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We generalize the nullity theorem of Gustafson (1984) [8] from
matrix inversion to principal pivot transform. Several special cases
of the obtained result are known in the literature, such as a result
concerning local complementation on graphs. As an application,
we show that a particular matrix polynomial, the so-called nullity
polynomial, is invariant under principal pivot transform.
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1. Introduction

Motivated by the well-known linear complementarity problem, Tucker [13] defined a matrix op-
eration to study combinatorial equivalence of matrices. A slight modification of this matrix operation
(some signs are different in the definition) became known as principal pivot transform. Principal pivot
transform partially (component-wise) inverts a given matrix along a given set of indices, and it is
applied in various settings such as mathematical programming and numerical analysis, see [12] for
an overview.

The nullity theorem [8], independently discovered in [7, Theorem 2], establishes a one-to-one cor-
respondence between the submatrices of a nonsingular matrix and the submatrices of its inverse such
that the nullities of the submatrices are retained by the correspondence. The power of the nullity
theorem is well illustrated in [11]. The main result of this paper (Theorem 1) generalizes the nullity

E-mail address: robert.brijder@uhasselt.be.
0024-3795/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.laa.2013.09.014

http://dx.doi.org/10.1016/j.laa.2013.09.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:robert.brijder@uhasselt.be
http://dx.doi.org/10.1016/j.laa.2013.09.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2013.09.014&domain=pdf


R. Brijder / Linear Algebra and its Applications 439 (2013) 3638–3642 3639
theorem to principal pivot transform (for which matrix inversion is a special case). We show that sev-
eral other special cases of this main result are known in the literature, including a result on graphs,
and we show that a particular matrix polynomial, the so-called nullity polynomial, is invariant under
principal pivot transform (Corollary 2).

2. Notation and terminology

For finite sets U and V , a U × V -matrix A (over some field F) is a matrix where the rows are
indexed by U and the columns are indexed by V , i.e., A is formally a function U × V → F. Hence,
the order of the rows/columns is not fixed (i.e., interchanging rows or columns is mute). Note that,
e.g., the rank r(A), the nullity (i.e., dimension of the null space) n(A), and the inverse A−1 are well
defined for A (the latter, of course, only when A is square and nonsingular). We denote for i ∈ U
and j ∈ V , the value of the (i, j)th entry of A by A[i, j]. For X ⊆ U and Y ⊆ V , the submatrix of A
induced by (X, Y ), denoted by A[X, Y ], is the restriction of A to X × Y .

Similarly, a vector indexed by V is formally a function V → F, and we denote the element of v
corresponding to i ∈ V by v[i]. As usual, the family of vectors indexed by V is denoted by F

V . For
Y ⊆ V , we let ιY ,V be the usual injection F

Y → F
V by padding zeros. More precisely, (ιY ,V (w))[x] =

w[x] if x ∈ Y and (ιY ,V (w))[x] = 0 if x ∈ V \ Y . Similarly, we let πY ,V be the usual projection of
F

V → F
Y by disregarding the entries with indices in V \ Y . If V is clear from the context, we simply

write ιY and πY for ιY ,V and πY ,V , respectively.

3. Principal pivot transform

In this section we recall principal pivot transform, which is an operation for square matrices,
see [12] for an overview.

Let A be a V × V -matrix (over an arbitrary field F) and let X ⊆ V be such that the corresponding
principal submatrix A[X, X] is nonsingular. The principal pivot transform (PPT for short) of A on X ,
denoted by A ∗ X , is defined as follows:

A ∗ X =
( X V \X

X A[X, X]−1 −A[X, X]−1 A[X, V \ X]
V \X A[V \ X, X]A[X, X]−1 A[V \ X, V \ X] − A[V \ X, X]A[X, X]−1 A[X, V \ X]

)
.

(1)

Matrix A ∗ X[V \ X, V \ X] is called the Schur complement of A[X, X] in A [14].
Principal pivot transform can be considered a partial inverse, as A and A ∗ X are related as follows,

where the vectors x1 and y1 correspond to the elements of X :

A

(
x1
x2

)
=

(
y1
y2

)
if and only if A ∗ X

(
y1
x2

)
=

(
x1
y2

)
. (2)

Eq. (2) characterizes PPT, see [12, Theorem 3.1]. Note that if A is nonsingular, then A ∗ V = A−1. Also
note that by Eq. (2) PPT is an involution (operation of order 2), and more generally, if (A ∗ X) ∗ Y is
defined, then it is equal to A ∗ (X � Y ), where � denotes symmetric difference.

We denote by A�X the matrix obtained from A by replacing every row of A with index x ∈ V \ X

by iT
x where ix is the vector having value 1 at index x and 0 elsewhere. Note that A�X

(
x1
x2

)
=

(
y1
x2

)
with x1, x2, and y1 from Eq. (2). From this it follows that if A[X, X] is nonsingular, then (A�X)−1 =
(A ∗ X)�X .

