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SOME NEW EXAMPLES OF NON-DEGENERATE QUIVER

POTENTIALS

L. DE THANHOFFER DE VÖLCSEY AND M. VAN DEN BERGH

Abstract. We prove a technical result which allows us to establish the non-
degeneracy of potentials on quivers in some previously unknown cases. Our
result applies to McKay quivers and also to potentials derived from geometric
helices on Del Pezzo surfaces.

On the other hand we also give an example of a skew group ring with a
degenerate potential. This shows that for 3-CY orders Iyama-Reiten mutations
cannot always be iterated indefinitely.

1. Introduction

In [8] Derksen, Weyman and Zelevinsky describe how to “mutate” at a vertex
a pair (Q,W ) consisting of a quiver Q and a potential W ∈ (kQ)̂ /[(kQ)̂ , (kQ)̂ ].
This construction produces a new such pair (Q′,W ′). The Jacobian (or Ginzburg)
algebras of the pairs (Q,W ), (Q′,W ′) share many homological properties [7, 9, 10].

One peculiarity of the mutation process is that it is only defined if the vertex
is not incident to a loop or two-cycle. Even if all vertices in Q have this property
then this is not necessarily the case for Q′. If the property of having no loops or
two-cycles persists under iterated mutations then we say that (Q,W ) (or W ) is
non-degenerate.

In this paper we give a technical result (Theorem 3.1) which allows us to establish
the non-degeneracy of potentials in some previously unknown cases. Our theorem
applies for example to the McKay quiver associated to a group G ⊂ SL(V ) where
dimV = 3 and G acts freely on V ∗ − {0} (this implies that G is cyclic). See
Corollary 4.1.2 below.
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Let us give an explicit example considered in [9]. Assume that Q is the McKay
quiver of the pair (Z/5Z, kx1 + kx2 + kx3) where the generator of Z/5Z acts diag-
onally by (ξ, ξ2, ξ2). The quiver Q looks as follows
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The potential W is the signed sum of all three-cycles containing x1, x2 and x3. The
Jacobian algebra of (Q,W ) is the skew group ring k[[x1, x2, x3]]#Z/5Z. Our main
theorem implies that W is non-degenerate.

On the other hand if G does not act freely on V ∗ − {0} then the associated
potential will generally be degenerate. Consider the McKay quiver associated to
the cyclic group Z/6Z acting with (ξ2, ξ5, ξ5).
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A mutation at 0̄ produces a 2-cycle between 2̄ and 4̄. See Example 4.1.3 below.
Hence this potential is degenerate. Since for 3-CY orders the mutations from [8]
coincide with the Iyama-Reiten mutations from [9] (see [7, 10]) this implies that
Iyama-Reiten mutations cannot always be iterated indefinitely.

Our theorem also implies that potentials derived from geometric helices on Del
Pezzo surfaces (see below) are non-degenerate. In this way we recover part of the
main result of [6].

The main technical tool in this paper is the lifting of mutations to the graded
setting (see [1]).

Throughout all quivers are finite. k is a base field.

2. Graded and ungraded mutations

Let Q be a quiver. A potential on Q is an element W ∈ (kQ)̂ /[(kQ)̂ , (kQ)̂ ]
containing no paths of length one or zero. We write W as a sum of oriented cycles
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in Q. The corresponding Jacobian algebra is defined in the usual way

P(Q,W ) = (kQ)̂ /(∂aW )a

The space of paths of length zero in kQ will be denoted by R. This is a semisimple
k-algebra.

A potential is said to be reduced if it contains no two-cycles. Such two-cycles
lead to relations which express some arrows in terms of others and hence such
arrows can be eliminated in the Jacobian algebra. This observation is refined in
the splitting theorem [8, Thm 4.6] which asserts that (Q,W ) is “right equivalent”
(see [8, Def. 4.2]) to a direct sum decomposition

(2.1) (Q,W ) ∼ (Qred,W red)⊕ (Qtriv,W triv)

where W red is reduced and W triv contains only two-cycles and its associated Jaco-
bian algebra is equal to R.

The decomposition theorem implies in particular

(2.2) P(Q,W ) ∼= P(Qred,W red)

If G is an abelian group then we say that Q is G-graded if we have assigned a
G-degree |a| to all arrows a in Q. If W is homogeneous of degree r the partially
completed Jacobian algebra

Pgr(Q,W ) = (kQ)gr /̂(∂aW )a

(where we complete only with respect to sequences of paths having ascending length
but constant degree), is naturally a G-graded algebra. It is observed in [1] that the
graded analogue of the splitting theorem holds and hence the decomposition (2.1)
can be performed on the graded level.

