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Figure 1: Overview of our practical and low-cost tracking solution using ceiling mounted LED strips.

Abstract

In this paper we present a novel approach for tracking the move-
ment of a user in a large indoor environment. Many studies show
that natural walking in virtual environments increases the feeling
of immersion by the users. However, most tracking systems suf-
fer from a limited working area or are expensive to scale up to a
reasonable size for navigation.

Our system is designed to be easily scalable both in working area
and number of simultaneous users using inexpensive off-the-shelf
components. To accomplish this, the system determines the 6 DOF
pose using passive LED strips, mounted to the ceiling, which are
spatially encoded using De Bruijn codes. A camera mounted to
the head of the user records these patterns. The camera can deter-
mine its own pose independently, so no restriction on the number of
tracked objects is required. The system is accurate to a few millime-
ters in location and less than a degree in orientation. The accuracy
of the tracker is furthermore independent of the size of the working
area which makes it scalable to enormous installations. To provide
a realistic feeling of immersion, the system is developed to be real-
time and is only limited by the framerate of the camera, currently
at 60Hz.
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1 Introduction

Navigation is the most common interactive task performed in a
large three-dimensional virtual environment (VE). Especially in im-
mersive VEs, building an intuitive way of navigating without los-
ing the sense of immersion is not trivial. The reason for this is that
navigating in the real world is not only visual. It has been shown
that there are a lot of benefits of using a walking interface to ex-
plore a virtual environment; users have a higher sense of presence
compared to other locomotion techniques[Usoh et al. 1999], bet-
ter spatial orientation[Chance et al. 1998], have fewer collisions in
the virtual world [Suma et al. 2010] and perform better on search
tasks[Ruddle and Lessels 2009]. Using natural walking as an inter-
face requires a way of tracking the position and orientation of the
user over a large area. However, most tracking systems are not de-
signed to scale up without loss of accuracy or are not cost effective
when doing so.

Our system handles tracking in large areas by using a head-mounted
camera and a grid of lights applied to the ceiling. Some lights in the
grid are disabled, resulting in a binary pattern on the grid. By using
De Bruijn codes in combination with a Manchester encoding, every
pattern of 60 lights (on or off) encodes a unique location in the grid.
By determining the pattern in the image of the camera, the location
and orientation of the camera under the grid can be determined and
global tracking can be achieved. We acquire an accuracy with a
maximum error of a few millimeters for the tracking of the global
location and less than one degree in tracking the global orientation.
The pattern allows the use of a grid of 4.8 million km2, without loss
of accuracy. We present a prototype using off-the-shelf hardware
running at 60Hz (i.e. the camera framerate), proving the method to
be fast and cost effective. Because of the static nature of the grid,
the drift as seen in other tracking systems is not present. This allows
the simultaneous use of multiple users with correct relative location
and removes the requirement of calibration while using the setup.

By allowing global and precise tracking in a large environments,
other well-known techniques become available with high quality.
One of these is redirected walking [Williams et al. 2007; Peck et al.
2010; Neth et al. 2011; Suma et al. 2012], which reduces the phys-
ical space required for navigating large virtual environments. Here,



a user can be guided to a different physical location than that he per-
ceives in the virtual world. The technique makes use of the limits
of our perception of space, as it turns out that we mainly trust our
visual system. By slowly and continuously amplifying or diminish-
ing a component of the user’s motion, the user can be steered away
from physical boundaries and obstacles. By interrupting or distract-
ing the user, a smaller physical space is required [Peck et al. 2010;
Williams et al. 2007]. In terms of tracking, redirected walking also
requires a larger tracking system to be effective. It also requires
the actual physical location of the user to steer him/her away from
the physical boundaries or other obstacles. Furthermore, interac-
tion between different users of the virtual environment requires a
correct relative position. Tracking systems who suffer from drift
would become unreliable over time, making redirected walking in-
effective.

2 Related Tracking Systems

From the early creation of immersive virtual reality and the intro-
duction of head-mounted displays (HMDs), the need to track it’s
position and orientation became necessary. The first systems used
a mechanical linkage to accomplish such a task [Sutherland 1968],
but this confined the movement of the user to the size of the de-
vice. Magnetic-based systems gave the user more freedom to move
around, but still are not suitable for larger systems, due to the in-
herent sensitivity to other metal and magnetic sources in the area.
Therefore, using multiple base stations to create a bigger working
area is not recommended. Acoustic systems on the other hand use
ultrasonic sound waves to triangulate the position of the receiver.
They can be scaled in a cost-effective way, but suffer from a lim-
ited and changing accuracy depending on environment conditions.
Ultra-wide band (UWB) systems, like Ubisense [Cadman 2003],
can be used over a large area. They make use of ultra-wide band
radio frequency for position tracking, but are not accurate enough
on their own to be used for navigating virtual environments.

