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Estimation of the wild-type
minimum inhibitory concentration
value distribution
Stijn Jaspers,a*† Marc Aerts,a Geert Verbekeb and
Pierre-Alexandre Beloeilc

Antimicrobial resistance has become one of the main public health burdens of the last decades, and monitor-
ing the development and spread of non-wild-type isolates has therefore gained increased interest. Monitoring is
performed based on the minimum inhibitory concentration (MIC) values, which are collected through the appli-
cation of dilution experiments. In order to account for the unobserved population heterogeneity of wild-type and
non-wild-type isolates, mixture models are extremely useful. Instead of estimating the entire mixture globally, it
was our major aim to provide an estimate for the wild-type first component only. The characteristics of this first
component are not expected to change over time, once the wild-type population has been confidently identified
for a given antimicrobial. With this purpose, we developed a new method based on the multinomial distribution,
and we carry out a simulation study to study the properties of the new estimator. Because the new approach
fits within the likelihood framework, we can compare distinct distributional assumptions in order to determine
the most suitable distribution for the wild-type population. We determine the optimal parameters based on the
AIC criterion, and attention is also paid to the model-averaged approach using the Akaike weights. The latter
is thought to be very suitable to derive specific characteristics of the wild-type distribution and to determine
limits for the wild-type MIC range. In this way, the new method provides an elegant means to compare dis-
tinct distributional assumptions and to quantify the wild-type MIC distribution of specific antibiotic–bacterium
combinations. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: antimicrobial resistance; censoring; model averaging; multinomial distribution; wild-type
distribution

1. Introduction

Antimicrobial resistance (AMR) is the main undesirable side effect of antimicrobial use in both
humans and animals. Because of the continuous positive selection of resistant bacterial clones, whether
pathogenic, commensal, or even environmental bacteria, the population structure of microbial commu-
nities is modified. AMR has become one of the main public health burdens of the last decades, and it is
therefore extremely important to study and monitor the emergence of isolates with reduced susceptibility
against antimicrobials [1, 2]. This may be performed by determining the minimum inhibitory concen-
tration (MIC), defined as the smallest concentration of a given antimicrobial substance that inhibits
the visible growth of a microorganism. The MIC is commonly measured via a broth dilution method,
in which a standardised amount of the isolate is exposed to successive two-fold concentrations of the
antimicrobial (i.e. 0.25, 0.5, 1, 2 mg/L, . . . ). The MIC is defined as the lowest concentration with no
visible growth after a prescribed incubation period. Consider, for example, a bacterial isolate that is sub-
jected to an antimicrobial at concentrations 0.5, 1, 2, and 4 mg/L. In case the isolate shows inhibition
of growth at values of 2 and 4 mg/L, but growth at lower values, the reported MIC value is equal to
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2 mg/L. However, the true inhibition occurs between the concentrations of 1 and 2 mg/L, so the obtained
MIC value is interval censored. This additional data complexity needs to be taken into account when
estimating the wild-type density of interest.

The common way of representing a dilution experiment is by drawing an MIC distribution, that is,
the frequency of occurrence of each given MIC plotted against the MIC value. For a given bacterial
species, the multi-modal pattern of the MIC distribution can usually enable the separation of the wild-
type population of microorganisms (typically on the left of the MIC distribution) from the non-wild-type
populations that show a reduced susceptibility to the antimicrobial in question (on the right of the MIC
distribution).

Typically, MIC values are dichotomised using epidemiological cut-off values (ECOFFs) to define non-
wild-type isolates [3, 4]. As such, the MIC distribution is collapsed into a binary variable, and a large
amount of information is lost. One of the main shortcomings of this approach is that the characteristics
of both wild-type and non-wild-type isolates cannot be studied in detail. In addition, the broth dilution
method implicitly rounds data upwards, and inference based on unadjusted measurements is biased and
overestimates bacterial resistance to a drug. Annis and Craig [5] provide a distribution free estimate,
which is still suffering from the shortcoming that a trend above the ECOFF cannot be detected. One
can remedy this disadvantage via the exploration of the MIC distribution on the full continuous scale, in
which interest emerged during the process of harmonisation of breakpoints [4]. Craig [6] proposed an
appealing maximum likelihood estimate based on a censored normal mixture.

