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SUMMARY

In clinical trials, it is frequently of interest to estimate the time between the onset of two events (e.g.
duration of response in oncology). Here, we consider the case where subjects are assessed at fixed visits
but the initial event and the terminating event occur in between visits. This type of data, called doubly
interval censored, is often analyzed with standard survival techniques, assuming either that the survival
time (between initial and terminating event) is known exactly or is single interval censored. We introduce
a motivating dataset in which the interest is to evaluate the impact of the treatment on the duration of
response endpoint. We review the existing approaches and discuss their limitations with respect to the
characteristics of our motivating dataset. Furthermore, we propose a stochastic EM algorithm that over-
comes the problems in the existing approaches. We show by simulations the finite sample properties of
our approach.

Keywords: Cox proportional hazard; Doubly interval censored; Stochastic EM algorithm.

1. INTRODUCTION

In most survival studies, the time of origin of the survival time is known or assumed to be known. However,
it also occurs that the start of the period at risk is only known to lie in an interval. In clinical trials, the
origin of the survival is often the time of randomization (and the start of treatment) but it could also
be the time that a patient enters a particular state. An example of the latter case occurs in HIV research
where the onset of HIV can only be established at a doctor’s visit. The state can only be known to happen
between visits and then the time to HIV infection is called interval censored. In addition, since most often
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StEM algorithm for DI-censored data 767

the end of the period at risk is right censored or interval censored, we obtain doubly right (DR)-censored
or doubly interval (DI)-censored survival times. Dedicated survival techniques are required to analyze this
kind of data.

In this paper, we focus on techniques that evaluate the impact of covariates on the survival distribu-
tion of the DI survival time through a semi-parametric Cox proportional hazard (PH) model. This paper
is motivated by the analysis of duration of response in a clinical trial in first-line metastatic breast can-
cer. Current methods are reviewed in the context of our motivating example. This dataset exhibits the
following complexities. Firstly, both the time to initial event (response) and the time to terminating event
(progression) are interval censored. Secondly, the discretization of the data (i.e. to assign the boundaries
of the interval to a grid of values that is fixed and common to all subjects) is not a good option because
of the irregular interval width (depending on whether the progression happens while taking the drug or
during the follow-up period). We shall also discuss the ability of the existing methods to handle a data
characteristic coined as “overlapping” that occurs when the upper bound of the observed interval of U
exceeds the lower bound of the observed interval of V . This characteristic is not present in our motivat-
ing dataset but occurs in other applications we encountered. More generally, we shall review the existing
methods in the context of controlled clinical trials (as our motivating example) for which the methods
are to be specified prior to the analysis and should not depend on data-driven quantities (such as opti-
mal bandwidth, a smoothing parameter, or predefined mass points). These methods might be problematic
since the quantity may not be fixed in advance and different choices will lead to different results. Further,
in the context of clinical trials, Bayesian methods may not be preferred either if they rely on fully para-
metric models or need informative priors. Therefore, we propose in this paper a semi-parametric approach
that we believe is particularly suitable for the analysis of controlled clinical trials. More generally, we
argue that our approach is particularly appealing when statistical methods need to be fully described in
advance.

We use the following notation: Let U be the time to initial event at which the subject starts to be
at risk for a condition and V be the time to terminating event at which the subject experiences the
condition.

Our interest is in estimating the impact of covariates on the distribution of the survival time T = V − U ,
denoted ST (t |X)= 1 − FT (t |X)= S0,T (t)exp(βT

T X). We refer to S0,T (t)= ST (t |X = 0) as the baseline dis-
tribution, and λ0(t) denotes the corresponding baseline hazard with�0(t) the cumulative hazard (�0(t)=∫ t

0 λ0(x)dx). The density of T is denoted by fT . The covariates are denoted as X and their parameters as
βT , abbreviated as β. Similarly, SU (u|X)= 1 − FU (u|X) denotes the distribution of U and fU its density
and depends on covariates in a PH manner.

Both U and V are assumed to be interval censored, the observed data consist of an upper and lower
bound for both variables denoted by [Ul,Ur ] for U and [Vl , Vr ] for V with realizations of these inter-
vals denoted by [uli , uri ] and [vli , vri ], respectively, and the corresponding covariates Xi for subject
i (i = 1, . . . , n). In datasets where no overlapping occurs (as in our motivating example), we have the fol-
lowing relationship: uli � uri � vli � vri for i = 1, . . . , n. Overlapping occurs when uri > vli . While our
focus is on the estimation of β in the presence of DI survival times, right-censored V data (DR survival
times) are allowed by setting the upper bound of the interval for V to ∞. Further, we assume here indepen-
dent censoring (i.e. censoring that implies that both U and T are independent of the monitoring times from
which Ul ,Ur , Vl , and Vr are obtained; see Oller and others (2004) for details) and independence between
U and T , which are classical assumptions for the treatment of DI survival times.