When accurate tracking is required over a large - and in most cases
unknown - area, an inertial system is usually used. Inertial tracking
systems use inertia to sense a change in position and orientation by
measuring the acceleration and torque. No other external sources
or markings in the environment need to be used, which makes it
not restricted to any working area. However, this also means that
the tracking system has no perception about its physical location or
orientation and the measured position quickly drifts from the real
position. Inertial tracking systems are often combined with vision
systems to counteract the weak points of each other. An example of
such a hybrid tracker is the VIS-tracker [Foxlin and Naimark 2003;
Wormell et al. 2007]. This tracking system uses paper patterns for
absolute reference to counter drift from its inertial sensor. Because
they use paper markers, their vision system is dependent on envi-
ronment lighting and therefore suffers from motion blur. The pat-
terns also need to be calibrated before the system can be used. An-
other system proposed by Bleser et al. [Bleser and Stricker 2008]
uses a model of the environment to find its pose. It suffers from
the same limitations as the VIS-tracker, but does not require any
modifications to the working area.

Another global tracking method is the well-known Global Posi-
tioning System (GPS) [Hofmann-Wellenhof 1993] uses a satellite-
based triangulation method. The triangulation uses the differences
between timestamps transmitted by the satellites, together with the
location of the satellites at that time. Because the receiver only uses
time differences, clock synchronization is only required between
satellites. While the method is very accurate in theory, the times-
tamps are artificially modified to reduce accuracy to up to 5 meters
of error [Wing et al. 2005], which makes GPS unsuitable for ac-
curate global navigation in virtual environments. Furthermore, the

effectiveness of the system is strongly determined by the number
of visible satellites. This can introduce loss of accuracy or opera-
tion in indoor situations. Lastly, GPS does not provide orientation
information, making it less suited for virtual reality applications.

Optical tracking systems use light to track the pose of an object.
Most systems use an outside-looking in approach, which means
that the sensors are located fixed in the world and markers are at-
tached to the object. Most commercial systems, like Vicon, PPTX
Tracker and iotracker[Pintaric and Kaufmann 2007], take this ap-
proach because it provides a good position accuracy of each marker
by triangulation. This makes it ideal for motion capturing, but re-
quires special 3D markers to estimate orientation. This also limits
the scalability of the system because accuracy drops linearly with
the distance to the sensors. Orientation magnifies this error because
it is dependent on it. Furthermore, these systems can only support a
limited number of users due to their design. Another drawback for
immersive virtual reality is the fact that the pose of the user needs
to be calculated at a distance and sent over, which introduces more
latency. Building a larger working area can become costly in terms
of cameras.

The HiBall system by Welch et al. [Welch et al. 2001] was espe-
cially designed for wide-area tracking. They use an inside-looking-
out approach to estimate the pose of a special optical sensor. The
system uses arrays of flashing infra-red LEDs which are synchro-
nized with the sensor. The system achieves accurate 6 DOF tracking
at 2000 Hz using a single-constraint-at-a-time or SCAAT algorithm
[Welch 1996]. Unfortunately, they can only support up to 4 sensors,
because each extra sensor reduces the framerate by half. The use of
special hardware can make the system expensive in larger systems.

Maesen et al. [Maesen and Bekaert 2011] introduced a low-cost
scalable tracking system using inexpensive LED ropes and a head-
mounted camera. No restriction on the working area or number of
users was imposed, but they did not achieve a global positioning
system to get the actual physical location of the user. There was no
encoding of the LED lights, thus global position could not be re-
covered. By using temporal information, users could be tracked by
differentiating positions between frames, but this is highly sensitive
to frame drops. They did, however, acquire accurate orientation by
using vanishing points.

Ramesh et Al. [Raskar et al. 2007] present a system for motion
tracking using infrared LED markers and a low-cost photodiode.
The LED markers use a spatiotemporal encoding to reduce the
number of LEDs. The camera is placed in the world, which im-
plies that large area tracking is less scalable. There is a limited
coverage of the scene and the distance to the markers is limited
by the absence of optical lenses. However, the system is highly
portable, making it practical for specific large area applications,
such as movie studios.

3 Our Approach

We propose a tracking system for virtual reality setups, where every
user is equipped with a head-mounted display. Our system uses a
head-mounted camera, directed to the ceiling. We designed our
system around the concept of being scalable, which meant that we
would prefer an inside-looking-out [Bishop 1984] approach. It is
also more cost-effective when building larger systems due to the
higher cost of the image sensors.

