
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Evaluation of overall treatment effect in MMRM

Peer-reviewed author version

Song, Tao; Dong, Qunming; Sankoh, Abdul J. & MOLENBERGHS, Geert (2013)

Evaluation of overall treatment effect in MMRM. In: JOURNAL OF

BIOPHARMACEUTICAL STATISTICS, 23 (6), p. 1281-1293.

DOI: 10.1080/10543406.2013.834918

Handle: http://hdl.handle.net/1942/16003



 

 

1 

Evaluation of overall treatment effect in MMRM 

Tao Song, Qunming Dong, Abdul J. Sankoh, Geert Molenberghs 

 

SUMMARY 

In longitudinal clinical trials for drug development, the study objective is often to evaluate 

overall treatment effect across all visits. Despite careful planning and study conduct, the 

occurrence of missing data can not be completely eliminated. As a direct likelihood method, 

Mixed-effects Model for Repeated Measures (MMRM) has become one of the preferred 

approaches for handling missing data in such designs. MMRM is a full multivariate model in 

nature, which avoids potential bias as a predetermined model and operates in a more general 

missing at random (MAR) framework. However, if treatment effect is constant over time, 

overparameterization of treatment by time interaction in MMRM could result in loss of 

power. In this paper, we utilize MMRM estimates and propose an optimal weighting method 

for combining visit-specific estimates to maximize the power under MAR mechanism. For a 

special case when the underlying covariance is compound symmetry, we show that the 

optimal weighting method is asymptotically equal to MMRM. In other words, MMRM has 

optimal power under this special case. When the underlying covariance is of an unstructured 

pattern, the optimal weighting method has increased power under MAR and missing not at 

random (MNAR) mechanisms, and can lead to bias reduction under MNAR. These are 

especially true when the variance is greater at later time point, which could lead to a smaller 

weight. We present practical examples using the optimal weighting method to analyze two 

cystic fibrosis clinical trial datasets. 

Keywords: Bias reduction; MMRM; Overall treatment effect; Optimal weight; Power. 
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1. INTRODUCTION 

In longitudinal clinical trials designed to demonstrate effectiveness of a new therapeutic 

compound, the same outcome variable is often measured repeatedly at a number of scheduled 

visits. In practice, the treatment response outcome of interest is either change from baseline 

to last visit, treatment-specific slope (rate of change), or overall treatment effect across all 

visits. When treatment difference is anticipated to occur quickly and to remain relatively 

stable over time, treatment response outcome evaluated over time should be preferred. This is 

especially true for chronic diseases, such as cystic fibrosis, where the interest is in sustained 

treatment effect throughout the treatment period.  

Despite careful planning and rigorous efforts to follow up each individual subject, the 

occurrence of missing data in clinical trials can not be completely eliminated. The presence 

of missing data could lead to reduced statistical power, and biased model estimates (Little 

and Rubin, 2002; Molenberghs and Kenward, 2007). Little and Rubin (2002) describe 3 

classes of missing data mechanisms. Depending on the process that triggers the missing data, 

it can be classified as missing completely at random (MCAR), missing at random (MAR) and 

missing not at random (MNAR). For MCAR, missingness is independent of both the 

observed and unobserved outcomes. MAR, on the other hand, is a less restrictive assumption 

that allows the missingness to depend on the observed outcomes, but independent of the 

unobserved. MNAR is the least restrictive in that missingness can not be fully explained by 

observed outcomes, and depends on the unobserved outcomes.  

For studies of missing data in controlled clinical trial setting, MAR is usually considered 

as a plausible underlying missing mechanism (Molenberghs and Kenward, 2007; Siddiqui et 

al., 2009), and various analysis approaches have been proposed to accommodate such an 
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assumption. Direct likelihood (Little and Rubin, 2002) or direct Bayesian approaches are 

commonly used because they are inherently valid, even ignoring the missing data mechanism. 

For non-likelihood based methods, such ignorability property can not be invoked. 

Generalized estimating equations (GEE) method (Liang and Zeger, 1986; Molenberghs and 

Verbeke, 2005) has also gained popularity because the estimator remains consistent even 

under model misspecification. The basic form of GEE is only valid under MCAR, but 

estimating equations can be adopted to accommodate MAR, and even MNAR. Robins et al. 

