In the current study, the GPS signal has 

a time resolution of 1 second, leading to a temporal resolution mismatch with 

the 5-minute aethalometer measurements and reported diaries. 
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5.1.1.3 Personal monitoring campaign 

 

Initially, 8 couples were recruited to measure personal exposure to BC for 7 

consecutive days; one couple was monitored per week. These couples were 

characterized by a difference in activity pattern between both partners: a full-

time worker and a homemaker. Differences in weeklong BC exposure between 

households (because of changing background concentrations) have been found 

to be larger than between partners of one household (although these differences 

also amount to a maximum of 30%), highlighting the challenges of up-scaling 

from individual to population exposure. In this effort, 38 extra participants (19 

couples) were enrolled and 4 couples participated a second time, but this time in 

a contrasting season. 

 

Thirteen different measurement devices were used; before and after each 

measurement campaign an intercomparison of the devices was made (appendix 

FIGURE A1). Devices compared very well, with R² > 0.9. The slope of the 

regression function was used to correct personal and fixed measurements during 

the field campaign (corrections were between 1% and 23%). 

As not all couples measured BC in the same week, adjusting for non-

simultaneous measurements is necessary if studying the impact of e.g. transport 

mode on exposure. Whether the variations in background concentrations are 

additive, multiplicative, or a combination of both methods is an unsolved 

question, and probably depends on the pollutant and the location. In this PhD, 

we compared different methods and proposed a combination of the additive and 

multiplicative method (appendix A.1). The main conclusion was that 

adjustments, independent of the rescaling method, were always smaller than 

differences between different activities and between different 

microenvironments. 

 

Traveling contributed most to variability in personal exposure to BC between 

people exposed to the same concentrations at home: Volunteers spend on 

average 6% of their time in transport, but this accounts for 21% of their 

personal exposure, and to 30% of the inhaled dose. Unfortunately travel time 

proved to be an unsatisfactory parameter to estimate personal exposure to BC 
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pollution because of the many factors influencing exposure in traffic (transport 

mode, timing and location of the trip, traffic intensity on the road). Finding a 

relationship between travel time and BC exposure would have been very 

interesting as travel time is available from many exposure models, and it is easy 

to query in larger cohorts. 

For now, inhaled doses are calculated using minute volume assumptions linked 

to different activity levels and activity types, but this could be improved by 

directly measuring a human health parameter for level of effort. 

 

The combination of portable air quality measurements at a high temporal 

resolution, and an electronic diary with GPS enabled to identify activities, 

microenvironments or locations contributing disproportionally to the exposure. 

Few studies so far really covered the heterogeneity of a person's everyday 

microenvironments; most studies monitor air quality in a few selected 

microenvironments only (Brown et al., 2012; Steinle et al., 2013). Since we 

demonstrated that the exposure of two individuals living at the same location 

can differ by as much as 30% (as a maximum), using modeled or measured 

concentrations at the place of residence alone is neither accurate nor sufficient. 

 

 

5.1.2 MODELING PERSONAL EXPOSURE 

 

5.1.2.1 Activity-based model 

 

Activity-based models have been used in the past for population exposure 

assessment. Shiftan (2000) was the first to describe the advantages of activity-

based modeling for air quality purposes over traditional four-step models. Beckx 

et al. (2009c) and Hatzopoulou et al. (2011) applied local activity-based models 

to estimate traffic emissions and population exposure to several air pollutants in 

the Netherlands and Toronto. The activity-based model for Flanders FEATHERS 

was first used by Dhondt et al. (2012a) to calculate population exposure and 

health impact, but without proper validation and not focusing on personal 

exposure. Activity-based models originate from traffic science which is an 

advantage as these models focus on traffic.  
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The activity-based model for Flanders, FEATHERS, is not specifically built for air 

pollution exposure assessment. This shows in the choice of microenvironments, 

e.g. no distinction between indoor and outdoor activities, sleeping is not 

predicted as a distinct activity, trips by train, bus or metro are grouped under 

one category. 

 

The activity-based model can be improved in multiple ways to simulate diaries 

more realistically, and by extension improve the personal exposure estimation. 

In the current model, a single trip cannot make use of multiple transport modes; 

instead the main transport mode of a trip is selected. Problematic for weeklong 

exposure is that there is no association between the same person or agent on 

different days of the week (Monday-Sunday). Person x on different days is as 

much alike as a new agent with the same input-characteristics.  

 

The concept of subzones or TAZs (2386 in the study area) used within the 

FEATHERS transportation model eliminates intrazonal traffic. Trips that originate 

and arrive in the same subzone are predicted in individual diaries, but these 

trips cannot be assigned to a road network in the traffic assignment step. As a 

result local traffic is not present in the traffic streams used as input in the hourly 

LUR models. On the other hand, remaining traffic is assigned to a dense road 

network using an equilibrium assignment, this means that congestion effects 

and rerouting are taken into account, which is an improvement over previous 

studies (Beckx et al., 2009c). 

 

 

5.1.2.2 Hourly LUR models 

 

FEATHERS variables are occasionally included in the hourly LUR models, but it 

was anticipated that especially traffic intensities would emerge more frequently 

in the air quality models. BC is a traffic-related pollutant, with steep decay rates 

when moving away from roads: local traffic intensities thus impact local ambient 

concentrations (Karner et al., 2010; Zhu et al., 2002). The traffic assignment 

used in this PhD is apparently not sufficiently accurate: we are using a 

macroscopic traffic model, but we actually need a microsimulation traffic model. 
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Unfortunately, microscopic models cannot yet be applied to our complete study 

area because of computational and data constraints. 

 

High variance inflation factors (specified as VIF > 3 (Beelen et al., 2013; Eeftens 

et al., 2012); or as VIF > 5 (Johnson et al., 2010)) are a problem since they 

indicate multicollinearity in regression models. In the hourly LUR models 

elevated levels for the Cook's D were found but they were never larger than 5.  

An important advantage of LUR models is the good cost-benefit ratio compared 

to dispersion models; but the need to build 48 separate LUR models might 

weaken this point. In our experience, hourly LUR models are not more data-

demanding than annual LUR models, except for the models with dynamic 

covariates but those were not retained in the AB²C model. Time-resolved 

measurements should be available, but the use of an active monitor does not 

necessarily require more supervision than passive samplers once in place. 

Estimating 48 LUR models obviously takes more time than developing one 

annual LUR model, but model development can be largely automated and 

running the script takes only seconds, even on a laptop computer. Dispersion 

models have the disadvantage of needing certain input variables, e.g. 

meteorological variables. Land use regression models are easier to use and 

quicker to implement as they can be built with available data.  

Dispersion models typically use raster grids (with one grid cell being 1km² to 

several km²): dispersion models are then unable to accurately predict within-city 

variability in air pollution, something that is possible with LUR models. Recent 

developments in dispersion modeling increased the spatial resolution of these 

models (adding an irregular line source following grid using IFDM; inclusion of a 

street canyon module). One example is a dispersion model for NO2 that was 

developed for Flanders, and validated with passive NO2 measurements 

(measurements from campaign (i) in chapter 4.1) (Lefebvre et al., 2013b). This 

latter paper shows that the extended dispersion model is indeed much better in 

estimating within-city variability in concentrations compared to a gridded 

dispersion model. 
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5.1.2.3 Indoor air model 

 

People are often in indoor environments. It is estimated that a typical person is 

indoors approximately 90% of the time (Klepeis, 2006). The activity groups 

defined in the FEATHERS model do not explicitly differentiate between indoor 

and outdoor microenvironments; therefore all activities are hypothesized to be 

indoors (except for traveling). 

 

Complex indoor air models, for example the mass-balance model approach, 

require much data: ventilation properties, air exchange rates, filters used, 

indoor sources, room volume, deposition rates, etc. (Gerharz et al., 2013; 

Lunden et al., 2008). Because indoor concentrations depend on many factors 

and conditions, they vary considerably between houses, which also appeared 

from the measurements reported in this dissertation. It is impossible to collect 

these data on a population level, but assumptions could be made based on a 

small sample where extensive measurements took place or based on values 

reported in peer reviewed literature (Gerharz et al., 2013). 

 

 

5.1.2.4 Validation of AB²C 

 

Different models are integrated in one overall framework: the AB²C model. This 

model predicts long term exposure to BC for the Flemish population by taking 

into account population mobility and time-activity patterns. This improves on 

current methods that mostly ignore the fact that people spend time away from 

home and are exposed to concentrations that differ from ambient concentrations 

at a fixed location. Using our approach, peak exposures, or highly exposed 

individuals or groups of individuals can be identified; and the origin of the 

elevated exposure can be traced. Also, because of the stochastic nature of the 

FEATHERS model, intra-individual variability in activity pattern and in exposure 

can be modeled. 

 

Compared to previous attempts to model exposure to air pollution using activity-

based models (Beckx et al., 2009a; Dhondt et al., 2012b), the AB²C model 
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focusses on personal exposure rather than on population exposure. These 

population exposure models estimate exposure using ‘personhours’ spent in 

each zone, and it is not possible from this output to calculate the accumulated 

exposure of an individual. The added value of a model focusing on personal 

exposure are the opportunities it creates for individualized mitigation policies, 

the calculation of health impact and linked costs, and the identification of people 

exposed to levels exceeding a certain threshold. 

 

The newly developed AB²C framework can also be compared to a more 

traditional way of calculating population exposure: by using dispersion models 

and static address information. For Flanders, daily EC concentrations were 

determined by using a MIMOSA-AURORA-IFDM model chain (emission and 

dispersion modeling) for the year 2007 (Lefebvre et al., 2011). This 

concentration map was combined with static address data for the complete 

population resulting in a population exposure distribution (FIGURE 34). This 

exposure distribution is confronted with the measured personal exposures as 

reported in chapter 3 (adjusted for changing background concentrations and 

thus representative for annual average exposure); while bearing in mind that 

this sample was not completely representative for the Flemish population. For 

the majority of the people, exposure is underestimated, most likely because 

population mobility and exposure during traveling is not taken into account 

(FIGURE 34). Overall the curves are rather similar, indicating that on a 

population level the traditional way of calculating exposure is a good 

approximation for real exposure, despite the small underestimation. 
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FIGURE 34: Comparison between predicted exposures, and observed personal 
exposures in 62 volunteers in Flanders (chapter 3). Personal measurements were 
done for BC; for the purpose of this figure, BC concentrations were converted to 
EC (BC = 1.5 * EC). In total, 418 daily personal exposures are reported. 

 

 

On the disaggregated level of an individual, the performance of the AB²C model 

is compared to real-life personal measurements. For every volunteer that 

participated in the personal monitoring (chapter 3), personal and household 

characteristics (subzone where the residence is located, household composition, 

household income, age of the oldest adult, age of the youngest child, the 

number of adults in the household, the number of cars in the household, age 

and gender, work status: homemaker or worker, possession of driver's license) 

were collected and loaded into FEATHERS. Based on these characteristics, 100 

virtual agents were created per day (Mon-Sun, 700 agents in total) and for 

every agent a diary was simulated. This was done for all 54 unique participants. 

