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Abstract
Recent research has fostered new guidance on preventing and treating missing data.  This paper is the consensus opinion of the Drug Information Association’s Scientific Working Group on Missing Data.  Common elements from recent guidance are distilled and means for putting the guidance into action are proposed.  The primary goal is to maximize the proportion of patients that adhere to the protocol specified interventions.  In so doing, trial design and trial conduct should be considered.  Completion rate should be focused upon as much as enrollment rate, with particular focus on minimizing loss to follow-up.  Whether or not follow-up data after discontinuation of the originally randomized medication and / or initiation of rescue medication contribute to the primary estimand depends on the context.  In outcomes trials (intervention thought to influence disease process) follow-up data is often included in the primary estimand, whereas in symptomatic trials (intervention alters symptom severity but does not change underlying disease) follow-up data are often not included.  Regardless of scenario, the confounding influence of rescue medications can render follow-up data of little use in understanding the causal effects of the randomized interventions.  A sensible primary analysis can often be formulated in the missing at random (MAR) framework.  Sensitivity analyses assessing robustness to departures from MAR are crucial.  Plausible sensitivity analyses can be pre-specified using controlled imputation approaches to either implement a plausibly conservative analysis or to stress test the primary result, and used in combination with other model-based MNAR approaches such as selection, shared parameter, and pattern-mixture models.  The example data set and analyses used in this paper are freely available for public use at www.missingdata.org.uk.  
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Introduction
Missing data is an ever present problem in clinical trials that can bias treatment group comparisons and inflate rates of false negative and false positive results.  However, missing data has been an active area of investigation with many advances in statistical theory and in our ability to implement that theory.  

These research findings set the stage for new or updated guidance for the handling of missing data in clinical trials.  For example, a pharmaceutical industry group published a consensus paper (Mallinckrodt et al, 2008) and an entire text book was devoted to the topic of missing data in clinical trials (Molenberghs and Kenward, 2007).  New guidance was released by the EMEA (CHMP, 2010), an expert panel commissioned by FDA issued an extensive set of recommendations (NRC, 2010), and two senior leaders at FDA published their thoughts on the NRC recommendations (O’Neill and Temple, 2012). 

An important evolution in these missing data discussions has been the focus on clarity of objectives.  The need for clarity is driven by ambiguities arising from the missing data.  Data may be intermittently missing; or, missing due to dropout.  Patients may or may not be given rescue medications.  Assessments after withdrawal from the initially randomized medication or after the addition of rescue medications may or may not be taken, and if taken, may or may not be included in the primary analysis.  

In clinical trials, intermittent missing data is generally less frequent and less problematic than missing data due to dropout.  Hence focus here is on dropout.  For clarity the following distinction is made.  Patient dropout occurs when the patient discontinues the initially randomized medication and no further observations are taken.  Analysis dropout occurs when patients deviate from the originally randomized treatment regime (stops medication and/or adds rescue medication) and observations are taken but they are not included in the analysis. 

Bias resulting from missing data can mask or exaggerate the true difference between treatments (Mallinckrodt et al, 2008; NRC, 2010).  The direction of bias has different implications in different scenarios.  For example, underestimating the advantage of an experimental drug versus placebo in a superiority trial is bias against the experimental treatment.  However, in a non-inferiority trial underestimating the advantage of standard of care is bias in favor of an experimental drug.  

The present paper is the consensus opinion of the Drug Information Association’s Scientific Working Group on Missing Data.  This working group was formed in 2012.  The primary goal of the group, and the intent of this paper, is to distill common elements from recent recommendations, guidance documents, and texts to propose means and provide tools for implementing the guidance.  

History
Until recently, guidelines for analyzing clinical trial data provided only limited advice on how to handle missing data, and analyses tended to be simple and ad hoc.  The calculations required to estimate parameters from a balanced dataset are far easier than the calculations required with unbalanced data, such as when patients drop out.  Hence, the initial motivation for dealing with missing data may have been as much to foster computational feasibility in an era of limited computing power as to counteract the potential bias from the missing values (Molenberghs and Kenward, 2007).    

One such simple method, complete case analysis, includes only those cases for which all measurements were recorded.  This method yields a data structure much as would have resulted with no missing data.  Therefore, standard software and simple statistical analyses can be used.  Unfortunately, the loss of information is usually substantial and severe bias can result when the outcomes for patients who discontinue differ from those who complete (Molenberghs and Kenward, 2007).  

Alternative means to obtain complete data sets are based on imputing the missing data.  However, simple imputation strategies such as baseline and last observation carried forward (BOCF, LOCF) - that have been used widely in clinical trials - also have serious draw backs.  These methods entail restrictive assumptions that are unlikely to hold, and the uncertainty of imputation is not taken into account because imputed values are not distinguished from observed values.  Therefore, biased estimates of treatment effects and inflated rates of false positive and false negative results are likely (Verbeke and Molenberghs, 2000; Molenberghs and Kenward 2007, Mallinckrodt et al., 2008; NRC, 2010).

Initial widespread use of simple imputation methods set historical precedent that when combined with the desire to compare current results with historical findings fostered continued use of the simple methods even as advances in statistical theory and implementation might have otherwise relegated them to the museum of statistics.  Continued acceptance of LOCF and BOCF was also fostered by the belief that they yielded conservative estimates of treatment effects; thereby providing additional protection against erroneous approval of ineffective interventions (Mallinckrodt et al, 2008).  However, analytic proof showed that the direction and magnitude of bias in LOCF (and BOCF) depended on factors not known at the start of a trial (Molenberghs et al., 2004).  A large volume of empirical research showed that in common clinical trial scenarios the bias from LOCF and BOCF could favor the treatment group and inflate the rate of false positive results, while some of the newer analytic methods were either not biased in these settings or the magnitude of the bias was generally much smaller.  For example, Mallinckrodt et al (2008), Lane (2008), and Siddiqui et al (2009) summarized comparisons between LOCF and newer analytic methods in regards to bias from missing data.  Not surprisingly, recent guidance almost universally favors the newer methods over LOCF, BOCF, and complete case analyses (Verbeke and Molenberghs, 2000; Molenberghs and Kenward 2007; Mallinckrodt et al, 2008; NRC, 2010).  Some of the more commonly used newer methods are discussed in subsequent sections.