(1995) have developed weighted generalized estimating equations (weighted GEE), weighing 

observations by the inverse probability of being observed. Scharfstein et al. (1999) have 

further augmented the estimating equations to doubly robust version, by modeling inverse 

probability of being observed as a covariate. The doubly robust estimator has been proven to 

be consistent when either the missing data model or the response model is correctly specified. 

Next to GEE, pseudo-likelihood methods (Molenberghs and Verbeke, 2005) are good 

alternative to full likelihood methods due to their computational efficiency. Molenberghs et 

al. (2011) have developed weighted version and double-robust version in pseudo-likelihood 

inferential paradigms.  

With the availability of flexible software, linear mixed-effects model (Laird and Ware, 

1982) has become the most popular among direct likelihood methods. To avoid potential bias 

in the predetermined statistical model, a full multivariate model is usually considered as 

primary analysis in clinical study protocol. Mallinckrodt et al. (2001) referred to such a 

model as Mixed-effects Model for Repeated Measures (MMRM). Under various scenarios of 

MNAR, simulation studies have shown MMRM outperforms many of the traditional methods 

including the Last-Observation-Carried-Forward (LOCF) in terms of bias reduction and 
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control of the type I error rate for the statistical test (Mallinckrodt et al., 2001; Siddiqui et al., 

2009).  

The analytical solution of the overall treatment effect obtained from MMRM is equally 

weighted average of visit-specific estimates. A main-effect model is sometimes considered to 

evaluate overall treatment effect. In this case, the estimate is a weighted average of individual 

estimates adjusting for visit-specific information. The advantage of MMRM is that it can 

better satisfy the need for a predetermined model at study planning stage when a priori 

information is not sufficient. Under the context of missing data, MMRM operates in a more 

general MAR framework. When constancy assumption does not hold, MMRM remains valid 

under MAR while the main-effect model does not. However, if constancy condition were 

satisfied, MMRM could suffer power loss due to overparameterization of treatment by time 

interaction. 

Utilizing MMRM estimates, this paper proposes an optimal weighting method for 

combining visit-specific estimates, with the ultimate objective of maximizing the power of 

testing for overall treatment effect under missing at random (MAR). The outline is as follows: 

The estimation approach of MMRM is discussed in Section 2.1. We propose an optimal 

weighting method in Section 2.2. In Section 3, we conduct simulation studies to compare the 

performance of the MMRM and the optimal weighting method under different missing data 

mechanisms. In Section 4, datasets from two cystic fibrosis clinical trials are used for 

illustration. Section 5 concludes with summary remarks and suggestion for application. 
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2. METHOD 

2.1 Estimation in MMRM 

In this section, we first describe how overall treatment effect is estimated. For each treatment 

group with n subjects, and each subject with K measurements 1( ,..., ) ,  1,...,i i iKy y y i n  , 

MMRM is formulated as iy ~  ,  N V , where 1( ,..., )K     represent mean effect at each 

visit. V is a K K  completely unstructured covariance matrix. For two treatment groups, 

each group is assumed to have distinct mean parameters 0 0

1( ,..., )K    and 1 1

1( ,..., )K   , but 

commonly allowed to have shared covariance matrix V. The main-effect model constrains 

visit-specific difference , 1,...,E P

j j j K    to be a constant. For simplicity, we use one 

treatment group for future formulation. The restricted maximum likelihood (REML) estimate 

for complete data (Verbeke and Molenberghs, 2000) is given by  

1

1 1 1

1 1

ˆ ˆ ˆ

n

in n
i

i

i i

y

V V y
n





  

 

 
  
 


  . 

The overall treatment effect Δ (obtained via SAS LSMEANS statement) is equally weighted 

average of individual estimates:   

1 1

1

1 1 ˆˆ ,..., .

n K
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i j

M

K

y

K K nK


 



 
   

 


  

Now assume only r subjects have the Kth measurements (r<n). The objective is to 

estimate K  in the presence of missing data. Little and Rubin (2001) have shown explicit 

expression of MMRM can be obtained via factored likelihood. Denote  1 , 1,...,i i Ky y 

  as ioy , 

and the conditional distribution |iK ioy y  as 
2

0 1 |( , )io K oN y   . MMRM estimate is given by  
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1

1 1

0 1 ( 1) 1

1 1 1 1

ˆˆˆ ˆ( ( ) ) .
r n r n

K iK ik K iK iK

i i r i i r

n y y n y y   

 

     

          
   
           (1.1) 

The estimator for 
K  is formulated in a way that looks like it “imputes” the unobserved 

,iKy i r , using the predictive distribution of the unobserved given the observed ones. Under 

MAR, the predictive distribution can be consistently estimated using r complete subjects, 

which leads to the consistent estimators for the marginal distribution even ignoring the 

missing data mechanism.  