Then personal exposure was calculated using the AB²C model, and estimated 

concentrations were compared to observed BC exposure. Significant intra-

individual variability was observed resulting in wide exposure distributions. In 

chapter 4.3 this personal exposure distribution is compared to the weeklong 

average exposure of the real-life individual. For every individual a more detailed 

analysis is possible comparing observed daily concentrations to the exposure 
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distributions. In FIGURE 35, the exposure distribution for one agent is 

presented, and is compared to measured exposures on different weekdays. As 

can be seen, both the modeled and the measured exposures show relatively 

much variation between different days. The figure represents an ‘annual average 

day’, so changes in background concentrations are not yet incorporated, but this 

would even increase the variability. Predicted exposure is lognormally 

distributed, with a tail to the right where health risks are most important (Isaacs 

et al., 2013). 

 

 

FIGURE 35: Personal exposure to BC (ng/m³): observed (vertical lines) versus 
modeled (histogram) using AB²C (Household 22, Person 2 on FIGURE 33) 

 

 

5.1.2.5 Comparison of AB²C with existing exposure models 

 

SHEDS, pCNEM, and the activity-based modeling frameworks discussed before 

(Beckx et al., 2009a; Dhondt et al., 2012b) are all examples of previously 

developed population exposure models. STEMS, BESSTE, MEEM and EMI are 

examples of models that estimate personal exposure (see chapter 2 for a 

detailed description of these models). All these models contribute to a more 

realistic estimation of exposure compared to the use of concentrations measured 
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with fixed air quality monitors. Still many of these models make unrealistic 

assumptions, some of which we tried to tackle in this PhD. 

 

- An approach that is often adopted in population exposure models is the use 

of activity databases. This is an improvement over the use of a non-mobile 

population, but in most cased the activity database is deterministic in 

nature: persons with the same characteristics will have the same agenda, 

largely ignoring both inter-individual and intra-individual variations. Activity 

databases often lack information on the geographical location of activities, 

and concentrations are assumed per microenvironment. This means that a 

residence in an urban area will have the same predicted concentration than 

a residence in a rural environment. By using individual diaries estimated by 

the activity-based model FEATHERS, AB²C improves on both of these points. 

- Estimating exposure while traveling is more difficult than estimating 

exposure for fixed locations because the location and conditions are 

constantly changing. In some studies, exposure while traveling is completely 

ignored (e.g. in pCNEM, and by Hatzopoulou and Miller (2010)). Other 

approaches include the use of dispersion or land use regression models to 

estimate concentrations on roads. Though these models are not intended to 

estimate concentrations close to emission sources, partly also because these 

models are built using measurements on fixed locations away from traffic. 

This approach also ignores that in-cabin concentrations can differ from 

concentrations on a road. For AB²C, an in-traffic personal exposure model 

for Flanders representing annual averages was estimated, taking into 

account transport mode, timing, street and traffic factors. 

- Indoor BC concentrations are generally lower than outdoor BC 

concentrations. Complex indoor air models are used in SHEDS and EMI, in 

MEEM and in the personal exposure model for Münster. Indoor air quality 

models either need specific data for each individual building not available on 

an aggregated level, or values for each parameter need to be retrieved from 

a limited set of buildings and then mean values are used in the model. The 

second method is an approximation and errors can be large for individual 

houses. The AB²C model uses an I/O-ratio that is applied to all activities 
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(except traveling). The I/O-ratio is based on measurements in 24 houses in 

Flanders, but we did observe differences between houses. 

- Neither of the aforementioned models is properly validated using exposure 

measurements; the validation was often limited to the evaluation of 

submodels. Exposure models that estimate personal exposure for every 

individual in a population, need to validate time-location-activity diaries as 

well, next to the validation of the air quality model. Most current personal 

exposure models (a.o. EMI, MEEM, Personal exposure model Münster) are 

based on revealed diaries (using paper diaries or GPS) and cannot be 

generalized to a complete population. By using an activity-based model, 

diaries are generated stochastically for a synthetic population, and thus 

additional collection of diaries is not necessary: using AB²C personal 

exposure can be estimated on a population scale. Moreover, the AB²C model 

is validated through personal monitoring. 

 

 

5.1.3 WEAKNESSES 

 

Personal monitoring was done in 54 unique individuals, of which 8 participated in 

two seasons. In total, a dataset of 62 weeks was available consisting of BC 

measurements, a time-activity diary, and GPS tracks. This sample is large 

compared to efforts from other authors (Broich et al., 2012; Delgado-Saborit, 

2012; Steinle et al., 2013), but is still limited as this sample cannot be regarded 

as representative for a complete population. There is a bias in our recruited 

sample because too many volunteers worked in a rural area (nine colleagues 

from our own institution), most had an office job, and all workers worked 

indoors. In line with many exposure and health studies, our participants were 

biased toward higher education. Most volunteers participated in a cold season, 

only 16 persons participated in a warm season. BC measurements in different 

seasons and in different weeks are adjusted for changing background 

concentrations, but changes in the time-activity pattern cannot be accounted for 

(e.g. more outdoor activities in the summer). 
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Over the last years many novel sensors have become available measuring 

movement (accelerometry, GPS) or body functions (heart rate, ventilation, 

galvanic skin response, etc.). In this PhD, no proxy for physical activity was 

measured, making it impossible to truthfully report inhaled doses. Assumptions 

on minute volume were made in chapter 3.2 based on activity type and gender 

(Allan and Richardson, 1998). Inhaled doses can be linked directly to health 

endpoints making this a valuable parameter to measure in future personal 

monitoring studies. 

It really is a shame that we did not measure any health parameter in the 

participants of the personal monitoring campaign. Several non-complex and 

non-invasive biomarker measurements associated with acute exposure to BC 

would have been possible, e.g. exhaled NO, retinal pictures, blood pressure 

(Delfino et al., 2006; Lin et al., 2011). These biomarker measurements could 

have demonstrated that health studies really benefit from detailed exposure 

assessment. 

 

The coarse resolution of the FEATHERS predictions contrasts with the highly 

detailed air pollution surfaces produced by the LUR models. In the FEATHERS 

platform, 2386 TAZs or subzones were defined in Flanders (including Brussels) 

with an average surface area of 5.7 km². The activity-based model FEATHERS 

could be applied to zones smaller than the subzone-level (‘building block’ level), 

but the essential underlying data is not available on this level (e.g. number of 

work places, composition of the population). By predicting concentrations for 

existing addresses in a subzone, the exposure of individuals in a subzone was 

approximated. 

 

Error propagation is an important issue in the use of linked models (Gulliver and 

Briggs, 2005). More sophisticated exposure models like AB²C do not necessarily 

improve exposure estimation. Validation across a wide range of conditions, 

across different time periods and in multiple individuals is therefore required. 

 

The validation dataset used in this PhD is not completely independent of the 

calibration dataset used to develop some of the submodels. The in-traffic 

personal exposure model is built with travel information from the same 62 
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volunteers that serve as a validation, although the in-traffic models are 

estimated with information of all individuals and is then applied to single trips of 

virtual agents. In the development of the hourly LUR models, measurements at 

63 sites were used to calibrate the models. From these 63 sites, 21 sites were 

home locations from participants in the personal monitoring campaign; all the 

other measurements came from an independent purpose-designed monitoring 

campaign. The I/O-ratio applied to all activities excluding traveling, is estimated 

with information from 24 residences: these are all home locations from the 

volunteers serving as validation. The I/O-ratio of 0.76 showed quite some 

differences between homes and between days; using the average ratio in the 

AB²C model will not bias the validation for single agents. In the future, the AB²C 

model or single submodels should be validated with a fully external validation 

dataset.  
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5.2 FURTHER RESEARCH 

 

5.2.1 METHODOLOGICAL CHALLANGES 

 

To refine exposure estimation, the FEATHERS activity-based model should be 

able to predict diaries on a much finer scale than the subzone-level. Using this 

higher spatial resolution, traffic assignment will improve, and traffic streams will 

be more realistic. It is expected that traffic intensity will then be included in the 

hourly LUR models for BC. Currently, the spatial resolution or granularity of 

FEATHERS is already improved compared to previous releases (Dhondt et al., 

2012a; Lefebvre et al., 2013a): the number of zones has increased from 1145 to 

2386, and the average surface area of a zone has halved. Bottlenecks for further 

refinements are data availability and privacy issues. 

The absence of FEATHERS variables in many hourly LUR models, currently limits 

the possibilities of using the AB²C framework for scenario assessment. Scenarios 

that impact the activity pattern of individual agents, will not affect the air 

quality; e.g. when calculating the effect of more teleworking, this will not impact 

BC concentrations through reduced traffic intensities. All scenarios that change 

the activity pattern of individuals will nevertheless change the exposure of 

people due to changes in the time-space path, and independent of changes in 

the air quality.  

 

When developing the hourly LUR models, multiple issues came up. The rather 

short sampling period might be responsible for some erroneous or not 

generalizable measurements at certain locations for some hours. This probably 

limits the validity of the models presented in chapter 4.2. It is advisable to 

repeat measurements in multiple seasons, and to measure for longer continuous 

periods on each location, especially in the case that hourly LUR models are built. 

However, measuring BC using micro-aethalometers requires frequent filter 

changes, and the equipment is expensive, leading to a costly monitoring 

campaign. Cheaper, more reliable sensors may solve this constraint in the near 

future. 

Models for succeeding hours showed overlapping significant covariates, pointing 

to the possibility of combining hours in groups. Grouping of hours could either 
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be based on the correlation between measurements on different hours (but this 

does not guarantee similar air pollution sources), or alternatively it could be 

based on the similarity of the developed hourly LUR models. It should be 

investigated further how to combine models and whether it is useful to group 

them. 

 

In this PhD, a personal exposure model is developed using several submodels, 

a.o. an indoor air model and an in-traffic exposure model. Single models can be 

substituted using alternative techniques, for example the in-traffic 

concentrations could be calculated by overlaying a LUR model with single trips; 

or indoor air quality could be assessed by using a mass-balance model 

approach. In the past, several researchers used an emission and a dispersion 

model instead of a LUR model to estimate concentrations on fixed locations 

(Beckx et al., 2009a; Dhondt et al., 2012b; Hatzopoulou et al., 2011). 

The AB²C modeling framework can also be extended with additional submodels. 

An inhalation module to estimate dose or ‘internal exposure’ would definitely 

enrich the model outcome and further improve its relevance for environmental 

epidemiology. In chapter 3.2 it was shown that breathing rates can be very 

relevant: if traveling contributes approximately 21% to exposure, it accounts for 

30% of inhaled dose. The AB²C model could be extended with a full grown 

inhalation module, coupling breathing rates to activities, transport modes and a 

person's characteristics. The extended AB²C model should then be validated in a 

personal monitoring campaign that also registers physical activity levels in 

volunteers (using heart rate monitors, face masks measuring ventilation, novel 

physiological sensors, or 3D-accelerometry). 

The resulting exposure or dose estimates can be transformed to health effects in 

individuals by applying appropriate exposure-response or dose-response 

functions (Dhondt et al., 2013; Newth and Gunasekera, 2012). Health effects 

can then be converted to costs and serve as valuable information for policy 

makers. 

Though, adding or replacing submodels should be done with caution. Complex 

models can become more of a black box, making it more difficult to draw 

unambiguous conclusions. Hence, complicating models does not necessarily 

enhance the validity of the model outcomes (Gulliver and Briggs, 2005).  
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The AB²C model is implemented and validated for BC. The added value of a 

personal exposure model that takes into account population mobility will be 

different for different pollutants. For pollutants that are relatively stable over 

space and time in Flanders, like PM10, personal exposure will not drastically 

change if trips and out-of-home activities are not accounted for. To implement 

and validate the current AB²C model, it is necessary that the pollutant under 

investigation can be measured with a high temporal resolution, both in a fixed 

and on a mobile platform: devices that have this possibility are currently rare. 

