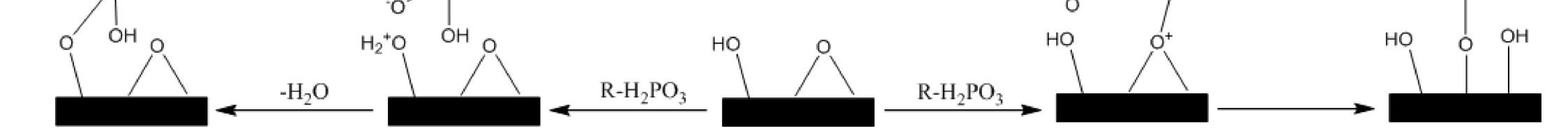
universiteit hasselt

³¹P SS-NMR and ATR-FTIR characterization of TiO₂ functionalized with phosphonic acids for solid phase extraction and purification applications

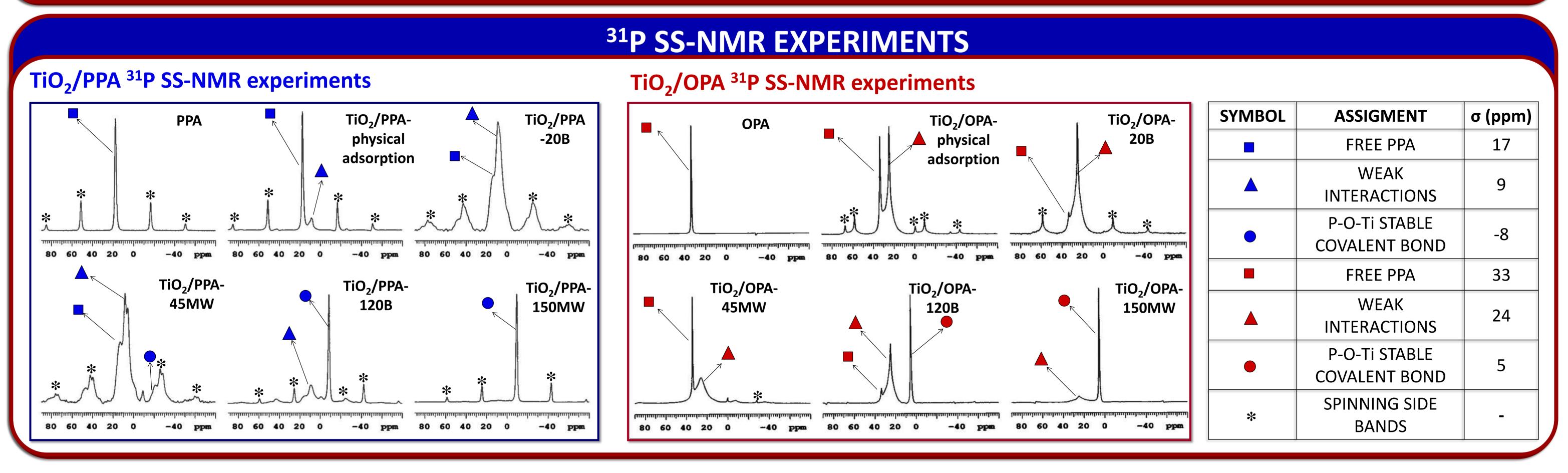


Marco Tassi, Gunter Reekmans, Martine Vanhamel, Peter Adriaensens, Robert Carleer

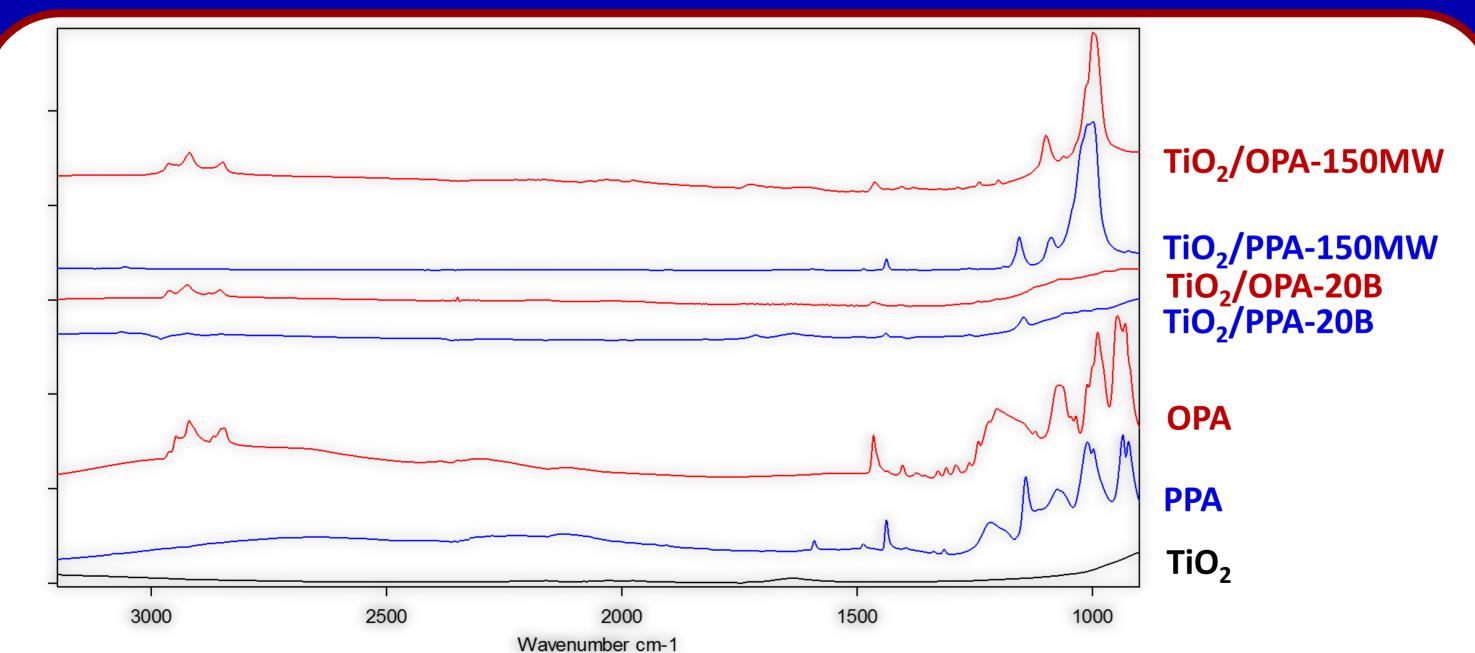
Hasselt University, TANC (Applied and analytical chemistry), Agoralaan-Building D, B-3590, Belgium