However, further information about the unobserved would be needed for MNAR 

mechanisms. For example, assume | ,iK ioy y i r  follows 2

0 1 |( , )io K oN y d    , where 

0d   represents the information to distinguish between completers and dropouts. In clinical 

trials, d<0 could represent subjects drop out due to lack of efficacy, while d>0 could 

represent subjects drop out due to good treatment response. When assuming a MAR, MMRM 

“imputes” the unobserved as 0 1 1 1 , 1
ˆ ˆ ˆˆ ... ,iK i K i Ky y y i r         . The expected bias due to 

“imputing” the unobserved is equal to ( )n r d  .  

  

2.2 Optimal weighting method 

Overall treatment effect can be obtained by combining individual estimates  1
ˆ ˆ,..., K    

using the weighting scheme by Wei and Johnson (1985), 

1

ˆ ˆˆ ˆ ˆ ,  
K

W i i

i

w w 


   and test statistic is ˆ ˆ( ) /W Wse    
 

                 (1.2) 
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



 

 
 


  

 

, and ˆ ˆ ˆˆ
Wse w Var w    

   
.             (1.3) 
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In the Appendix, we show optimal weight 
  

  

1

1

1

1 1

1

1 1

K

K K

Var
w

Var











 




 maximizes the power 

of the hypothesis test : 0oH    versus 
1 : 0H   under MAR. In the above formulations, ̂  

and ˆVar  
 

 are likelihood estimates from MMRM. Under MAR, they are consistent 

estimators for   and  Var  , and the statistic ˆ ˆ( ) /W Wse    
 

 converges in distribution 

to a standard normal random variable, as n .  The weight ŵ  is a function of likelihood 

estimates and is a consistent estimator of w , thus establishing the consistency of the optimal 

weighting estimator ˆ
W  for W w    under MAR.  

Note: the distribution of ˆ ˆ( ) /W Wse    
 

 under the null hypothesis is intractable but 

approximates to normality when sample size is sufficiently large. This sample size condition 

is usually met in a typical confirmatory clinical trial for drug development.  

With complete data, ˆVar  
 

 is estimated as ˆ /V n . The individual weight ˆ
iw  is then 

simply the sum of the ith column of the inverse covariance matrix 1V̂  . The optimal weight is 

inversely proportional to visit-specific variance. We now discuss two special cases for the 

optimal weight. If V is assumed to be of independent structure, the weight simply reduces to 

2ˆ1/ i , a well known procedure for combining information across K independent studies in 

meta analysis, where 2ˆ
i  is the estimated variance for the ith element. When the covariance 

structure V is assumed to be of compound symmetry (CS),  2

1 2 1 21 ( ) ( )
K K

I k k I k k 


     ; 

with complete data,  
1

ˆ /Var n


 
 

 approaches  
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The optimal weight in (1.3) is then given by 
 
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1

1

1

1
1 1

ˆ 1 1 1ˆ ,...,
ˆ1 1

K

K
K K

Var
w
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
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




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    
   

   
 

, as 

n . In this case, the optimal weighting method is asymptotically equal to MMRM. 

 

3. SIMULATION STUDIES 

3.1 Simulation Set-up 

We conduct simulation studies to evaluate the performance of the proposed optimal 

weighting method compared with MMRM in evaluating overall treatment effect under both 

MAR and MNAR mechanisms.  