We first review existing methods and describe their limitations with respect to the characteristics of our
dataset detailed above. In Section 3, we describe a novel approach to estimate the impact of a covariate
in the presence of DI data. Section 4 is devoted to a limited simulation study evaluating our method in
comparison with some existing methods. The analysis on the motivating dataset is given in Section 5. We
end the paper with a discussion.
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768 D. DEJARDIN AND E. LESAFFRE

2. EXISTING APPROACHES

In the presence of DI or DR survival times, one may wish to focus only on the distribution of T ,
and ignore the distribution of U . Doing so leads to single interval-censored or right-censored data that
can be analyzed with standard statistical methods and software. For DR data, Law and Brookmeyer
(1992) have investigated the performance of the midpoint imputation (see Appendix A of supplemen-
tary material available at Biostatistics online for definition) for DR data in different contexts (estimation
of the distribution, estimation of the hazard ratio). They showed that the bias increases and the cov-
erage probability of the confidence interval decreases as the width of the interval of U increases. In
Appendix A of supplementary material available at Biostatistics online, we define the different approaches
that ignore the distribution of U and extend the simulations from Law and Brookmeyer (1992) to DI
data. Therein, we also show the impact of misspecifying the distribution of U using a fully parametric
approach.

De Gruttola and Lagakos (1989) have introduced a method for estimating the distribution in the pres-
ence of DI data. Their method is based on discretizing the distribution based on prespecified mass points.
Kim and others (1993) used the same idea to propose an extension of the Cox PH model to DI data. These
authors pointed out that identifiability problems may occur, especially when two points are jointly included
or excluded from all intervals or when some observed intervals do not contain any mass points. So, it is
difficult to specify the mass points in advance without reference to the actual observed data.

Sun and others (1999, 2004) proposed to estimate the regression coefficients in FT by integrating out
U (utilizing the fact that FU can be estimated from the data, e.g. using the Turnbull estimator (Turnbull,
1976)). Goggins and others (1999) described a Monte-Carlo EM algorithm for a PH model for T . Pan
(2001) proposed a multiple imputation approach. However, these approaches are restricted to DR data and
are therefore not suitable for our motivating dataset.

Flexible Bayesian parametric approaches have been proposed by Komárek and Lesaffre (2008) and
Jara and others (2010). Both approaches allow dependence between U and T , but have to a large extent
a parametric nature for which non-informative priors may be difficult to derive formally. Therefore, we
argue that these two methods are likely to be more suitable in an explorative analysis rather than to be used
in a formal statistical analysis of a randomized clinical trial.

We now propose a novel computational approach to analyze semi-parametrically the impact of covari-
ates on the distribution of T in the presence of DI survival times (i.e. it allows interval-censored V ).
Our method does not rely on prespecified mass points and accounts for the impact of covariates
on U .

3. STOCHASTIC EM ALGORITHM TO ESTIMATE THE DISTRIBUTION OF T

3.1 Concept

The likelihood for DI data can be written as

L(ψ, θ |ui ∈ [uli , uri ], vi ∈ [vli , vri ], i = 1, . . . , n)

=
n∏

i=1

∫ uri

uli

∫ vri

vli

fU (u|ψ, X) fT (v − u|θ, X) du dv, (3.1)

where ψ and θ are the parameters of the unknown densities fU and fT . We are interested in the estimation
of θ with minimal assumptions (ψ are treated as nuisance parameters and are omitted in the notation in
the remainder of the paper). Without assumptions on fT , the integral in (3.1) cannot be computed.
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StEM algorithm for DI-censored data 769

When U is observed and T right censored, the semi-parametric full likelihood underlying the Cox PH
model can be written as (see Klein and Moeschberger, 2003)

L(θ |yi , δi , i = 1, . . . , n)=
n∏

i=1

(exp(βT Xi )λ(yi ))
δi exp(−�(yi ) exp(βT Xi )), (3.2)

where yi , δi is the right-censored datum, and δi = 1 is the event indicator (vri <∞) and 0 other-
wise. No assumptions on fT are required when using the usual semi-parametric Cox PH model. Here
θ = {β, λ1, . . . , λd}, where λ1, . . . , λd are hazard parameters, d is the number of events and λ(yi )= λi

when yi is the event time and 0 otherwise, �(yi )= ∑
j :y j �yi

λ j . The β parameters are estimated by the
partial likelihood technique and the hazard parameters by the Breslow estimator. However, yi is not exactly
observed but is either interval censored (i.e. yi ∈ [vli − ui , vri − ui ]) when δi = 1 or right censored (i.e
yi = vli − ui ) when δi = 0, where ui is also not exactly observed but lies in [uli , uri ].