Newly developed sensors could fill this gap and open up novel opportunities. 

Finally, it is not worth the effort to model exposure in great detail, if there is 

absolutely no toxicological evidence or even an indication that the pollutant is 

harmful to people. Pollutants that would make good candidates in future 

personal exposure models are NOx, SO2, ultrafine particles, VOC, PM composites 

(EC, OC) and metals (e.g. Cu, Fe and Zn (non-tailpipe emissions from road 

traffic)). 

 

 

5.2.2 OPPORTUNITIES FOR EPIDEMIOLOGICAL RESEARCH 

 

Exposure assessment is considered to be the Achilles heel of air pollutant 

epidemiology (Jerrett, 2013, personal communication). In many studies 

exposure is estimated using simple methodologies not completely or not 

accurately reflecting real exposure. As a result, exposure misclassification will 

arise and health effects may not be identified, the effect will be smaller than in 

reality or an erroneous effect will be detected (Özkaynak et al., 2013; Setton et 

al., 2011; Sheppard et al., 2012). Improving exposure estimates, e.g. by taking 

into account air pollution surfaces, time-activity patterns or direct personal 

measurements, is identified as the way forward in large epidemiological studies 

(Fenske, 2010). This is especially the case for many traffic related pollutants 

such as BC that are characterized by a high spatiotemporal heterogeneity.  

Personal measurements, as shown in chapter 3, are one way of estimating 

personal exposure more accurately. Personal measurements are realistic for 

short term exposures, but not necessarily for longer term exposures or for 

historic exposures. The modeling framework AB²C developed in chapter 4 can be 
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used to predict exposure of a large group of individuals or for a subset of the 

population using only very limited input-data. For every person a range of 

exposures will be predicted based on the changing time-activity pattern of an 

individual. Not only long term exposures can be calculated or the fraction of a 

population exposed to levels above a certain threshold, but also the frequency of 

short term exposures above a certain level can be determined. The latter may 

bring new opportunities to epidemiologists: studying the effect of frequently 

repeated but short exposure peaks on long term exposure and health. 

The growing field of spatial epidemiology can benefit from the new GIS methods 

presented in this PhD (Jerrett et al., 2010): both the personal measurements 

using GPS, the time-location-activity diaries from the FEATHERS model 

integrated in AB²C, and the hourly LUR models, are concepts that can readily be 

incorporated in epidemiological studies. 

 

It is yet to be investigated whether the improved exposure estimates developed 

in this PhD result in a gain for epidemiologists, and how large that gain is 

(Szpiro et al., 2011). As described earlier, the advantage of using an AB²C-like 

framework to estimate personal exposure to PM10 will be very limited, on the 

contrary using this framework will introduce errors not present when using raw 

measurement data on fixed monitors. Pollutants that are mainly traffic-related 

will be aided by the use of a more detailed exposure assessment using personal 

monitoring or exposure models. In that way, this study will contribute to the 

design of future health studies that seek to study the relationship between 

observed health effects and traffic. 
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A. APPENDIX 

 

 

 

 

All appendices can be accessed online as supplemental material associated with 

the respective publications. 
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A.1 SUPPLEMENTAL MATERIAL CHAPTER 3.2 

 

Intercomparison of 13 aethalometers model AE51 

 

Intercomparison summer (post-campaign comparison): 

  

 

 

Intercomparison winter (pre- and post-campaign comparison) 
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FIGURE A1: Results of the intercomparison of 13 aethalometers. Device 214 was 
excluded from the winter field campaign because of deviating values during this 
intercomparison. The slope of the regression function is used to correct personal 
measurements during the field campaign. Pearson's r is consistently high (0.96-
0.99), except for device 214 in winter. 
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Correction for variation in background concentrations 

 

Due to the limited availability of measurement devices, we were obliged to 

spread the measurements over several weeks. To be able to compare 

concentrations measured in different microenvironments directly, without the 

influence of varying background concentrations, we calculated corrected or 

‘rescaled’ concentrations. Corrections are based on measurements from a fixed 

BC reference monitor operated by the Flemish Environment Agency on a 

suburban background location (station 40AL01 – Antwerpen Linkeroever). At 

this location local traffic has only a limited impact on BC concentrations; the 

observed temporal variation is representative for the study area. 

 

It is an unsolved question whether the day-to-day variations of the background 

monitor are additive or multiplicative. As an example, Zuurbier et al. (2010) 

corrected air pollution concentrations for absolute differences between the mean 

background concentrations during all sampling days and the background 

concentration of each sampling day. She followed previous studies (Cyrys et al., 

2003). Hoek et al. (2002) compared the additive and the multiplicative method 

and for their study areas, the additive method gave slightly better results.  

For chapter 3.2, we did a sensitivity analysis using four different methodologies, 

including unadjusted concentrations. The impact of type of correction on FIGURE 

18, FIGURES A5 and A6 is calculated. The results are presented in TABLE A1a-c 

and FIGURE A3a-c. The main conclusion is that corrections, independent of the 

rescaling method, are always smaller than differences between different 

activities and between different microenvironments. As most important results: 

- The multiplication method overcorrects high peak exposures, originating 

from local sources. Consequently the average concentration will be 

overestimated.  

- Median concentrations are not influenced by the rescaling method. 

- The additive method is introducing negative values, e.g. P5 is more often 

negative in the additive method compared to all other methods. 

- The method used in chapter 3.2, i.e. a combination of the additive and 

multiplicative method is relying on the additive method for higher values and 

on the multiplicative method for lower values. The impact of this rescaling 
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on FIGURE 18, FIGURES A5 and A6 is in between the impact of the 

‘multiplicative only’ and ‘additive only’ method. 

- When averaging results over the whole study period, the ‘unadjusted 

concentrations’ option is very similar to any of the possible rescaling 

methods; although this hides the impact on individual measurements.  

 

Based on the results of the sensitivity analysis, it was decided to use two 

different rescaling formulas, dependent on the difference between the daily 

average concentration measured at the reference station and the 5-min personal 

exposure of the volunteer. If a personal measurement is higher than the daily 

average concentration at the reference station (personal measurement > 

refsite_DailyAverage), the absolute difference between yearly and daily average 

concentrations at the reference site was used as correction. We used the 

absolute difference because, when using a multiplication, the part of the 

personal exposure originating from local sources would also be affected, which is 

counterintuitive and unwanted. In all other cases (personal measurement < 

refsite_DailyAverage), we used the ratio of yearly and daily average 

concentrations at the reference site. For these lower concentrations, we worked 

with a ratio rather than with the difference between daily and yearly averages at 

the reference station, mainly to prevent corrected concentrations becoming 

negative. In this case we assume no local sources of BC, and thus the personal 

measurement in its entirety is corrected for variation observed at the reference 

site. Whether this correction works in indoor microenvironments is an open 

question, but we observed a high correlation between indoor and outdoor 

concentrations at the residential location of the participants (r=0.81). 

The rescaling algorithm is programmed and calculated in SAS 9.2 (schematic 

representation in FIGURE A2). 

 

Personal measurement > refsite_DailyAverage Personal measurement < refsite_DailyAverage

Personal measurement_corr = 
Personal measurement + 

(refsite_YearlyAverage – refsite_DailyAverage)

Personal measurement_corr = 
Personal measurement * 

(refsite_YearlyAverage / refsite_DailyAverage)

 

FIGURE A2: Schematic representation of the formulas used for the rescaling of 
personal measurements  
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TABLE A1a: Overview of the impact of the rescaling method on concentrations in 

different microenvironments. Three methods are presented: the correction 
applied in chapter 3.2 and 3.3 (combination of multiplicative and additive 
method), multiplicative method only or additive correction. Results are compared 
to uncorrected measurements. 

Chapter 3.2 + 3.3 In transport Other Family / Friends Home Work / School 

P5 490 -69 351 299 78 
Q1 1895 836 901 636 455 
Median 3507 1830 1324 1001 873 
Q3 6298 3080 1786 1604 1425 
P95 15444 9601 3976 2805 2786 
Avg 4976 2840 1565 1246 1068 
Count 7039 4742 2259 72406 17298 

No correction In transport Other Family / Friends Home Work / School 

P5 409 -53 203 220 95 
Q1 1792 687 645 554 443 
Median 3596 1464 1032 971 837 
Q3 6529 3021 1747 1597 1417 
P95 15672 9284 4426 3142 2847 
Avg 5096 2714 1446 1255 1087 
Count 7039 4742 2259 72406 17298 

Only multiplicative In transport Other Family / Friends Home Work / School 

P5 490 -69 351 299 78 
Q1 1900 836 901 636 455 
Median 3636 1962 1324 1001 873 
Q3 7104 4178 1977 1604 1425 
P95 19515 15964 5251 3326 3165 
Avg 5999 4079 2315 1369 1126 
Count 7039 4742 2259 72406 17298 

Only additive In transport Other Family / Friends Home Work / School 

P5 221 -492 57 -702 -985 
Q1 1895 913 884 463 210 
Median 3507 1830 1422 1118 893 
Q3 6298 3080 1786 1610 1480 
P95 15444 9601 3976 2805 2786 
Avg 4974 2857 1560 1118 895 
Count 7039 4742 2259 72406 17298 
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TABLE A1b: Overview of the impact of the rescaling method on concentrations 

during different activities. Three methods are presented: the correction applied 
in chapter 3.2 and 3.3 (combination of multiplicative and additive method), 
multiplicative method only or additive correction. Results are compared to 
uncorrected measurements. 

Chapter 
3.2 + 
3.3 

In 
trans-
port 

Go for a 
ride 

Social 
and 
leisure 

Shop-
ping 

Other Home-
based 
activities 

Work Sleep 

P5 548 -241 190 204 148 293 84 301 
Q1 2013 908 833 952 675 710 483 583 
Median 3685 1680 1366 1617 1313 1132 917 892 
Q3 6511 2827 2304 2918 2132 1754 1441 1405 
P95 15569 14341 8723 7694 5443 3134 2679 2492 
Avg 5132 2855 2445 2540 1829 1360 1077 1090 
Count 6560 481 5878 1243 2992 31558 18204 36828 

No 
correc-
tion 

In 
trans-
port 

Go for a 
ride 

Social 
and 
leisure 

Shop-
ping 

Other Home-
based 
activities 

Work Sleep 

P5 508 -127 87 108 116 232 103 211 
Q1 1993 710 655 1026 590 621 460 497 
Median 3771 1526 1149 1837 1040 1059 855 879 
Q3 6735 2921 2182 3204 2028 1734 1423 1468 
P95 15770 14124 8496 8261 5497 3459 2831 2756 
Avg 5262 2823 2376 2721 1713 1353 1087 1108 
Count 6560 481 5878 1243 2992 31558 18204 36828 

Only 
multipli-
cative 

In 
trans-
port 

Go for a 
ride 

Social 
and 
leisure 

Shop-
ping 

Other Home-
based 
activities 

Work Sleep 

P5 548 -241 190 204 148 293 84 301 
Q1 2012 908 833 952 675 710 483 583 
Median 3788 1726 1366 1617 1313 1132 917 892 

Q3 7363 3629 2649 3463 2426 1840 1441 1405 
P95 19809 11245 13323 9299 8100 4027 3137 2778 
Avg 6201 3251 3303 2925 2278 1591 1136 1151 
Count 6560 481 5878 1243 2992 31558 18204 36828 

Only 
additive 

In 
trans-
port 

Go for a 
ride 

Social 
and 
leisure 

Shop-
ping 

Other Home-
based 
activities 

Work Sleep 

P5 350 -336 -495 -629 -416 -697 -971 -712 
Q1 2013 1021 880 744 623 527 240 414 
Median 3685 1680 1455 1616 1417 1234 924 1022 
Q3 6511 2827 2304 2918 2132 1754 1500 1480 
P95 15569 14341 8723 7694 5443 3134 2679 2492 
Avg 5127 2881 2426 2418 1769 1236 906 962 
Count 6560 481 5878 1243 2992 31558 18204 36828 
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TABLE A1c: Overview of the impact of the rescaling method on concentrations in 

different transport modes. Three methods are presented: the correction applied 
in chapter 3.2 and 3.3 (combination of multiplicative and additive method), 
multiplicative method only or additive correction. Results are compared to 
uncorrected measurements. 