Assume the post-baseline outcome measurement for the experiment treatment group Ey  

is generated from  1( ,..., ),  ,  1,...,E E

K EN V i n   . For placebo, outcome measurement Py  is 

generated from  1( ,..., ),  ,  1,...,P P

K PN V i n   . We generate a sample of 200 subjects in each 

treatment group (nE=nP =200), and K=4. The differences between treatment groups are 

assumed to be a constant value Δ across all visits ( ,  1,...,4E P

i i i     ). The marginal 

covariance matrix V is assumed to be of CS or UN, where UN covariance pattern is estimated 

from the second cystic fibrosis clinical trial dataset discussed in Section 4. To evaluate 

overall treatment effect, the hypothesis test is : 0oH    versus 1 : 0H   . 

The missingness mechanism is assumed to be related to the subject’s measurement values 

at the previous and current clinical visits ( , 1i jy   and ijy ) via a logistic regression model 
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  0 1 , 1 2log ( 1| ) , 1,..., , 1,...,ij i i j ij E Pit P d y y y i n n j K         , 

where dij=1 if the ith subject drops out from the study at the jth visit, dij=0 otherwise. To 

generate a MAR mechanism, assume dropout is only related to , 1i jy   1 2( 0, 0)   , and a 

subject with a lower value of the measurement at the (j-1)th visit has a higher probability to 

drop out at jth visit. To generate a MNAR mechanism, assume dropout is related to both 

, 1i jy   and ijy  1( 0,   2 0)  , and a subject with a lower increment between values of 

measurement at the current and previous visits have a higher probability to drop out (Verbeke 

and Molenberghs, 2000). The coefficients of the logistic regression 0 1 2( , , )    are chosen to 

achieve the desired amount of missing data.  

A total of 16 scenarios are simulated by varying four input parameters described below. 

In each scenario, 2,000 simulations are conducted. The four parameters are: 

i. V is assumed to be either of CS or UN;  

ii. True overall treatment difference is either Δ=1 or Δ=1.5;  

iii. Missingness is either MAR or MNAR mechanism; 

iv. 0 1 2( , , )    are chosen to achieve either 25% or 40% of missing data. 

When assessing the performance of the proposed method for evaluating overall treatment 

effect, we examine the type I error rate, statistical power and percent bias of the estimate. 

The type I error rate is estimated by the proportion of rejections of null hypothesis under Ho. 

The statistical power is estimated by the proportion of rejections under H1. The percent bias 

is estimated by the average percent difference between the estimate and true value under H1.  

 

3.2 Under MAR 



 

 

10 

Table 1 summarizes the simulation results under MAR. It can be observed that both optimal 

weighting method and MMRM achieved nominal type I error rate, with amount of missing 

data up to 40%. For statistical power, one can observe that optimal weighting method has 

similar power to MMRM for CS (average power: 0.73 versus 0.72), and optimal weighting 

method has increased power for each of the simulated scenarios for UN. Optimal weighting 

method has on average a 7% power gain under UN (average power: 0.75 versus 0.68). For 

percent bias, one can observe that both optimal weighting method and MMRM are unbiased 

under MAR as expected, although the optimal weighting method has slightly greater bias 

than MMRM.  

 

3.3 Under MNAR 

Table 2 summarizes the simulation results under MNAR. It can be observed that both 

optimal weighting method and MMRM have achieved nominal type I error rate under 

MNAR.  

For statistical power, one can observe that optimal weighting method has similar power 

to MMRM for CS (average power: 0.72 versus 0.72). However, optimal weighting method is 

relatively more powerful for each of the simulated scenarios for UN (on average of 7% 

power gain). For percent bias, optimal weighting method has greater bias than MMRM for 

CS (average bias: -7.1% versus -6.5%), but has smaller bias for UN (average bias: -8.9% 

versus -11.1%). The greatest difference between the two methods occurs for UN when 

missingness is 40%, where optimal weighting method has 3.0% reduced bias as compared to 

MMRM. The underlying UN covariance results in a smaller weight at last time point (see 

Section 4 for the estimated weight in Case Study 2). Since missing data introduces most bias 
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at last time point, this probably benefits the optimal weighting method and it has reduced bias 

than MMRM.  

 

3.4 Greater Variance for Later Time Point 

As greater uncertainty is usually anticipated at later time points in clinical trials, we conduct 

simulations to investigate the impact. The variance at each visit is proportional to 1: 0.5: 1: 2. 

