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Abstract 

 

For a general increasing function  f n   1,2,3,...n   we can define the most general version of the 

Hirsch-index being the highest rank n such that all papers on ranks 1,...,n  each have at least  f n  

citations. The minimum configuration to have this value of n is n papers each having  f n  citations, 

hence we have  nf n  citations in total. To increase the value n by one we hence need (minimally) 

   1 1n f n  citations, an increment of        1 1 1I n n f n nf n     citations. Define the 

increment of second order as      2 1 11I n I n I n   . We characterize the general Wu-index by 

requiring specific values of  1I n  and  2I n , hence also characterizing the Hirsch-index. 

 

 

Conference Topic 

 

Scientometrics Indicators (Topic 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:leo.egghe@uhasselt.be


Introduction 

 

The most general Hirsch-type index can be defined by using a general increasing function 

 f n   1,2,3,...n  . The definition is as follows. Let us have a set of papers where the i
th

 

paper has ic  citations (i.e. received ic  citations). We assume that papers are arranged in 

decreasing order of received citations (i.e. 
i jc c  if and only if i j ). The most general 

Hirsch-type index can be defined as the highest rank n such that all papers on ranks 1,...,n  

have at least  f n  citations. Well-known examples are  f n n  for the classical Hirsch-

index (h-index), Hirsch (2005),  f n an   0a   for the general Wu-index (Egghe (2011) 

and Wu (2010) for 10a  ),   af n n   0a   for the general Kosmulski-index (Egghe 

(2011) and Kosmulski (2006) for 2a  ). Note that the general Wu- and Kosmulski-indices 

reduce to the h-index for 1a  . 

 

It is important, at least from a theoretical point of view, to know for these h-type indices, how 

(e.g.) an author can increase his/her h-type index value from n to 1n   (for any n = 1,2,…). 

In other words, it is important to know what effort is required from an author to increase 

his/her h-type index by one. 

 

In general  ic f n  for 1,...,i n  but in many cases we will have  ic f n . However the 

minimum situation to have an index equal to n is to have n papers with exactly  f n  citations 

each and where the other papers have zero  

 

citations. In this case we have a total of  nf n  citations. To have the minimal situation for an 

index equal to 1n , we need 1n  papers with exactly  1f n  citations each and where the 

other papers have zero citations. Now we have a total of    1 1n f n   citations. We define 

the general increment of order 1 as, for every n: 

 

       1 1 1I n n f n nf n                                                (1) 

 

The general increment of order 2 is defined as 

 

     2 1 11I n I n I n                                                    (2) 

 

which is equal to, by (1) 

 

           2 2 2 2 1 1I n n f n n f n nf n                                 (3) 

Examples: 

 

1. For the general Wu-index (  f n an ) we have    

 



   1 2 1I n a n                                                     (4) 

 2 2I n a                                                           (5) 

for all n, as is readily seen. 

This gives for the h-index: 

 1 2 1I n n                                                          (6) 

 2 2I n                                                             (7) 

for all n. 

 

2. For the general Kosmulski-index (   af n n ) we have 

 

   
1 1

1 1
a aI n n n
                                                  (8) 

     
1 1 1

2 2 2 1
a a aI n n n n
                                         (9) 

 

for all n. 

 

3. For the threshold index (obtained for  f n C , a constant) (called the “highly cited 

publications indicator” in Waltman and van Eck (2012)) we have 

 

 1I n C                                                     (10) 

 2 0I n                                                       (11) 

 

for all n. 

 

In the next section we will characterize the functions  f n  for which (4) is valid. It turns out 

that we obtain a class of functions much wider than  f n an
 
and from this we will 

characterize the general Wu-index. From this we will also obtain a characterization of the h-

index. The same will be done for the threshold index. 

In the third section we will characterize the functions  f n  for which (5) is valid. Again it 

turns out that we obtain a class of functions much wider than  f n an  and from this we 

will newly characterize the general Wu-index. From this we will also refind a characterization 

of the h-index, already proved in Egghe (2012). 

 

The paper ends with a conclusions section and with suggestions for further research. 

 

 

Characterization of functions  f n  that satisfy    1
2 1I n a n 

 
for all n and 

characterization of the Wu- and Hirsch-indices and analogue for the threshold index 

 



So we put, for all n, 

 

         1 1 1 2 1I n n f n nf n n a                                       (12) 

 

Hence 

 

   
2 1

1
1 1

n n
f n f n a

n n


  

 
                                           (13) 

 

This shows that we can choose one free parameter:  1 0f  . From (13) we now have 

   
1 3

2 1
2 2

f f a                                                      (14) 

 

   
1 8

3 1
3 3

f f a                                                       (15) 

(now also using (14)) 

 

   
1 15

4 1
4 4

f f a                                                   (16) 

 

(now also using (15)). 