The following lemma is very useful.

Lemma 2.1. Let Q′ be obtained from Q by repetively deleting pairs of arrows

i
a
−→ j

b
−→ i with i 6= j and |a| + |b| = r. If Q′ contains a two-cycle then so does

Qred.

Proof. By the degree constraint on W we can ony eliminate two-cycles of the form
ab with |a|+ |b| = r. This implies the result. �

Assume that Q does not have loops or two-cycles and let i be a vertex of Q. The
mutation µi(Q,W ) = (Q′,W ′) at i is defined in [8] as follows.

• For any sequence of arrows u
a
−→ i

b
−→ v we add an arrow u

[ba]
−−→ v.

• All arrows a starting or ending in i are replaced with opposite arrows a∗.

We have

W ′ = [W ] +
∑

b∗a∗[ab]

where [W ] is obtained from W by replacing all compositions ba through the vertex
i by the new arrows [ba]. Following [8] we put µ̃i(Q,W ) = (Q′ red,W ′ red). The
operations µ̃i is an operation on right equivalence classes of quivers with potential
(see [8, Thm 5.2]).

Now assume that Q is in addition G-graded and that W is homogeneous of
degree r. Then we make Q′ into a G-graded quiver by fixing the degrees of the
arrows as follows [1]

• Arrows which are both in Q and Q′ do not change degrees.
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• |[ab]| = |a|+ |b|.
• |a∗| = −|a|+ r if a ends in i.
• |a∗| = −|a| if a starts in i.

With this grading W ′ is homogeneous of degree r. If we perform mutation on the
graded level we write µgr

i (Q,W ) = (Q′,W ′) and µ̃gr
i (Q,W ) = (Q′ red,W ′ red). Such

graded mutations are compatible with forgetting the grading.

3. Main theorem

Let S =
⊕

n≥0 Sn be a commutative noetherian Z-graded ring and let Λ be a

graded S-order (i.e. Λ is a graded S-algebra, finite as a module over S). We will
say that Λ/S is almost Azumaya if for all P ∈ SpecS such that P 6⊃ S≥1 the
algebra ΛP is Azumaya over SP . This implies in particular that for any non-zero
idempotent e ∈ Λ0 the quotient Λ/ΛeΛ is a finite S0-module. The latter property
is in fact the only one we will use below.

Theorem 3.1. Assume the following assumptions hold

(1) (Q,W ) is a Z-graded connected quiver with a reduced homogeneous poten-
tial W of degree r.

(2) Q has at least three vertices.
(3) Put Λ = Pgr(Q,W ). Then dimΛi < ∞ for all i and dimΛi = 0 for i ≪ 0.
(4) Λ is a 3-dimensional CY-order over a noetherian center which is almost

Azumaya.
(5) HH0(Λ) = Λ/[Λ,Λ] contains no homogeneous elements with degree lying in

the interval [1, r/2].

Then Q has no loops or two-cycles.

Proof. Assume first that Q contains a loop i
a
−→ i and let e be the sum of the

idempotents corresponding to the vertices different from i. Let Q0 be the subquiver
of Q consisting of all loops at i. Put Γ̄ = Γ/ΓeΓ. Then Γ̄ is the graded Jacobian
algebra Pgr(Q0,W0) where W0 is obtained from W̄ by dropping all cycles passing
through vertices other than i.

If W0 = 0 then Γ̄ is infinite dimensional which is impossible by the discussion
preceding the theorem. Hence W0 is a sum of terms of degree r which are products
of loops

(3.1) a1 · · ·an

with n ≥ 3 (sinceW0 is reduced). Assume that (3.1) is the shortest such term. Then
there must be some ai which has degree ≤ r/3 ≤ r/2. As the paths occurring in the
relations of Γ/ΓeΓ are products of at least two arrows we have ai 6= 0. Furthermore
it is also clear that ai is not in the image of [kQ0, kQ0]. Thus ai represents a
non-zero element of HH0(Γ̄). Since there is a surjection HH0(Γ) → HH0(Γ̄), we
obtain a non-trivial element of HH0(Γ) as well. Since |ai| ≤ r/2 we obtain from the
hypotheses that |ai| ≤ 0. But then ai must be nilpotent and hence by [13] ai is a
sum of commutators, which is a contradiction.