Mixture models are ideally suited as they offer a natural framework for modelling unobserved
population heterogeneity. In our context, a two-component mixture

f .x/D �f1.xj�1/C .1� �/f2.xj�2/ (1)

is assumed, in which f1 and f2 respectively represent the wild-type and non-wild-type components of
the MIC distribution and the prevalence of wild-type isolates is denoted by � . The wild-type susceptible
population, typically located on the left of the MIC distribution, is assumed to have no acquired or muta-
tional resistance. It commonly shows a unimodal distribution reflecting a slight biological variability
around a mode, which is not altered by changing circumstances over time. Therefore, we can assume the
first component in (1) to be of a fixed parametric form, such as the log-normal or gamma distribution
[7, 8]. The second component, representing the non-wild-type isolates, is often multi-modal, suggesting
that it is itself a mixture of different non-wild-type subpopulations that are characterised by different
degrees of reduced susceptibility conferred by different mechanisms. To allow proper modelling of the
different possible characteristics of the non-wild-type distribution, we can model the second component
by using another mixture of m components:

f2.xj�2/D

mX
`D1

�`f`.xj�2`/:

At this stage, we can follow several approaches. Adopting a global view, we can estimate the mix-
ture in (1) as a whole using a non-parametric maximum likelihood approach in combination with the
Vertex Exchange Method [9] or through the application of a penalised mixture approach [10]. However,
in this paper, we will apply a local view and focus on the wild-type component only. In a similar fash-
ion, Turnidge et al. [8] provided a mathematical description of the wild-type MIC distribution through
the application of non-linear least squares regression. We propose an alternative method that is based
on the multinomial distribution in combination with likelihood inference, thereby allowing for a direct
comparison between different parametric assumptions for the wild-type distribution.

In Section 2, we present three sources of data to which the method developed in Section 3 is applied.
We carry out the actual data analysis in Section 4 and compare the performance of the new method with
the method of Turnidge et al. [8] through a simulation study in Section 5. A discussion will end the paper
in Section 6.

2. Data

Minimum inhibitory concentration is the lowest concentration of an antimicrobial agent that inhibits
the visible growth of a microorganism, and these values are commonly obtained from dilution experi-
ments. In this paper, we will study two antibiotic–bacterium combinations in more detail: Streptococcus
pneumoniae versus benzylpenicillin and Escherichia coli versus ampicillin.
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(a) S. pneumoniae isolates tested for susceptibility against benzylpenicillin - source: Turnidge et al. [8]

(b) E. coli isolates tested for susceptibility against ampicillin - source: EUCAST

(c) E. coli isolates tested for susceptibility against ampicillin - source: EFSA

Figure 1. Barplot of the distribution of minimum inhibitory concentration (MIC) for the three data examples.
The full line indicates the estimated density according to the multinomial-based method. The triangles repre-
sent the multinomial probabilities, while the dots represent the parametric counterparts in (3). (a) S. pneumoniae
isolates tested for susceptibility against benzylpenicillin – source: Turnidge et al. [8], (b) E. coli isolates tested
for susceptibility against ampicillin – source: EUCAST, and (c) E. coli isolates tested for susceptibility against

ampicillin – source: EFSA.
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2.1. Streptococcus pneumoniae and benzylpenicillin

Streptococcus pneumoniae is a Gram-positive bacterium that can cause pneumonia, paranasal sinusitis
and otitis media. The organism is currently the leading cause of invasive bacterial disease in children and
the elderly. Benzylpenicillin belongs to the group of ˇ-lactams, which are by far the most widely used
and efficacious of all antibiotics. Over the past few decades, however, widespread resistance has evolved
among most common pathogens, including S. pneumoniae (e.g. [11,12]). One of the considered datasets
in Turnidge et al. [8] concerns S. pneumoniae tested for susceptibility against benzylpenicillin. The MIC
distribution data were collected from a variety of international sources and pooled using a well-defined
selection criterion. The resulting pool consisted of 17 independently generated datasets (for more infor-
mation, see [8]). We present a graphical representation of the corresponding MIC value distribution in
Figure 1(a).

In total, 26 403 observations were collected, with MIC values ranging from 0.002 to 8 mg/L. A first
mode is located around the value of 0.016 mg/L, the concentration that probably represents the modal
value of the wild-type component. The authors argued that this is an example where the non-wild-type
isolates seem to merge with the susceptible wild-type strain. Therefore, it is expected that there is a lot
of contamination by the non-wild-type isolates distribution.