INTRODUCTION

Transition metal oxides, as titanium dioxide, are gaining interest because their intrinsic chemical and corrosive stability in a wide variety of solvents and pH-ranges. The modification of these materials is usually accomplished to incorporate chemical groups on the surface, introducing new functionalities that can be useful in several applications such as chromatography, absorbents, sensors and membranes. The reaction between titanium dioxide (TiO₂) and aromatic or alkyl phosphonic acids results in the formation of a hydrophobic layer on the transition metal oxide surface. Aromatic or alkyl phosphonic acids can be bonded to the surface by physical adsorption or chemically through covalent bonds. Generally there are two reaction mechanisms involved in the formation of Ti-O-P bonds that are characterized by ATR-FTIR and ³¹P SS-NMR techniques. Heterocondesation mechanism



After the characterization these materials have been tested by solid phase extractions to evaluate the reactivity and stability of the hydrophobic layer formed.


EXPERIMENTAL

Hydrophilic fumed TiO₂ powder P25 (Aeroxide), with a specific surface area of 50 m²/g and an average primary particle size of 21 nm has been modified using PhPO₃H₂ (PPA, 98%) or $C_8H_{19}O_3P$ (OPA, 97%). Functionalizations have been carried out at different reaction conditions using a solution 0.1M in water for PPA and a solution of 0.1 M in toluene/water for OPA. Physical mixtures of TiO₂/PPA and TiO₂/OPA have been prepared as references for the characterization of the reaction products.

TiO ₂ /PPA	SAMPLE	CONDITIONS	TiO ₂ /OPA	SAMPLE	CONDITIONS
	TiO ₂ /PPA-150MW	150°C Microwave reactor		TiO ₂ /OPA-150MW	150°C Microwave reactor, two phases
	TiO ₂ /PPA-120B	120°C batch reactor		TiO ₂ /OPA-120B	120°C batch reactor, two phases
	TiO ₂ /PPA-45MW	45°C Microwave reactor		TiO ₂ /OPA-45MW	45°C Microwave reactor, two phases
	TiO ₂ /PPA-20B	20°C batch reactor		TiO ₂ /OPA-20B	20°C batch reactor, two phases

ATR-FTIR ANALYSIS

SOLID PHASE EXTRACTION (SPE)

The hydrophobicity of the obtained materials has been evaluated in a solid phase extraction process with the aim to separate two organic solvents with a different polarity (MeOH/Tol for TiO₂/PPA and MeOH/Heptane for TiO₂/OPA).

SAMPLE	MIXTURE	% TOLUENE SEPARATED
TiO ₂ /PPA-150MW	MeOH/Tol 4:1	40
TiO ₂ /PPA-120B	MeOH/Tol 4:1	3
TiO ₂ /PPA-45MW	MeOH/Tol 4:1	10
TiO ₂ /PPA-20B	MeOH/Tol 4:1	5
SAMPLE	MIXTURE	% HEPTANE SEPARATED
TiO ₂ /OPA-150MW	MeOH/Heptane 4:1	32
TiO ₂ /OPA-120B	MeOH/Heptane 4:1	25
TiO ₂ /OPA-45MW	MeOH/Heptane 4:1	11
TiO ₂ /OPA-20B	MeOH/Heptane 4:1	10
TiO ₂ /OPA-20B	MeOH/Heptane 4:1	10

- ATR-FTIR analysis of TiO₂/PPA-150MW shows a broad peak at 1023 cm⁻¹ assigned to P-O-Ti covalent bonds
- ATR-FTIR analysis of TiO₂/PPA-150MW shows a peak at 1000 cm⁻¹ assigned to P-O-Ti covalent bonds

CONCLUSION

P-O-Ti bond of TiO₂/PPA is characterized by a signal at -8 ppm in ³¹P SS-NMR and an absorption at 1023 cm⁻¹ in ATR-FTIR.
TiO₂/PPA -150°C MW is characterized by a high amount of P-O-Ti bonds.
TiO₂/PPA -150°C MW shows the best performance in SPE.

- P-O-Ti bond of TiO₂/OPA is characterized by a signal at 5 ppm in ³¹P SS-NMR and an absorption at 1000 cm⁻¹ in ATR-FTIR.
- TiO₂/OPA -150°C MW is characterized by a high amount of P-O-Ti bonds.
- TiO₂/PPA -150°C MW shows the best performance in SPE.

Acknowledgement: the authors are grateful to FWO (GO12712N) for financial support.