The proposed method consists in assuming that U and T are unobserved (but known to lie in observed
intervals), and uses a missing data technique, namely, the EM algorithm Dempster and others (1977), to
derive the parameters of interest based on the right-censored data likelihood.

In the EM algorithm, the E-step computes the expectation of the log likelihood with respect to the
missing values (here ui and y j ), given the observed data and the parameters at previous iteration. We
denote the expected log likelihood as Qk+1(θ |θ k) at iteration k + 1 with θ k the parameters at iteration k.

Qk+1(θ |θ k)= Eui ,∀i∈N
y j ,∀ j∈D

[log L(θ |yi , δi ,∀i ∈ N )

|Xi , ui ∈ [uli , uri ]∀i ∈ N , y j ∈ [vl j − u j , vr j − u j ]∀ j ∈ D, ys = vls − us∀s ∈ C; θ k],

where N = {1, . . . , n}, D is the subset of N representing the observations for which V is interval censored,
and C is the subset of N for which V is right censored (N = D ∪ C). For simplicity of the notation, we
denote the observed data as

D = {ui ∈ [uli , uri ]∀i ∈ N , y j ∈ [vl j − u j , vr j − u j ]∀ j ∈ D, ys = vls − us∀s ∈ C}.
From Appendix A, we see that Qk+1(θ |θ k) is constructed from the following distributions:

FU (ui |Xi , ui ∈ [uli , uri ], vi ∈ [vli , vri ], θ
k), (3.3)

for i ∈ N and, for j ∈ D (when δ j = 1), FT (y j |X j , u j , y j ∈ [vl j − u j , vr j − u j ], θ k).
Equation (3.3) represents the conditional distribution of U given the data (abbreviated as FU (u|D)). We

note that this expression depends on the observed interval of V and on θ k . We now motivate this dependence
by a trivial example. Suppose that U and T are discrete random variables such that only two values ũ1 and
ũ2 of U can fall in the observed interval [ul, ur ]. Also, suppose that FT is degenerate and can take only one
value t̃ . We observe the interval [vl , vr ] for V such that ũ1 + t̃ ∈ [vl, vr ] and ũ2 + t̃ /∈ [vl, vr ]. The observed
interval of V and the distribution of T allow in this simple case to exclude the value ũ2 from the possible
values of U given the data and give information on FU (u|D). Hence, FU (u|D) depends on the observed
interval for V and θ k . The derivation of FU (u|D) as a function of the marginal distribution of FU and FT

is given in Appendix A. This derivation provides a more mathematical justification of the dependence of
FU (u|D) on [vli , vri ] and θ k .

The M-step subsequently maximizes Qk+1 with respect to θ . However, no closed form for Qk+1 can be
derived and thus we cannot maximize Qk+1 easily in the M-step. Therefore, we propose instead to use the
stochastic EM (StEM) algorithm introduced by Celeux and Diebolt (1985). The details of the algorithm
are given below.
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770 D. DEJARDIN AND E. LESAFFRE

3.2 Implementation of the StEM approach

We now describe the proposed StEM algorithm for DI-censored data. For simplicity of the notation, we
will consider the case of a single covariate. Extension to multiple covariates is straightforward.

Initialization:

(1) Obtain the initial estimate Ŝ0
0,T and β̂0 from midpoint imputation.

StE-step 1 (Stochastic E-step):

(2) Generate at iteration k + 1:

ūk+1
1q , . . . , ūk+1

nq , q = 1, . . . ,m,

from

F̂U (ui |Xi , ui ∈ [uli , uri ], vi ∈ [vli , vri ], (Ŝ
k
0,T )

exp(β̂k Xi )), i = 1, . . . , n. (3.4)

Appendix B describes how (3.4) can be obtained as a piecewise quadratic expression but monotone
increasing that can therefore be easily inverted to generate ūk+1

1q , . . . , ūk+1
nq .

