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Abstract: Antimicrobial resistance has become one of the main public health
burdens of the last decades, and monitoring the development and spread of
non-wild-type isolates has therefore gained increased interest. Monitoring is per-
formed, based on the Minimum Inhibition Concentration (MIC) values, which
are collected through the application of dilution experiments. A semi-parametric
mixture model is presented, which is able to estimate the full continuous MIC
distribution. The model is based on an extended and censored-adjusted version
of the penalized mixture approach often used in density estimation. A data ap-
plication and simulation study are presented in which the promising behaviour
of the new method is illustrated.
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1 Introduction

Antimicrobial resistance (AMR) is the main undesirable side effect of an-
timicrobial use in both humans and animals. Due to the continuous positive
selection of resistant bacterial clones, the population structure of microbial
communities is modified. AMR has become one of the main public health
burdens of the last decades and it is therefore extremely important to
study and monitor the emergence of isolates with reduced susceptibility
against antimicrobials. This may be performed by determining the mini-
mum inhibition concentration (MIC), which is commonly measured via a
broth dilution method. A standardized amount of the isolate is exposed
to successive two-fold concentrations of the antimicrobial and the MIC is
defined as the smallest concentration of the antimicrobial substance that
inhibits the visible growth of the microorganism. Figure 1 shows an MIC
distribution determined for 5190 isolates of E. coli tested for susceptibility
against nalidixic acid. Note that, as a result of the dilution type laboratory
experiments, MIC data are censored.



2 A semi-parametric mixture model for interval-censored data

Our interest is in identifying the full continuous MIC distribution. In this
regard, mixture models are ideally suited as they offer a natural framework
for modelling unobserved population heterogeneity. In our context, a two-
component mixture

f(x) = πf1(x|θ1) + (1− π)f2(x|θ2) (1)

is assumed, in which f1 and f2 respectively represent the wild-type and
non-wild-type component of the MIC distribution and the prevalence of
wild-type isolates is denoted by π. The first component, representing the
wild-type isolates, is assumed to be of a fixed parametric form and can
hence be modelled parametrically. The second component, representing the
non-wild-type isolates, is often multi-modal, and in this case, it is itself a
mixture of different non-wild-type subpopulations. In order to impose as
little constraints as possible, the second component will be left completely
unspecified and a non-parametric estimate will be considered.

2 The semi-parametric mixture model

2.1 Estimation of the first component

Denoting by Yi the number of times MIC value i was observed over the
n trials, the observed MIC groupings can be seen as possible outcomes of
Y = (Y1, . . . , Yk) ∼ Mult(n,p), where k represents the number of different
MIC categories and p = (p1, . . . , pk) such that p1 + . . .+ pk = 1. The max-
imum likelihood estimates for the multinomial probabilities pi are just the
observed relative frequencies Yi

n . Nevertheless, the main interest remains in
identifying the most suited parameters of the continuous wild-type distri-
bution rather than those of the discrete multinomial distribution. This can
be achieved by exploiting the fact that the observed groupings are actu-
ally the result of the censored readings of the dilution experiment. Hence
the multinomial probabilities corresponding to a certain outcome i can be
rewritten as {

p̃i = π ∗ F (ui; θ) if i = 1,

p̃i = π ∗ [F (ui; θ)− F (li; θ)] otherwise,
(2)

where ui and li are the respective upper and lower values of the ith MIC
category and F (.) represents the cumulative distribution function under
consideration, with θ its corresponding parameters. In addition, the un-
known parameter π accounts for the fact that the true MIC distribution is
a mixture of the wild-type and non-wild-type component.
The idea is to replace an increasing number of the multinomial probabilities
with their parametric counterparts in (2). The probabilities of the remain-
ing outcomes are left unchanged and are thus to be estimated similar to
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those of the saturated model (i.e. the observed relative frequencies). The
resulting sequence of likelihoods is specified by

lj(p̃1, . . . , p̃kj , pkj+1, . . . , pk) =

kj∑
i=1

yi log p̃i +

k∑
i=kj+1

yi log pi, (3)

with j = 1, . . . , k − 2 and where kj indicates how many of the original
multinomial probabilities are replaced: kj = j + length of φ, with φ =
(θ, π). This sequence can be maximized to obtain several proposal estimates
for the parameters of interest. Note that as a result of the parametric
assumption, less parameters are used in the construction of the likelihood
when j increases. The AIC criterion can be applied to select the most
appropriate parameter estimates or averaged estimates can be considered
using the Akaike weights.

2.2 Estimation of the second component

The second component will be estimated using a censored-adjusted version
of the penalized mixture approach by Schellhase and Kauermann (2012).
Let X denote the univariate random variable of interest (i.e. the MIC
value), with true density function f . The main idea is to approximate f as
a mixture of densities:

fK(x) =

K∑
k=−K

ckφk(x), (4)

where the φk(x) are the basis densities and the ck are called the weights. In
order to avoid constrained maximization, the weights are reparametrized:

ck(β) =
exp(βk)∑K

k=−K exp(βk)
,

with β0 ≡ 0 for identifiability. The basis densities are assumed to be Gaus-
sian density functions, which are located at a fixed number of knots, cor-
responding to their respective means.
The number of knots plays an important role in terms of bias and variance.
A compromise between smoothness and unbiasedness is obtained through
the approach of Eilers and Marx(1996): a large number of basis functions is
considered, but the log-likelihood is penalized for overfitting via a penalty
term based on the finite differences of adjacent coefficients.
Assuming an independent sample xi, i = 1, . . . , n, the final log-likelihood
to be optimized can be written as

lp(β, λ) =

n∑
i=1

log

K∑
k=−K

ckφk(xi)−
1

2
λβTDmβ,
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where Dm is the penalty matrix and λ is the smoothing parameter. In
order to obtain estimates for the β parameters, Newton-Raphson scoring is
performed, while the penalty parameter λ is updated using an estimating
equation. For further details, see Schellhase and Kauermann (2012).
In order to take the censoring into account, the original basis density func-
tions are replaced by their corresponding distribution functions:

l(β) =

n∑
i=1

log

K∑
k=−K

[ckΦk(xi)I(xi ∈MICmin)+

ck{Φk(xi)− Φk(xi − 1)}I(xi /∈MICmin)] .