Note this will results in a smaller weight for the last time point. The simulation results are 

shown in Table 3. Under such scenarios, great bias reduction and increase of statistical power 

are observed. The greatest difference occurs when missingness is MNAR and missingness is 

40%. The statistical power increases more than four-fold (0.838 versus 0.195), and the bias 

reduction of using optimal weighting method is more than one-eighth (-2.6% versus -22.1%).  

 

4. THE CYSTIC FIBROSIS STUDY 

Cystic fibrosis (CF) is a recessive genetic disease that affects approximately 70,000 children 

and adults in the world. Despite progress in the treatment of CF, there is currently no cure. 

The predicted median age of survival for a person with CF is in the mid-30s (Stern et al., 

2008).  

Although the disease affects multiple organs, the leading cause of mortality is the progressive 

loss of lung function. To illustrate the application of the proposed method, we utilize the data 

from two CF clinical trials. 

 

4.1 Case Study 1 
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The first dataset is from a double-blind, placebo-controlled randomized study in which 

subjects received either placebo (nP=28) or test drug E (nE=112) for 16 weeks. Treatment 

response outcome is change from baseline in percent predicted FEV1, which was measured at 

baseline (Day 1 pre-dose), and at 3 post-baseline visits: Week 2, Week 8, and Week 16. At 

the conclusion of the study, the percent of missing data was 7% for each treatment group. A 

total of 10 subjects dropped out of the study prematurely during treatment period and half of 

these subjects dropped out due to adverse events.  

We first explore the structure of the marginal covariance matrix for this dataset. Table 4  

summarizes model fitting and comparison for three models. All models assume a saturated 

treatment by time mean structure, with two baseline covariates: baseline FEV1 and age. In 

model 1 (MMRM), the covariance matrix is completely unstructured (UN), yielding an 

additional 6 parameters. Models 2 and 3 assume the covariance structure to be of compound 

symmetry (CS) and first-order autoregressive (AR(1)) type, respectively. They can be 

considered as nested models, and likelihood ratio can be used to test the hypothesis of 

whether a parsimonious covariance structure is more appropriate. From the table, one can see 

that model 2 is favored by likelihood ratio test (p-values = 0.1586) and CS seems to be a 

plausible fit for this dataset. However, UN is still preferred in this setting. This is because as 

compared with a more parsimonious choice, loss of power under UN can be negligible for 

evaluating last visit treatment effect (Molenberghs and Kenward, 2007). In our simulations, 

we also find the power loss for evaluating overall treatment effect can be negligible for UN. 

MMRM is used to estimate the differences between E and placebo, and the visit-specific 

differences are displayed in the middle part of Table 4.  
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In this example, the main interest is evaluating overall treatment effect during the 16 

weeks treatment period. The alternative hypothesis is that the overall treatment effect of 

change from baseline in percent predicted FEV1 is different between E and placebo. We 

analyze the data using MMRM, the optimal weighting and ANOVA methods. ANOVA is 

conducted on the average of all available post-baseline measurements. The estimates of 

treatment effect and p-values are given in the lower part of Table 4. All three methods yield 

similar estimates, standard error and p-values. MMRM and ANOVA are similar probably 

due to the small percent of missing data. The similarity of MMRM and optimal weighting 

method probably lies in the presence of the underlying CS structure (note UN was still used 

in MMRM and optimal weighting method).  

 

4.2 Case Study 2 

For the second clinical trial dataset, which is also from a double-blind, placebo-controlled 

randomized study, where 26 subjects received placebo and 26 subjects received E for 24 

weeks. Percent predicted FEV1 was measured at 4 post-baseline visits: Week 2, 8, 16 and 24. 

All subjects completed treatment group E, while the percent of missing data was 11.5% for 

placebo. The covariance structure of this dataset is explored and results are shown in Table 5. 

One can see that models 2 and 3 (CS and AR(1)) are both rejected (p-values = 0.0453 and 

<0.0001, respectively) and model 1 (UN) provides the best fit to this dataset. The visit-

specific differences between E and placebo are displayed in the middle part of Table 5.  

Next, we evaluate overall treatment effect during the 24 weeks treatment period. The 

estimates of treatment effect and p-values are given in the lower half of Table 5. ANOVA 

and MMRM again give very similar analysis results. The optimal weighting method yields a 
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relatively smaller estimate. This is because the underlying UN covariance results in a smaller 

weight at Week 24, where the estimated treatment difference from MMRM is the greatest. 