Chapter 3.2 + 
3.3 

Car 
driver 

Car 
passen-
ger 

Bike On foot Train Light 
rail / 
metro 

Bus 

P5 713 991 187 25 460 1436 1411 
Q1 2530 2483 1625 1313 1263 2987 2893 
Median 4530 4350 2858 2393 2062 4913 4922 
Q3 8327 7570 4732 4084 3181 7319 7692 
P95 19161 13595 9969 9139 5415 8814 17423 
Avg 6432 5583 3555 3175 2394 5066 6575 
Count 3190 645 1167 1161 614 72 190 

No correction Car 
driver 

Car 
passen-
ger 

Bike On foot Train Light 
rail / 
metro 

Bus 

P5 690 913 167 12 480 1487 1922 
Q1 2610 2536 1309 1122 1117 3205 3089 
Median 4893 4528 2588 2539 2021 5404 5285 
Q3 8643 7799 4787 4215 3297 8100 8345 
P95 19152 13759 9786 9146 5363 9621 17651 
Avg 6646 5675 3479 3236 2436 5556 6844 
Count 3190 645 1167 1161 614 72 190 

Only multipli-
cative 

Car 
driver 

Car 
passen-
ger 

Bike On foot Train Light 
rail / 
metro 

Bus 

P5 713 991 187 25 460 1436 1411 
Q1 2478 2550 1624 1313 1263 2808 3026 
Median 4616 4801 3045 2553 2129 4291 5437 

Q3 9219 9102 5739 4903 3383 5873 9336 
P95 23744 24107 14786 11526 6725 11978 19270 
AVG 7461 7598 4884 3755 2875 4867 7165 
Count 3190 645 1167 1161 614 72 190 

Only additive Car 
driver 

Car 
passen-
ger 

Bike On foot Train Light 
rail / 
metro 

Bus 

P5 518 925 -78 -285 83 1247 1214 
Q1 2530 2483 1625 1348 1251 2987 2893 
Median 4530 4350 2858 2393 2062 4913 4922 
Q3 8327 7570 4732 4084 3181 7319 7692 
P95 19161 13595 9969 9139 5415 8814 17423 
AVG 6422 5561 3586 3184 2377 5013 6549 
Count 3190 645 1167 1161 614 72 190 

 

  



229 

 

 

FIGURE A3a: Overview of the impact of the rescaling method on concentrations 
in different microenvironments. Average and median concentrations from TABLE 
A1a are shown. 
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FIGURE A3b: Overview of the impact of the rescaling method on concentrations 
during different activities. Average and median concentrations from TABLE A1b 
are shown. 
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FIGURE A3c: Overview of the impact of the rescaling method on concentrations in 
different transport modes. Average and median concentrations from TABLE A1c 
are shown. 
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Minute volume assumptions 

 

Inhalation rates are based on Allan & Richardson (1998) and Int Panis et al. 

(2010). Activities and transport modes are linked to activity levels in an ad hoc 

manner. 

 

 

TABLE A2: Summary of minute volume assumptions (l/min). Numbers based on 
Allen & Richardson (1998); except for the rows with the asterisk which are based 
on Int Panis et al. (2010). 

Activity Male adults Female adults 

Sleep 8.3  7.5 
Home-based activities / Eat / Education 10.5 12.5 
Work / Social / Other / Service related activities / 

Bring/get goods/people 
16.1 13.0 

Leisure / Daily shopping / Non-daily shopping 30.2 23.2 
On foot 49.2 39.8 
Train / Bus / Light rail / Metro 16.1 13.0 
Car driver / Car passenger / Taxi * 13.4 11.3 

Bike * 59.1 46.2 
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Study area 

 

 

FIGURE A4: Study area with residential location of participating couples. The 
yellow diamond marks the location of the suburban background monitor we used 
to correct for non-simultaneous measurements. 
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Vehicle characteristics 

 

For the analysis we relied on a large dataset of over 1000 car trips. Participating 

households owned 45 cars in total, an average of almost 1.5 car per household. 

Almost half of the cars (21 cars) did not meet the Euro 4 or Euro 5 emission 

standards (based on year of manufacture), and 31 cars were diesel; information 

that was drawn from a questionnaire filled in by all volunteers. 

 

TABLE A3: Vehicle characteristics and car ownership per household participating 
in the study 

Season Household 
Number 

# cars 
(total per 
household) 

# 
diesel 
cars 

Year of 
manufacture 
car 1 

Year of 
manufacture 
car 2 

Year of 
manufacture 
car 3 

1 HH1 2 2 2005 or older 2006 or newer  
1 HH2 1 1 2005 or older   
1 HH3 1 1 2005 or older   
1 HH4 1 1 2005 or older   
1 HH5 2 2 2005 or older 2006 or newer  
1 HH6 0 0    
1 HH7 2 2 2006 or newer 2006 or newer  
1 HH8 2 2 2005 or older 2006 or newer  
2 HH1 2 2 2005 or older 2006 or newer  
2 HH2 1 1 2005 or older   
2 HH4 1 1 2005 or older   
2 HH8 2 2 2005 or older 2006 or newer  
2 HH9 2 2 2006 or newer 2006 or newer  
2 HH10 1 0 2005 or older   
2 HH11 1 1 2005 or older   
2 HH12 1 1 2006 or newer   
2 HH13 2 2 2006 or newer 2006 or newer  
2 HH14 1 1 2005 or older   
2 HH15 1 0 2005 or older   
2 HH16 1 1 2005 or older   

2 HH17 0 0    
2 HH18 2 1 2005 or older 2006 or newer  
2 HH19 1 1 2006 or newer   
2 HH20 3 3 2005 or older 2005 or older 2006 or newer 
2 HH21 1 1 2006 or newer   
2 HH22 2 1 2005 or older 2006 or newer  
2 HH23 1 1 2006 or newer   
2 HH24 2 1 2005 or older 2006 or newer  
2 HH25 3 3 2006 or newer 2006 or newer 2006 or newer 
2 HH26 2 2 2005 or older 2006 or newer  
2 HH27 1 1 2006 or newer   

 

 

Over 60% of all private cars in Belgium are diesel (NIS, 2010); this number is 

remarkably higher than in the neighboring countries (e.g. in the Netherlands, 
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17% of all passenger cars have diesel engines (CBS, 2008)). Because diesel is 

the cheaper fuel, diesel cars travel, on average, more kilometers per year. In 

addition, a large part of the traffic on the main roads is heavy traffic (caused by 

the role of Belgium as a transit country, and the vicinity of several large ports). 
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Concentrations measured in different microenvironments and during different 

activities 
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FIGURE A5: Concentrations measured in different microenvironments. The ‘N=’ 
indicates the number of 5-minute observations used to calculate the average and 
the percentiles. Represented are P5, 1st quartile, median, 3rd quartile and P95. 
The cross marks the mean value. 
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FIGURE A6: Concentrations measured during different activities. The ‘N=’ 
indicates the number of 5-minute observations used to calculate the average and 
the percentiles. Represented are P5, 1st quartile, median, 3rd quartile and P95. 

The cross marks the mean value.  
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Travel time versus weeklong average exposure 

 

Because multiple factors influence exposure in transport, it is not 

straightforward to relate travel time to integrated personal exposure. We show 

that average exposure in transport can be highly variable between individuals 

depending on the transport modes used, and the timing of trips (time-of-day, 

day of the week). ‘Time in transport’ and ‘Car travel time’ are not good 

predictors of weeklong personal exposure or dose, as illustrated in the 

correlation plots in FIGURE 21 and FIGURE A7.  
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FIGURE A7: Correlation between personal exposure and car travel time; and 
correlation between personal dose and car travel time. Each mark represents one 
of 62 volunteers. Car travel time is defined as the time, in minutes, spent as car 
driver or car passenger. 

 

 

In contrast with the poor correlation between travel time and personal exposure, 

our results do reveal a better correlation between average exposure in transport 

and average personal exposure (FIGURE A8). This is in line with the finding that 

21% of exposure is attributable to exposure during travel. Because we know 

that trips are responsible for 30% of daily inhaled dose, the relationship between 

average dose in transport and personal dose is expected to be a little better: the 

explained variance is 36%. 
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R² = 0,3381
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FIGURE A8: Correlation between personal exposure and exposure in transport 
(left) and personal dose and dose in transport (right). Each mark represents one 
of 62 volunteers. 

 

 

The predictability of personal exposure by residential outdoor concentrations is 

also explored, resulting in an R² of 0.32, based on a subset of 25 couples with 

fixed outdoor BC measurements at their residence. These BC measurements 

were done simultaneously with the personal measurements, using the same 

equipment and standards as explained in the ‘Materials and methods’-section 

(chapter 3.2.2). 

 

 

FIGURE A9: Correlation between personal exposure and BC concentrations at the 
residence of 50 participants.  
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Exposure- and dose-ratios between transport modes  

 

TABLE A4: Exposure-ratios and dose-ratios by transport mode, separated by rush 
hour and non-rush hour 

 All data Morning rush 

hour (7-10 a.m.) 

Evening rush 

hour (4-7 p.m.) 

Non-rush hour 

Exp-
ratios 

Dose-
ratios 

Exp-
ratios 

Dose-
ratios 

Exp-
ratios 

Dose-
ratios 

Exp-
ratios 

Dose-
ratios 

Automobile: 
bicycle 

1.77 0.41 1.94 0.46 2.15 0.52 1.47 0.32 

Automobile: 
foot 

2.00 0.56 2.19 0.61 2.32 0.65 1.65 0.46 

Automobile: 
bus 

0.96 0.82 0.83 0.73 1.08 0.94 1.06 0.89 

Automobile: 
train 

2.63 2.16 3.06 2.57 2.95 2.38 2.32 1.92 

 

 

TABLE A5: Exposure-ratios and dose-ratios by transport mode, separated by 
weekday and weekend 

 All data Weekday Weekend 

Exposure-
ratios 

Dose-
ratios 

Exposure-
ratios 

Dose-
ratios 

Exposure-
ratios 

Dose-
ratios 

Automobile: 
bicycle 

1.77 0.41 1.79 0.41 1.83 0.42 

Automobile: 
foot 

2.00 0.56 1.76 0.49 2.73 0.77 

Automobile: 
bus 

0.96 0.82 0.99 0.84 0.86 0.82 

Automobile: 
train 

2.63 2.16 2.76 2.25 2.43 2.29 
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In-car concentrations according to trip motive 
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FIGURE A10: Average in-car BC concentrations (ng/m³) according to trip motive. 
The ‘N=’ indicates the number of trips used to calculate the average and the 
percentiles. Represented are P5, 1st quartile, median, 3rd quartile and P95. The 
cross marks the average. 
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A.2 SUPPLEMENTAL MATERIAL CHAPTER 3.3 

 

TABLE A6: Description of road network data 

Description of dataset Flanders road network with linked peak 
hour traffic intensities (see FIGURE A11 for 
a visual representation). 