Preventing Missing Data
Analyses of incomplete data require assumptions about the mechanism giving rise to the missing data.  However, it is not possible to verify assumptions about missing data mechanism(s) from the observed data.  Therefore, the appropriateness of analyses and inference often cannot be assured (Verbeke and Molenberghs, 2000).  The greater the proportion of missing data, the greater the potential for increased bias.  Therefore, agreement is universal that minimizing missing data is the best way of dealing with it (Molenberghs and Kenward, 2007; CHMP, 2010; NRC, 2010).  

In contrast to research on analytic methods, means of preventing missing data cannot be compared via simulation.  In addition, clinical trials are not designed to assess factors that influence retention.  Therefore, many confounding factors can mask or exaggerate differences in rates of missing data due to trial methods.  Nevertheless, recent guidance includes a number of specific suggestions, with the NRC recommendations (NRC, 2010) being the most comprehensive and specific.    

For example, some of the trial design options noted in the NRC guidance (NRC, 2010) included enrolling a target subpopulation for whom the risk–benefit ratio of the drug is more favorable, or to identify such subgroups during the course of the trial via enrichment or run-in designs.  Other design options in the NRC guidance included use of add-on designs and flexible dosing.  

These design features generally influence only those discontinuations stemming from lack of efficacy and adverse events (primarily in non placebo groups) and also entail limitations and trade-offs.  For example, enrichment and run-in designs require that a subset with more favorable benefit - risk can be readily and rapidly identified in a trial; and, the inferential focus is on the enriched subset, not all patients.  Flexible dosing cannot be used in trials where inference about specific doses is required, such as dose - response studies.  

Consider the data on patient discontinuations from psychiatric indications reported by Khan et al (2007).  
In these settings follow up data are seldom collected after discontinuation of study drug.  Therefore, patient discontinuation, discontinuation of study medication, and dropout are essentially synonymous.  
Across the various indications the average proportion of early discontinuation ranged from 19% to 59%.  In many indications lack of efficacy and adverse events accounted for only about half of the total early discontinuations, limiting the degree to which designs that foster more favorable drug response can reduce dropout.  Presumably, flexible dosing and enriching the sample for more favorable drug response would have little impact on reducing dropout in placebo groups.  

Further reduction in dropout may be achieved via trial conduct and procedures that encourage maximizing the number of patients retained on the randomized medications.  The approaches may be most useful in reducing dropout for reasons other than adverse events and lack of efficacy, such as patient decision, physician decision, protocol violation, and loss to follow up.  Specific guidance on trial conduct from the NRC panel included minimizing patient burden, efficient data capture procedures, education on the importance of complete data, along with monitoring and incentives for complete data (NRC, 2010).  

Simply put, lowering rates of dropout can be as much about behavior as design and process.  If completion rates received as much attention as enrollment rates considerable progress might be possible.  Importantly, changing attitudes and behaviors regarding missing data will likely help increase retention in all arms, whereas design features may have greater impact on drug groups than on placebo groups. 

Minimizing loss to follow-up has particularly important consequences for validity of analyses.  To appreciate this importance consider the taxonomy of missing data (Little and Rubin, 2002).  Data are missing completely at random (MCAR) if, conditional upon the independent variables in the analysis, the probability of missingness does not depend on either the observed or unobserved outcomes of the variable being analyzed (dependent variable).  Data are missing at random (MAR) if, conditional upon the independent variables in the analysis and the observed outcomes of the dependent variable, the probability of missingness does not depend on the unobserved outcomes of the dependent variable.  Data are missing not at random (MNAR) if, conditional upon the independent variables in the analysis model and the observed outcomes of the dependent variable, the probability of missingness does depend on the unobserved outcomes of the variable being analyzed.  Another useful way to think about MNAR is that if, conditioning on observed outcomes, the statistical behavior (means, variances, etc) of the unobserved data is equal to the behavior had the data been observed, then the missingness is MAR, if not, then MNAR.

To illustrate, consider a clinical trial for an analgesic where a patient had meaningful improvement during the first three weeks of the six-week study.  Subsequent to the Week-3 assessment the patient had a marked worsening in pain and withdrew.  If the patient was lost to follow up and there was no Week-4 observation to reflect the worsened condition the missingness was MNAR.  If the Week-4 observation was obtained before the patient dropped it is possible the missingness was MAR (when conditioning on previous outcomes).

[bookmark: _Toc315863447]Trials should therefore aim to maximize retention, minimize loss to follow-up, and capture reasons for discontinuing study medication.  (Terms such as patient or physician decision do not explain the reason for discontinuation, only who made the decision.)  Success in these efforts would result in completion rates that were as high as possible given the drug(s) being studied, and what missing did exist would be more readily understood, thereby fostering formulation of sensible analyses.  
					Estimands
Conceptually, an estimand is simply what is being estimated.  Components of estimands for longitudinal trials may include the parameter (e.g., difference between treatments in mean change), time point or duration of exposure (e.g., at Week 8), outcome measure (e.g., diastolic blood pressure), population (e.g., in patients diagnosed with hypertension), and inclusion / exclusion of follow-up data after discontinuation of the originally assigned study medication and/or initiation of rescue medication.
 
Much of the debate on appropriate estimands, and by extension whether or not follow-up data are included in an analysis, centers on whether the focus is on efficacy or effectiveness.  Efficacy may be viewed as the effects of the drug if taken as directed: for example, the benefit of the drug expected at the endpoint of the trial, assuming patients took the drug as directed.  This has also been referred to as a per-protocol estimand.  Effectiveness may be viewed as the effects of the drug as actually taken, and has also been referred to as an ITT estimand (Mallinckrodt et al, 2008).

Referring to estimands in the efficacy vs. effectiveness context ignores the fact that many safety parameters need to be analyzed.  It does not make sense to test an efficacy estimand for a safety outcome.  A more general terminology for hypotheses about efficacy and effectiveness is de-jure (if taken as directed, per protocol) and de-facto (as actually taken, ITT), respectively. 

The NRC guidance (NRC, 2010) lists the following five estimands: 
1. Difference in outcome improvement at the planned endpoint for all randomized participants.  This estimand compares the mean outcomes for treatment vs. control regardless of what treatment participants actually took.  Follow-up data (after withdrawal of initially randomized medication and/or initiation of rescue medication) are included in the analysis.  Estimand 1 tests de-facto hypotheses regarding the effectiveness of treatment policies.  
2. Difference in outcome improvement in tolerators. This estimand compares the mean outcomes for treatment vs. control in the subset of the population who initially tolerated the treatment.  This randomized withdrawal design has also been used to evaluate long term or maintenance of acute efficacy.  An open label run-in phase is used to identify patients that meet criteria to continue.  Patients that continue are randomized (usually double-blind) to either continue on the investigational drug or switch to control.  