The optimal weights are given as 0.41, -0.32, 0.64 and 0.27 at each visit. 

 

5. CONCLUSIONS 

With growing interests in using MMRM to analyze clinical trial data with missing data, we 

propose an optimal weighting method to address the question of comparing overall treatment 

effect. This method has optimal power to evaluate overall treatment effect under MAR. For a 

special case when the underlying covariance structure is compound symmetry (CS), we have 

shown optimal weighting method is asymptotically equal to MMRM with complete data.  

In the simulation study we observe the proposed optimal weighting method performs 

generally comparable to MMRM, with regards to controlled type I error rate under MAR and 

MNAR missing mechanisms. When the underlying covariance is unstructured (UN) pattern, 

our simulation results show the optimal weighting method is relatively more powerful under 

MAR and MNAR, and has less bias under MNAR. This is especially so when the variance is 

greater at later time point, which could lead to a smaller weight.  

The proposed optimal weighting method differs from weighted and double robust version 

non-likelihood methods in the following way. In non-likelihood methods, visit-specific 

estimates for population average achieve validity when inverse probability of being observed 

is utilized at subject level. In the proposed method, visit-specific estimates for population 

average are obtained based on direct likelihood, which are inherently valid under MAR. The 

weight is further a function of likelihood estimates, proven to achieve maximum power under 

MAR.  
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APPENDIX 

In this appendix, we show the optimal weight in (1.3) (Section 3.2) maximizes the power of 

the hypothesis test : 0oH    versus 
1 : 0H    under MAR. 

With the nominal significant level  , the power of the test (1.2) under H1 is given by  

     

 

( / | 0) ( ) / / | 0

/ ,

W W WP se Z P w Var w w Var w

P Z w Var w

  



            
 

   
 

 

where Z follows a standard normal distribution under MAR and Z  satisfies ( )P Z Z   .  

From Cholesky decomposition,  Var   is equal to LL , where L is a lower triangular 

matrix with strictly positive diagonal entries. Further, from Cauchy-Schwarz inequality, we 

have 

          

  

1 1 1

1 1 1 1

1

1

1 1 1 1

1 1.

K K K K

K

w Var w Var w L w L L L

w L L

 
  

   





        


  

 

Thus the quantity  w Var w  is minimized at 
  

  

1

1

1

1 1

1

1 1

K

K K

Var
w

Var











 




. Therefore, the 

optimal weight in (1.2) maximizes the power of the test : 0oH    versus 1 : 0H   .  
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Table 1. Simulation results under MAR to compare the optimal weighting method 

(1.2) and MMRM. Sample size n = 200 per treatment group and the number of 

replicates is 2,000.  

 

 

Type I error 

Scenarios  Optimal 

weighting 

MMRM 

CS 

25% missing 0.053 0.050 

40% missing 0.054 0.052 

UN 

25% missing 0.054 0.048 

40% missing 0.053 0.052 

 

 

Power 

Scenarios Optimal 

weighting 

MMRM 

CS 

Δ=1, and 25% missing 0.575 0.565 

Δ=1.5, and 25% missing 0.891 0.890 

Δ=1, and 40% missing 0.560 0.554 

Δ=1.5, and 40% missing 0.890 0.878 

UN 

Δ=1, and 25% missing 0.594 0.530 

Δ=1.5, and 25% missing 0.916 0.858 

Δ=1, and 40% missing 0.575 0.498 

Δ=1.5, and 40% missing 0.901 0.836 

 

 

Bias 

Scenarios Optimal 

weighting 

MMRM 

CS 

Δ=1, and 25% missing 0.2% 0.3% 

Δ=1.5, and 25% missing 0.1% 0.2% 

Δ=1, and 40% missing -0.2% 0.1% 

Δ=1.5, and 40% missing -0.3% 0.1% 

UN 

Δ=1, and 25% missing -0.5% 0.1% 

Δ=1.5, and 25% missing -0.3% 0.1% 

Δ=1, and 40% missing -0.8% -0.1% 

Δ=1.5, and 40% missing -0.7% -0.1% 
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Table 2. Simulation results under MNAR to compare the optimal weighting method 

(1.2) and MMRM. Sample size n = 200 per treatment group and the number of 

replicates is 2,000.  