We now assume that Q has no loops. The proof in the case of a two-cycle
i → j → i is similar. Let Q0 be the subquiver of Q consisting of all arrows between
i and j and vice versa and let e be the sum of the idempotents corresponding to
the vertices different from i or j. Put Γ̄ = Γ/ΓeΓ. Then Γ̄ = Pgr(Q0,W0) where
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W0 is obtained from W by dropping all cycles passing through vertices other than
i or j.

The case W0 = 0 is again impossible. Hence W0 is a sum of terms of degree r
which are products of two-cycles

a1b1a2b2 · · ·anbn

with i
al−→ j and j

bm−−→ i with n ≥ 2. As above this leads to a contradiction. �

Proposition 3.2. Let (Q,W ) be as in Theorem 3.1 and let i be a vertex of Q. Then
up to right equivalence we may assume that µ̃i(Q,W ) = (Q′,W ′) also satisfies the
conditions of Theorem 3.1. In particular Q′ has no loops or two-cycles.

Proof. Since ungraded and graded mutations are compatible and since the decom-
position (2.1) can be performed at the graded level, we can up to right equivalence,
assume that Q′ is graded and W ′ is homogeneous.

It has been proved in [7, Thm 5.2] and in [10, §6] that for Jacobian algebras
which are Calabi-Yau of dimension three, Derksen-Weyman-Zelevinsky mutations
correspond to Iyama-Reiten mutations. With some work these proofs can be carried
over to the graded context. Hence in particular we obtain that Γ = Pgr(Q′,W ′)
is 3-CY. Furthermore Z(Γ) = Z(Λ), Γ is almost Azumaya over its center and Γ
is derived equivalent to Λ [9]. Finally by the derived invariance of Hochschild
homology we have an isomorphism of graded vector spaces

Λ/[Λ,Λ] = HH0(Λ) = HH0(Γ) = Γ/[Γ,Γ] �

Corollary 3.3. If (Q,W ) is as in Theorem 3.1 then (Q,W ) is non-degenerate.

Proof. This is clear from Proposition 3.2. �

4. Examples and counterexamples

4.1. Skew group rings. In this section we assume that k is algebraically closed
of characteristic zero. Let V be a three dimensional vector space and let G be a
finite subgroup of SL(V ) of order n. Then it is well-known that the skew group
algebra Λ = SV#G is 3-Calabi-Yau. Furthermore Λ is graded Morita equivalent to
a graded Jacobian algebra Pgr(Q,W ) where Q is the McKay quiver of (G, V ) and
W has degree three. The McKay quiver is the quiver with vertices the irreducible
representations (Vi)i of G and arrows i → j with multiplicity p if Vj occurs p times
in V ⊗ Vi. We refer to [3, Thm 3.2] for a detailed discussion on how to construct
the potential.

In the case of a cyclic group G ∼= Z/nZ, the situation is particularly simple.
The irreducible representations of G are given by characters. After the choice of a
primitive n-th root of unity ξ a character χ may be identified with an element ā of
Z/nZ through the rule χā(m̄) = ξam.

Let ā1, ā2, ā3 be the weights of V . The fact that G ⊂ SL(V ) is equivalent to∑
i āi = 0̄. The vertices of the McKay quiver of (G, V ) are indexed by the elements

of Z/nZ. If l̄ ∈ Z/nZ then there are three arrows x1, x2, x3 leaving l̄ and ending
respectively in l̄ + ā1, l̄ + ā2, l̄ + ā3. The potential is given by

(4.1) W =
∑

±xi1xi2xi3

where the sum runs over all three-cycles such that {i1, i2, i3} = {1, 2, 3} and the
sign is positive iff (i1, i2, i3) is equal to (1, 2, 3), up to cyclic permutation.
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Lemma 4.1.1. The hypotheses of Theorem 3.1 hold for (Q,W ) if and only if
G ∼= Z/nZ is cyclic and acts with weights (āi)i on V such that gcd(n, ai) = 1.

Proof. Assume that the hypotheses for Theorem 3.1 hold. It is well-known that Λ
is almost Azumaya over its center if and only if SV G has an isolated singularity
which is equivalent to G acting freely on V ∗ − {0} and hence that G is cyclic (see
[12]). The fact that G acts freely is equivalent to the stated condition on weights.