The ceiling is covered with a pattern of lights, which can be seen
by the camera. The lights are placed in a grid, where some posi-
tions in the grid are disabled, i.e. no light. The markers, i.e. the
(absence of) lights, are placed on the ceiling because of the rela-
tively constant vertical distance when navigating through a large



Figure 2: Prototype of our scalable optical tracking system. Left: Image taken from the camera used for tracking. Right: Overview of our
system with the camera mounted on a head mounted display.

environment. This advantage of having a limited distance, indepen-
dent of the scale of the environment, means that we have no loss of
accuracy when scaling up the system in comparison to most track-
ing systems. To achieve a global positioning method we need to
encode the global position in the markers. Rather than using time
multiplexing like the HiBall system [Welch et al. 2001] or printed
patterns like the VisTracker [Wormell et al. 2007], we chose to en-
code it spatially in relation to it’s neighboring markers on a line,
represented by the on and off pattern of the lights. The pattern de-
tected by the camera and the overall setup are shown in Figure 2.

3.1 Encoded Lines

The encoding consists of a collection of parallel lines, with the po-
sition in the line as the u coordinate, and the actual line as the v
coordinate. To encode the global position of each marker spatially,
we propose to encode the marker pattern (i.e. the on and off pattern
of the lights) per line of the grid in the u dimension using the De
Bruijn sequence [De Bruijn 1946]. The De Bruijn sequence is a 1D
cyclic sequence of a given alphabet (in our case 0,1) where every
subsequence of a predefined length n appears exactly once. For our
tracking system this means that when observing any part of the en-
coded pattern, we can exactly determine where in the sequence this
pattern originated. This gives us a 1D unique position in a pattern
of total size 2n. An example of the pattern is shown in Appendix A.

The De Bruijn sequence has some extensions to the 2D domain,
but this would require a substantial amount of markers. Instead, we
propose a different coding system in the v direction to acquire 2D

Figure 3: Overview of the encoding for one line. The De Bruijn
code is first transformed to its Manchester encoding, and is subse-
quently directly translated to on and off lights.

location. Since the De Bruijn Sequence is a cyclic sequence, it does
not matter where in the sequence the pattern starts. Therefore we
propose to encode the position in the v direction as a unique shift
in adjacent sequences. So a 2D global position can be recovered by
observing 2 parallel encoded lines. The space between the lights on
parallel lines in the u dimension is much smaller than the distance
between the actual lines (3 cm and 50 cm respectively). This will
allow the distinction between the u and v direction.

As with all spatial markers, a minimal area of the pattern needs to
be observed. In our case, we would assume that the camera always
observes 1 square meter of ceiling. This means that the distance
between each line needs to be at most 0.5 meter. The size of the
working area of the tracker will only be defined by the number of
markers visible in 1 meter, namely n. The maximum dimensions of
the working area of the tracker are easily calculated:

dimensionu = 2n/n meters
dimensionv = 2n/2 meters (1)

We can see that for n > 2 the working area is not a square. To
make it so, we can limit the range of shifts to be used. This makes
it also more robust to detect a valid shift. Using this encoding sys-
tem, we can see that the working area of the tracking system grows
exponential in relation to the number of markers visible. For exam-
ple when using a 8 bit pattern, more than 1 square kilometers can
be encoded uniquely. When 15 markers are visible at all times, the
pattern will be as large as 4.8 million km2, or half the size of the
United States.

To ensure enough markers are visible for tracking, we suggest to
use a Manchester Encoding per bit, where two lights (on or off) are
required for the encoding of one bit of the De Bruijn code. This is
depicted in Figure 3. This means that when a bit has a value of 1,
the lights are encoded as 10; when it has has the value 0, the lights
are encoded as 01. Considering two adjacent bits, we can calculate
the ’Manchester distance’ between 2 adjacent active markers, i.e.
visible lights, as can be seen in Table 1.

where d = 1
2n

meter. This distance will become important when
decoding the pattern.



2 bits Encoded bits Manchester distance
0 0 0 1 0 1 2 d
0 1 0 1 1 0 1 d
1 0 1 0 0 1 3 d
1 1 1 0 1 0 2 d

Table 1: All the possible values for the Manchester distance. The
patterns are encoded with the Manchester encoding, ensuring ex-
actly two visible lights in the encoded pattern per two bits. The
Manchester distance is then the distance between these two lights,
where d is the distance between lights (on or off). These distances
can be used to decode the visible light pattern.

Using this encoding, for n = 15, every bit of the De Bruijn code
is encoded using two lights (on or off), and every unique location
requires 15 bits (i.e. 30 lights). To acquire a 2D location, i.e. (u, v)
coordinates, at least two lines are required, resulting in 60 lights per
unique 2D location in the pattern.