2.2. Escherichia coli and ampicillin

Escherichia coli are Gram-negative bacteria that commonly live in the intestines of humans and ani-
mals worldwide. The bacteria can cause severe abdominal cramps and are a leading cause of bloody
diarrhoea. Ampicillin is a semi-synthetic penicillin with an additional amino chain synthesised onto the
penicillin molecule. This allows the ampicillin to be effective against Gram-negative organisms as well
as the Gram-positive organisms covered by penicillin. Although the treatment of E. coli infections with
ampicillin was initially effective, it is no longer the preferred drug because of changes in susceptibility of
certain E. coli subpopulations. The susceptibility of E. coli against ampicillin will constitute the second
dataset of interest. Data are obtained from two European institutions concerned with the gathering and
analysis of AMR data.

The European Committee on Antimicrobial Susceptibility Testing (EUCAST) is an organisation that
deals with breakpoints and technical aspects of phenotypic in vitro antimicrobial susceptibility testing.
Most antimicrobial MIC breakpoints (e.g. ECOFFs) in Europe have been harmonised by EUCAST. On
their website, the committee provides MIC distributions for a wide range of organisms and antimicrobial
agents. These distributions are based on collated data from a total of almost 20 000 MIC distributions
from worldwide sources. Among them, data are present on the desired combination: E. coli and ampi-
cillin. The resulting MIC distribution consists of 39 220 isolates that were obtained from 48 distinct
sources. The observed MIC values ranged from 0.125 to 512 mg/L, with the first mode being located
around the value of 2 mg/L. We give a graphical representation of the data by the barplot in Figure 1(b).
Two large peaks are clearly visible at the values of 2 and 4, probably representing the center of the wild-
type component. Towards the larger MIC values, two smaller peaks are located at the values of 64 and
256, which could represent distinct strains of the non-wild-type isolates.

The European Food Safety Authority (EFSA) is the keystone of European Union (EU) risk assessment
regarding food and feed safety. One of its main tasks is the monitoring of AMR in zoonotic and indi-
cator bacteria from food-producing animals and food in the EU. EFSA coordinates the annual reporting
of AMR data from the member states, analyses the data collected and issues the results of this analysis.
EFSA and European Centre for Disease Prevention and Control jointly prepare and publish an annual
EU summary report on AMR in zoonotic and indicator bacteria from humans, animals and food on a
yearly basis. For the purpose of this modelling study, EFSA has provided an exemplary MIC distribu-
tion summarising the results of ampicillin susceptibility testing of indicator E. coli isolates. Figure 1(c)
presents a graphical representation of the MIC values of the 1890 isolates. The mode of the wild-type
component is again located between the values of 2 and 4 mg/L. However, there is presumably a unique
non-wild-type population, for which the modal MIC is located at 32 mg/L.

3. Methodology

3.1. Method of Turnidge et al. [8]

Turnidge et al. [8] developed a method for characterising the wild-type MIC distribution, from which one
can derive the ECOFF. The proposed method is based on the assumption that the wild-type component
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of the MIC distribution follows a log-normal curve. They perform a non-linear least squares regression
on the cumulative counts for a range of data subsets. Starting with the subset that includes values that are
either at the first mode or at one unit higher, they fit the cumulative counts to the cumulative log-normal
curve. They estimate three parameters, namely the mean (�) and standard deviation (� ) of the employed
distribution function and the total number of observations (N ) in the presumed subset. They estimate
N rather than take N as a constant in the regression because of the desire to fit the data to the distri-
bution without assuming that N only contains wild-type isolates. Hence, the nonlinear function to be
minimised is

h.N;�; �/D
X
i

h
yi �N �ˆ

�xi ��
�

�i2
; (2)

where yi represents the cumulative number of isolates up to MIC category xi (on the log2 scale). After
having obtained model estimates for the first subset of the data, they repeat the procedure with an aug-
mented subset of the data (i.e. they add MIC values that are one dilution higher to the previous subset).
The fit was optimum when the absolute value of the ratio of the estimate of the parameter (� or � ) to the
asymptotic standard error was maximal. While optimum fits for each of the estimated parameters could
occur with different subsets, most reasonable values for the parameters occurred when the difference
between the observed and the estimated numbers of isolates in the fitted subset was minimal. Hence, the
authors considered this criterion to be most suitable. One can consecutively apply the selected mean and
standard deviation from the optimum fit to derive the ECOFF.