Conversely assume that G is cyclic and acts with weights relatively prime to n.
We verify the hypotheses of Theorem 3.1: we have already mentioned (1). (2)
follows from the fact that the conditions imply G 6= Z/2Z. (3) is clear. (4) has
been mentioned previously. It remains to check (5). We must show HH(Λ)1 = 0.
If H(Λ)1 6= 0 then Q must have a loop. This implies that one of the weights is zero
and thus not relatively prime to n. Contradiction! �

We obtain:

Corollary 4.1.2. Assume that Q is the McKay quiver of a cyclic group Z/nZ
acting with weights ā1, ā2, ā3 such that gcd(ai, n) = 1 and

∑
i āi = 0. Let W be the

potential (4.1). Then W is non-degenerate.

In [9] Iyama and Reiten consider the case where Z/5Z acts with weights (1̄, 2̄, 2̄)
and mention that they do not know if the mutations of the associated McKay quiver
do not create loops or two-cycles. Corollary 4.1.2 establishes that this does indeed
not happen.

On the other hand the hypotheses for Corollary 4.1.2 can not be weakened as
shown by the following example:

Example 4.1.3. Let G = Z/6Z and assume that G acts with weights (2̄, 5̄, 5̄).
Since 2|6 the hypotheses for Corollary 4.1.2 do not hold.

The McKay quiver corresponding to this case has been given in the introduction.
We note that the McKay quiver of a cyclic groups is naturally Z

3-graded. It is
convenient to use the grading by the monomials in x1, x2, x3 such that |xi| = xi.
Then W is homogeneous of degree x1x2x3. With these conventions we see that
performing a mutation at the vertex 0̄ results in a two-cycle [x1x1]x1 between
vertices 2̄ and 4̄. This two-cycle has degree x3

1 and cannot be eliminated for degree
reasons (see Lemma 2.1).

4.2. Del Pezzo surfaces. Let Y be a Del-Pezzo surface and let (Ei)i=1,...,n be
a full exceptional collection on Y . Put E =

⊕n

i=1 Ei and define A(E) = End(E).
Assume that

H(E) = (Ei)i∈Z = (. . . , ωY ⊗ En, E1, . . . , En, ω
−1
Y ⊗, E1, . . .)

is a geometric helix (see [4, 6]). I.e. every slice (Ei+1, . . . , Ei+n) is an exceptional
collection and furthermore

∀i < j, ∀k > 0 : Extk(Ei, Ej) = 0

The rolled up helix algebra is the Z-graded ring

B(H) =
⊕

k∈Z

Hom(E, ω−k
Y ⊗ E)

with obvious multiplication.



SOME NEW EXAMPLES OF NON-DEGENERATE QUIVER POTENTIALS 7

Theorem 4.2.1. B(H) is an N-graded Jacobian algebra derived from a graded
super potential of degree one which is Calabi-Yau of dimension three (as ungraded
algebra) and which is almost Azumaya over its center.

This result is folklore although we don’t know a good reference. For the conve-
nience of the reader give a proof in Appendix A using some results from [11]. The
fact that B(H) is Calabi-Yau of dimension dimension three is [6, Thm 3.6]. The
fact that B(H) is Jacobian does not follow immediately from [2, Thm 3.1] as the
results in loc. cit. are for algebras of the form kQ/(R) where Q is a quiver with
arrows of degree one.

Theorem 4.2.2. Let (Q,W ) be such that W is reduced and Pgr(Q,W ) = B(H).
Then (Q,W ) satisfies the hypotheses of Theorem 3.1.

In particular it follows from Corollary 3.3 that (Q,W ) is non-degenerate. This
is a consequence of [6, Thm 1.7]. In loc. cit. the authors deduce this fact from their
result that a mutation of B(H) is always of the form B(H′) for another geometric
helix H

′.

Proof of Theorem 4.2.2. (1) is true with r = 1. (2) is true since rkK0(coh(Y )) ≥ 3.
(3) is obvious. (4) follows from Theorem 4.2.1. (5) is vacuous since the potential
has degree one. �

Appendix A. Potentials associated to Del Pezzo surfaces

Let the notations be as in §4.2. In this appendix we will prove Theorem 4.2.1.
We keep the setting of the theorem although with trivial changes most of the proof
applies to arbitrary Fano varieties. Our arguments are related to those appearing
in recent papers by Minamoto and Mori [14, 15].

Lemma A.1. B(H) is the derived tensor algebra of B(H)1 over B(H)0 = A(E).