 

 

Type I error  

Scenarios Optimal 

weighting 

MMRM 

CS 

25% missing 0.052 0.054 

40% missing 0.057 0.054 

UN 

25% missing 0.051 0.048 

40% missing 0.050 0.048 

 

 

Power 

Scenarios Optimal 

weighting 

MMRM 

CS 

Δ=1, and 25% missing 0.569 0.563 

Δ=1.5, and 25% missing 0.889 0.887 

Δ=1, and 40% missing 0.549 0.539 

Δ=1.5, and 40% missing 0.873 0.874 

UN 

Δ=1, and 25% missing 0.594 0.527 

Δ=1.5, and 25% missing 0.914 0.861 

Δ=1, and 40% missing 0.557 0.480 

Δ=1.5, and 40% missing 0.890 0.820 

 

 

Bias 

Scenarios Optimal 

weighting 

MMRM 

CS 

Δ=1, and 25% missing -4.2% -4.0% 

Δ=1.5, and 25% missing -3.5% -3.2% 

Δ=1, and 40% missing -10.7% -9.8% 

Δ=1.5, and 40% missing -9.8% -8.8% 

UN 

Δ=1, and 25% missing -6.1% -7.3% 

Δ=1.5, and 25% missing -5.0% -6.0% 

Δ=1, and 40% missing -13.0% -16.3% 

Δ=1.5, and 40% missing -11.6% -14.6% 
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Table 3. Simulations to assess the impact of greater variance for later time point on 

the comparison of the optimal weighting method (1.2) and MMRM. Sample size n = 

200 per treatment group and the number of replicates is 2,000.  

 

 

Under MAR 

 Optimal 

weighting 

MMRM 

25% missing 

Alpha 0.052 0.051 

Power 0.901 0.246 

Bias (%) 1.0% -0.4% 

40% missing 

Alpha 0.054 0.051 

Power 0.844 0.214 

Bias (%) 0.8% -1.4% 

 

 

Under MNAR 

 Optimal 

weighting 

MMRM 

25% missing 

Alpha 0.050 0.051 

Power 0.904 0.236 

Bias (%) 1.7% -12.9% 

40% missing 

Alpha 0.054 0.054 

Power 0.838 0.195 

Bias (%) -2.6% -22.1% 
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Table 4. Analysis of CF clinical trial datasets: Case Study 1 (140 subjects, with 

nE=112 and nP=28). 

 

Exploratory analysis for the covariance structures. 
 

 Mean Covar par -2l Ref G
2
 df p 

1 unstr. UN 14 2647.4     

2 unstr. CS 10 2654.0 1 6.6 4 0.1586 

3 unstr. AR(1) 10 2666.1 1 18.7 4 0.0009 

 

MMRM Estimation of visit-specific treatment difference between E and placebo. 

 Week 2 Week 8 Week 16 

Estimate 1.7 1.2 2.0 

Standard Error 1.38 1.55 1.70 

p value 0.21 0.45 0.25 

 

Estimation of overall treatment difference between E and placebo. 

 ANOVA MMRM 
Optimal 

weighting 

Estimate 1.5 1.6 1.6 

Standard Error 1.19 1.22 1.17 

p value 0.20 0.18 0.18 

 

 

Table 5. Analysis of CF clinical trial datasets: Case Study 2 (52 subjects, with nE=26 

and nP=26). 

 

Exploratory analysis for the covariance structures. 
 

 Mean Covar par -2l Ref G
2
 df p 

1 unstr. UN 20 1416.1     

2 unstr. CS 12 1431.9 1 15.8 8 0.0453 

3 unstr. AR(1) 12 1457.8 1 41.7 8 <0.0001 

 

MMRM Estimation of visit-specific treatment difference between E and placebo. 

 Week 2 Week 8 Week 16 Week 24 

Estimate 13.1 13.8 11.8 13.9 

Standard Error 3.55 3.83 3.11 3.43 

p value <0.01 <0.01 <0.01 <0.01 

 

Estimation of overall treatment difference between E and placebo. 

 ANOVA MMRM 
Optimal 

weighting 

Estimate 13.0 13.1 12.2 

Standard Error 3.12 3.04 2.79 

p value <0.01 <0.01 <0.01 

 