StE-step 2:

(3) Generate at iteration k + 1:

ȳk+1
jq ∀ j ∈ D, q = 1, . . . ,m,

from

{Ŝk
0,T (y j | ūk+1

jq , y j ∈ [vl j − ūk+1
jq , vr j − ūk+1

jq ])}exp(β̂k Xi ) ∀ j ∈ D, (3.5)

where (3.5) is obtained by (Ŝk
0,T (vl j − ūk+1

jq )− Ŝk
0,T (y j ))/(Ŝk

0,T (vl j − ūk+1
jq )− Ŝk

0,T (vr j − ūk+1
jq )),

with Ŝk
0,T estimated using the Breslow estimator. Since the resulting estimator is piecewise con-

stant, the ȳk+1
jq j ∈ D are sampled from a finite set of values. Recall that, for s ∈ C , ys are fixed to

ys = vls − us .

M-step:

(4) Compute

�̂k+1
0,q (t) and β̂k+1

q ,

from ȳk+1
jq ∀ j ∈ D and ȳsq = vls − ūk+1

sq ∀s ∈ C, q = 1, . . . ,m. Since ȳk+1
1q , . . . , ȳk+1

nq represent
right-censored survival times, we use partial likelihood and the Breslow estimator of the baseline
hazard to obtain �̂k+1

0,q (t) and β̂k+1
q .

(5) The (k + 1)th intermediate estimates will be

β̂k+1 = 1/m
m∑

q=1

β̂k+1
q , �̂k+1

0 (t)= 1/m
m∑

q=1

�̂k+1
0,q (t), and Ŝk+1

0,T (t)= exp(�̂k+1
0 (t)).

As shown in Nielsen (2000), the StEM algorithm leads to a Markov chain β̂k+1
q (q = 1, . . . ,m) and a

Markov chain composed of �̂k+1
0,q (t) (q = 1, . . . ,m) representing the distribution of β̂ and �̂0 at time t .

Convergence is checked, e.g. by comparing the running mean of the StEM iterations to the current estimate
through the mean integrated squared error. Further, Nielsen (2000) establishes the asymptotic normality
of the StEM estimates at convergence (under some regularity conditions).
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StEM algorithm for DI-censored data 771

In Appendix C of supplementary material available at Biostatistics online, we show that the choice of
m is not critical if larger than 50.

3.3 Calculation of the variance of the parameters β

The variance of the estimated parameters obtained by the EM algorithm has to account for the sam-
pling variability but also for the extra uncertainty due the missing data. Louis (1982) provided the the-
ory to estimate this variance. His proposal is to derive an expression for the information matrix of the
estimated parameters based on the observed data (denoted IO ), which is derived from the information
matrix of the estimated parameters for the right-censored data IT and the score vector of the right-censored
data likelihood. Our estimator extends the estimator given by Goggins and others (1999) for DR data to
DI data.

Louis’ formula for IO is described in the setting where the asymptotic maximum likelihood theory
applies (in particular, it requires a finite number of parameters). In the particular case of the Cox PH
model like we used in the StEM algorithm, the restriction to the finite number of parameters setting poses
three practical issues: First, we evaluate the information matrix on both β and the parameters of S0,T (t).
The number of parameters for S0,T (t) increases with the number of events. Second, the Louis’s estimator
assumes that the parameters are common to each of m datasets, which is not the case as the parameters for
S0,T (t) pertain to “observed” death times, which are different for each randomly generated dataset. Thirdly,
the fact that the values ȳ j , j ∈ D are generated from the piecewise constant Breslow estimator implies that
ties can occur in the dataset. The presence of ties implies that the dimension of the information matrix is
not constant across datasets.

However, to overcome the first and second issue (assuming for now a constant number of parameters),
we note that the information matrix and score vector for Ŝ0,T (t) are based on the risk set at each event time
(i.e. on relative ordering of censored observations and events) and not on the location of the event times.
Therefore, we treat the parameters for S0,T (t) as common to each generated dataset even though they are
pertaining to different times. By doing so, and as we are interested only in the variance of β̂, we account
for the impact of the parameters of S0,T (t) on the variance estimator of β̂. See also Appendix C for an
elaboration of this argument.

To overcome the third issue, we note that it is possible to avoid ties by adding an EM iteration after
the convergence of the algorithm based on a piecewise linear estimator of S0,T (t) (instead of piecewise
constant). The details of the variance calculation are given in Appendix C.