3.2. The multinomial-based method

Despite the fact that the method discussed in the previous subsection seems to perform well in practice
(see [8]), there remain some issues about the underlying assumptions. First, the strongest assumption
is about the distributional form of the wild-type component. The authors suggest the use of the log-
normal cumulative distribution function, implying that the wild-type component always belongs to a
log-normal distribution. Other distributions (such as the gamma) may be more appropriate. Although
the log-normal can be replaced by any other distribution, the method does not allow direct comparison
of various assumptions. In addition, the non-linear least squares regression approach requires appropri-
ate starting values to ensure convergence of the used algorithm. We propose likelihood-based inference
instead. Of course, because the area of application stays the same, there still remain the complexities of
having censored data and a region of overlap between the wild-type and non-wild-type components. We
address the latter difficulty with an idea similar to that of Turnidge et al. [8], namely constructing the
likelihood in a cumulative fashion.

Denoting by Zi the number of times MIC value i was observed over the n trials, the observed MIC
groupings can be seen as possible outcomes ofZ D .Z1; : : : ; Zk/�Mult(n,p), where p D .p1; : : : ; pk/
such that p1 C : : :C pk D 1. The maximum likelihood estimates for the multinomial probabilities pi
are just the observed relative frequencies Zi

n
(i.e. in a saturated model). Nevertheless, the main inter-

est remains in identifying the most suitable parameters of the continuous wild-type distribution rather
than those of the discrete multinomial distribution. We can achieve this by exploiting the fact that the
observed groupings are actually the result of the censored readings of the dilution experiment. Hence,
the multinomial probabilities corresponding to a certain outcome i can be rewritten as

�
Qpi D � �F.ui I �/ : : : if i D 1;
Qpi D � � ŒF .ui I �/�F.li I �/� : : : if otherwise:

(3)

where ui and li are the respective upper and lower values of the i th MIC category and F.:/ represents
the wild-type cumulative distribution function under consideration, with � its according parameters. In
addition, the unknown parameter � accounts for the fact that the true MIC distribution is a mixture of
the wild-type and non-wild-type components.

The length of the parameter vector � D .�; �/ determines the number of MIC categories the procedure
starts with. More specifically, compared to the length of �, one additional category is needed to render
an unsaturated model. The idea is now to tentatively replace some of the multinomial probabilities with
their parametric counterparts in (3). The probabilities of the remaining outcomes are left unchanged and
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are thus to be estimated similar to those of the saturated model (i.e. the observed relative frequencies).
The resulting sequence of likelihoods is specified by

lj .�; pkjC1; : : : ; pk/D

kjX
iD1

´i log Qpi C
kX

iDkjC1

´i logpi ; (4)

with j D 1; : : : ; k � 3 and where kj indicates how many of the original multinomial probabilities are
replaced: kj D j C length of �, with � D .�; �/. We can maximise this sequence to obtain several
proposal estimates for the parameters of interest. A direct result of the parametric assumption is that less
parameters are used in the construction of the likelihood when j increases. Because all, and hence the
same, data are used in all steps, we can apply the AIC criterion to select the most appropriate parameter
estimates.

It is a common practice to select the most suitable parameter estimates according to the minimum
value of AIC D �2loglikelihood + 2P , with P the number of parameters. Alternatively, one can apply
model averaging, especially in case several good fitting models are obtained with similar AIC values
[13]. The idea is to combine the obtained estimates fromM models into an averaged estimate as follows:

O�a D

MX
mD1

wm O�m;

where the wm represents the so-called Akaike weights, defined as

wm D
exp

�
�1
2
	m

�
PM
jD1 exp

�
�1
2
	j
� :

These Akaike weights use the difference between the AIC value corresponding to a specific estimate
O�m and the minimum observed AIC value: 	m D AICm � AICmin . When this difference is small, the
Akaike weight is large, and the corresponding estimate is allowed to contribute more to the averaged
estimate. On the other hand, large differences are an indication of a less suitable estimate, and hence, the
small Akaike weight reduces the influence of that estimate to the averaged one. Through the application
of these Akaike weights, estimates are based on a range of models. Therefore, we obtain a more realistic
indication of the variability because the uncertainty about the true model is accounted for.

The proposed model is based on two assumptions. First of all, we require a clear separation between
the wild-type and non-wild-type population. More specifically, applying the transformation in (3), it is
assumed that the two components of the MIC mixture distribution are relatively well separated and that
the contribution of the non-wild-type component to the first kj MIC categories is nearly negligible. Of
course, this assumption of having a pure wild-type subset becomes less tenable when j increases and
will result in an elevated AIC value. Second, we assume that the observed data arise from a true mixture
distribution in the sense that the mixing weight � does not equal 1. This second assumption follows
from a biological argument. Because of a constant positive selection, more and more bacterial isolates
are becoming less susceptible and are therefore transferred to the non-wild-type. Because data result
from random sampling, a non-negligible amount of isolates in the datasets under investigation can be
attributed to the non-wild-type class, such that � does not equal 1.