4. Nullity theorem for principal pivot transform

The following theorem is used in [6] to generalize the recursive relation for interlace polynomials
from graphs [2,1] to arbitrary square matrices over arbitrary fields.
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Proposition 1. (See [6].) Let A be a V × V -matrix (over some field) and let Z ⊆ V be such that A[Z , Z ] is
nonsingular. Then, for all X ⊆ V , n(A ∗ Z [X, X]) = n(A[X � Z , X � Z ]).

We now recall the nullity theorem.

Proposition 2 (The nullity theorem). (See [8].) Let A be a nonsingular V × V -matrix (over some field). Then,
for all X, Y ⊆ V , n(A−1[X, Y ]) = n(A[V \ Y , V \ X]).

Remark 1. We remark that the nullity theorem is in the literature often formulated in an unnecessary
cumbersome way, since rows and columns of matrices are conventionally ordered and moreover not
explicitly indexed. Instead, the concise description of the nullity theorem in Proposition 2 shows its
nature as an elementary result.

Since A ∗ V = A−1, it is natural to ask whether Propositions 1 and 2 may be put under a common
umbrella. We now show that this is indeed the case. Moreover, we relate the null spaces of the
submatrices of A and A ∗ Z .

Theorem 1 (Nullity theorem for PPT). Let A be a V × V -matrix (over some field) and let Z ⊆ V be such that
A[Z , Z ] is nonsingular. Then, for all X, Y ⊆ V ,

ker
(

A ∗ Z [X, Y ]) = ker
(

A[X � R, Y � R] · (A�Z)−1[Y � R, Y ]) and (3)

n
(

A ∗ Z [X, Y ]) = n
(

A[X � R, Y � R]), (4)

where R = Z \ (X � Y ).

Proof. Let v ∈ ker(A[X, Y ]). Then A[X, Y ]v = 0, and so πX (AιY (v)) = 0.
If Ax = y, then for all i ∈ V ,

(
(A�Z)x

)[i] =
{

y[i] if i ∈ Z ,

x[i] otherwise,
(5)

and, by Eq. (2),

(
(A ∗ Z)(A�Z)x

)[i] =
{

x[i] if i ∈ Z ,

y[i] otherwise.
(6)

By Eq. (5), ((A�Z)ιY (v))[i] = 0 if i ∈ (X ∩ Z)∪ ((V \ Y )\ Z) = V \ (Y � R). Thus (A ∗ Z · A�Z)ιY (v) =
(A ∗ Z [V , Y � R] · A�Z [Y � R, Y ])v .

By Eq. (6), ((A ∗ Z · A�Z)ιY (v))[i] = 0 if i ∈ (X \ Z) ∪ ((V \ Y ) ∩ Z) = X � R . Thus (A ∗ Z [X � R,

Y � R] · A�Z [Y � R, Y ])v = πX�R(A ∗ Z · A�Z ιY (v)) = 0. Consequently, v ∈ ker(A ∗ Z [X � R, Y � R] ·
A�Z [Y � R, Y ]). Hence

ker
(

A[X, Y ]) ⊆ ker
(

A ∗ Z [X � R, Y � R] · A�Z [Y � R, Y ]). (7)

We show that if v1, v2 ∈ ker(A[X, Y ]) are distinct, then A�Z [Y � R, Y ]v1 �= A�Z [Y � R, Y ]v2. As-
sume to the contrary that A�Z [Y � R, Y ]v1 = A�Z [Y � R, Y ]v2. Recall that ((A�Z)ιY (v))[i] = 0 if
i ∈ V \ (Y � R). Hence, A�Z ιY (v1) = A�Z ιY (v2), and thus ιY (v1) = ιY (v2) as A�Z is nonsingular.
Consequently, v1 = v2—a contradiction. We thus obtain, by (7), n(A ∗ Z [X � R, Y � R])� n(A[X, Y ]).

We apply now (7) to A := A ∗ Z , X := X � R , and Y := Y � R . We obtain ker(A ∗ Z [X � R, Y � R]) ⊆
ker((A ∗ Z) ∗ Z [(X � R) � R ′, (Y � R) � R ′] · A ∗ Z�Z [(Y � R) � R ′, Y � R]) where R ′ = Z \ ((X � R) �

(Y � R)) = Z \ (X � Y ) = R . Hence we have

ker
(

A ∗ Z [X � R, Y � R]) ⊆ ker
(

A[X, Y ] · (A�Z)−1[Y , Y � R]) (8)

as (A�Z)−1 = A ∗ Z�Z . We again obtain that if v1, v2 ∈ ker(A ∗ Z [X � R, Y � R]) are distinct, then
(A�Z)−1[Y , Y � R]v1 �= (A�Z)−1[Y , Y � R]v2. Thus, by (8), n(A[X, Y ])� n(A ∗ Z [X � R, Y � R]).
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Consequently, n(A[X, Y ]) = n(A ∗ Z [X � R, Y � R]) and the inclusions of (7) and (8) are equalities.
By change of variables A := A ∗ Z , we have (3) and (4). �

Note that Propositions 1 and 2 are Eq. (4) of Theorem 1 for the cases X = Y and Z = V , respec-
tively. The case Y = V \ X is also of particular interest, and so we explicitly state it here.