3.2 Decoding Pattern

Our tracking system uses a camera to observe the encoded ceiling,
as can be seen in Figure 2. After determining the image coordinates
of the visible markers (i.e. visible lights), the pattern needs to be
decoded to identify the marker identifiers, i.e. where the markers
are located in the De Bruijn sequence. This is again represented by
(u, v) coordinates. Because the dimmed lights are not visible, we
use the distance between visible lights. The process is depicted in
Figure 4.

First, we make a distinction between lines. The space between lines
is much larger than the space between points on the lines. This al-
lows to determine the lines to decode the patterns on. Once we have
determined the lines, we will decode the lights on two consecutive
lines to determine the marker identifiers on these lines.

Important to notice is that under projective transformation, as is the
case with standard cameras, distance and the relative distances are
not preserved [Hartley and Zisserman 2004]. However, we can see
that in our design of the pattern, the bits of a De Bruijn sequence
will be collinear. Therefore, we can decode the pattern on a line
using the cross-ratio Ψ of collinear marker points, which is pro-
jective invariant. The cross-ratio Ψ of 4 adjacent collinear points
p1, p2, p3 and p4 and distances d1 = ||p2 − p1||, d2 = ||p3 − p2||
and d3 = ||p4 − p3|| can be calculated as follows:

Ψ(p1, p2, p3, p4) =
(d1 + d2)(d2 + d3)

d2(d1 + d2 + d3)
(2)

Because of the Manchester encoding, every four subsequent visible
lights corresponds with 4 bits in the De Bruijn code, where the code
is determined by the distance between the visible lights. Using the
knowledge of the ’Manchester distances’ (Table 1), we can show
that there are only 10 valid cross-ratios in a pattern and each is
perspective invariant. We use these ratios to decode the index idp
of each point p in the De Bruijn sequence of a line. Table 2 gives
the different cross-ratios and their corresponding patterns.

For n = 15, we need to decode 11 subsequent and overlapping
sets of four visible lights. This way, 11 overlapping codes can be
obtained, and thus a 15 bit De Bruijn code is acquired. Looking
up this 15-bit code gives us the index in the complete De Bruijn
sequence, denoted as idp.

However, as can be seen, there are 10 different cross-ratios Ψ for
16 codes. While this introduces an ambiguity for four points, this

Figure 4: Overview of the decoding phase for one line. First, the
visible markers are detected. Next, the distance for four consecu-
tive visible markers is used to calculate the cross-ratio, which are
used to acquire a partial De Bruijn sequence of 4 bits. Lastly, the
partial sequences are combined to one sequence of 15 bits by over-
lapping the partial sequences. The left combination is read from left
to right; the right combination from right to left. For some cross-
ratios, multiple reading directions are possible. However, they will
not match in a 15 bit pattern, as demonstrated at the right. The
final combined sequence has a unique location in the complete De
Bruijn sequence.

ambiguity is practically eliminated when using 11 cross-ratios, i.e.
15 points, or more. The ambiguity for four points is caused by the
direction the Manchester encoded pattern is read. For example, the
pattern 0100 is Manchester encoded as 01100101 and the pattern
1101 is encoded as 10100110. As can be seen, these Manchester
encoded patterns are equal when one is reversed. Therefore, we
read both directions and try to match the complete pattern in both
directions. One of the directions is not valid if the code contains a
non-ambiguous cross-ratio, resulting in one valid reading direction.
In the other non-valid direction, partial patterns of 4 bits will not
overlap correctly.

We will decode two adjacent lines to determine the v coordinate we
are processing. In our setup, 2 adjacent pattern lines have a unique
shift s. The De Bruijn code is known for the two lines, allowing the
determination of this shift of two n-bit patterns easily by looking up
the two codes in the complete sequence.

Finally, identifying the line- and marker-id of each marker p can be
done as follows:

{
vp = MOD(s, 2n)
up = idp −MOD(vp(vp + 1)/2, 2n)

(4)
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
= 0 (3)

Figure 5: The full set of linear equations for two points for estimating the camera pose using 2D-3D correspondences.

Pattern Ψ Pattern Ψ
0 0 0 0 4/3 1 0 0 0 10/7
0 0 0 1 6/5 1 0 0 1 5/4
0 0 1 0 2 1 0 1 0 16/7
0 0 1 1 9/5 1 0 1 1 2
0 1 0 0 10/9 1 1 0 0 25/21
0 1 0 1 16/15 1 1 0 1 10/9
0 1 1 0 5/4 1 1 1 0 10/7
0 1 1 1 6/5 1 1 1 1 4/3

Table 2: Different De Bruijn patterns of 4 bits and their corre-
sponding cross-ratios. By calculating the cross-ratio of 4 visible
lights, which are Manchester encoded patterns, its pattern can be
decoded.