3.3. Determination of cut-off values

The primary goal of the new method is to identify the distribution of the wild-type MIC value distribu-
tion and to estimate its corresponding parameters. Once the most suitable distribution for the wild-type
component is determined, we can derive the cut-off values to distinguish between wild-type and non-
wild-type populations by the construction of confidence intervals. Following Turnidge et al. [8], we
select cut-offs at 0.1% (lower tail) and 99.9% (upper tail). The obtained values are consecutively rounded
up or down to the nearest two-fold dilution, and the resulting 99.8% CI contains MIC values of the iso-
lates that can almost surely be considered to be wild-types. Attention will only be paid to the upper limit
of the interval as this value represents the boundary with the non-wild-type isolates. While Turnidge
et al. [8] only focused on the normal distribution on the log2 scale, we can follow a similar approach for
other distributions. The idea is to consider the rounded MIC value corresponding to the 99.9% percentile
as being the upper bound of the wild-type distribution.
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An additional advantage of the newly developed multinomial-based method is that the cut-off value
(and other percentiles) can be calculated for various distributional assumptions. Instead of considering
only the most appropriate estimate based on the AIC values, we can obtain an averaged estimate across
the different distributions following the procedure of the Akaike weights. Nevertheless, the obtained cut-
off values should be interpreted with care as they are based on the extrapolated estimate of the wild-type
distribution.

4. Data analysis

In this section, we apply the introduced procedures to the three datasets presented in Section 2. Initially,
we characterised the wild-type MIC distribution by using the method proposed by Turnidge et al. [8].
We compare the resulting estimates to those obtained through the application of the multinomial-based
method in combination with the AIC criterion and the Akaike weights.

4.1. Streptococcus pneumoniae and benzylpenicillin

The upper panel of Table I shows the typical outline of the procedure presented by Turnidge et al. [8].
The initial subset contains all isolates that have an MIC value less than or equal to 0.016 mg/L (i.e. the

value corresponding to the first mode). It is observed that the absolute difference between the observed
and the estimated numbers of isolates decreases in the second model fit and consecutively deteriorates
again. Hence, the most optimal mean and standard deviation on the log2 scale were found to be �6:34
(0.01) and 0.62 (0.01), respectively. For comparison purposes, the lower panel of Table I shows an equiv-
alent procedure, replacing the Gaussian CDF in (2) with a gamma distribution and applying the model
to the data on the original MIC scale. Optimal shape and scale parameters were again identified from
the model fit on the second subset and were estimated to be 6.15 (0.07) and 0.002 (2.56e-5), respec-
tively. Note that the difference between the observed and the estimated numbers of observations in this
optimal subset is somewhat smaller compared to the output from the log-normal assumption. Never-
theless, this does not necessarily imply that a gamma distribution is more appropriate. Rather, a direct
comparison of the two distributional assumptions should be carried out. We can achieve this with our
new multinomial-based method, for which the results are summarised in Table II.

The top row corresponds to the model in which the initial four multinomial probabilities are replaced
with their parametric counterparts in (3). In this model, it is hence assumed that the non-wild-type com-
ponent of the MIC distribution is nearly zero for these initial four MIC categories. From the second row

Table I. Parameter estimates according to the method of Turnidge et al. [8], applied to the benzylpenicillin–
Streptococcus pneumoniae data.

Log-normal CDF

Number of observations Mean Standard deviation

Endpoint Observed Est. Diff. Std. Err. Est. Std.Err. Est. Std.Err.

0.016 12 063 34 746.28 22 683.28 4094.67 �5.64 0.12 0.93 0.04
0.03 16 761 17 028.09 267.09 106.60 �6.34 0.01 0.62 0.01
0.06 18 351 17 895.56 �455.44 388.78 �6.28 0.05 0.68 0.06
0.125 19 221 18 498.06 �722.94 424.57 �6.24 0.06 0.74 0.09
0.25 20 197 19 088.65 �1108.35 480.62 �6.19 0.08 0.81 0.11

Gamma CDF

Number of observations Shape Scale

Subset Observed Est. Diff. Std. Err. Est. Std.Err. Est. Std.Err.

