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Abstract: Quantiles are of interest in food safety data dealing with a limit of
detection. The limit of detection introduces a lot of uncertainty in the left tail
of the underlying distribution, making quantile estimation for this part of the
distribution difficult. Therefore we fit a model to the data and derive the model-
based estimate for the quantile. Since the true distribution is unknown, model
averaging is used to combine information from a set of models. In this paper we
discuss two approaches to use model averaging for quantiles. The methods are
applied to a data example and compared in a simulation study. The effect of an
increasing percentage of censoring on the estimates is explored.
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1 Introduction

We are interested in the lower quantiles of the distribution: e.g. which
concentration is the cut-off for the 10% lowest concentrations? The most
common estimate is the nonparametric or empirical quantile. However, cen-
soring occurs in particular in the left tail of the distribution and introduces
a lot of uncertainty about the quantiles. Therefore we fit a model to the
data and derive the model-based estimate for the quantile. First we fit
several parametric models to the data. All models are related to the log-
normal distribution, a distribution that is regularly used in food safety
data. Next we consider a semi-nonparametric family of distributions that
consists of extensions of the log-normal distribution. Gallant and Nychka
(1987) and Fenton and Gallant (1996) studied this family of distributions.
Nysen, Aerts and Faes (2012) based a goodness-of-fit test for censored data
on this semi-nonparametric family of distributions.
We can select the best model from the set of parametric (MP ) and semi-
nonparametric models (MS), based on a model selection criterion, e.g.
Akaike’s information criterion (AIC). This model is considered as the best
approximating model and the cumulative distribution is used to estimate
the quantile. However, if we would have a second and similar data set, it
is possible that a different model is selected by the model selection cri-
terion. This might result in a quite different estimate of the quantile. By
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selecting one single model, we ignore the model uncertainty. The idea of
model averaging is to start from a large set of plausible models and com-
bine information from all models. In Section 2 we discuss two approaches
to apply model averaging for quantiles. The approaches are applied to a
data example in Section 3 and compared in a simulation study in Section 4.
Although we focus on left censored data in this paper, the estimation can
deal with other types of censoring, like right and interval censoring.

2 Model averaging of quantiles: two approaches

Let Mi, i = 1 . . . ,K be a rich set of candidate models, with Fi the corre-
sponding cumulative distribution function. The natural parameters θi are
estimated by maximum likelihood theory and their variance-covariance ma-
trix is denoted by Var(θ̂i). Suppose we want to estimate the p-quantile of
the data ξp, where p is a fixed number between 0 and 1. There are several
approaches in model averaging to obtain an estimate for the quantiles.
In the first approach, the quantile is estimated for each candidate model
and the model averaged estimate is a weighted average of the K estimates.
Based on model Mi, the quantile is obtained by ξp,i = F−1

i (p; θi). The
variance of the quantile can be approximated by the delta method:

Var(ξ̂p,i) ≈ ∇F−1
i (p; θi)

T Var(θ̂i)∇F−1
i (p; θi). (1)

In (1) the gradient ∇F−1
i (p; θi) is with respect to θi and can be estimated

by ∇F−1
i (p; θ̂i).

Burnham and Anderson (1998) calculate the weight for each model, based
on the difference of its AIC with the smallest AIC of all candidate models:

wi =
exp

(
− 1

2∆i

)∑K
j=1 exp

(
− 1

2∆j

) ,
where ∆i = AICi −AICmin.
The model averaged value of the quantile ξp,MA1 is given by the weighted
average of the estimates of all candidate models:

ξ̂p,MA1 =

K∑
i=1

wiξ̂p,i (2)

with estimated variance

V̂ar(ξ̂p,MA1) =

[
K∑
i=1

wi

√
V̂ar(ξ̂i) +

(
ξ̂i − ξ̂p,MA1

)2]2
.

The variance estimator is the sum of two components. The first component
is the conditional variance, given model Mi. The second component reflects
the variation in the estimates across the K models.
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A second approach applies model averaging at a different level. The dis-
tribution of each candidate model is estimated and combined in a model
averaged cumulative distribution function. The quantile of the combined
distribution is the model averaged quantile estimate. Let x be a real num-
ber in the domain of the candidate distribution function. The averaged
distribution function is given by

F̂MA(x; θ) =

K∑
i=1

wiF̂i(x; θi)

with θ the vector of the natural parameters of all candidate models. The
estimated variance of F̂MA(x; θ) is

V̂ar(F̂MA(x)) =

[
K∑
i=1

wi

√
V̂ar(F̂i(x; θi)) +

(
F̂i(x; θi)− F̂MA(x; θ)

)2]2
.