As we now know the unique identifier of each marker p, we can de-
termine the accompanying 3D coordinates. We know the height of
the ceiling, the distance between the led markers and the distance
between the lines. Using this information, transforming marker co-
ordinates (u, v) to 3D world coordinates is straightforward:

{
X = 2dup + (1−DB(p))d
Z = vp∆Y

(5)

where the plane XZ lies parallel to the ceiling, d is the distance
between the markers (on or off) in the u direction and ∆Y is the
distance between the lines. The function DB(p) determines the De
Bruijn bit (0 or 1) of marker p, adding d to X if the code is 0, com-
pensating for the Manchester encoding. In out setup ∆Y = 0.5m
and d = 1/2n = 3cm. We assume Y = 0. Now we have a set of
2D image coordinates of the markers, together with the correspond-
ing decoded 3D coordinates. This set of 2D-3D correspondences
will now be used for the estimation of the camera pose.

3.3 Estimating Camera Pose

From the identification of the markers, we got a set of 2D-3D corre-
spondences. The relation between those correspondences is defined
by the standard pinhole camera model:

 x
y
w

 = K.[R|R.T ].

 X
Y
Z
W

 (6)

where [XY ZW ]T are the homogeneous coordinates of a 3D point
in the world and [xyw]T its projection in image space. K contains
the intrinsic camera parameters (focal length, principal point, ...)
which we will be considering fixed and known after standard in-
trinsic calibration [Hartley and Zisserman 2004]. The 3x3 matrix

R and vector T are the extrinsic parameters rotation and translation
which will be the result of our tracking algorithm, fully determining
the pose and location of the camera.

Since all points lie on a plane (the ceiling) with Y = 0, a
homography can be calculated to have a first estimation of the
pose of the camera. Given the standard pinhole camera equation
(Eq. 6), we can see that for each homogeneous point correspon-
dence (xp, yp, 1) - (Xp, Yp, Zp, 1) satisfies the following similarity
(equal up to an unknown scale):

 xp

yp
1

 ∼

 r11 r13 (R.T )x
r21 r23 (R.T )y
r31 r33 (R.T )z

 .

 Xp

Zp

1

 = H.

 Xp

Zp

1


(7)

where (xp, yp, 1) = K−1[imgPx, imgPy, 1]
T are the coordinates

in camera space and Yp = 0.

This 3x3 matrix defines a projective transformation known as a ho-
mography H . Using SVD (Singular Value Decomposition), this
matrix can be calculated with at least 4 image correspondences by
solving the set of linear equations, created from the correspondence
points as knowns and the values of the homography as unknowns
[Hartley and Zisserman 2004]. The full set of linear equations for
two points is depicted in Equation 3.

Solving for H gives us the vectors [r11r21r31]T and [r13r23r33]
T

up to an unknown scale. But both vectors should have had length
1 and be orthogonal because they are the basis of the camera coor-
dinate system. So we can correct for that. The second column of
the rotation matrix R, i.e. the third base vector, can be calculated as
follows:

[
r12r22r32

]
=

[
r11r21r31

]
×

[
r13r23r33

]
(8)

Given the estimate of the rotation matrix R, translation T can be
calculated from the third column of the homography.

3.4 Refining Camera Pose

The calculation of the extrinsic camera parameters using a linear
homography gives us a good estimation of the camera pose. How-
ever, this method is highly sensitive to errors in the input data. We
therefore wish to refine this estimate using non-linear optimization.

First of all, we eliminate outliers of the current camera estimation
using a RANSAC approach [Fischler and Bolles 1981]. Outliers
include other light sources or noise in the image. This leaves us



Figure 6: The LED setup. Left: The LED strips used in our setup. Middle: LED strips mounted to the ceiling, displaying the pattern used for
decoding. Right: Detailed view of encoded LED strip.

Figure 7: The Sony HMZ-T1 head mounted display, which was
used in our prototype to allow the user to navigate a virtual world.

with good 2D-3D correspondences to work with. We propose to
minimize the reprojection error of the known world pattern.

minR,T (

m∑
i=1

||

 xi

yi
1
1

−K.[R|R.T ].

 Xi

Yi

Zi

1

 ||) (9)

We minimize this function using the Levenberg-Marquardt algo-
rithm [Kelley 1987]. The result is an improved rotation and trans-
lation matrix representing the current camera pose.