0.016 12 063 18 951.21 6888.21 763.34 5.40 0.22 0.003 1.84e-4
0.03 16 761 16 898.48 137.48 30.68 6.15 0.07 0.002 2.56e-5
0.06 18 351 17 754.10 �596.90 424.28 5.39 1.08 0.003 5.69e-4
0.125 19 221 18 359.13 �861.87 466.14 4.73 1.20 0.003 8.66e-4
0.25 20197 18951.53 �1245.47 519.05 4.05 1.21 0.004 1.26e-3

Est., estimated; Diff., difference; Std. Err., standard error.
The row in italic corresponds to the optimal fit based on the smallest difference between the observed and estimated
number of observations.
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Table II. Parameter estimates of the multinomial-based method with a normal and gamma CDF, applied to
the benzylpenicillin–Streptococcus pneumoniae data.

Log-normal CDF Gamma CDF

Endpoint AIC � Mean (SE) SD (SE) AIC � Shape (SE) Scale (SE)

0.016 104 928.3 1.00 �5.91 (0.01) 0.84 (0.01) 104 891.5 0.76 5.12 (0.18) 0.003 (1.97e-4)
0.03 105 091.4 0.65 �6.34 (0.01) 0.66 (0.01) 104 905.6 0.64 5.99 (0.09) 0.002 (3.99e-5)
0.06 105 763.2 0.70 �6.21 (0.01) 0.79 (0.00) 106 305.9 0.70 3.93 (0.05) 0.004 (5.11e-5)
0.125 107 577.0 0.73 �6.09 (0.01) 0.95 (0.01) 110 536.5 0.73 2.47 (0.03) 0.007 (8.66e-5)
0.25 111 457.6 0.77 �5.92 (0.01) 1.21 (0.01) 119 080.6 0.76 1.36 (0.01) 0.019 (2.17e-4)

Model-averaged 0.65 �6.34 (0.01) 0.66 (0.01) 0.76 5.12 (0.18) 0.003 (1.98e-4)

SE, standard error; SD, standard deviation.
The row in italic corresponds to the optimal fit based on the smallest AIC value for fits where � < 1.

onwards, each model replaces one additional multinomial probability. As it is biologically known in this
case that the wild-type distribution is part of a mixture, the estimated � cannot be equal to one. Hence,
model 1 (which is fitted on the subset of MIC values smaller than 0.016) is discarded when determining
the most optimal fit in case of a log-normal first component. Initially, the AIC values are employed in the
selection procedure. For a log-normal wild-type component, this results into a mean and standard devia-
tion (on the log2 scale) of�6:34 (0.01) and 0.66 (0.01), respectively. In case of a gamma first component,
the most optimal shape and scale parameters are 5.12 (0.09) and 0.003 (1.97e-4), respectively. One can
find a graphical representation of the estimated densities in Figure 1(a). Comparing both models, the
gamma distribution seems to be the preferred one. Alternatively, we can obtain averaged estimates by
applying the Akaike weights. In this example, both selection procedures yield the same estimates as the
AIC values clearly show a single best model. An additional feature of the newly developed method is
that it provides an estimate for the mixing weight of the first component, which indicates the preva-
lence of wild-type isolates. In this example, it is seen that the log-normal first component receives a
weight of 0.65 (3.12e-3), while the estimated weight of the gamma first component is 0.74 (0.04). How-
ever, because data are collected from different worldwide sources, we cannot use them to infer rates of
susceptibility, and the previous results are just exemplary.

Based on the obtained estimates, we can calculate the median and 99.9% percentile of the respective
distributions. In contrast to the original distribution parameters, these additional percentiles are directly
comparable on the original scale. Therefore, the estimates resulting from both distributional assumptions
can be regarded simultaneously, and an overall averaged estimate of both percentiles can be derived. We
present the results in Table III, where the 99.9% percentile is also rounded to the nearest two-fold dilu-
tion in order to represent a possible cut-off value to distinguish between wild-type and non-wild-type
isolates.

The estimates for the median obtained from the different estimation procedures are all very simi-
lar, ranging between 0.012 and 0.014. The range of estimated 99.9% percentiles is slightly larger, that is,
from 0.037 to 0.051. Finally, it is seen that overall averaging results into the same cut-off value compared
to the method by Turnidge et al. [8], that is, 0.031 mg/L. Because the true distribution is in fact unknown,
we recommend overall averaging.