3. Difference in outcome improvement if all patients adhered.  This estimand addresses the expected change if all patients remained in the study.  Estimand 3 addresses de-jure hypotheses about the causal effects of the initially randomized drug if taken as directed – an efficacy estimand.  

4. Difference in areas under the outcome curve during adherence to treatment, and,  
5. Difference in outcome improvement during adherence to treatment.
Estimands 4 and 5 assess de-facto hypotheses regarding the initially randomized drug.  These estimands are based on all patients and simultaneously quantify treatment effects on the outcome measure and the duration of adherence.  As such, there is no missing data due to patient dropout.  

Each estimand has strengths and limitations.  Estimand 1 tests hypotheses about treatment policies.  However, the most relevant research questions are often about the causal effects of the investigational drugs, not treatment policies.  This is also relevant for product labels where patients hope to learn what they may expect if they take the product as prescribed.  In the intention-to-treat (ITT) framework where inference is drawn based on the originally assigned treatment, the inclusion of follow-up data when rescue medications are allowed can mask or exaggerate both the efficacy and safety effects of the initially assigned treatments, thereby invalidating causal inferences for the originally assigned medication (Mallinckrodt and Kenward, 2009).  

O’Neill and Temple (2012) noted that estimands requiring follow-up data in the analysis may be more useful in outcomes trials (where the presence / absence of a major health event is the endpoint and/or the intervention is intended to modify the disease process), whereas in symptomatic trials (symptom severity is the endpoint) complications from follow-up data are usually avoided by choosing a primary estimand and analysis that do not require follow-up data.

Estimand 2 focuses on a patient subset and would not be applicable when inference to all patients was desired.  Relevance of this estimand is further complicated because in most situations it is not known who will tolerate, and thus all patients must be exposed to the safety risks of the drug, whereas efficacy inferences apply only to who tolerate the medication.  

Although knowing what happens if a drug is taken as directed, as is done for estimand 3, is important, it is also hypothetical because in actual clinical settings there will always be some patients who do not adhere (NRC, 2010).   

Estimands 4 and 5 assess effectiveness during adherence, ignoring that in many instances benefit disappears when patients stop taking the medication (Permutt and Pinheiro, 2009;  Kim, 2011).  In such situations, estimands 4 and 5 overestimate effectiveness at the planned endpoint of the trial.  

Key attributes of the five estimands were summarized by Mallinckrodt et al (2012) as presented in Table 1.  Notice that there is no estimand to address de-facto (effectiveness) hypotheses for the initially randomized medication at the planned endpoint of the trial.  The estimands in the NRC guidance were not intended to be an exhaustive list.  Therefore, a 6th estimand is proposed that may be particularly relevant in the early evaluations and initial regulatory approvals of new medications.

6. Difference in outcome improvement in all randomized patients at the planned endpoint of the trial attributable to the initially randomized medication.  The key attributes of estimand 6 are also summarized in Table 1 (Mallinckrodt et al, 2012).  Estimand 6 assesses effectiveness at the planned endpoint, focusing on the causal effects attributable to the initially randomized medications.  Conceptually, estimand 1 and estimand 6 require follow-up data.  Unlike estimand 1, the intent with estimand 6 is to avoid the confounding effects of rescue medications.  However, ethical considerations often mandate that rescue medications be allowed after patients discontinue randomized study medication.  

Estimand 3 and estimand 6 focus on causal effects of the initially randomized medications, in all randomized patients, at the planned endpoint of the trial.  Estimand 3 focuses on what would have happened if patients adhered to treatment and estimand 6 focuses on what was actually observed.  Estimand 3 addresses de-jure (efficacy) hypotheses and estimand 6 addresses de-facto (effectiveness) hypotheses.   Estimand 3 and estimand 6 can be used in combination as the primary and secondary estimands, an approach that would be particularly useful in trials assessing symptomatic treatments.  For example, in a proof-of-concept study focus may be primarily on efficacy, but as development progresses focus may shift towards effectiveness if the conditions under which the drug is studied are naturalistic enough to be generalized to clinical practice.

Given the confounding effects of rescue medications and the ethical need to allow them, one approach to testing de-facto hypotheses is to impute the data after discontinuation of the initially randomized study medication under the assumption that initially randomized active medications have no effect after they are discontinued.  This assumption is often reasonable in trials of symptomatic interventions (O’Neill and Temple, 2012).  

Estimation of this estimand has most commonly been done by imputing values using baseline observation carried forward (BOCF).  However, using baseline values as the measure of no benefit ignores the improvements that are often seen in trials due to non-pharmacologic reasons and would be valid only in those situations where there was no change in a placebo group over time.  Alternative means to test de-facto hypotheses have come into the literature recently and these alternatives are described in a subsequent section.  Several approaches may also be taken in estimation of de-jure estimands.  For example, although endpoint contrasts are often the focus, regression parameters (e.g., linear or linear plus quadratic slopes) for treatment vs. control can be compared.

15

2

[bookmark: _Toc315069729]Table 1. Estimands and their key attributes  
____________________________________________________________________________________________________________
Use of data after withdrawal
Estimand	Hypothesis		Inference		Population	Endpoint		of randomized study medication

1		de-facto		Treatment policy	All patients	Planned endpoint	Included in primary analysis
		(effectiveness)		

2		de-jure			Initially randomized	Tolerators	Planned endpoint	Not included in primary analysis
		(efficacy)		medication

3		de-jure			Initially randomized 	All patients	Planned endpoint	Not included in primary analysis
		(efficacy)		medication

4		de-facto		Initially randomized	All patients	Undefined 		Not included in primary analysis
		(effectiveness)		medication

5		de-facto		Initially randomized	All patients	Undefined		Not included in primary analysis
		(effectiveness)		medication

6		de-facto		Initially randomized	All patients	Planned endpoint	Likely imputed
		(effectiveness)		medication
___________________________________________________________________________________________________________	

Analytic Road Map
Primary analysis
Despite all efforts to minimize missing data, anticipating complete data is not realistic.  Therefore, the appropriateness of an analysis depends on the validity of assumptions about the missing data.   In longitudinal clinical trials MCAR is not likely; MAR is often plausible but never provable; and, going beyond MAR to MNAR requires assumptions that are not testable.  Hence, no single MNAR analysis can be definitive (Verbeke and Molenberghs, 2000).   