(3)
The quantile can be estimated by

ξ̂p,MA2 = F−1
MA(p; θ). (4)

Based on the implicit function theorem, the variance of ξ̂p,MA2 can be
approximated by

Var(ξ̂p,MA2) =
Var(F̂MA(ξ̂p,MA2))

f̂2MA(ξ)
,

where Var(F̂MA(ξ̂p,MA2)) can be estimated by (3). Because the true value

ξ is unknown, we need to estimate f̂MA(ξ) by f̂MA(ξ̂p,MA2).
In general, the estimates (2) and (4) result in different estimates, because
quantile estimation is not a linear functional. When estimating for instance
the cumulative distribution function, the two approaches would be equiv-
alent. We compare the performance of the two approaches in a simulation
study, but first we illustrate the approaches in a real data analysis. We will
consider a set of parametric and semi-nonparametric models MP ∪MS .

3 Data analysis

The motivating data for this study, is a sample of measurements of cad-
mium level. The data set consists of almost 100 observations, but 37% of
the measurements are censored by the limit of detection (LOD). The LODs
are small and lie in between 0.001 and 0.01. A visual representation of the
data is given in Figure 1, where a kernel density of the logarithm of the
concentrations is shown.
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FIGURE 1. Cadmium data. Kernel density function of the concentrations where
LODs are replaced by LOD/2 (solid line), transformed to the log scale. Normal
fit (dashed line) based on likelihood for censored data.

Figure 1 shows that the (log-)normal distribution is a reasonable fit, but
other distribution might fit better. Table 1 lists the AIC for several para-
metric models and for the semiparametric extensions of the log-normal dis-
tribution. The best global fit is given by the log-skew-t distribution and the
distribution with two extra parameters from the semi-nonparametric fam-
ily of distributions. For each model, the 10% and 25% quantiles are given
in Table 1. For comparison, we also computed the nonparametric quantile
estimates, where we substituted the LOD in the data with LOD/2 to cope
with the left censoring. We see that the parametric models have smaller
estimates for the quantiles. This is due to the left censoring, because the
parametric models put weight on the left of the distribution, while the raw
data only provide information on the LOD.
The quantile estimates based on the two model averaging approaches from
Section 2 are close together. If we average the distribution function before
computing the quantile (approach 2), the 10% quantile is slightly smaller.
The estimated standard error for the estimate of the second approach is
also smaller.

4 Simulation study

The performance of both methods is demonstrated in a simulation study.
Data are simulated from 3 kinds of distributions, i.e. the log-normal dis-
tribution, the gamma distribution with same mean and variance as the
log-normal distribution, and a mixture of 2 log-normal distributions. For
each distribution, 500 samples are drawn. The censoring scheme is defined
by limits of detection that correspond to five quantiles (1%, 5%, 10%, 20%,
25%) of the original log-normal distribution, resulting in 12% censoring on
average when sampling from the log-normal distribution.
On each sample we fit 13 models: seven parametric (log-normal, log-skew-
normal, log-t, log-skew-t, gamma, Weibull), denoted by MP , and seven
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TABLE 1. Cadmium data. AIC and model averaging weights. For each parametric
and semi-nonparametric model, the quantile was estimated (standard error).

AIC weight ξ̂0.1 ξ̂0.25

Non-parametric 0.00250 0.00500

Log-normal -135.7 0.000 0.00110 (0.00036) 0.00310 (0.00076)
Log-skew-n -149.3 0.023 0.00045 (0.00026) 0.00226 (0.00086)
Log-t -133.4 0.000 0.00111 (0.00036) 0.00314 (0.00078)
Log-skew-t -154.2 0.262 0.00000 (0.00000) 0.00109 (0.00122)
Weibull -149.1 0.021 0.00061 (0.00019) 0.00291 (0.00058)
Gamma -151.8 0.081 0.00029 (0.00021) 0.00222 (0.00093)
GenGam -150.0 0.033 0.00023 (0.00021) 0.00208 (0.00097)