Name of dataset Multimodaal model Vlaanderen (MMM2007) 
(Flemish multimodal traffic model) 

Type of data Vector 

Accuracy/resolution dataset Approximately 40% of total road length is 
included in this dataset, including all the 
main roads. No traffic is assigned to 3% of 
included segments. 

Completeness Covers whole of Flanders (Northern 
Belgium) excluding Brussels 

Coordinate system Lambert-72 (Lambert Conformal Conic) 

Year(s) for which data are available 2007 

Source of the data Flemish Traffic Control Center (Vlaams 
Verkeerscentrum) 

Available Data fields Geocoded location, Road type, Urbanization, 
Free flow speed, Peak traffic flow 

Remarks Only evening peak hour intensities for an 
average workday were available. For light 
traffic, these were multiplied by 12.02 to 
obtain daily workday traffic intensity and by 
0.96 to obtain 24-h averages over entire 
weeks, following the standards of the 
Belgian CAR manual*. For heavy traffic a 
similar methodology was used: peak hour 
intensities were multiplied by 18.55 to 
obtain daily traffic intensities, and by 0.80 
to obtain 24-h averages over entire weeks. 
Total traffic is calculated as the sum of light 
and heavy traffic. 

* http://www.tmleuven.be/project/car/Handleiding_CAR-Vlaanderen_v2.0.pdf. (In Dutch) 
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FIGURE A11: Different visual representations of the Flemish multimodal traffic 
model map used to link to geocoded BC-measurements. 

 

 

The map contains all highways and major roads but only 40% of the total length 

of road segments. Trajectories of roads are mostly geographically accurate but 

sometimes contain linear simplifications of curving segments. The absence of 

many small roads (such as agricultural roads, parallel service roads, unpaved 

roads and dedicated off-road bike paths without any motorized traffic) actually 

reduces the risk of misclassification. 
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Figure A12: Distance of geocoded BC observations to the nearest road (using the 
OpenStreetMap network) as a function of the number of satellites in view. 
Boxplots show 5th, 25th, 75th, 95th percentiles, median and mean (×). Locations 
based on 3 and 4 satellites were excluded from the analysis. 
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Using a more complete OpenStreetMap (OSM) dataset would result in more 

observations being unequivocally linked to a road. Although the OSM contains 

more road segments, it lacks the associated traffic data needed for our model 

hence it could not be used. 

 

 

Figure A13: When linked to the Flemish multimodal traffic model map, 67% of BC 
observations are located less than 30 m from a road. Distances shown include 
both errors in the GPS location and geographical accuracy of the map. 

 

We have arbitrarily decided to include only observations when a mapped road 

segment was found within 30 meter. Also if both the location of the BC 

measurement and the location of the road are correct (e.g. when entering a 

driveway or parking lot), the BC concentration due to the road would have 

leveled off substantially (Zhu et al., 2002) which would hamper attempts to 

model effects of road characteristics on BC concentrations. The main effect of 

this selection will be from the omission of observations on very small roads with 

low BC concentrations (FIGURE A14). Observations of high BC-concentrations 

are conserved because all major roads are present in the dataset. 

 

 

Figure A14: Distribution of raw 5-min data compared to the observations left 
after assigning waypoints to a road (max distance 30m) – Boxplot showing 5th, 
25th, 75th, 95th percentiles, median and mean (×).  
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TABLE A7: Daily traffic intensities are translated into hourly ‘instantaneous’ 

traffic intensities based on the CAR-table presenting percentages of cars passing 
each hour of the day. Separate factors are specified for weekdays, Saturdays and 
Sundays (Jonkers and Vanhove, 2010). 

All traffic Monday-
Friday 

Saturday Sunday 

 % % % 

0u-1u 0.42 1.47 2.18 

1u-2u 0.26 0.97 1.59 

2u-3u 0.16 0.66 1.12 

3u-4u 0.24 0.53 0.86 

4u-5u 1.02 0.53 0.69 

5u-6u 2.52 0.84 0.77 

6u-7u 3.78 1.28 1.02 

7u-8u 8.00 2.16 1.45 

8u-9u 7.39 4.06 2.60 

9u-10u 5.27 5.96 4.35 

10u-11u 5.41 7.08 5.81 

11u-12u 5.22 7.13 6.91 

12u-13u 5.56 6.48 6.36 

13u-14u 6.39 6.88 6.00 

14u-15u 5.94 7.69 7.13 

15u-16u 6.05 7.50 7.40 

16u-17u 8.14 7.52 7.84 

17u-18u 8.32 7.70 8.51 

18u-19u 6.41 7.12 8.17 

19u-20u 4.11 5.65 6.79 

20u-21u 3.11 3.57 5.16 

21u-22u 3.02 2.47 3.54 

22u-23u 2.13 2.47 2.38 

23u-24u 1.11 2.28 1.36 
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Figure A15: BC as a function of travel speed (GPS based) in cars. Boxplot 
showing 5th, 25th, 75th, 95th percentiles, median and mean (×). 
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FIGURE A16: BC as a function of traffic intensity, and according to road type for 
active travelers. Boxplot showing 5th, 25th, 75th, 95th percentiles, median and 
mean (×). 
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Figure A17: In-vehicle BC as a function of traffic flow. Boxplot showing 5th, 25th, 

75th, 95th percentiles, median and mean (×). 
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TABLE A8: Regression model for BC exposure in motorized transport (R²=0.17) 

Variable DF Parameter 
Estimate 

Standard Error t Value Pr > |t| 

Intercept 1 2947 23.9 123.5 <.0001 
Traffic intensity 
(veh/h) 

1 1.549 0.009 163.6 <.0001 

Peak 1 3289 22.7 145.0 <.0001 
Off-peak 1 1189 24.1 49.3 <.0001 
Highway 1 2309 26.5 87.3 <.0001 
Urban 1 2853 27.3 104.5 <.0001 
Suburban 1 1167 21.9 53.2 <.0001 

 

 

FIGURE A18: Visualization of the regression model for motorized transport 
(qhour is hourly traffic intensity). Peak hour is defined as 7-10 a.m. and 4-7 p.m. 
The tree should be used as a look-up table, e.g. if a car trip in peak hour in a 
rural area is considered, average exposure of the motorist is 7732 ng/m³. The 
interquartile range (ng/m³) is in brackets. 
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(2911-8990) 

Highway 

9741 ng/m³ (4583-11838) 
7301 ng/m³ + 1,38*qhour 

Urban 

7850 ng/m³ (3713-9810) 
6483 ng/m³ + 1,52*qhour 

Suburban 

6382 ng/m³ (2815-8076) 
4168 ng/m³ + 3,17*qhour 

Rural 

4770 ng/m³ (2290-5593) 
3046 ng/m³ + 3,27*qhour 

Weekend 
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(2909-8179) 
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8294 ng/m³ (4989-10619) 
6724 ng/m³ + 0,62*qhour 

Urban 

8755 ng/m³ (4283-11114) 
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Suburban 

5596 ng/m³ (2621-6513) 
3092 ng/m³ + 2,69*qhour 

Rural 

4220 ng/m³ (2200-4785) 
2599 ng/m³ + 2,01*qhour 
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TABLE A9: Regression model for BC exposure for active travelers (R²=0.02) 

Variable DF Parameter 
Estimate 

Standard Error t Value Pr > |t| 

Intercept 1 2868 39.9 71.9 <.0001 
Peak 1 1410 37.9 37.2 <.0001 
Off-peak 1 830 37.5 22.2 <.0001 
Urban 1 1029 37.7 27.3 <.0001 
Suburban 1 405 37.4 10.9 <.0001 

 

 

 

 

FIGURE A19: Visualization of the regression model for active transport. Peak 
hour is defined as 7-10 a.m. and 4-7 p.m. The tree should be used as a look-up 
table, e.g. if a bike trip in peak hour in a rural area is considered, average 
exposure of the cyclist is 4840 ng/m³. The interquartile range (ng/m³) is in 
brackets. 
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Sensitivity analysis – road type 

 

One BC measurement is spread over maximum 300 GPS observations, and 

during one BC measurement streets with several road types are used. The 

dataset used in chapter 3.3 was adapted by considering whether at least 75% of 

the GPS-observations with the same BC measurement had the same road type 

(e.g. 5-min BC is 5000 ng/m³, if 15% of the observations is on a local road and 

85% on a highway; only link the highway observations to the BC measurement). 

If less than 75% is on the same road type (e.g. 45% on highway and 55% on 

local road), the complete 5-min BC measurement was deleted. 

 

As a consequence of the sensitivity analysis, 24% of 1-sec observations with 

motorized modes are deleted, whereas 9% of trips with active modes are 

deleted in the sensitivity. On highways, 18% of the motorized observations is 

deleted; 33% on major roads; and 22% on local roads. For active modes, 43% 

of the observations on major roads were deleted, and just 5% on local roads. 

FIGURE A20 and FIGURE A21 show the results with the reduced sensitivity 

dataset, and compare the results with the data presented in chapter 3.3. 

Although the substantial removal of observations due to the sensitivity analysis, 

the resulting average concentrations and boxplots are very similar to the results 

presented in the manuscript. 

 

 

FIGURE A20: Results of the sensitivity analysis – impact on BC concentrations for 
motorists and active travelers. Boxplot showing 5th, 25th, 75th, 95th percentiles, 
median and mean (×).  
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FIGURE A21: Results of the sensitivity analysis - BC exposure (ng/m³) is 
presented on the y-axis and this is related to transport mode and road type on 
the x-axis. Motorized modes (car, bus) are shown in darker gray, active modes 
(bike, on foot) in lighter gray. Represented are P5, 1st quartile, median, 3rd 
quartile and P95. The cross marks the mean value. ‘Chapter 3.3’ presents the 
results as they are included in chapter 3.3 of this book; ‘sens’ gives the results of 
the sensitivity analysis. 

 

In summary, for active travelers, most trips use primarily the same road type 

(the activity space of an active traveler is limited in just 5 minutes); for 

motorized modes almost a quarter of all observations is cut in the sensitivity 

analysis meaning that for approximately one quarter of the observations road 

type changes within 5 minutes.  
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A.3 SUPPLEMENTAL MATERIAL CHAPTER 4.2 

 

 

 

FIGURE A22: Aethalometer model AE51 (AethLabs, 2011) in a weatherproof 
housing. On most measurement sites an extra battery was placed inside the 
housing, so no other external power was necessary. 