Consensus is emerging that a primary analysis based on MAR is often reasonable, whereas complete case and single imputation methods that require MCAR and / or other restrictive assumptions are not reasonable (Molenberghs and Kenward, 2007; Mallinckrodt et al, 2008; NRC, 2010).  The CHMP guidance takes a somewhat more favorable view of LOCF, noting that even though LOCF has suboptimal statistical properties, it may provide a conservative estimate of treatment effects in those situations where patients in the experimental group discontinue more frequently and/or earlier.  Clinical trials in depression are given as an example where LOCF yields conservative results.

However, anticipating specific dropout profiles is difficult, especially when testing novel therapies.  Moreover, in summarizing over 200 outcomes from an entire new drug application for an antidepressant Mallinckrodt et al (2004) reported that LOCF did not yield conservative results as the p value from LOCF was lower than the corresponding p value from an MAR likelihood-based analysis for over 1/3 of the outcomes.  Molenberghs et al (2004) showed that in addition to the proportion and timing of withdrawal, the bias from LOCF was also influenced by the magnitude of the true difference between treatments, which is of course unknown.  

Primary analyses based on MAR may be especially reasonable when combined with rigorous efforts to maximize retention on the initially randomized medications.  Methods common in the statistical literature based on MAR include likelihood-based analyses, multiple imputation (MI) and weighted generalized estimating equations (wGEE) (Molenberghs and Kenward, 2007).  The specific attributes of each method can be used to tailor an analysis to the situation at hand.  

Sensitivity analyses
With an MAR primary analysis, assessing robustness of conclusions to departures from MAR via sensitivity analyses is essential.  Although there may be need for additional sensitivity analyses inspired by trial results, a parsimonious set of plausible sensitivity analyses should be pre-specified and reported.  

Three common families of MNAR analyses are shared-parameter models, pattern-mixture models, and selection models (Molenberghs and Kenward, 2007).  As typically implemented, these approaches assess de-jure estimands.  Selection models are conceptually multivariate models for repeated measures, where one variable is the efficacy outcome from the primary analysis and the second is the repeated binary outcome for dropout that is modeled via logistic regression.  Pattern-mixture models fit a response model for each pattern of missing values weighted by their respective probabilities.  Patterns are often defined by time of dropout, but could be defined by other means, such as reason for discontinuation.  In shared-parameter models a set of latent variables, latent classes, and/or random effects is assumed to drive both the measurement and missingness processes.  Shared-parameter models can be thought of as multivariate models, where one variable is the continuous efficacy outcome from the primary analysis and the second is (typically) a time to event analysis for dropout. 

Recently, another family of methods referred to as controlled imputation has seen increasing discussion in the literature and use in practice.  Controlled imputation approaches such as those discussed by Little and Yao, 1996; Carpenter and Kenward, 2007; Ratitch and O’Kelly, 2011 can be thought of as specific versions of pattern-mixture models.  The basic idea is to construct a principled set of imputations that exhibit a specific statistical behavior, often a departure from MAR, in order to assess either sensitivity of de-jure estimands or as a primary means to assess de-facto estimands (Teshome et al; 2012).

Multiple imputation (MI) has typically been implemented in MAR settings using separate imputation models for the drug and placebo (control) arms (in a two-arm study).  For MNAR analyses, one sub-family of approaches within controlled imputation, referred to as reference-based imputation, uses one imputation model (or in some manner borrows information) from the reference (e.g., placebo, or standard of care) group but then applies that model to both the drug and placebo arms.  Alternatively, a single imputation model can be developed from all the data and applied to both arms.  

In general, using one imputation model for both treatment arms diminishes the difference between the arms compared with MAR approaches that use separate imputation models for each arm.  The intent is to generate a plausibly conservative efficacy estimate that can be used to define the lower bound of values for the set of sensitivity analyses; or, to generate an estimate of effectiveness that reflects a change in or discontinuation of treatment.  

Controlled imputation can also be used to assess sensitivity by repeatedly adjusting the imputations to provide a progressively more severe stress test to assess how extreme departures from MAR must be to overturn the primary result.   For example, the analysis can assume that patients who discontinued had outcomes that were worse than otherwise similar patients that remained in the study (NRC, 2010; Carpenter and Kenward, 2007).  The difference (adjustment) in outcomes between dropouts and those who remain can be a shift in location (mean) or slope, and is referred to as delta.
  
Typically, only the experimental arm is delta-adjusted while the control arm is handled using an MAR-based approach.  Delta-adjustment can be applied to only the first visit with missing data or to all visits with missing data; and, delta adjustment can be applied as part of a visit-by-visit imputation or after completion of all imputations.  

Delta adjustment after imputation simply subtracts a constant from the imputed values and the adjustment at a visit does not influence imputed values at other visits.  With delta-adjustment in visit-by-visit imputation, missing values are imputed as a function of both actually observed and previously imputed delta-adjusted values.  In this setting, delta-adjustment influences imputed values at the visit to which it is applied and also influences imputed values at subsequent visits through the imputation model.  Delta adjustment applied to every visit in a visit-by-visit imputation results in an accumulation of adjustments and thus implies a greater departure from MAR than delta-adjustment at a single visit.

The flexibility and transparent assumptions of controlled imputations allows the methods to be tailored to the clinical setting and the analytic goals.  However, these are comparatively new approaches and their attributes in various scenarios have not been fully characterized.   

Another approach to assessing sensitivity is to use MAR methods with inclusive models.  A restrictive model is one which typically contains only the design factors of the experiment, a parsimonious set of baseline covariates, and usually the interactions between baseline covariates and time.  Inclusive models add on ancillary variables to improve the performance of the missing data procedure (Mallinckrodt et al, 2008; NRC 2010). 

 Inclusive models are most easily implemented by including the ancillary variables in the dropout model for wGEE or the imputation model in MI.  Ancillary variables need not be included in the analysis models (Molenberghs and Kenward, 2007).  This is particularly useful in avoiding confounding with treatment for those covariates that are related to both missingness and treatment.  It is possible to implement inclusive models with likelihood-based analyses, but avoiding the aforementioned confounding can complicate or limit the analysis.   