Penalization and optimization of the likelihood are done similar to the
original procedure.

2.3 The semi-parametric mixture model

The idea is to fix f1 to the estimate obtained in the initial phase, using the
method in Section 2.1. Information on the second component is then in-
troduced through the censored-adjusted penalized mixture approach. More
specifically, the estimator for the density of the MIC values is based on (4),
to which one additional component is added:

fK(x) = πf1(x; θ1) + (1− π)

K∑
k=−K

ckφk(x) =

K∑
k=−(K+1)

c̃kφ̃k(x). (5)

The additional component represents the wild-type component and will
not be penalized as it is assumed to be fixed. Regarding the placement of
the knots for the second component, recall that the model based on the
likelihood in (3) is fitted to increasing subsets of the data. The fit with the
smallest AIC value identifies the subset of the data that most likely belongs
to the wild type component. In addition, due to the interval censoring, the
highest MIC value in this subset identifies a possible lower bound for the
MIC values of the non-wild-type isolates and will hence be used as the
first knot of the basis. Finally, the estimator in (5) is used to construct
the penalized likelihood. The adjustment for censored observations and the
optimization occur in full similarity as above.

3 Application to real data

The two-stage procedure described in Section 2 is applied to MIC data
obtained from the EUCAST website. The data concern the susceptibility of
E. coli against nalidixic acid. Both a log-normal and a gamma distribution
were assumed for the first component. The optimal mean and standard



Jaspers et al. 5

deviation for the former were (on the log2-scale) 1.04 (se = 0.01) and 0.58
(se = 0.01), respectively. In case of a gamma first component, the shape and
scale were 8.32 ( se = 0.31) and 0.25 (se = 0.01), respectively. Figure 1 shows
the result of the semi-parametric mixture model. The fixed gamma first
component results into the lowest AIC and the estimated mixing weight
(π̂) is 0.87 (se = 0.01).
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FIGURE 1. Barplot and estimates of the distribution of Minimum Inhibitory
Concentrations (MIC) in E. coli isolates tested for susceptibility against nalidixic
acid - source: EUCAST website.

4 Simulation study

Samples are taken from a mixture distribution with two main components.
The wild-type component is assumed to be log-normally distributed with
mean 2 and standard deviation 0.8. The non-wild-type component is a
50:50 mixture of two log-normal densities with (on the log2-scale) means
equal to 4.5 and 7.5, respectively, and standard deviations equal to 0.7
and 0.6, respectively. The prevalence of wild-type isolates is taken to be
0.6. The multinomial based method is compared to the semi-parametric
mixture model, assuming both a log-normal and gamma first component.
The performance of the methods are compared based on the MSE values
for the estimate of the prevalence of wild-type isolates. In addition, the
Kullback-Leibler distance indicates the performance of the semi-parametric
mixture model when estimating the entire mixture density. The considered
sample sizes are 500, 1000 and 5000.
Since in real-life applications, the true underlying distribution of the first
component is unknown, the averaged estimates of the two approaches should
be regarded. From Table 1, it is seen that the semi-parametric mixture
model outperforms the multinomial based method when estimating the
prevalence of wild-type isolates. This is most pronounced in case of the
larger sample size. The KL distance also indicates a promising behaviour
of the semi-parametric mixture model.
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TABLE 1. Summary of the simulation study. Presented are the averaged Kull-
back-Leibler distance (KL) and the MSE values when estimating π using
the multinomial-based method (MSE1) and the semi-parametric-mixture model
(MSE2), when assuming a log-normal and gamma first component, as well as for
the most optimal fit using AIC.

Sample size Assumed f1 KL (s.e.) MSE1 MSE2

500 Log-normal 0.022 (0.008) 0.0027 0.0020
Gamma 0.023 (0.011) 0.0021 0.0022
AIC 0.022 (0.008) 0.0028 0.0023
Averaged - 0.0017 0.0015

1000 Log-normal 0.012 (0.005) 0.0014 0.0010
Gamma 0.015 (0.006) 0.0020 0.0024
AIC 0.013 (0.005) 0.0016 0.0013
Averaged - 0.0010 0.0009

5000 Log-normal 0.004 (0.001) 0.0002 0.0002
Gamma 0.009 (0.002) 0.0075 0.0094
AIC 0.004 (0.001) 0.0018 0.0003
Averaged - 0.0014 0.0003

5 Discussion

A two-stage semi-parametric mixture model to estimate a continuous MIC
distribution from censored observations was presented. In addition to an
estimate for the prevalence of wild-type isolates, the model also provides an
estimate for the non-wild-type distribution. Regarding the susceptibility of
E. coli isolates against nalidixic acid, the prevalence of wild-type isolates
was estimated to be 0.87 (0.01). Finally, a simulation study indicated a
promising behaviour of the new method. Our ongoing research includes
the simultaneous estimation of the first and second component.
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