4 Our Prototype

To test our proposed scalable tracking system, a prototype setup
was constructed in our lab. We propose to use LEDs because it has
the advantage of being independent of environment lighting. It also
reduces the effects of motion blur as the shutter time can be really

short. We used readily available white LED strips to encode our
De Bruijn sequence, but it can be replaced with infra-red LEDs if
needed. LED strips already provide a uniform distance between in-
dividual LEDs. The setup comprised of 10 encoded lines of 5 meter
each, which gave us about 25 m2 of tracking space to test our ap-
proach. The LED strips contained 60 3528SMD LEDs/meter with
each LED giving about 5 lumen of light over a field of view of 120◦.
We used tape to mask the markers that were inactive in the coding
and reduced it to a 15 bit code as it was more than enough for our
setup. The LED strips can be seen in Figure 6. Constructing this
prototype costs us less than 500 EUR for a 25 m2 tracking system
(less than 20 EUR/m2) by using only off-the-shelf hardware. This
makes the system really cost-effective when constructing large in-
stallations.

We used a ’Point Grey Firefly MV’ monochrome camera which can
provide 752x480 images at 60 fps over a USB 2.0 connection. This
computer vision camera is on the market for 200 EUR. The im-
ages were processed by a Intel i7 quad core processor with 4 GB of
RAM. We provided the user with a Sony HMZ-T1 head mounted
display (HMD) to navigate a virtual environment (see Figure 7).
The camera was mounted on top of the HMD, as can be seen in
Figure 2, to track the user’s location and orientation in the environ-
ment. When adding more users, only an extra camera is required
because the tracking system is independent of the number of users
walking around.

5 Results

To evaluate the performance of our tracking system, we constructed
a real scene to analyze real errors. We did not perform any filtering
or smoothing on these results to demonstrate the effectiveness of
the method itself.

5.1 Jitter

We placed the camera on a static place and gathered pose data from
1000 frames. This allows us to analyze the jitter on real captured
data. The following table describes the jitter. The distribution is
similar for all measured degrees of freedom (3 for position, 3 for
orientation). Figure 8 shows that the jitter for the yaw rotation is
Gaussian distributed. Table 3 gives the actual numerical analysis.

As can be seen, the jitter is very small, only 2 millimeter in the Z
direction and only 0.09 degrees in the roll.



Figure 8: The jitter distribution for the yaw turning direction.

Direction Average Abs Difference Standard Deviation
yaw 0.0059 degrees 0.0083
pitch 0.035 degrees 0.049
roll 0.092 degrees 0.12
x 0.001m 0.0015
y 0.0003m 0.00053
z 0.002m 0.0039

Table 3: Different values for the measured jitter, with standard de-
viation

5.2 Movement in a Straight Line

We placed the camera on a fixed rail of one meter to assess the
accuracy per direction (see Figure 9). The recovered positions are
shown in Figures 10, 11, and 12. As can be seen, a straight walk is
clearly visible, both when the rail was places aligned with the X axis

Figure 9: Setup for the straight line test. the camera movement is
limited to one dimension.

Figure 10: Values after the movement of the camera in the X direc-
tion. The movement is clearly visible, while the other directions are
stable.

Figure 11: Values after the movement of the camera in the Y direc-
tion. The movement is clearly visible, while the other directions are
stable.

Figure 12: Values after the movement of the camera in the Z direc-
tion. The movement is clearly visible, while the other directions are
stable.

(moving forward), aligned with the Y axis (moving up and down),
and aligned with the Z axis (moving left). The varying direction is
showing a distinct and constant movement, while the other direc-
tions show stable values. This results demonstrate the usefulness
of the method for tracking global location. Occasional spikes can
be perceived; typical spikes range around 5mm, as can be seen in
Figure 10. These can be diminished by applying local filtering.

5.3 Turning table

Finally, we placed the camera on a turning table to simulate uni-
form rotational movement (see Figure 13). Figure 14 shows the
orientation results, represented by yaw, pitch, and roll. As can be
seen, the pitch and roll are stable, while the yaw shows the turn-
ing of the table. Occasional spikes can be perceived; typical spikes
range around 0.1 degrees, as can be seen in Figure 14. These can
be diminished by applying local filtering.

6 Discussion

The results demonstrate that our method is accurate for navigating
virtual environments in a large environment, using both global lo-
cation and orientation. The jitter and error are small compared to
other similar methods. Due to the design of the setup, no drift is
possible. The software runs at 200 Hz, allowing a smooth and real-
time interaction.

However, the method is limited by a few factors. Firstly, the camera
should always see a part of the grid. If not, the tracking is lost. We
plan to extend our system with inertial tracking methods to bridge
those moments.