4. SIMULATIONS

To assess the performance of the StEM algorithm, we have performed a limited simulation study. Datasets
were generated as follows: Scenarios 1–5 investigated the setting in which the distribution of U is inde-
pendent of covariates. Values of U were generated from an exp(1) distribution for Scenarios 1, 2, 4, and
5 and from a Weibull(2, 5) in Scenario 3. Values of T were generated from S0,T (t)exp(βX) where S0,T is a
Weibull(1.7, 5.83) for Scenarios 1 and 2, a log-normal(2, 0.3) for Scenario 3 and a Weibull(2,5) for Sce-
narios 4 and 5. X was a binary covariate for Scenarios 1, 3, 4, and 5, and a uniform [0, 1] covariate for
Scenario 2. Scenarios 6 and 7 investigated the setting in which U and T depend on common covariate(s).
In Scenario 6, a single binary covariate was used, while in Scenario 7, X1 was binary and X2 was uni-
form [0, 1]. U was generated from FU (u|X)= 1 − exp(−u)exp(βT

U X) with βU = 0.5 for Scenario 6 (binary
covariate) and for Scenario 7, β1

U = 0.5 (binary) and β2
U = −0.5 (continuous). For both Scenarios S0,T is

from a Weibull(2, 5). Intervals for U and V = U + T were constructed by generating uniform random
cutpoints for U and V . The number of cutpoints is given in Table 1. To ensure that the intervals cover most
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772 D. DEJARDIN AND E. LESAFFRE

Table 1. Simulation results for the StEM algorithm with covariates

95% coverage
Scenario Nb cutpoints Sample size β Estimator β̂ STE STD probability Power

Covariates on T only 1–6 cutpoints 200 0.5 Midpoint for U and V 0.36 0.15 0.15 0.83 0.71
Reduced formulation 0.58 0.26 0.19 0.81 0.79

StEM 0.53 0.21 0.20 0.95 0.76

2–6 cutpoints 200 −0.5 Midpoint for U and V −0.39 0.25 0.25 0.94 0.34
X cont. Reduced formulation −0.53 0.33 0.30 0.93 0.43

StEM −0.51 0.30 0.31 0.96 0.38

3–15 cutpoints 100 0.5 Midpoint for U and V 0.40 0.22 0.21 0.92 0.52
Reduced formulation 0.58 0.32 0.26 0.88 0.62

StEM 0.51 0.27 0.26 0.95 0.52

10 cutpoints 100 0.5 Midpoint for U and V 0.34 0.21 0.21 0.86 0.62
Reduced formulation 0.81 0.60 0.30 0.75 0.71

StEM 0.59 0.36 0.32 0.95 0.43

4–6 cutpoints 100 0.5 Midpoint for U and V 0.34 0.22 0.21 0.86 0.39
Reduced formulation 0.63 0.45 0.28 0.81 053

StEM 0.56 0.36 0.34 0.94 0.37

5–10 cutpoints 50 0.5 Midpoint for U and V 0.43 0.30 0.30 0.94 0.27
Reduced formulation 0.60 0.48 0.37 0.9 0.36

StEM 0.57 0.41 0.39 0.95 0.29

Single binary covariate
impacting U and T

6–6 cutpoints 100 −0.5 Midpoint for U and V −0.39 0.22 0.21 0.90 0.46

Reduced formulation −0.56 0.33 0.26 0.88 0.53
StEM −0.52 0.28 0.26 0.93 0.54

Two covariates
impacting U and T

7–10 cutpoints 100 1 Midpoint for U and V 0.91 0.22 0.22 0.94 1
−0.5 −0.47 0.36 0.36 0.96 0.24

1 Reduced formulation 1.14 0.27 0.27 0.87 0.99
−0.5 −0.56 0.46 0.41 0.97 0.25

1 StEM 1.05 0.26 0.26 0.96 1
−0.5 −0.53 0.38 0.42 0.96 0.20

Mean estimates of β are given along with the estimated STD, square root of the variance of the estimated parameter values
(STE), 95% coverage probability, and power to detect a difference (Wald test with 0.05 significance level). X cont. means X
continuous.

of the generated values, the cutpoints for U were generated within [0, F−1
U (0.99)] and the cutpoints for V

were generated within [0, F−1
U (0.99)+ F−1

T (0.99)]. Observations falling outside of this range were right
censored.