4.2. Escherichia coli and ampicillin

Because the analysis was carried out in a similar fashion, we present only the final estimates for these
data in Table III. In case of the EUCAST sample, assuming a log-normal first component resulted into
an estimated mean and standard deviation (on the log2 scale) of 1.06 (0.01) and 0.74 (0.01), respectively,
while the estimated shape and scale for the corresponding gamma distribution were equal to 5.56 (0.08)
and 0.38 (0.01), respectively. The model-averaged approach did not influence the former estimates but
had a minor impact on the shape and scale parameters. Similar results are obtained for the EFSA sample,
with an estimated mean and standard deviation (on the log2 scale) of 1.05 (0.01) and 0.69 (0.02), respec-
tively. The estimated shape and scale for the corresponding gamma distribution were equal to 5.91 (0.25)
and 0.36 (0.02), respectively. For both data sources, the AIC values indicate that the gamma assumption
is better compared to the log-normal. However, as argued previously, the overall averaged estimates are
preferred. Based on the EUCAST data, the cut-off value is estimated to be 8 mg/L, while this break-
point is only 4 mg/L for the EFSA data. A possible explanation for this discrepancy is that the two MIC
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distributions include data from different sources, geographical areas, and time periods. Regarding the
mixing weight of the first component, the previous remark still holds, and the following estimates are
again exemplary. The log-normal first component receives a weight of 0.68 (0.004) and 0.86 (0.02) for
the EUCAST and EFSA data, respectively, while the gamma first component has respectively a weight
of 0.63 (0.003) and 0.81 (0.01).

5. Simulation study

Based on the example obtained from the EUCAST website, that is, E. coli tested for susceptibility
against ampicillin, three mixtures were constructed. In each of them, the non-wild-type component
was approximated by a mixture of three log-normal densities. They differ however in the way the
wild-type component was defined. In the first mixture, the wild-type component is assumed to fol-
low a log-normal distribution, while the second mixture has a gamma first component. The third
mixture can be seen as a combination of the former two because the first component is a mixture
of the log-normal and gamma distributions from those respective mixtures. In the following expres-
sions, C1 D logN .1:87; 0:31/, C2 D logN .3:81; 0:31/ and C3 D logN .5:20; 0:24/ represent the three
components of the non-wild-type distribution. The models considered are

g1.x/D 0:63 logN .0:72; 0:5/C 0:05C1C 0:14C2C 0:18C3 (5)

g2.x/D 0:63
.5:59; 0:38/C 0:05C1C 0:14C2C 0:18C3 (6)

g3.x/D 0:63f0:5
.5:59; 0:38/C 0:5 logN .0:72; 0:5/g C 0:05C1C 0:14C2C 0:18C3 (7)

The method of Turnidge et al. [8] and the newly developed multinomial-based method are applied to a
total of 1000 samples from each aforementioned example mixture. We make two distributional assump-
tions: a log-normal first component and a gamma first component. Note that although both assumptions
are used for the method proposed by Turnidge et al. [8], no direct comparison is possible to determine
which of the parametric forms is most appropriate. On the other hand, the newly developed multinomial-
based method can exploit the benefits of the AIC criterion. Regarding the latter approach, we select
estimates based on the minimum AIC value as well as through the application of the Akaike weights.
We apply these selection procedures to estimates obtained from a single run of the multinomial-based
method (i.e. assuming either a log-normal or gamma first component) as well as to the total pool of
estimates obtained from both runs. We consecutively use the resulting density estimates for the first
component to determine the median, the 99.9% percentile and the cut-off value.

We compare the performance of the applied methods based on the estimated bias, variance and mean
squared error (MSE). We summarise the results in Tables IV, V and VI for the three mixtures, respec-
tively. For ease of representation, we use the shorthand notations from Table III. Regarding the estimates
for the median, it is observed that AIC1 and AV1 perform best in case of mixture (5), while AIC2 and
AV2 are most optimal for mixture (6). In both examples, these optimal approaches correspond to the
multinomial-based method, which assumes the correct underlying distribution. It is also apparent that
the performance of the overall averaged selection procedure (AV3) is close to optimal. A similar obser-
vation applies to mixture (7), where the true underlying distribution could not be assumed. Because of a
decreased bias, the overall-averaging approach performs best in the latter example. Regarding the other
characteristics, we observe a similar performance of the respective procedures.

In order to obtain an idea of the overall estimation quality of the new method, we calculated the
Kullback–Leibler distance as well. Denoting by h.x/ the true first component and by g.xI �/ the
obtained estimate, the KL distance corresponds to

KLD
Z
h.x/ log

h.x/

g.xI �/
dx:

We calculate the KL distance for each of the samples, and we present an averaged value in Table VII. In
all three examples, it is noted that the estimation performance increases with increasing sample sizes. In
case the true underlying distribution was used for the wild-type component, it was also found to be the
most appropriate in terms of reduction in averaged KL distance. Nevertheless, because in practice the
underlying model is unknown, most attention should be given to the overall averaged approach (AV3).
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Table VII. Kullback–Leibler distances for the three simulation mixtures under consideration.