Figure 13: Setup for the rotating test. the camera movement is
limited to one turning direction.

Figure 14: Values after the rotation of the camera on a turn table.
The movement is clearly visible, while the other rotations are stable.

Secondly, the tracking accuracy and framerate is limited by the
camera. The resolution determines the distinctiveness of the in-
dividual lights. If the resolution is too small, lights will blend and
tracking will fail. Furthermore, the framerate of the system is lim-
ited by the camera framerate; in our system this limit is 60Hz, while
the software can run at 200Hz.

Lastly, some jitter and outliers can be detected in the raw out-
put. This can easily be solved with standard local filters, such as a
Kalman filter [Kalman et al. 1960] or a DESP filter [LaViola 2003].
However, filtering will introduce additional latency. In our system,
we opted for a DESP filter. We did not show the filtered details to
demonstrate the effectiveness of the system itself.

7 Conclusion

In this paper, we presented a novel optical tracking design for nav-
igating large virtual environments. We proposed a spatial coding
system of markers that is scalable both in terms of working area
and number of users. The tracking system is designed to have a
constant accurate result, no matter the dimensions of the environ-
ment, and gives an absolute position and orientation of the user.
The results show the accuracy of the method.

A prototype of a 25 m2 tracking system was built in our lab to val-
idate the design. We also showed that building our tracking system
for larger installations can be cost-effective. Adding a square meter
of working area costs less than 20 EUR and adding another user
adds 200 EUR to the overall cost. This is much cheaper than any
comparable system currently on the market, while delivering simi-
lar tracking performance and accuracy.

8 Acknowledgments

Part of the research at EDM is funded by the ERDF (European
Regional Development Fund) and the Flemish government. Patrik
Goorts would like to thank the IWT for its PhD specialization bur-
sary. Furthermore we would like to thank our colleagues for their
help and inspiration.

References

BISHOP, T. G. 1984. Self-tracker: a smart optical sensor on silicon
(vlsi, graphics). PhD thesis. AAI8415794.

BLESER, G., AND STRICKER, D. 2008. Advanced tracking
through efficient image processing and visual-inertial sensor fu-
sion. In Proceedings of the IEEE Virtual Reality 2008, 137–144.

CADMAN, J. 2003. Deploying commercial location-aware sys-
tems. In Proceedings of the 2003 Workshop on Location-Aware
Computing (held as part of UbiComp 2003), 4–6.

CHANCE, S. S., GAUNET, F., BEALL, A. C., AND LOOMIS, J. M.
1998. Locomotion mode affects the updating of objects encoun-
tered during travel: The contribution of vestibular and proprio-
ceptive inputs to path integration. Presence: Teleoper. Virtual
Environ. 7, 2 (Apr.), 168–178.

DE BRUIJN, N. G. 1946. A combinatorial problem. Koninklijke
Nederlandse Akademie v. Wetenschappen 49, 758–764.

FISCHLER, M. A., AND BOLLES, R. C. 1981. Random sample
consensus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. Commun. ACM 24, 6
(June), 381–395.

FOXLIN, E., AND NAIMARK, L. 2003. Vis-tracker: A wearable
vision-inertial self-tracker. In Proceedings of the IEEE Virtual
Reality 2003, IEEE Computer Society, Washington, DC, USA,
VR ’03, 199–.

HARTLEY, R. I., AND ZISSERMAN, A. 2004. Multiple View Ge-
ometry in Computer Vision, second ed. Cambridge University
Press, ISBN: 0521540518.

HOFMANN-WELLENHOF, B.; LICHTENEGGER, H. C. J. 1993.
Global positioning system. theory and practice.

KALMAN, R. E., ET AL. 1960. A new approach to linear filtering
and prediction problems. Journal of basic Engineering 82, 1,
35–45.

KELLEY, C. 1987. Iterative Methods for Optimization. Frontiers in
Applied Mathematics. Society for Industrial and Applied Math-
ematics.

LAVIOLA, J. J. 2003. Double exponential smoothing: an alterna-
tive to kalman filter-based predictive tracking. In Proceedings of
the workshop on Virtual environments 2003, ACM, 199–206.

MAESEN, S., AND BEKAERT, P. 2011. Scalable optical tracking
- a practical low-cost solution for large virtual environments. In
VISAPP 2011 - Proceedings of the Sixth International Confer-
ence on Computer Vision Theory and Applications, 538–545.

NETH, C. T., SOUMAN, J. L., ENGEL, D., KLOOS, U.,
BULTHOFF, H. H., AND MOHLER, B. J. 2011. Velocity-
dependent dynamic curvature gain for redirected walking. In
Proceedings of the 2011 IEEE Virtual Reality Conference, IEEE
Computer Society, Washington, DC, USA, VR ’11, 151–158.