In contrast the many previously mentioned parametric analyses, doubly robust methods provide a semi-parametric approach (Robins, Rotnizky, and Zhao, 1994, 1995).   The genesis of doubly robust methods can be seen in the following.  Although GEE is valid only under MCAR, inverse probability weighting (IPW) can correct for MAR, provided an appropriate model for the missingness process (dropout)  is formulated, whereby missingness depends on observed outcomes but not further on unobserved outcomes (Molenberghs and Kenward, 2007).

The wGEE yield semi-parametric estimators because they do not model the entire distribution.  These semi-parametric estimates are generally not as efficient as maximum likelihood estimators obtained using the correct model, but they remain consistent where maximum likelihood estimators from a misspecified parametric model are inconsistent (Molenberghs and Kenward, 2007).  

The efficiency of wGEE can be improved by augmenting the weighted generalized estimating equations with the predicted distribution of the unobserved data given the observed data (Molenberghs and Kenward, 2007).  Augmentation also introduces the property of double robustness.  To understand double robustness, consider that efficient IPW estimators require three models:  1) The substantive (analysis) model which relates the outcome to explanatory variables and/or covariates of interest; 2) A model for the probability of observing the data (usually a logistic model of some form); and, 3) A model for the joint distribution of the partially and fully observed data, which is compatible with the substantive model in (1). 

If model (1) is wrong, e.g., because a key confounder is omitted, then estimates of all parameters will typically be inconsistent.  The intriguing property of augmented wGEE is that if either model (2) or model (3) is wrong, but not both, the estimators in model (1) are still consistent (Molenberghs and Kenward, 2007).  However, doubly robust methods are fairly new with few rigorous simulation studies or real data applications in the literature.  Hence, more needs to be learned about doubly robust methods in order to understand how they fit into clinical trial analysis plan.  Readers can refer to Carpenter, Kenward, and Vansteelandt (2006), Tsiatis (2006), and Daniel and Kenward (2012) for further background on doubly robust methods.

Example
Introduction
In the example that follows the primary analysis used a repeated measures model where treatment-by-time and baseline-by-time were fitted along with a main effect of pooled investigative site.  For consistency, this model was used throughout the sensitivity analyses, as far as possible.  Some analyses, especially those involving MI, were not implemented in this way because the imputation approach forced the investigator effect to be crossed with time.  Also, the different providers of software tools for this collaboration chose different routes.  For example, some MI based methods employed repeated measures analysis models (that average the investigator effect across visits) while others used a univariate analysis of data at the last visit.
 
Full detail of each analysis is not presented here.  The code and data used in this paper are freely available at www.missingdata.org.uk.  The purpose of this example is to illustrate sensitivity analyses and not to compare the detailed properties of individual methods.  Hopefully others will provide such comparison in due time.
 Data and setting
The data used in this example were somewhat contrived to avoid implications for marketed drugs.  Nevertheless, the key features of the original data were preserved.  The original data were from an antidepressant clinical trial reported by Goldstein et al (2004).  The trial contained four treatment arms, with patients randomized in a 1:1:1:1 ratio to two doses of an experimental medication (subsequently granted marketing authorizations in most major jurisdictions), an approved medication, and placebo.  Postbaseline assessments on the Hamilton 17-item rating scale for depression (HAMD17) (Hamilton, 1960) were taken at baseline and weeks 1, 2, 4, 6, and 8.  In this re-analysis the Week-8 observations were not included.  All patients from the original placebo arm were included along with a contrived drug arm that was created by randomly selecting patients from the three non-placebo arms.

Completion rates were 76% (64/84) for drug and 74% (65/88) for placebo.  Visitwise mean changes for patients that completed the trial versus those who discontinued early are summarized in Figure 1.  Patients who discontinued early had less favorable outcomes than completers, suggesting that missing data did not arise from an MCAR mechanism.   

The analysis plan focused on estimand 3 in Table 1, a de-jure (if taken as directed) efficacy hypothesis.  The key assumption of the direct-likelihood primary analysis, and the focus of sensitivity analyses, was that missing data arose from an MAR mechanism.  Other assumptions not tested here which can be objectively evaluated include assumptions regarding time trends, correlation structure, and error distribution.  A secondary goal of the analysis was to assess a de-facto (effectiveness) hypothesis, estimand 6 in Table 1.  Sensitivity analyses included: 1) inclusive models in the MAR framework via MI and wGEE; 2) model-based MNAR methods, including selection, pattern mixture, and shared parameter models; and, 3) reference-based and delta-adjustment controlled imputations.  





Primary analysis
The primary analysis used a restrictive model.  Mean changes from baseline were analyzed using a restricted maximum likelihood (REML)-based repeated measures approach.  The analysis included the fixed, categorical effects of treatment, investigative site, visit, and treatment-by-visit interaction, as well as the continuous, fixed covariates of baseline score and baseline score-by-visit-interaction.  An unstructured (co)variance structure shared across treatment groups was used to model the within-patient errors.  The Kenward-Roger approximation was used to estimate denominator degrees of freedom and adjust standard errors.  Analyses were implemented using SAS PROC MIXED (SAS, 2008).  The primary comparison was the contrast between treatments at the last Visit (Week-6). 

Results from the primary analysis are summarized in Table 2.  Residual correlation (co)variance estimates are listed in Table 3.  Within group LSMEAN changes at Week 6 were -7.05 for drug vs. -4.41 for placebo.  Negative values indicated improvement.  Therefore, the advantage of drug over placebo was -2.64 (SE=1.01, P= 0.010).  Although the difference was statistically significant, it was not so large that the high rate of missing data could be disregarded.  Variances and correlations increased over time and the regression on baseline decreased.