The StEM approach (with m = 100) is compared with reduced likelihood methods: (1) the midpoint
for U and V to reduce the data to right-censored data using the Cox PH classical estimation method
and (2) the reduced formulation (see Appendix A of supplementary material available at Biostatistics
online for details) that simplifies the data DI to single interval-censored data analyzed using the method
of Pan (2000). Note that these reduced likelihood methods do not account for the impact of the covariate
on U .

Table 1 shows the results of these simulations. The StEM algorithm provides less biased results than both
univariate methods (midpoint and reduced formulation). In addition, we compared the estimated standard
deviation of the parameter (STD) with the standard error of the simulation estimates (STE) and found
that they were close for our approach. We note the large bias for the midpoint approach. The coverage
probability of the 95% CI of the StEM is close to 0.95 and is certainly better than for the reduced likelihood
methods.
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StEM algorithm for DI-censored data 773

Table 2. Motivating dataset: duration of response in first-line
metastatic breast cancer

Estimator β(ST D) p-value

Recorded time −0.34 (0.18) 0.061
Midpoint for U and V −0.29 (0.18) 0.145
Reduced formulation −0.23 (0.23) 0.340
StEM −0.30 (0.25) 0.260
StEM accounting for covariate on U −0.17 (0.28) 0.278

STD = square root of estimated variance. p-value = Wald test for β �= 0 in
the distribution of T . StEM assumes an effect of treatment on U and T .

5. DATA ANALYSIS

The motivating example is taken from a clinical trial in first-line metastatic breast cancer
(Jassem and others, 2001). The trial studied the superiority of Taxol in combination with doxorubicin
(AT) to the combination of 5-fluorouracil, doxorubicin, and cyclophosphamide (FAC) with respect to
progression-free survival. Tumor measurements for the assessment of response and tumor progression
were scheduled, per protocol, every 6 weeks during the treatment. The study randomized 267 subjects
(134 subjects to the AT arm and 133 subjects to the FAC arm). Our analysis is based on 159 responders,
with 87 responders observed in the AT arm and 72 in the FAC arm.

We applied the StEM algorithm to the data (with m = 100 as before), both ignoring and accounting for
possible effect of the covariate on U . For comparison, we included the alternative approaches used in the
simulation study, as well as the analysis using the recorded time (i.e. ignoring the interval-censored aspect)
using classical Cox PH partial likelihood.

The results, given in Table 2, indicate that alternative approaches may lead to quite different conclu-
sions, especially because of an underestimation of the ST D. The results analyzed using the recorded time
approach showed a borderline significant (p = 0.061) and favorable impact of treatment for AT. We see
that the StEM approach, which accounts for all the variability of the measurements and for the covariate
effect on U , shows a smaller, not statistically significant, effect favorable to AT.

6. DISCUSSION

As outlined above, current methods for DI survival times are not adapted to the specificity of our dataset.
Firstly, the methods for DI survival times actually allow only DR times when covariates are involved.
Secondly, some methods require that the time intervals can be discretized, which was not suitable either
for our dataset. Finally, the analysis shows the importance of accounting for the impact of the covariate
on U in the estimation of the effect of treatment on duration of response. Therefore, the proposed StEM
algorithm appears to be an appropriate method for analyzing duration of response type of data or any DI
data in the context of clinical trials.

Finally, we wish to mention that the majority of the approaches that deal with DI survival times suppose
that U and T are independent. In clinical trials, this lack of dependence may sometimes be questionable.
This is a topic we wish to address in a subsequent paper. Programs have been written by the first author in
R and are available upon request.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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APPENDIX A: CONSTRUCTION OF THE EXPECTED LOG LIKELIHOOD IN THE EM ALGORITHM

In this appendix, we detail the construction of the expectation of the log likelihood with respect to missing
values, given the observed data and parameter values at the previous iteration, denoted by Qk+1(θ |θ k).