 

 

FIGURE A23: Measurement sites at building facades or on lamp posts. 
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FIGURE A24: Hourly BC concentrations at 63 locations (upper: on 5 weekdays 
Monday to Friday; below: on 2 weekend days Saturday and Sunday). The dotted 
line shows the average of all locations.  
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TABLE A10: Results of BC sampling (ng/m³) averaged for weekday hours 

(WKDY) and weekend hours (WKND) 

   Hour N Mean Median StdDev 

All_hourly 0-23 3005 1861 1644 1037 

WKDY 0 63 1608 1517 470 
WKDY 1 63 1350 1263 357 
WKDY 2 63 1150 1097 335 
WKDY 3 63 1124 1034 398 

WKDY 4 63 1153 1106 318 
WKDY 5 63 1422 1433 400 
WKDY 6 63 1963 1921 572 
WKDY 7 63 2500 2273 860 
WKDY 8 63 2875 2633 1235 
WKDY 9 63 2357 2211 873 
WKDY 10 63 2162 1991 856 
WKDY 11 63 2069 1894 947 
WKDY 12 63 1973 1740 1004 
WKDY 13 63 1854 1685 955 
WKDY 14 63 1967 1798 883 
WKDY 15 63 2346 2115 1119 
WKDY 16 63 2655 2515 1250 
WKDY 17 63 3081 2975 1409 
WKDY 18 63 3047 2989 1348 
WKDY 19 63 2955 2917 1131 
WKDY 20 63 2664 2724 852 
WKDY 21 63 2495 2460 747 
WKDY 22 63 2407 2371 720 
WKDY 23 63 2077 2026 655 

WKND 0 62 2158 2123 673 
WKND 1 62 1986 1972 625 
WKND 2 62 1586 1577 470 
WKND 3 62 1381 1335 412 
WKND 4 62 1308 1328 397 
WKND 5 62 1402 1343 538 
WKND 6 62 1529 1414 648 
WKND 7 62 1477 1381 614 
WKND 8 62 1438 1366 830 
WKND 9 62 1669 1488 1066 
WKND 10 62 1529 1411 863 
WKND 11 62 780 929 1572 
WKND 12 62 1206 1065 768 
WKND 13 62 1525 1186 1098 
WKND 14 62 1538 1104 1578 
WKND 15 62 1065 979 822 
WKND 16 62 1800 1454 1527 
WKND 17 62 1961 1836 1001 

WKND 18 63 1715 1582 762 
WKND 19 63 1777 1754 757 
WKND 20 63 1811 1636 821 
WKND 21 63 1851 1719 845 
WKND 22 63 1816 1811 651 
WKND 23 62 1648 1621 600 
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FIGURE A25: Top panel: Measured BC concentration on 63 locations for three hours (3 a.m., 12 p.m., 5 p.m., on weekdays), 
showing a different temporal pattern for different locations (ordered according to concentration at 5 p.m.). Below: Daily 
pattern in BC concentrations at 4 random locations, one of each type (Table SI1).  
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FIGURE A26: Leave-one-out cross-validation for the annual LUR model for BC 

y = 0.94x + 131
R² = 0.72

RMSE = 374 ng/m³
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TABLE A11: Hourly LUR models for BC while keeping the significant variables of the annual LUR model (weekend hours) – 

HM1 

  

 

  

 
Highest 

Cook's D 
 

ROADLENGTH_1000 a TRAFLOADHV_FRACTION_100 a TRAFLOAD_50_HEAVY a DIST_NEAR a 

Day hour N R² Adj R² RMSE β0 β1 prob1 β2 prob2 β3 prob3 β4 prob4 

WKND 0 62 0.52 0.48 484.71 <1 917 0.03 0.00 -1777.63 0.31 300.23 0.06 -4.38 0.31 

WKND 1 62 0.49 0.46 460.49 <1 911 0.03 0.00 -1242.88 0.46 323.99 0.03 -5.52 0.18 
WKND 2 62 0.21 0.16 431.74 <1 1078 0.01 0.00 -365.27 0.82 160.03 0.25 -3.46 0.37 

WKND 3 62 0.18 0.12 385.91 <1 1199 0.01 0.05 -1577.19 0.26 141.06 0.25 -7.66 0.03 

WKND 4 62 0.08 0.01 393.93 <1 1055 0.01 0.05 -714.20 0.62 31.10 0.80 -1.97 0.57 

WKND 5 62 0.17 0.11 506.28 <1 924 0.01 0.02 706.64 0.70 217.26 0.18 -3.47 0.44 

WKND 6 62 0.17 0.11 609.48 <1 1037 0.01 0.07 3052.26 0.17 234.03 0.23 -2.80 0.60 

WKND 7 62 0.25 0.20 549.41 <1 1019 0.01 0.04 1397.22 0.48 383.88 0.03 -7.15 0.15 

WKND 8 62 0.17 0.11 783.46 <1 1442 0.00 0.83 1895.12 0.50 525.51 0.04 -9.56 0.17 

WKND 9 62 0.11 0.05 1040.38 2.45 1613 0.00 0.99 1721.79 0.65 561.25 0.09 -9.84 0.29 

WKND 10 62 0.17 0.12 811.72 <1 1315 0.00 0.63 6654.74 0.03 165.55 0.52 -7.24 0.32 

WKND 11 62 0.07 0.01 1567.40 2.16 776 0.00 0.88 9918.89 0.08 -32.47 0.95 -6.39 0.65 
WKND 12 62 0.37 0.33 628.46 <1 504 0.01 0.01 6294.26 0.01 299.14 0.14 -8.71 0.12 

WKND 13 62 0.23 0.17 998.12 1.24 625 0.02 0.02 -1184.56 0.74 685.42 0.03 -12.84 0.15 

WKND 14 62 0.38 0.34 1287.09 <1 633 0.02 0.13 25248.22 0.00 -751.38 0.07 -4.97 0.66 

WKND 15 62 0.05 -0.01 826.65 <1 808 0.01 0.28 3281.45 0.28 -195.96 0.46 -5.05 0.49 

WKND 16 62 0.29 0.24 1327.97 <1 446 0.03 0.01 -8441.15 0.08 1461.51 0.00 -14.43 0.22 

WKND 17 62 0.32 0.27 853.09 1.42 711 0.03 0.00 -569.71 0.85 515.97 0.06 -10.42 0.17 

WKND 18 63 0.34 0.29 641.50 1.05 685 0.02 0.00 1408.07 0.54 246.55 0.23 -7.01 0.22 

WKND 19 63 0.28 0.23 663.36 <1 879 0.02 0.00 -687.33 0.77 314.43 0.14 -7.43 0.21 

WKND 20 63 0.19 0.14 763.15 <1 1078 0.02 0.00 -2132.67 0.44 198.50 0.41 -8.84 0.19 
WKND 21 63 0.16 0.10 802.66 <1 1168 0.02 0.01 -1103.25 0.70 45.50 0.86 -8.57 0.23 

WKND 22 63 0.35 0.30 544.52 <1 869 0.02 0.00 403.40 0.84 87.70 0.61 -5.31 0.27 

WKND 23 62 0.24 0.19 540.12 <1 833 0.02 0.00 1430.04 0.47 -28.84 0.87 -1.48 0.76 

Year 

 

63 0.77 0.75 356.84 2.58 812 0.03 0.00 4569.04 0.00 393.99 0.00 -8.06 0.01 
a Total road length in a buffer with radius 1km (ROADLENGTH_1000), Fraction of traffic load that is heavy traffic in a buffer with radius 100m 

(TRAFLOADHV_FRACTION_100), Traffic load of heavy traffic in a buffer with radius 50m – indicator variable (TRAFLOAD_50_HEAVY), Distance to the nearest 

road (DIST_NEAR)  



260 

TABLE A12: Hourly LUR models for BC using hourly monitoring data and static independent variables: independent models 

(weekend hours) – HM2 

hour N R² 

Adj 

R² RMSE 

Highest 

Cook's 

D β0 β1 X1 
a β2 X2 

a β3 X3 
a β4 X4 

a 

0 62 0.47 0.46 493.43 <1 866 0.03054 ROADLENGTH_1000       
1 62 0.48 0.46 458.16 <1 655 0.02603 ROADLENGTH_1000 0.01154 Q_NEAR_MAJOR     

2 62 0.26 0.23 412.56 <1 1290 0.000314 HDRES_1000 0.00895 Q_NEAR_MAJOR     

3 62 0.21 0.18 373.41 <1 1418 0.000207 HDRES_1000 -7.8744 DIST_NEAR     

4 62 0.15 0.12 371.52 <1 1084 0.1276 ADDRESS_500 2.02557 QD_NEAR1_HEAVY     
5 62 0.27 0.23 471.14 1.19 773 4.8824 ADDRESS_100 302.664 TRAFLOAD_50_HEAVY 0.00985 Q_NEAR_MAJOR   

6 62 0.24 0.22 572.69 <1 1078 0.00234 TRAFLOAD_100_HEAVY 0.23052 ADDRESS_500     

7 62 0.45 0.41 472.84 1.17 53 425.626 TRAFLOAD_50_HEAVY 0.02802 ROADLENGTH_1000 -0.00019 URBGR_5000 0.000034 LDRES_5000 

8 62 0.33 0.29 698.59 <1 422 622.402 TRAFLOAD_50_HEAVY -0.00046 URBGR_3000 0.000053 LDRES_5000   
9 62 0.09 0.07 1027.03 <1 1461 678.384 TRAFLOAD_50_HEAVY       

10 62 0.17 0.15 794.66 <1 1387 0.03755 TRAFLOADHV_FRACTION_100_2       

11 62 0.24 0.20 1407.21 <1 1082 0.00544 TRAFLOAD_100_HEAVY -0.00052 URBGR_3000 821.126 D_HIGH_LT1000   

12 62 0.48 0.44 573.04 1.74 30 8750.51 TRAFLOADHV_FRACTION_100 0.03489 ROADLENGTH_1000 -0.000119 URBGR_5000 0.000198 IND_3000 
13 62 0.27 0.24 955.16 3.09 710 0.1388 ADDRESS_1000 13767 D_NEAR_MAJOR1     

14 62 0.37 0.34 1278.52 <1 84 19005 TRAFLOADHV_FRACTION_100 0.000083 LDRES_3000     

15 62 0.07 0.05 800.28 1.90 882 0.000245 IND_3000       

16 62 0.28 0.26 1313.61 1.08 501 0.69444 ADDRESS_500 1135.313 TRAFLOAD_50_HEAVY     

17 62 0.44 0.41 770.58 4.51 325 0.02953 ROADLENGTH_1000 7.44015 QD_NEAR1_HEAVY 0.00027587 IND_3000   
18 63 0.44 0.41 583.61 <1 592 0.03209 ROADLENGTH_1000 5.52691 QD_NEAR1_HEAVY -0.000188 URBGR_3000   

19 63 0.37 0.35 611.38 <1 1425 6.45272 QD_NEAR1_HEAVY 0.000535 HDRES_1000     

20 63 0.32 0.29 689.67 1.46 1468 0.00063 HDRES_1000 4.54259 QD_NEAR1_HEAVY     

21 63 0.23 0.22 746.26 2.22 1624 0.00062 HDRES_1000       
22 63 0.39 0.37 515.53 <1 1257 0.04277 PEOPLE_1000 6190.905 D_NEAR_MAJOR1     