Table 2.  Visitwise LSMEANS and contrasts from the primary analysis
________________________________________________________________________
			Endpoint Contrast
		LSMEAN	Standard
		Difference1	Error		P value
Week 1	  	 0.20      	0.67    		0.768
Week 2 	-1.30      	0.86    		0.131
Week 4 	-2.09      	0.91    		0.023
Week 6		-2.64      	1.01    		0.010
 
1. Negative values indicate an advantage of drug over placebo
___________________________________________________________________

Table 3.  Correlation and (co)variance estimates from the primary analysis1
________________________________________________________________________

		Week 1	Week 2	Week 4	Week 6
Week 1		18.9    		0.58		0.47  		0.44
Week 2 	       		29.2  		0.64   		0.59
Week 4 					31.1   		0.76
Week 6								36.0

1.  Variances on the diagonal and correlations on the off diagonals.
___________________________________________________________________

Sensitivity analyses
Inclusive models
Inclusive models were implemented using MI and wGEE.  In practice, only one method is needed as both rely on the same assumptions.  In wGEE, the probability of dropout for each patient at each visit, given the patient was observed at the previous visit, was estimated and the probabilities were accumulated over visits.  Dropout was modeled using logistic regression via PROC GENMOD in SAS (SAS, 2008).  The restrictive model for dropout included baseline severity, treatment, (change from baseline in) HAMD17, and the HAMD17 -by treatment interaction.  Previous experience suggested that Patient-rated Global Impression of Improvement (PGI) was predictive of dropout.  Therefore, the inclusive model added PGI and the PGI-by treatment interaction.   The inverse probabilities of dropout were used to weight the observations for the GEE analyses of HAMD17, which were conducted in PROC GENMOD (SAS, 2008) 

An inclusive model in MI was implemented using SAS PROC MI and PROC MI ANALYZE (SAS, 2008).  The same restrictive and inclusive models used in the dropout model for wGEE were used for MI.  The resulting completed data sets were analyzed with the repeated measures model used for the primary analysis.  Results from the completed data sets were combined and inferences drawn according to Rubin’s rules (Rubin, 1987).  

Results from wGEE and MI are summarized in Table 4.  In MI the endpoint treatment contrasts were similar for restrictive and inclusive models.  In wGEE the endpoint contrast was somewhat larger with the inclusive model than for the restrictive model.  Standard errors were slightly larger with inclusive models.
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________________________________________________________________________

	      	Restrictive model            	      Inclusive model                      .    
	      Endpoint 	Standard 		Endpoint	Standard
Method       Contrast 	Error	     P value	Contrast	Error	     P value		

MI		-2.52	1.05 	     0.017	     -2.54 	1.12 	      0.024
wGEE		-2.59	1.05 	     0.013	     -3.03 	1.09 	      0.006
________________________________________________________________________

Selection models
A parametric selection model was implemented using SAS PROC MIXED for starting values and for certain analyses and PROC IML was used to build and solve necessary equations.  In the measurement model the primary outcome was modeled using the repeated measures model as in the primary analysis.  The drop out model was a logistic regression that fit the log odds of dropout as a function of separate intercepts (Ψ1,Ψ2) for each treatment group, along with separate linear regression coefficients for previous (Ψ3,Ψ4) and current (possibly unobserved) efficacy outcomes (Ψ5,Ψ6).  Hence the measurement and drop out models were linked in that the dependent variable from the measurement model was an independent variable in the dropout model.  The parameters Ψ5 andΨ6 were of particular interest because they were the “MNAR” part of the model.  Fitting separate models for each treatment allowed for different departures from MAR for drug and placebo groups.  In addition to estimating parameters from the data, a wide range of values for Ψ5 and Ψ6 were input for illustration purposes.  Whenever possible, sensitivity analysis should be based on a pre-defined, plausible range of values for Ψ5 and Ψ6. 

Results from selection model analyses are summarized in Table 5.  As expected, assuming MAR by inputting Ψ5 and Ψ6 = 0.0 (first row of Table 5) yielded a treatment contrast of -2.64, matching the primary direct likelihood analysis.  When all parameters were estimated (second row of Table 5) the treatment contrast was -2.48, with SE = 1.09, and P = 0.023.  Therefore, compared with the MAR primary analysis the MNAR selection model yielded a slightly smaller treatment contrast, a slightly larger standard error, and a slightly larger but still significant p value. 

Results from the dropout model can lend insight into the nature of the missing data.  Negative values for change from baseline in HAMD17 indicated improvement.  Therefore, positive (negative) values for regression coefficients indicated that as efficacy scores improved the probability of dropout at that visit decreased (increased).   Estimating all parameters yielded the following results, Ψ1 = 2.71, Ψ2 =2.64, Ψ3 = 0.15, Ψ4 = 0.20, Ψ5 = -0.13, Ψ6 = -0.16; therefore, the two dropout models (Ψ1, Ψ3, Ψ5 for drug and Ψ2, Ψ4, Ψ6 for placebo) were similar.  The positive values for Ψ3 and Ψ4 suggested that as efficacy scores improved at the previous visit the probability of dropout at the current visit decreased.  The negative values for Ψ5 and Ψ6 suggested that as (possibly missing) efficacy scores improved at the current visit the probability of dropout at the current visit increased.  Put another way, favorable outcomes were more likely to be missing than unfavorable outcomes.

Results from inputting values for Ψ5 and Ψ6 are summarized at the bottom of Table 5.  Negative (positive) values for Ψ5 and Ψ6 led to within group mean changes that were greater (less) than from the MAR results.  This result makes sense in that if better (worse) outcomes were more likely to be missing, had they been observed means would have showed greater (smaller) improvement.
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When Ψ5 and Ψ6 differed, treatment contrasts followed a consistent pattern.   Whenever Ψ5 (the regression coefficient for the drug group) was less than Ψ6 (the regression coefficient for the placebo group) the treatment contrast was greater than from the MAR primary analysis; when Ψ5 was greater than Ψ6 the treatment contrast was smaller than in MAR.  Across the range of input values the endpoint treatment contrast ranged from -1.40 to -3.78.  