At the k + 1th iteration:

Qk+1(θ |θ k)=
∫

ui ,∀i∈N
y j ,∀ j∈D

log L(θ |yi , δi∀i ∈ N ) dFU,T (ui ,∀i ∈ N , y j ,∀ j ∈ D|Xi ,D, θ k),

where θ k is the set of parameters estimated from the previous maximization step (M-step) of the EM
algorithm. We can write, by the assumed independence of U and T and by the independence of the obser-
vations, that the joint distribution of U and T , given observed data, is given by

FU,T (ui ,∀i ∈ N , y j∀ j ∈ D|Xi ,D, θ k)

=
∏
j∈D

FU,T (u j , y j |X j , u j ∈ [ul j , ur j ], v j ∈ [vl j , vr j ], θ
k)

×
∏
s∈C

FU (us |Xs, us ∈ [uls, urs], vs ∈ [vls, vrs], θ k)

=
n∏

i=1

FT (yi |Xi , ui , yi ∈ [vli − ui , vri − ui ], θ
k)δi FU (ui |Xi , ui ∈ [uli , uri ], vi ∈ [vli , vri ], θ

k). (A.1)

In (A.1), FT (yi |Xi , ui , yi ∈ [vli − ui , vri − ui ], θ k) depends on the observed intervals of V and also on
U despite the assumed independence between U and T , since the interval for yi is constructed using the
unobserved data ui . For the formal derivation of FU (ui |Xi , ui ∈ [uli , uri ], vi ∈ [vli , vri ], θ k), we first write
the joint distribution of U and U + T as

Pr(U ∈ [uli , uri ],U + T ∈ [vli , vri ]|X, θ k)=
∫ uri

uli

∫ vri

vli

fU (u|X) fT (v − u|X, θ k) dv du,

by the assumed independence of U and T . Using the above equation, the conditional distribution of U
given the observed data is written as

FU (ui |Xi , ui ∈ [uli , uri ], vi ∈ [vli , vri ], θ
k)

=
∫ ui

uli

fU (u|Xi , vi ∈ [vli , vri ], θ
k) du

= 1

cst

∫ ui

uli

fU (u|Xi )(FT (vri − u|Xi , θ
k)− FT (vli − u|Xi , θ

k)) du, (A.2)

where cst = ∫ uri

uli
fU (u|Xi )(FT (vri − u|Xi , θ

k)− FT (vli − u|Xi , θ
k))du. Note that these derivations

assume that none of the observed intervals of U and V overlap. We discuss the specific derivations when
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StEM algorithm for DI-censored data 775

overlapping is present in Appendix B. In summary, (A.2) justifies the notation that the conditional distri-
bution of U given the observed data depends on the observed intervals for V , but also on the distribution
of T (and the parameters θ k).

APPENDIX B: ESTIMATOR OF FU (u|D)
Let us first assume that none of the observed intervals of U and V overlap. To obtain an estimator of
FU (u|D), the estimators f̂U (u|Xi ) and Ŝk

0,T need to be plugged in (A.2).

We now describe how to obtain f̂U (u|Xi ). Note first that f̂U (u|Xi ) is fixed for all EM iterations since
it depends on the observed [uli , uri ], i = 1, . . . , n. If fU is independent of the covariate, its estimator is
based on the Turnbull estimator. The parametersψ represent the mass of the Turnbull estimator assigned to
the constructed intervals, but the exact repartition of this mass within the intervals is not defined. There-
fore, we assumed that the mass of F̂U is uniformly distributed in these intervals because it leads to an
invertible estimator of FU (u|D). If fU depends on a covariate, a PH model is assumed and ψ represent
the regression parameters and the baseline hazard parameters which are now estimated by the method of
Pan (2000). Again, to obtain an invertible estimator of FU (u|D), we assume that the estimator is linear
between simulated event times. Details of these procedures are given in Appendix B of supplementary
material available at Biostatistics online. The second element of the integrand in (A.2) is Ŝk

0,T (t), which is
obtained in the M-step. From the Breslow estimator of the baseline hazard in a Cox PH model, we know
that Ŝk

0,T (t) is piecewise constant with jumps at event times. Hence, also [Ŝk
0,T (t)]

exp(β̂k Xi ) is piecewise

constant. It follows from the piecewise linear form of f̂U and [Ŝk
0,T (t)]

exp(β̂k Xi ) that the integral in (A.2)
has a piecewise quadratic form, monotone increasing on its domain which can therefore be easily inverted
to generate ūk+1

1 , . . . , ūk+1
n q = 1, . . . ,m.

In case of overlapping intervals, we use the alternative to (A.2) that ensures that the integrand is evalu-
ated on positive times:

∫ ui

uli
f̂U (u|Xi )([Ŝk

0,T (max(vli , u)− u)]exp(β̂k Xi ) − [Ŝk
0,T (vri − u)]exp(β̂k Xi )) du∫ uri

uli
f̂U (u|Xi )([Ŝk

0,T (max(vli , u)− u)]exp(β̂
k

Xi ) − [Ŝk
0,T (vri − u)]exp(β̂k Xi ))du

.