PECK, T. C., FUCHS, H., AND WHITTON, M. C. 2010. Im-
proved redirection with distractors: A large-scale-real-walking



locomotion interface and its effect on navigation in virtual envi-
ronments. In Proceedings of the 2010 IEEE Virtual Reality Con-
ference, IEEE Computer Society, Washington, DC, USA, VR
’10, 35–38.

PINTARIC, T., AND KAUFMANN, H. 2007. Affordable infrared-
optical pose-tracking for virtual and augmented realityr. In Pro-
ceedings of Trends and Issues in Tracking for Virtual Environ-
ments Workshop, IEEE VR 2007, Shaker-Verlag.

RASKAR, R., NII, H., DEDECKER, B., HASHIMOTO, Y., SUM-
MET, J., MOORE, D., ZHAO, Y., WESTHUES, J., DIETZ, P.,
BARNWELL, J., ET AL. 2007. Prakash: lighting aware motion
capture using photosensing markers and multiplexed illumina-
tors. In ACM Transactions on Graphics (TOG), vol. 26, ACM,
36.

RUDDLE, R. A., AND LESSELS, S. 2009. The benefits of using a
walking interface to navigate virtual environments. ACM Trans.
Comput.-Hum. Interact. 16, 1 (Apr.), 5:1–5:18.

SUMA, E. A., FINKELSTEIN, S. L., REID, M., BABU, S. V.,
ULINSKI, A. C., AND HODGES, L. F. 2010. Evaluation of the
cognitive effects of travel technique in complex real and virtual
environments. IEEE Transactions on Visualization and Com-
puter Graphics 16, 690–702.

SUMA, E., LIPPS, Z., FINKLESTEIN, S., KRUM, D. M., AND BO-
LAS, M. 2012. Impossible spaces: Maximizing natural walk-
ing in virtual environments with self-overlapping architecture.
IEEE Transactions on Visualization and Computer Graphics 18,
4 (Apr.), 555–564.

SUTHERLAND, I. E. 1968. A head-mounted three dimensional
display. In Proceedings of the December 9-11, 1968, fall joint
computer conference, part I, ACM, New York, NY, USA, AFIPS
’68 (Fall, part I), 757–764.

USOH, M., ARTHUR, K., WHITTON, M. C., BASTOS, R.,
STEED, A., SLATER, M., AND BROOKS, JR., F. P. 1999. Walk-
ing ¿ walking-in-place ¿ flying, in virtual environments. In Pro-
ceedings of the 26th annual conference on Computer graphics
and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, SIGGRAPH ’99, 359–364.

WELCH, G., BISHOP, G., VICCI, L., BRUMBACK, S., KELLER,
K., AND COLUCCI, D. 2001. High-performance wide-area op-
tical tracking: The hiball tracking system. Presence: Teleoper.
Virtual Environ. 10, 1 (Feb.), 1–21.

WELCH, G. F. 1996. Scaat: Incremental tracking with incomplete
information. Tech. rep., Chapel Hill, NC, USA.

WILLIAMS, B., NARASIMHAM, G., RUMP, B., MCNAMARA,
T. P., CARR, T. H., RIESER, J., AND BODENHEIMER, B. 2007.
Exploring large virtual environments with an hmd when physical
space is limited. In Proceedings of the 4th symposium on Applied
perception in graphics and visualization, ACM, New York, NY,
USA, APGV ’07, 41–48.

WING, M. G., EKLUND, A., AND KELLOGG, L. D. 2005.
Consumer-grade global positioning system (gps) accuracy and
reliability. Journal of Forestry 103, 4, 169–173.

WORMELL, D., FOXLIN, E., AND KATZMAN, P. 2007. Advanced
Inertial-Optical Tracking System for Wide Area Mixed and Aug-
mented Reality Systems . Eurographics Association, Weimar,
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A Example of the De Bruijn code

Here, we give a part of the complete De Bruijn sequence. Every 15
consecutive bits only appear once in the code, allowing the mapping
between a 15-bit code and a location in the sequence. The code is
constructed by generating a new bit to the end of an existing 15-bit
code. The new, 16th bit is the result of the xor operation of the first
two bits. The code is then again reduced to 15 bits by dropping the
first code. This method will generate a code where every subcode
of 15 bits is unique in the complete code [De Bruijn 1946]. The
code is cyclic, thus every 15-bit code can be used as starting code.

. . . 1 0 1 1 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0
1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0
0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1
0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0
0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1
1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1
0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0
0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1
0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1
1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 1 . . .