Table 5.  Results from selection model analyses
________________________________________________________________________
				Endpoint  LSmean Change    Endpoint  Standard
Model1		Ψ52  	Ψ6 2	     Drug 		Placebo	        Contrast     Error	P value

MAR		 0.0	 0.0	     7.05		4.41		-2.64       0.98	0.007
Estimate	-0.13	-0.16 	     7.48		5.00		-2.48	  1.09	0.023
________________________________________________________________________

Input		 0.0	 0.2	     7.07		3.67		-3.40       1.02	< .001
Input		 0.0	-0.2	     7.06		5.13		-1.93	  0.97	 0.047
Input		 0.0	-0.4	     7.07		5.67		-1.40	  0.97	 0.150

Input		 0.2	 0.0	     6.39		4.43		-1.96	  1.02	0.054
Input		-0.2	 0.0	     7.69		4.41		-3.28	  0.97	< .001
Input		-0.4	 0.0	     8.18		4.40		-3.78	  0.97	< .001

1. Estimate indicates all model parameters were estimated and the values in the Ψ5 and Ψ6 columns are estimates of those parameters; input indicates values for Ψ5 and Ψ6 were input and the values in the Ψ5 and Ψ6 columns are the input values.
2. Ψ5 and Ψ6 are the regression coefficients (drug and placebo, respectively) for the association between the current, possibly missing efficacy scores and the
logit for probability of dropout 
________________________________________________________________________

Several caveats apply to the selection model results above and to MNAR models generally.  These models inherently rely on untestable assumptions.   They can be highly sensitive to influential observations and distributional assumptions.  Different models with similar maximized likelihoods (i.e.,, with similar plausibility with respect to the observed data) can have completely different implications for the dropout process.  And, an alternate parameterization of the selection model that fits the increment from the penultimate to the final visit rather than the final outcome itself can lead to meaningfully different interpretations of the dropout process. 

Pattern mixture models
Pattern-mixture models were implemented by imputing missing values using the non-future dependent type of complete case and neighboring case missing value restrictions (CCMV and NCMV, respectively).  See Molenberghs and Kenward (2007) for detailed descriptions of the restrictions.   Dropout patterns were defined by the visit where the last observation for the primary analysis was obtained.  Imputations were implemented using SAS PROC MI and PROC MI ANALYZE (SAS, 2008).  Completed data sets were analyzed using the same repeated measures model as for the primary analysis with the addition of terms for dropout group and its interactions with treatment and time. 

Results from pattern-mixture model analyses are summarized in Table 6.   Endpoint treatment contrasts using NCMV and CCMV restrictions were -2.95 and -2.67, respectively, with similar standard errors similar to the primary analysis, and p values < 0.01.  
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Table 6.  Results from pattern-mixture model analyses
________________________________________________________________

Identifying		Endpoint	Standard 
Restriction1		Contrast	Error		P value

CCMV			-2.68		0.99		0.007	
NCMV 			-2.95		0.99		0.003

1. CCMV = non future dependent complete case missing value
2. NCNV = non future dependent neighboring case missing value  
_______________________________________________________________

Shared parameter models
The intent for the shared parameter model was to model efficacy outcomes using the same repeated measures model as for the primary analysis, and to use the efficacy outcomes in the time to dropout part of the model.  However, due to convergence problems a more parsimonious parametric model for time (dependent variable linearly related to square root of time) was used rather than modeling time as unstructured.  Convergence issues can be more common as model complexity increases, such as MNAR methods that model both the outcome and dropout.  

Two shared-parameter models were implemented using SAS PROC NLMIXED.  The first model had no linkage between the measurement and dropout models.  A second model linked the dropout and measurement models via separate random intercepts and slopes by treatment group.  Results from shared-parameter model analyses are summarized in Table 7.   Using no linkage between the dropout and measurement models yielded an endpoint contrast of –2.92.  Using the separate intercept and slope linkages by treatment group yielded a slightly larger endpoint contrast of -3.00, with a standard error that was also larger, resulting in a small increase in the p value for the MNAR model.    
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________________________________________________________________________
				Endpoint	Standard 
Model				Contrast	Error		P value

Naïve model (MAR)		-2.92		0.93		0.002
Int + slope by trt linkage	-3.00		1.03		0.004
_________________________________________________________________


Controlled imputations
Three methods of reference-based imputations were implemented, each based on MI using a multivariate repeated measures model where the means for the drug arm were altered using information from the placebo arm.  Although it is commonly stated that 5 rounds of imputation is sufficient to yield a high degree of efficiency, stability of results is important in this setting.  Our experience suggests that many more rounds of imputation are needed to stabilize results.  These analyses used 5000 imputations.   

The jump to reference (J2R) method is implemented in a manner such that immediately upon withdrawal from the active  group all benefit from the treatment is gone, thereby modeling the effectiveness of a symptomatic treatment with a short duration of effect.  The J2R approach usually results in the largest decrease in the difference between the experimental and reference group of the three methods used in this example.  In the copy reference (CR) method is implemented in a manner such that drug effects decrease over time.  Therefore, if a patient had good outcomes while on drug, those favourable outcomes contributed to the predictions of the missing values based on the placebo imputation model.   The CR approach is useful for modeling the effectiveness of a symptomatic treatment with a longer duration of action, conditions matching those in the example data.  Although some minor differences in implementation exist, the CR method is conceptually similar to the approach termed placebo multiple imputation (pMI) in Teshome et al (2012) and detailed in Ratitch and O’Kelly (2011).

In the copy increment from reference (CIR) approach improvement for drug treated patients prior to withdrawal is maintained, but after withdrawal the trajectory is parallel to that of for the placebo group.  This approach models effectiveness of a disease modifying treatment and usually has the least impact of these three sensitivity analyses.    

Results from the reference-based imputations are summarized in Table 8.  The endpoint contrast from CR was -2.20, with a standard error somewhat greater than in the primary analysis, and p = 0.028.  Therefore, when interpreted as an MNAR sensitivity analysis this result supports robustness of the primary analysis.  When interpreted in the effectiveness context, the CR result suggested that 83% (-2.20 / -2.64) of the effect if taken as directed (efficacy) was maintained as actually taken in this study.  



Table 8.  Results from reference-based multiple imputation 
____________________________________________________________________

		LSMEAN changes	Endpoint	Standard 
Method      	Drug	Placebo		Contrast         	Error		P value

J2R             	-6.28	-4.30		-1.98      	1.01        	0.051
CR                	-6.46	-4.26		-2.20      	0.99        	0.028
CIR            	-6.52	-4.25		-2.28      	0.99        	0.022
____________________________________________________________________

A second approach to controlled imputation, MI with delta-adjustment, was used as a progressive stress test.  Two forms of adjustment were applied by either delta-adjusting only the first visit with missing data or by adjusting all visits with missing data.  In both cases imputations were performed visit-by-visit, with patients’ delta-adjusted imputed data contributing to imputed values at subsequent visits.   The “tipping point” of when significance of the primary analysis was lost was identified by repeating the imputation process with progressively larger deltas.  Analyses were implemented as previously described for other MI based approaches.   