23 62 0.34 0.32 494.30 <1 1240 0.02568 PEOPLE_1000 0.00029 HDRES_1000     

Year 63 0.77 0.75 356.84 2.58 812 0.03 ROADLENGTH_1000 4569 TRAFLOADHV_FRACTIO

N_100 

394 TRAFLOAD_50_H

EAVY 

-8.06 DIST_NEAR 

a Total road length in a buffer with size XXm (ROADLENGTH_XX), Traffic intensity (private cars) on the nearest major road (Q_NEAR_MAJOR), High density residential in a buffer with size 

XXm (HDRES_XX), Distance to the nearest road (DIST_NEAR), Number of addresses in a buffer with size XXm (ADDRESS_XX), Traffic intensity (heavy traffic) on the nearest road / 
distance to the nearest road (QD_NEAR1_HEAVY), Sum of (traffic intensity (heavy traffic) * road length) in a buffer with size XXm (TRAFLOAD_XX_HEAVY), Urban green in a buffer with 

size XXm (URBGR_XX), Low density residential in a buffer with size XXm (LDRES_XX), Fraction of heavy traffic  squared in a buffer with size XXm (TRAFLOADHV_FRACTION_XX_2), 

Distance to the nearest highway < 1000m (D_HIGH_LT1000), Fraction of heavy traffic in a buffer with size XXm (TRAFLOADHV_FRACTION_XX), Industrial or commercial units in a buffer 

with size XXm (IND_XX), 1 / Distance to the nearest major road (D_NEAR_MAJOR1), Number of people in a buffer with size XXm (PEOPLE_XX) 

  



261 

TABLE A13: Hourly LUR models for BC using hourly monitoring data and dynamic independent variables: independent models 

(weekend hours) – HM3 

hour N R² 

Adj 

R² RMSE 

Highest 

Cook's 

D β0 β1 X1 
a β2 X2 

a β3 X3 
a β4 X4 

a 

0 62 0.47 0.46 493.43 <1 866 0.03054 ROADLENGTH_1000       
1 62 0.48 0.47 456.06 <1 707 0.02564 ROADLENGTH_1000 1.85097 Q_NEAR_MAJOR_WKND1     

2 62 0.31 0.29 397.49 <1 1214 0.000278 HDRES_1000 2.91379 Q_NEAR_MAJOR_WKND2     

3 62 0.21 0.18 373.41 <1 1418 0.000207 HDRES_1000 -7.8744 DIST_NEAR     

4 62 0.15 0.12 371.52 <1 1084 0.1276 ADDRESS_500 2.02557 QD_NEAR1_HEAVY     
5 62 0.23 0.20 480.32 2.59 1020 4.4095 ADDRESS_100 0.00084 TRAFLOAD300_WKND5     

6 62 0.24 0.22 572.69 <1 1078 0.00234 TRAFLOAD_100_HEAVY 0.23052 ADDRESS_500     

7 62 0.45 0.41 472.84 1.17 53 425.626 TRAFLOAD_50_HEAVY 0.02802 ROADLENGTH_1000 -0.00019 URBGR_5000 0.000034 LDRES_5

000 
8 62 0.33 0.29 698.59 <1 422 622.402 TRAFLOAD_50_HEAVY -0.00046 URBGR_3000 0.000053 LDRES_5000   

9 62 0.09 0.07 1027.03 <1 1461 678.384 TRAFLOAD_50_HEAVY       

10 62 0.17 0.15 794.66 <1 1387 0.03755 TRAFLOADHV_FRACTION_100_2       

11 62 0.24 0.20 1407.21 <1 1082 0.00544 TRAFLOAD_100_HEAVY -0.00052 URBGR_3000 821.126 D_HIGH_LT1000   
12 62 0.48 0.44 573.04 1.74 30 8750.51 TRAFLOADHV_FRACTION_100 0.03489 ROADLENGTH_1000 -0.000119 URBGR_5000 0.000198 IND_300

0 

13 62 0.27 0.24 955.16 3.09 710 0.1388 ADDRESS_1000 13767 D_NEAR_MAJOR1     

14 62 0.37 0.34 1278.52 <1 84 19005 TRAFLOADHV_FRACTION_100 0.000083 LDRES_3000     

15 62 0.07 0.05 800.28 1.90 882 0.000245 IND_3000       
16 62 0.28 0.26 1313.61 1.08 501 0.69444 ADDRESS_500 1135.313 TRAFLOAD_50_HEAVY     

17 62 0.44 0.41 770.58 4.51 325 0.02953 ROADLENGTH_1000 7.44015 QD_NEAR1_HEAVY 0.00027587 IND_3000   

18 63 0.44 0.41 583.61 <1 592 0.03209 ROADLENGTH_1000 5.52691 QD_NEAR1_HEAVY -0.000188 URBGR_3000   

19 63 0.37 0.35 611.38 <1 1425 6.45272 QD_NEAR1_HEAVY 0.000535 HDRES_1000     
20 63 0.32 0.29 689.67 1.46 1468 0.00063 HDRES_1000 4.54259 QD_NEAR1_HEAVY     

21 63 0.23 0.22 746.26 2.22 1624 0.00062 HDRES_1000       

22 63 0.38 0.36 520.03 <1 1266 0.04160 PEOPLE_1000_WKND22 6377.289 D_NEAR_MAJOR1     

23 62 0.36 0.34 487.89 <1 893 0.00074 HDRES_1000 0.00092 LDRES_500     

Year 63 0.77 0.75 356.84 2.58 812 0.03 ROADLENGTH_1000 4569 TRAFLOADHV_FRACTION_100 394 TRAFLOAD_50_
HEAVY 

-8.06 DIST_NE
AR 

Dynamic variables that enter the model are indicated in bold. 
a Total road length in a buffer with size XXm (ROADLENGTH_XX), Traffic intensity (private cars) on the nearest major road at hour x (Q_NEAR_MAJOR_WKNDx), High density residential 

in a buffer with size XXm (HDRES_XX), Distance to the nearest road (DIST_NEAR), Number of addresses in a buffer with size XXm (ADDRESS_XX), Traffic intensity (heavy traffic) on the 

nearest road / distance to the nearest road (QD_NEAR1_HEAVY), Sum of (traffic intensity (private cars) at hour x * road length) in a buffer with size XXm (TRAFLOADXX_WKNDx), Sum 
of (traffic intensity (heavy traffic) * road length) in a buffer with size XXm (TRAFLOAD_XX_HEAVY), Urban green in a buffer with size XXm (URBGR_XX), Low density residential in a 

buffer with size XXm (LDRES_XX), Fraction of heavy traffic  squared in a buffer with size XXm (TRAFLOADHV_FRACTION_XX_2), Distance to the nearest highway < 1000m 

(D_HIGH_LT1000), Fraction of heavy traffic in a buffer with size XXm (TRAFLOADHV_FRACTION_XX), Industrial or commercial units in a buffer with size XXm (IND_XX), 1 / Distance to 

the nearest major road (D_NEAR_MAJOR1), Number of people in a buffer with size XXm (PEOPLE_XX) 
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FIGURE A27: Annual model with high Cook's D values (A, B) and annual model 
with Cook's D values < 1 (C, D). The models are estimated with 42 urban points 
(A, C) and validated with 21 points of the regional monitoring campaign (B, D). 
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A.4 SUPPLEMENTAL MATERIAL CHAPTER 4.3 

 

Example diaries: output from the activity-based model FEATHERS 

 

The activity-based model produces diaries for every agent in a population, 

including the geographical subzone where each activity is done. For the moment 

FEATHERS produces diaries for the adult population, a population of 

approximately 6 million people. Four example diaries are presented in TABLE 

A14. 

 

TABLE A14: Four example diaries as produced by the FEATHERS activity-based 
model. For every ‘Person’ (column PersonCounter) additional information is 
provided: subzone of residence, gender, person age, driver's license, worker or 
homemaker, age of oldest member of the household, number of cars in the 
household, socio-economic class, household composition. Trips are defined 
together with the activity performed at the destination side. The model predicts a 
diary starting from 3 a.m. (Beginning Time: 300) up to the next day 3 a.m.  
Person 1 starts his day with a home-based activity at 3 a.m.; he makes a trip 
with his bike or on foot at 7.55 a.m. with a total duration of 5 minutes. He is in a 
shop from 8 a.m. for 70 minutes, and returns home again for 5 minutes with 
active modes. He spends the rest of the day at home. 

House-

hold 
Counter 

Person 

Counter 

Day a Activity 

Type b 

Beginning 

Time 

Duration 

(min) 

Location 

(subzone) 

Trip 

Duration 
(min) 

Transport 

Mode c 

1 1 1 0 300 295 110 0 999999 
1 1 1 4 800 70 110 5 3 

1 1 1 0 915 1065 110 5 3 

1 2 1 0 300 103 110 0 999999 

1 2 1 1 624 495 2307 101 4 

1 2 1 4 1627 75 108 108 4 

1 2 1 4 1747 144 108 5 4 

1 2 1 0 2152 308 110 101 4 

2 3 1 0 300 797 110 0 999999 

2 3 1 3 1622 5 110 5 1 
2 3 1 0 1632 74 110 5 1 

2 3 1 8 1749 49 109 3 1 

2 3 1 0 1841 499 110 3 1 

2 4 1 0 300 238 110 0 999999 

2 4 1 1 702 542 111 4 1 

2 4 1 4 1608 59 99 4 1 

2 4 1 8 1712 103 99 5 1 

2 4 1 4 1900 30 99 5 1 

2 4 1 0 1936 444 110 6 1 
a 1 Monday; 2 Tuesday; 3 Wednesday; 4 Thursday; 5 Friday; 6 Saturday; 7 Sunday 
b 0 Home-based activity; 1 Work/education; 2 Business; 3 Bring/get; 4 Shopping; 6 Services; 7 Social; 
8 Leisure; 9 Touring; 10 Other 
c 1 Car driver; 3 Active modes; 4 Public transport; 6 Car passenger 
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Determination of concentration in subzones 

 

- Hourly LUR models 

 

Hourly models, independent of each other, can be developed by changing the 

dependent variable to reflect different hours of the day; but significant variables 

may vary from hour to hour. This results in hourly R² values of 0.07 – 0.8 and 

RMSE values of 287 ng/m³ – 1407 ng/m³. During the day traffic variables 

(heavy traffic and distance to the nearest (major) road) often enter the model. 

Traffic intensity (light traffic only) is significant on peak hours (8 a.m., 9 a.m., 5 

p.m., 7 p.m.). On weekday nights, land use variables in larger buffers come into 

the model, but the limited concentration contrast results in low R², and the 

concentrations are mainly predicted by the intercept. On weekend nights BC 

concentrations were elevated and traffic variables are significant, indicative of 

busy traffic on weekend nights. Even though the hourly LUR models are 

developed independently of adjacent hours, in fact similar variables often return 

in consecutive models demonstrating the robustness of the models. 

The hourly LUR models are discussed in more detail in chapter 4.2. 

 

 

- Application of the hourly LUR models in the subzones 

 

The study area is divided into 2386 subzones with an average size of 5.7 km². 