Corollary 1. Let A be a V × V -matrix (over some field) and let Z ⊆ V be such that A[Z , Z ] is nonsingular.
Then, for all X ⊆ V , n(A ∗ Z [X, V \ X]) = n(A[X, V \ X]).

Equivalently, we have r(A ∗ Z [X, V \ X]) = r(A[X, V \ X]).
Special cases of Corollary 1 have been considered in the literature. Oum [10, Corollary 4.14] shows,

through the use of Lagrangian chain-groups, that Corollary 1 holds for the case where A is skew-
symmetric or symmetric. In the next section we show that a result on graphs of Bouchet [3] can also
be seen as a special case of Corollary 1.

The polynomial q(A) = ∑
X⊆V yn(A[X,X]) is a straightforward generalization of the interlace poly-

nomial [2,1] and is shown to be invariant under PPT [6]. Due to Theorem 1, we may now define
another polynomial that is invariant under PPT. Let us define the (extended) nullity polynomial for a
V × V -matrix A by

p(A) =
∑

X,Y ⊆V

yn(A[X,Y ]).

Lemma 1. For each Z ⊆ V , the function f Z : 2V × 2V → 2V × 2V defined by f Z (X, Y ) = (X � R X,Y ,Z ,

Y � R X,Y ,Z ) with R X,Y ,Z = Z \ (X � Y ) is a one-to-one correspondence.

Proof. Since the domain and codomain of f Z are finite and equal, it suffices to show that f Z is
injective. Assume that f Z (X, Y ) = f Z (X ′, Y ′). Then X � R X,Y ,Z = X ′ � R X ′,Y ′,Z and Y � R X,Y ,Z =
Y ′ � R X ′,Y ′,Z . Thus X � Y = (X � R X,Y ,Z ) � (Y � R X,Y ,Z ) = (X ′ � R X ′,Y ′,Z ) � (Y ′ � R X ′,Y ′,Z ) = X ′ � Y ′ .
Therefore R X,Y ,Z = R X ′,Y ′,Z , and so X = X ′ and Y = Y ′ . �

By Lemma 1 and Theorem 1, for each i ∈ {0, . . . , |V |}, the number of submatrices of A of nullity i
is invariant under PPT. Hence we have the following.

Corollary 2. Let A be a V × V -matrix, and Z ⊆ V such that A[Z , Z ] is nonsingular. Then p(A) = p(A ∗ Z).

5. Graphs

Let G = (V , E) be a simple graph, i.e., without loops or parallel edges. We write V (G) = V and
E(G) = E . The neighborhood of v ∈ V in G , denoted by NG(v), is {w ∈ V | {v, w} ∈ E(G)}. The local
complement of G at v ∈ V , denoted by G v , is obtained from G by replacing the subgraph of G induced
by NG(v) by its complementary subgraph. Hence, if u, w ∈ NG(v) are distinct, then {u, w} ∈ E(G) if
and only if {u, w} /∈ E(G v ). Graphs G and G ′ are said to be locally equivalent if there is a (possibly
empty) sequence of local complementations such that G ′ is obtained from G . Since local complemen-
tation is an involution, local equivalence induces an equivalence relation.

The adjacency matrix A(G) of G is the V (G) × V (G)-matrix over GF(2) where for all u, v ∈ V ,
A(G)[u, v] = 1 if and only if {u, v} ∈ E(G) (note that the diagonal entries are 0). The following result
is from Bouchet [3] (see also [4, Section 3]), and is rediscovered in [9, Proposition 2.6].

Proposition 3. (See [3].) Let G and G ′ be simple graphs that are locally equivalent. Then, for all X ⊆ V ,
r(A(G ′)[X, V (G) \ X]) = r(A(G)[X, V (G) \ X]).

We remark that the function which, for a simple graph G , assigns every X ⊆ V (G) to the value
r(A(G)[X, V (G) \ X]), is called the connectivity function in [3] and the cut-rank in [9].



3642 R. Brijder / Linear Algebra and its Applications 439 (2013) 3638–3642
Let, for X ⊆ V , I X be the V (G) × V (G)-matrix over GF(2) where for all u, v ∈ V (G), I X [u, v] = 1 if
and only if u = v ∈ X . By Eq. (1) it is easy to see that A(G v ) = ((A(G) + I{v}) ∗ {v}) + ING (v)∪{v} for all
v ∈ V (G) (see also, e.g., [5]). Proposition 3 follows now readily from Corollary 1.

Proof of Proposition 3. It suffices to consider the case G ′ = G v with v ∈ V (G) as the general case
follows by iteration. We have A(G v )[X, V (G) \ X] = (((A(G) + I{v}) ∗ {v}) + ING (v)∪{v})[X, V (G) \ X] =
((A(G) + I{v}) ∗ {v})[X, V (G) \ X]. By Corollary 1, r(((A(G) + I{v}) ∗ {v})[X, V (G) \ X]) = r((A(G) +
I{v})[X, V (G) \ X]) = r(A(G)[X, V (G) \ X]). �
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