SemiNP1 -151.5 0.068 0.00060 (0.00013) 0.00128 (0.00028)
SemiNP2 -154.3 0.275 0.00019 (0.00006) 0.00137 (0.00133)
SemiNP3 -152.6 0.120 0.00022 (0.00054) 0.00149 (0.00118)
SemiNP4 -150.7 0.047 0.00023 (0.00111) 0.00156 (0.00109)
SemiNP5 -148.8 0.018 0.00021 (0.00372) 0.00160 (0.00105)
SemiNP6 -150.3 0.038 0.00025 (0.00293) 0.00152 (0.00122)
SemiNP7 -148.3 0.014 0.00015 (0.00581) 0.00154 (0.00119)

MP ∪MS 1 ∗ 0.00020 (0.00052) 0.00147 (0.00120)
MP ∪MS 2 ∗∗ 0.00015 (0.00050) 0.00148 (0.00107)
∗ quantiles are estimated for each distribution and then averaged (MA1)
∗∗ cumulative distribution function is averaged (MA2)

extensions of the log-normal defined by the semi-nonparametric family of
distributions, denoted byMS . The generalized gamma distribution was not
included in the simulation study due to convergence issues. We provide here
the preliminary results for data simulated from the log-normal distribution,
estimating the 1% quantile. Table 2 shows the variance and the squared
bias, together with the sign of the bias. The mean squared error (mse) is
obtained by adding these two quantities.
A first observation is that the mean squared error is larger when the data
are censored, which is to be expected because censoring introduces more
uncertainty in the data and the estimation process. From the family of
parametric models, the log-t and the true log-normal distribution provide
the best fits. In the semi-nonparametric family of distributions, the models
perform worse, because more parameters are added. Indeed, since we simu-
late from the log-normal distribution, the extra parameters are redundant
to describe the data. If the data are not censored, there is no difference be-
tween the two modeling approaches, regarding the mean squared error. On
the contrary, the bias is smaller for the second approach, while the variance
is smaller for the first approach. In the censoring case, the first approach
does result in a smaller mean squared error. The variance is higher in the
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model averaging compared to the single-model inference, because the model
selection uncertainty is now incorporated.
In future research we will compare the model averaging approaches for
the other distributions, sample sizes and different quantiles. We will also
consider a different family of distributions, e.g. restricted to the parametric
models MP or to the semi-nonparametric family of distributions MS .
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TABLE 2. Simulation study. Data simulated from log-normal distribution with
sample size 100. (×10−5)

Censoring No Yes

bias2 (sign) var mse bias2 (sign) var mse

Log-normal 0.258 (+) 3.700 3.957 0.283 (+) 4.381 4.664

Log-skew-n 0.338 (+) 7.184 7.522 2.266 (+) 10.909 13.175

Log-t 0.000 (+) 3.467 3.467 0.051 (−) 4.482 4.533

Log-skew-t 0.006 (+) 7.179 7.185 0.357 (−) 15.422 15.780

Weibull 40.546 (−) 0.252 40.799 43.228 (−) 0.211 43.439

Gamma 39.419 (−) 2.136 41.555 45.539 (−) 1.064 46.603

SemiNP1 0.494 (+) 6.076 6.569 0.020 (−) 12.088 12.108

SemiNP2 1.208 (+) 6.999 8.207 0.100 (+) 16.869 16.969

SemiNP3 1.467 (+) 8.543 10.010 0.601 (+) 19.938 20.540

SemiNP4 1.641 (+) 8.811 10.452 0.944 (+) 22.621 23.565

SemiNP5 1.673 (+) 9.383 11.056 1.394 (+) 23.612 25.006

SemiNP6 1.880 (+) 9.594 11.474 2.222 (+) 24.477 26.699

SemiNP7 2.053 (+) 10.417 12.471 3.280 (+) 25.546 28.826

MP ∪MS 1 ∗ 0.351 (+) 6.018 6.369 0.056 (+) 10.916 10.973

MP ∪MS 2 ∗∗ 0.248 (+) 6.121 6.369 0.199 (−) 13.016 13.215
∗ quantiles are estimated for each distribution and then averaged (MA1)
∗∗ cumulative distribution function is averaged (MA2)