 

From this mechanism we can formulate and prove the next Theorem. 

 

Theorem 1: 

 

   1 2 1I n a n   

 

for all n if and only if 

 

   
1 ² 1

1
n

f n f a
n n


                                                (17) 

 

for all n. 

 

Proof:   

 

The proof is by complete induction. It is clear that (17) is valid for 1n   and we proved (17) 

for 2,3,4n  . Now we suppose that (17) is true for n. For 1n  we have by (12) (hence (13)) 

 

   
2 1

1
1 1

n n
f n f n a

n n


  

 
 

 

By (17) we have 

 

   
1 ² 1 2 1

1 1
1 1

n n n
f n f a a

n n n n

  
      

 



 

     
1

1 1 ² 1 2 1
1 1

a
f n f n n

n n
     

 
 

   
 1 ² 11

1 1
1 1

n
f n f a

n n

 
  

 
 

 

which is (17) for 1n . Hence (17) is valid for all n. 

 

Reversely, if we have (17), we have to show that (12) is valid. Indeed, for all n 

 

       1 1 1I n n f n nf n     

 

     
 

 1

1 ² 11 1 ² 1
1 1 1

1 1

n n
I n n f a n f a

n n n n

    
           

 

 

   1 2 1I n n a   

 

Hence (12) is valid for all n.           □ 

 

Note that, for 1a  , we have a characterization of the Hirsch-type increment  1 2 1I n n   

(see (6)). 

 

From Theorem 1 we can prove a characterization of the general Wu-index. 

 

Theorem 2:  We have equivalent of  

(i)    1 2 1I n a n   for all n and  1f a  

(ii)  f n an  for all n (i.e. we have the Wu-index) 

Proof:   

 

(i) => (ii) 

By formula (17) in Theorem 1 we have for all n 

 

 
² 1a n

f n a
n n


   

 

 f n na  

 

(ii) => (i) 

It was already shown in the introduction that the Wu-index satisfies (12).    □ 

 

Note that Theorem 2 for 1a   yields a characterization of the Hirsch-index. 

 

Note that  f n  in (17) increases if 
 1

2

f
a  : 



 

 
 ² 1

' 0
²

n a f a
f n

n

 
   

 

if and only if 

 

   ² 1 1n a f   

 

for  all n. It suffices to require  

 

 2 1a f  

or 

 1

2

f
a   

Now we will prove the analogue result for the threshold index. So let   0f n C   for all n 

(C: a constant). We showed in the introduction that 1( )I n C  for all n. Let us characterize all 

functions  f n  that satisfy this. So 

 

       1 1 1I n n f n nf n C                                              (19) 

 

for all n. Hence 

 

   1
1 1

n C
f n f n

n n
  

 
                                                (20) 

 

Again we use the general parameter  1 0f  . We have, by (20) 

 

   
1

2 1
2 2

C
f f                                                       (21) 

 

   
1 2

3 1
3 3

C
f f                                                     (22) 

 

(now also using (21)) 

 

   
1 3

4 1
4 4

C
f f                                                    (23) 

 

(now also using (22)). Hence we can formulate and prove Theorem 3 

 

Theorem 3:   1I n C  for all n if and only if 

 

   
1 1

1
n

f n f C
n n


                                                 (24) 

 



for all n. 

Proof:   

  

The proof is by complete induction. We have already (24) for 1n   and proved (24) for 

2,3,4n  . Now we suppose (24) is valid for n. For 1n  we have by (20) 

 

   1
1 1

n C
f n f n

n n
  

 
 

 

   
1 1

1 1
1 1

n n C
f n f C

n n n n

 
      

 

 

   
1

1 1
1

f n f C
n

  


 

 

which is (24) for 1n . So (24) is proved for all n. 

 

Reversely, if we have (24) for all n, we have 

 

       1 1 1I n n f n nf n     

 

       1

1 1 1
1 1 1

1 1

n n
I n n f C n f C

n n n n

   
           

 

 

 1I n C  

 

for all n.            □ 

 

From Theorem 3 we can prove a characterization of the threshold index. 