Proof. For k < 0 we have

Hom(E, ω−k
Y ⊗ E) = Ext2(E, ωk+1

Y ⊗ E)∗ = 0

For k ≥ 0 we have

Hom(E, ω−k
Y ⊗ E) = RHom(E, ω−k

Y ⊗ E)

For k, l ≥ 0 we have to prove that the canonical map

RHom(E, ω−k
Y

L
⊗ E)

L
⊗A(E) RHom(E, ω−l

Y ⊗ E) → RHom(E, ω−k−l
Y ⊗ E)

is an isomorphism
One verifies that this is equivalent to showing that the composition map

RHom(E, ω−k
Y

L
⊗ E)

L
⊗A(E) RHom(ωl

Y ⊗ E,E) → RHom(ωl
Y ⊗ E, ω−k

Y ⊗ E)

is an isomorphism.
Since E is a classical generator for Db(coh(OY )) it suffices to prove the result

with ω−k
Y ⊗ E and ωl

Y ⊗ E replaced by E. Then the statement is obvious. �

Lemma A.2. Consider A(E) ⊗ A(E) as A(E)-bimodule with the outer bimodule
structure. We have an equality of A(E)-bimodules

B(H)1 = RHomA(E)e(A(E), A(E) ⊗A(E))[2]
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where on the righthandside the A(E)-bimodule structure comes from the surviving
inner bimodule structure on A(E)⊗A(E). In other words B(H)1 is a shifted inverse
dualizing complex of A(E) ([11, §3.3]).

Proof. We have to compute

RHomEnd(E)e(End(E),End(E)⊗ End(E))

Working on Y × Y we have

End(E)e ∼= End(E ⊠ E
∗)

It is easy to see that E⊠E
∗ is a classical generator for Db(coh(Y ×Y )) (e.g. because

it is derived from an exceptional collection, or else invoke [5]). Under the ensuing
derived equivalence Db(End(E ⊠ E

∗)) ∼= Db(coh(Y × Y )) it is easy to see that
End(E) corresponds to OY and End(E)⊗ End(E) to E⊠ E

∗.
We now have to compute

RHomY ×Y (O∆,E⊠ E
∗)

where ∆ is the diagonal. We use the well-known formula

RHomOY ×Y
(O∆,OY ×Y ) = ω−1

∆ [−2]

Thus

RHomY×Y (O∆,E⊠ E
∗) = RΓ(Y × Y,RHomY×Y (O∆,OY×Y )

L
⊗Y×Y E⊠ E

∗)

= RΓ(Y × Y, ω−1
∆

L
⊗Y×Y E⊠ E

∗)[−2]

= RHomY (E, ω
−1
Y ⊗ E)[−2] �

Lemma A.3. Assume that B is an N-graded ring such that dimBi < ∞ for all i.
Then

gl dimB0 ≤ gl dimB

If the category of graded finite length B-modules is Ext-finite and has a Serre functor
given by ?(d)[n] for d 6= 0 then

gl dimB0 < gl dimB = n

Proof. Let S, T be simple B0-modules which we view as B-modules concentrated
in degree zero. The part of degree zero of a graded projective B-resolution of S is
a projective B0-resolution of S. This implies the first inequality. We also get

ExtiB0
(S, T ) = ExtiB(S, T )0

Assume now that the category of graded finite length B-modules is Ext-finite and
has a Serre functor given by ?(d)[n] for d 6= 0. Then it is standard that gl dimB = n.
For the second inequality we note that ExtnB(S, T )0 = HomB(T, S(d))

∗
0 = 0. �

Proof of Theorem 4.2.1. Since A(E) is finite dimensional and has finite global di-
mension the same is true for A(E)e. Hence A(E) is perfect as a bimodule and as
such homologically smooth.

By Lemmas A.1,A.2 we obtain that B(H) is a (graded) 3-Calabi-Yau completion
of A(E) (see [11, §4]). By [11, Thm 4.8] we obtain that B(H) is 3-Calabi-Yau and
the proof shows that the Serre functor is given by ?(−1). By Lemma A.3 we then
find that gl dimA(E) ≤ 2. We may then use [11, Thm 6.10] to obtain that B(H)
is quasi-isomorphic to a Ginzburg algebra derived from a super potential of degree
one. Since B(H) is concentrated in degree zero it is also a Jacobian algebra.
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To prove that B(H) is almost Azumaya we note that B(H) is the pushforward
of an Azumaya algebra on the canonical bundle of Y . This easily yields the desired
result. �
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