Sample size T1 T2 AIC1 AV1 AIC2 AV2 AIC3 AV3

Mixture (5)
5000 0.014 0.024 0.001 0.002 0.081 0.081 0.013 0.006
10 000 0.013 0.024 0.001 0.001 0.081 0.081 0.006 0.003
20 000 0.013 0.024 0.000 0.000 0.081 0.081 0.002 0.001
30 000 0.013 0.024 0.000 0.000 0.081 0.081 0.001 0.001

Mixture (6)
5000 0.036 0.015 0.048 0.047 0.001 0.001 0.009 0.009
10 000 0.036 0.015 0.050 0.048 0.000 0.000 0.003 0.003
20 000 0.035 0.015 0.050 0.049 0.000 0.000 0.001 0.001
30 000 0.035 0.014 0.050 0.050 0.000 0.000 0.000 0.000

Mixture (7)
5000 0.014 0.021 0.004 0.005 0.057 0.057 0.019 0.007
10 000 0.014 0.021 0.003 0.003 0.057 0.057 0.016 0.007
20 000 0.013 0.021 0.002 0.002 0.057 0.057 0.010 0.005
30 000 0.013 0.021 0.002 0.002 0.056 0.056 0.007 0.004

The latter approach is close to optimal in each of the examples and outperforms the method of Turnidge
et al. [8]. Therefore, it seems that the new approach is a valuable alternative to the method of Turnidge
et al. [8].

6. Discussion

In this paper, we considered a new approach for estimating the wild-type component of an MIC distri-
bution. The entire MIC distribution was represented by a mixture to reflect the underlying population
heterogeneity. Adopting a local view, we estimate the first component by using maximum likelihood,
while the contribution of the presumable non-wild-type component was taken into account through the
multinomial distribution. Because the new method fits within the likelihood framework, we can com-
pare several distributional assumptions for the wild-type population based on the AIC criterion, or,
alternatively, a model-averaged approach can be followed. In this way, we can quantify the wild-type
distribution of the MIC distribution of interest when a representative sample of the desired antibiotic–
bacterium combination is available. Special attention was paid to the 99.9% percentile, which was
considered as a possible upper bound of the wild-type distribution. Rounding the obtained value to
the nearest two-fold dilution provides a cut-off value to discriminate between the wild-type and the non-
wild-type subpopulations. Especially for the latter characteristic, the model-averaged approach is thought
to be very appealing as the influence of possible miss-specified distributional assumptions is minimised.
In this regard, we believe that the new method is a valuable alternative to the approach described by
Turnidge et al. [8], where the authors make use of a non-linear least square regression approach. The
simulation study also showed promising results when comparing our method to the described competitor.

Important to note is that because data are collected across laboratories, the MIC values in the data
examples are probably sensitive to between-lab variability. In addition, there is also variability inherent
to the applied test. Both sources of variability could have an influence on the obtained estimates and are
therefore a plausible explanation for the minor discrepancies observed in the E. coli–ampicillin example
in Table III.

Although the procedure presented in this paper provides interesting information regarding the wild-
type first component of the MIC distribution, it is of even more importance to obtain a global view of
the entire MIC mixture. After all, the emergence of resistant isolates is of primary interest in the field
of antimicrobial susceptibility testing, with the monitoring of isolates exhibiting reduced susceptibility
being the major objective. While the current procedure already provides an estimate for the prevalence of
non-wild-type isolates, there is still room for improvement. More specifically, the assumption of having
a well-separated wild-type and non-wild-type component could be relaxed through the consideration of
the entire mixture in (1). Accounting for the non-wild-type component in a non-parametric way, Jaspers
et al. [14] provide an alternative estimation procedure in which the estimator developed in this paper
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is used to construct a semi-parametric mixture model that is able to estimate the MIC distribution on
the full continuous scale. We can use this mixture to determine the prevalence of non-wild-type isolates
in a more accurate way. In addition, with the full mixture approach, we can use model-based classi-
fication to attribute an isolate to the wild-type or non-wild-type component, thereby solving the issue
of extrapolation we mentioned in Section 3.3. Nevertheless, the developed procedures still require fur-
ther refinements and extensions such as the modelling of time trends and the estimation of multivariate
distributions.
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