Delta-adjustment stress test results are summarized in Table 9.  When applying the delta adjustment to only the first missing visit the delta had to be a worsening of 4 points on the HAMD17 in order to overturn the primary result.  When applying the delta adjustment to all visits the magnitude of the adjustment had to be a worsening of 2 points on the HAMD17 in order to overturn the primary result.



Table 9.  Results from delta-adjustment multiple imputation 
____________________________________________________________________

Value of 							Endpoint
Delta Adjustment	Adjustment method 		Contrast	P value

0			First missing visit only		-2.74		.008
1.0			First missing visit only		-2.56		.013
2.0			First missing visit only		-2.38		.022
3.0			First missing visit only		-2.20		.035
4.0			First missing visit only		-2.02		.055

0			All visits			-2.74		.008
1.0			All visits			-2.38		.021
2.0			All visits			-2.02		.054
____________________________________________________________________

Summary and inference
Results from sensitivity analyses are summarized in Table 10.   Across the various model-based sensitivity analyses the advantages of drug over placebo at endpoint were generally close to or greater than the primary result.   Therefore, the model-based sensitivity analyses support the robustness of the primary analysis to departures from MAR.     

With controlled imputations, previous experience suggested the CR approach provided a clearly conservative, but plausible, estimate of the treatment effect for an efficacy hypothesis and a reasonable assessment of effectiveness.  The advantage of drug over placebo from CR was approximately 83% of the magnitude of the primary result, with statistical significance preserved.  

Preservation of statistical significance need not be a requirement of sensitivity analyses when assessing robustness of the primary result.  However, in those cases where significance is preserved from a clearly conservative analysis this may be sufficient to declare the primary result robust to departures from MAR.  

In the delta-adjustment stress testing analyses, deltas required to overturn the primary result ranged from 2 to 4 points on the HAMD17 depending on the specific method.  Given a residual variance of 36 (see Table 3), the residual standard deviation was 6.0.  Therefore, the tipping points correspond to 1/3 and 2/3 of the residual standard deviation.  To put the tipping point in clinical context, a 3 point change in the HAMD17 has been proposed as clinically meaningful for individual patients (Mergl et al., 2011; Guico-Pabia et al., 2012).  
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Table 10.  Summary of missing data sensitivity analysis results
____________________________________________________________________
		     				Endpoint	Standard	      
Method1		 			Contrast	Error		P value		

Model-based approaches
Likelihood (primary analysis)			-2.64		1.01		0.010
MI with inclusive model			-2.54 		1.12 	      	0.024
wGEE with inclusive model			-3.03		1.09 	      	0.006	
SM						-2.48		1.09		0.023
PMM (NCMV)				-2.67		0.99		0.007		
SPM						-3.03		1.03		0.004		


Controlled imputation approaches
CR						-2.20		0.99		0.028

Delta adjustment approacehs						
Delta applied to first missing visit only		significance lost when delta ≥ 4.0
Delta applied to all visits 			significance lost when delta ≥ 2.0

1. CR = Copy reference; MI = multiple imputation; NCMV = neighboring case missing value identifying restriction; SM = selection model; PMM = pattern mixture model, SPM = shared parameter model 
____________________________________________________________________
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Discussion
Recent research has produced useful guidance and recommendations regarding the prevention and treatment of missing data.  The intent of this paper has been to provide a practical guide and tools for applying the recent guidance.  The programs and example data used in this paper are freely available at www.missingdata.uk.org.  The web site also provides additional details on the programs and how to use them.  Although the programs used in this paper are archived at that site, newer, more generalized versions of these programs and additional programs will be made available periodically and users are encouraged to access the latest versions of the programs.  
 
Approaches and ideas presented in this paper are not intended as specific prescriptions for all trials.  As the clinical contexts vary between studies, so too should the trial design and conduct options to reduce missing data, along with the specific form of the sensitivity analyses.  Despite the idiosyncrasies of specific situations, several general points apply to most scenarios.  Most importantly, trials should be designed and conducted to maximize the proportion of patients that adhere to the study prescribed treatments.  Given that missing data cannot be eliminated, it is also important to clearly state objectives and estimands, and to pre-specify the primary analysis and its assumptions, along with sensitivity analyses that are based on plausible assumptions.     

Some argue that follow-up data collected after discontinuation of the initially randomized study drug and / or initiation of rescue medication should usually be included in the primary analysis (NRC, 2010).  Others point to a more nuanced usage wherein follow-up data are often part of the primary estimand in outcome trials, but not in symptomatic trials (O’Neill and Temple, 2012). 

Our view is that in many cases both efficacy and effectiveness at the planned endpoint of the trial will be of interest because it is important to know what happens when a drug is taken as directed (efficacy) and to know what happens when the drug is taken as in actual practice (effectiveness).  The choice between efficacy and effectiveness as the primary estimand is linked to whether trial design and conduct is more consistent with rigorously controlled efficacy assessments or more naturalistic effectiveness assessments.  Whether or not follow-up data should be collected and / or included in the primary estimand can be considered on a case-by-case basis.  However, given the confounding influences of rescue medications, the role for follow-up data in the analysis of symptomatic treatment trials would usually be secondary.   

A primary analysis based on MAR is often reasonable.  Likelihood-based methods, MI, and wGEE are all useful MAR approaches whose specific attributes can be considered when tailoring a primary analysis to specific situations.  With an MAR-based primary analysis a focal point of sensitivity assessments is the impact of departures from MAR on estimates of the primary treatment contrast.  To this end, the model-based family of MNAR methods such as selection models, pattern-mixture models and shared-parameter models can be considered.  Prior experience can guide analytic decisions such as plausible ranges of input values for selection models, appropriate linkages between analysis and dropout models in the shared parameter setting, or appropriate identifying restrictions for pattern-mixture models.  

Controlled-imputation methods can be especially useful in constructing analyses to assess specific departures from MAR and for assessing effectiveness because the assumptions are transparent.  If a plausibly conservative controlled imputation analysis agrees sufficiently with the primary result, as it did in the example data, the primary result can be declared robust to departures from MAR.  Alternatively, a tipping point (progressive stress-testing) format can be used to assess how severe departures from MAR must be in order to overturn conclusions from the primary analysis.  If, as in the example data, severe departures from MAR are required to negate the primary result, the primary result can be declared robust to departures from MAR. 

In addition to the methods illustrated in this paper, macros are also available at www.missingdata.org.uk to conduct influence and residual diagnostics, and other descriptive analyses.  
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