There are on average 1157 addresses/buildings (IQR: 324-1543; median 767) in 

each subzone. For each subzone, a concentration needs to be defined that can 

be used in the following steps of the AB²C model. To limit computer runtime, it 

was explored how many random addresses had to be selected, to determine the 

median concentration on an address in that subzone with enough reliability. For 

11 subzones (both urban and rural), we predicted median annual concentrations 

based on 100 random address points in the subzone, and compared it to the 

prediction with only 10 random points. Differences of about 200 ng/m³ are 

possible, but overall with very good correspondence. A random selection of 10 

addresses was decided to be sufficient to determine exposure in a whole 

subzone (FIGURE A28).  
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FIGURE A28: Median BC concentration in 11 subzones; once determined from 10 
random addresses, and once from 100 random addresses. 

 

 

BC concentrations were determined for approximately 23,860 addresses in the 

study area (FIGURE A29). There are a few subzones (11 zones) that do not have 

addresses in it; for these zones a BC concentration of 0 ng/m³ was assigned. It 

should be noted that FEATHERS-agents seldom perform activities in these zones. 

If ‘Distance to nearest road’ is a significant predictor in the hourly LUR model, 

this variable is truncated to 100m which is the maximum value in the calibration 

dataset, to prevent exposure estimates becoming negative. Where the 

regression equations produced negative estimates, values were set to 0 ng/m³ 

(most negative estimates occur on weekend days. E.g. at 11 a.m.: 4.08% of 

points were set to 0 ng/m³) (similar to (Henderson et al., 2007)). Where 

estimates exceeded the maximum measured concentrations by more than 20%, 

concentration estimates were truncated (on weekdays at 9 a.m., truncation was 

applied to 1.19% of the points) (similar to (Henderson et al., 2007)). 
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FIGURE A29: Predicted annual average BC concentrations for 10 random address 
points per subzone. The largest urban areas are indicated. 

 

BC concentrations were determined for approximately 23,860 addresses in the 

study area, and the median concentration in each subzone was then defined as 

the exposure on fixed locations in that subzone (FIGURE A30). 

 

 

FIGURE A30: Median BC exposure (ng/m³) for every subzone defined in 
FEATHERS; calculated based on 10 randomly chosen addresses in each subzone. 
This is an exposure map as concentrations are defined on addresses and not on 
random points in each subzone (i.e. points are often situated near roads and not 
in the middle of a forest were concentrations are lower). 

 

A similar approach as illustrated above with the annual average LUR-model, was 

followed for all hourly LUR models for weekdays and weekend days. The 

resulting hourly exposure maps are illustrated below (the same legend as in 

FIGURE A30 is applicable). 
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Active 
transport 

4290 ng/m³ 

Peak 
4827 ng/m³ 

Urban 
5723 ng/m³ 
Suburban 

4017 ng/m³ 
Rural 

4840 ng/m³ 

Off-peak 
4310 ng/m³ 

Urban 
3917 ng/m³ 
Suburban 

5358 ng/m³ 
Rural 

3489 ng/m³ 

Weekend 
3353 ng/m³ 

Urban 
5446 ng/m³ 
Suburban 

2665 ng/m³ 
Rural 

2364 ng/m³ 

In-traffic personal exposure model 

 

Concentration based on (chapter 3.3 and appendix A.2): 

- Transport mode: motorized modes; active modes; public transport 

- Timing: peak (weekdays: 7-8 a.m.; 8-9 a.m.; 9-10 a.m.; 4-5 p.m.; 5-6 

p.m.; 6-7 p.m.); off-peak; weekend 

- Urbanization based on proxy ‘trip duration’ (motorized) or subzone of 

origin (active modes) 
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Motorized 
transport 

8036 ng/m³ 

Peak 
9708 ng/m³ 

Highway 
11975 ng/m³ 

Urban 
11314 ng/m³ 

Suburban 
9049 ng/m³ 

Rural 
7732 ng/m³ 

Off-peak 
6957 ng/m³ 

Highway 
9741 ng/m³ 

Urban 
7850 ng/m³ 
Suburban 

6382 ng/m³ 
Rural 

4770 ng/m³ 

Weekend 
6078 ng/m³ 

Highway 
8294 ng/m³ 

Urban 
8755 ng/m³ 
Suburban 

5596 ng/m³ 
Rural 

4220 ng/m³ 
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Motorized transport: based on chapter 3.3. Degree of urbanization is 

unknown, so trip duration is used as proxy.  

 

- If (tm=motorized and time=Peak and dur<15) then BC = ((0.04*11975) + 

(0.17*11314) + (0.48*9049) + (0.32*7732)) = 9220 ng/m³ 

If (tm=motorized and time=Peak and (dur>14 and dur<30)) then BC = 

((0.10*11975) + (0.17*11314) + (0.35*9049) + (0.38*7732)) = 9226 ng/m³ 

If (tm=motorized and time=Peak and (dur>29 and dur<45)) then BC = 

((0.24*11975) + (0.17*11314) + (0.26*9049) + (0.32*7732)) = 9624 ng/m³ 

If (tm=motorized and time=Peak and (dur>44 and dur<60)) then BC = 

((0.43*11975) + (0.10*11314) + (0.19*9049) + (0.28*7732)) = 10165 ng/m³ 

If (tm=motorized and time=Peak and dur>59) then BC = ((0.45*11975) + 

(0.09*11314) + (0.17*9049) + (0.29*7732)) = 10188 ng/m³ 

- If (tm=motorized and time=Off-peak and dur<15) then BC = ((0.04*9741) + 

(0.17*7850) + (0.48*6382) + (0.32*4770)) = 6314 ng/m³ 

If (tm=motorized and time=Off-peak and (dur>14 and dur<30)) then BC = 

((0.10*9741) + (0.17*7850) + (0.35*6382) + (0.38*4770)) = 6355 ng/m³ 

If (tm=motorized and time=Off-peak and (dur>29 and dur<45)) then BC = 

((0.24*9741) + (0.17*7850) + (0.26*6382) + (0.32*4770)) = 6858 ng/m³ 

If (tm=motorized and time=Off-peak and (dur>44 and dur<60)) then BC = 

((0.43*9741) + (0.10*7850) + (0.19*6382) + (0.28*4770)) = 7522 ng/m³ 

If (tm=motorized and time=Off-peak and dur>59) then BC = ((0.45*9741) + 

(0.09*7850) + (0.17*6382) + (0.29*4770)) = 7558 ng/m³ 

- If (tm=motorized and time=Weekend and dur<15) then BC = ((0.04*8294) + 

(0.17*8755) + (0.48*5596) + (0.32*4220)) = 5857 ng/m³ 

If (tm=motorized and time=Weekend and (dur>14 and dur<30)) then BC = 

((0.10*8294) + (0.17*8755) + (0.35*5596) + (0.38*4220)) = 5880 ng/m³ 

If (tm=motorized and time=Weekend and (dur>29 and dur<45)) then BC = 

((0.24*8294) + (0.17*8755) + (0.26*5596) + (0.32*4220)) = 6284 ng/m³ 

If (tm=motorized and time=Weekend and (dur>44 and dur<60)) then BC = 

((0.43*8294) + (0.10*8755) + (0.19*5596) + (0.28*4220)) = 6687 ng/m³ 

If (tm=motorized and time=Weekend and dur>59) then BC = ((0.45*8294) + 

(0.09*8755) + (0.17*5596) + (0.29*4220)) = 6695 ng/m³ 
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For active modes, the degree of urbanization of a trip will be determined by the 

degree of urbanization of the subzone of origin. Subzones were assigned a 

degree of urbanization (1=Urban; 2=Suburban; 3=Rural; no highway). Total 

road length in every category in a subzone is calculated, the category with the 

largest road length is assigned as degree of urbanization of that subzone. If a 

subzone has no roads, the centroid of the subzone is assigned to the nearest 

road and urbanization of that road is assigned to the subzone. As this map only 

covers Flanders, subzones in Brussels are automatically assigned urbanization=1 

(see map). 

 

 

- If (tm=active and time=Peak and urbanization=Urban) then BC = 5723 ng/m³ 

If (tm=active and time=Peak and urbanization=Suburban) then BC = 4017 ng/m³ 

If (tm=active and time=Peak and urbanization=Rural) then BC = 4840 ng/m³ 

- If (tm=active and time=Off-peak and urbanization=Urban) then BC =3917 ng/m³ 

If (tm=active and time=Off-peak and urbanization=Suburban) then BC = 5358 

ng/m³ 

If (tm=active and time=Off-peak and urbanization=Rural) then BC = 3489 ng/m³ 

- If (tm=active and time=Weekend and urbanization=Urban) then BC = 5446 ng/m³ 

If (tm=active and time=Weekend and urbanization=Suburban) then BC = 2665 

ng/m³ 

If (tm=active and time=Weekend and urbanization=Rural) then BC = 2364 ng/m³ 

 

 

For trips using public transport a fixed exposure of 3521 ng/m³ is assigned, 

derived from the personal measurement campaign. A model was not developed 

due to the limited number of observations in public transport.  
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Indoor air model 

 

I/O-ratio: BC_Indoor = 0.76 * BC_Outdoor 

 

The I/O-ratio is based on daily average I/O-ratios of individual homes (FIGURE 

A31). We did not use the original 5-min values to avoid strong local and 

temporary effects, and also because there is a delay before an increase outside 

is measured inside. In total we have 153 daily measurements in 24 different 

homes on which basis we determine the I/O-ratio. Homes with ETS were 

excluded from the study beforehand. 

 

In the warm season the I/O-ratio is higher (0.84) compared to the cold season 

(0.74), which is in line with our expectations (more exchange of indoor and 

outdoor air because of increased ventilation). 

 

 

FIGURE A31: Indoor/Outdoor ratio 
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Validation dataset 

 

 

FIGURE A32: Median BC exposure (ng/m³) for every subzone defined in 
FEATHERS (FIGURE SI3) with indication of residential addresses of the 62 
volunteers from the validation dataset 
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Time-activity diaries: measured versus modeled 

 

Modeled diaries
Revealed diaries

(Validation dataset)

Home

-

based 
activities; 

76%

Work; 13%

Social and 
leisure; 3%

Shopping; 
2%

Other; 1% In 
transport; 

5%

Home

-
based 

activities; 

65%

Work; 17%

Social and 
leisure; 6%

Shopping; 
1%

Other; 4% In 
transport; 

6%

Car driver; 
42%

Car 
passenger; 

9%

Bike/On 
foot; 39%

PT; 10%

Car driver; 
46%

Car 
passenger; 

11%

Bike/On 
foot; 31%

PT; 12%

 

FIGURE A33: Comparison between modeled diaries (Left pie charts; 54 unique 
participants; based on 100 diaries per participant per day (Mon-Sun)) and 
revealed diaries (Right pie charts; 62 volunteers; based on 1 diary per participant 
per day (Mon-Sun)). PT=Public Transport (train, bus, light rail/metro). 
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Predicted and observed exposures: aggregated analysis 

 

TABLE A15: Average exposure per activity 

BC [ng/m³] Observed Predicted 

Touring 2855 3822 
Social and leisure 2445 1350 
Shopping & services 2540 1339 
Other 1829 1346 
Being at home 1214 1211 
Work 1077 1321 
In transport 5132 6430 

 

 

TABLE A16: Average exposure per transport mode 

 

 

 

  

BC [ng/m³] Observed Predicted 

Car driver 6432 7258 
Car passenger 5583 7180 
Active modes 3365 4124 
Public transport 3521 3521 
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