 

Theorem 4:  We have equivalency of 

(i)  1I n C  for all n and  1f C  

(ii)  f n C  for all n (hence the threshold index). 

 

Proof:    

 

(i) => (ii) 

This is clear from (24), using that  1f C   

 

(ii) => (i) 

This was already proved in the introduction.        □ 

 

Note that  f n  in (24) increases if and only if  1C f . Indeed  

 



 
 1

' 0
²

C f
f n

n


   

 

if and only if  1C f . 

 

 

Characterization of functions  f n  that satisfy  2
2I n a  for all n and 

characterization of the Wu- and Hirsch-indices and analogue for the threshold index 

 

So we put, for all n 

 

           2 2 2 2 1 1 2I n n f n n f n nf n a                           (25) 

 

Hence 

 

 
 

   
2 1 2

2 1
2 2 2

n n a
f n f n f n

n n n


    

  
                           (26) 

 

for all n. Hence we can choose two free parameters: we choose  1f ,  2f . Since we only 

want to work with increasing functions  f n  we suppose    2 1f f . By (26) we have 

 

     
4 1 2

3 2 1
3 3 3

a
f f f                                              (27) 

 

     
6 2 6

4 2 1
4 4 4

a
f f f                                             (28) 

 

(now also using (27)) 

 

     
8 3 12

5 2 1
5 5 5

f f f a                                          (29) 

 

(now also using (28)). 

 

Hence we can formulate and prove Theorem 5. 

 

Theorem 5:    2 2I n a  for all n if and only if 

 

            
1

2 1 2 2 1 1 2f n n f n f n n a
n

                    (30) 

 

for all n.  

 

Proof:   

 



The proof is by complete induction. We already proved (30) for 3,4,5n   and is easy to see 

for 1,2n  . Now we suppose that (30) is valid for n and 1n . For 2n  we have , by (25) 

 

 

 

 
         2 1 2 2 1 1 1

2
2 1

n nf n f n n a
f n

n n

     
   

  
 

          2 1 2 2 1 1 2 2

2 2

n f n f n n an a

n n n

      
  

  
      

 

         
1

2 2 1 2 1 1
2

f n n f nf n n a
n

       
                            (31) 

 

after an elementary calculation. Now (31) is (30) for 2n . 

 

Reversely, if (30) is valid for all n, it is an elementary calculation, using (25), that  2 2I n a  

for all n. 

           □ 

 

From Theorem 5 we can prove a characterization of the general Wu-index. 

 

Theorem 6:  We have equivalency of 

(i)  2 2I n a , for all n and  1f a and  2 2f a  

(ii)  f n na for all n (hence we have the general Wu index). 

 

Proof:  

 

(i) => (ii) 

It follows from (30) in Theorem 5 that, for  1f a ,  2 2f a  that  f n na  for all n. 

 

(ii) => (i) 

We proved in the introduction that the Wu-index satisfies  2 2I n a  for all n.  

          □ 

 

Note that, for 1a  , Theorem 6 is a characterization of the Hirsch-index, which appeared 

already in Egghe (2012). 

 

Note: It is easy to see that  f n  in (30) is an increasing function. This can be shown using 

(30) by calculating  'f n  or by (26) using complete induction (and, in both cases, using that 

   1 2f f ). 

 

For the sake of completeness we also mention the following characterization of  2 0I n   for 

all n and of the threshold index. 



 

 

 

 

Theorem 7 (Egghe (2012)):   2 0I n   for all n if and only if 

 

 
       2 1 2 2 1n f n f

f n
n

  
                                        (32) 

 

for all n. 

 

Theorem 8 (Egghe (2012)):  The following assertions are equivalent: 

(i)  2 0I n   for all n,    1 2f f C   a positive constant. 

(ii)  f n C  for all n, i.e. we have the threshold index. 

 

Conclusions and suggestions for further research 

 

In this paper we characterized functions for which    1 2 1I n n a   for all n. As a 

consequence we proved a characterization of the general Wu-index, hence also of the h-index. 

 

We then characterized functions for which  2 2I n a  for all n. As a consequence we proved 

a new characterization of the general Wu-index, hence also of the h-index. 

 

For the threshold index we executed the same exercise leading to characterizations of the 

threshold index. 

 

We invite the reader to elaborate further studies on  1I n  and  2I n , hereby characterizing 

other known and new impact indices. We stress the importance of such studies, at least from a 

theoretical point of view. Characterizing indices which require a certain increment of citations 

in order to increase the index with one unit shows what effort is required from the author to 

reach this increase.  
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