The calculation of the estimator of the transformed equation follows from the calculations above.

APPENDIX C: CONSTRUCTION OF THE VARIANCE ESTIMATOR FOR β

The variance of the parameters is obtained from IO , the information matrix of the observed likelihood (3.1).
For simplicity, we will assume below that the covariate is unidimensional. Extension to a multidimensional
covariate is straight forward. By the missing information principle given in Louis (1982), we have

IO = − ∂2

∂θ2
log L(θ |ui ∈ [uli , uri ], vi ∈ [vli , vri ],∀i ∈ N )

= − ∂2

∂θ2
log L(θ |yi , δi ,∀i ∈ N )

+ ∂2

∂θ2
log fU,T (ui ,∀i ∈ N , y j ,∀ j ∈ D|θ, ui ∈ [uli , uri ], vi ∈ [vli , vri ],∀i ∈ N ). (C.1)
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Taking the expectation of (C.1) with respect to ui , i ∈ N , y j , j ∈ D leads to

IO = −Eui ,∀i∈N
y j ,∀ j∈D

[
∂2

∂θ2
log L(θ |yi , δi , i = 1, . . . , n)

]
︸ ︷︷ ︸

A

+ Eui ,∀i∈N
y j ,∀ j∈D

[
∂2

∂θ2
log fU,T (ui ,∀i ∈ N , y j ,∀ j ∈ D|θ, ui ∈ [uli , uri ], vi ∈ [vli , vri ],∀i ∈ N )

]
︸ ︷︷ ︸

B

.

We note that part A is the expected value of IT (θ) (the information matrix of the right-censored data
likelihood) with respect to the missing data. This matrix can be obtained by taking the second deriva-
tive of the right-censored data likelihood of a Cox PH model (see Klein and Moeschberger, 2003 or
Goggins and others, 1999). The entries of this matrix are

∂2

∂β2
log L =

d∑
l=1

⎛
⎝−λl

∑
j∈R(τl )

X2
j exp(βX j )

⎞
⎠ ,

∂2

∂λ2
l

log L = −1/λ2
l , and

∂2

∂β∂λl
log L = −

∑
j∈R(τl )

X j exp(βX j ),

where d is the number of events, τ1, . . . , τd are the ordered event times, R(τl) is the risk set at event time
τl , and λl is the hazard at time lth ordered event time.

Part B can be expressed (see Louis, 1982) as

B = −var

(
∂

∂θ
log L(θ |yi , δi , i = 1, . . . , n)

)
.

Note that S(θ)= (∂/∂θ) log L(θ |yi , δi , i = 1, . . . , n) is the score vector of the right-censored likelihood,
which can also be obtained easily (see Goggins and others, 1999). The entries of the score vector are

∂

∂β
log L =

d∑
l=1

⎡
⎣−λl

∑
j∈R(τl )

X j exp(βX j )

⎤
⎦ + Xl ,

∂

∂λl
log L = 1/λl −

∑
j∈R(τl )

exp(βX j ).

Goggins and others (1999) and Nielsen (2000) have proposed to estimate parts A and B at StEM
iteration k by Â = 1/m

∑m
q=1 IT (θ̂)q and B̂ = 1/m

∑m
q=1 S(θ̂)q S(θ̂ )′q − 1/m2

∑m
q=1 S(θ̂ )q(

∑m
q=1 S(θ̂ )q)′,

where IT (θ̂)q is the information matrix and S(θ̂)q is the score vector, both evaluated on dataset

ȳk
1q , . . . , ȳk

nq , with θ̂ = (β̂k, λ̂k
1, . . . , λ̂

k
d).

Further, Goggins and others (1999) propose to add 1/(m − 1)B to account for the finite sampling in
the StEM algorithm, which becomes negligible when m is sufficiently large.

An estimation for the information matrix of the parameters, based on observed data is therefore given
by

ÎO = 1

m

m∑
q=1

IT (θ̂)q −
(

1 + 1

m − 1

)⎡
⎣ 1

m

m∑
q=1

S(θ̂ )q S(θ̂)′q − 1

m2

m∑
q=1

S(θ̂ )q

⎛
⎝ m∑

q=1

S(θ̂ )q

⎞
⎠

′⎤
⎦ , (C.2)

and the variance of β̂k is obtained by inverting ÎO .
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The estimator (C.2) assumes that the λl parameters are common to each of the m generated datasets, that
is, that the event times are common. However, for each dataset, the event/censoring times are generated and
are not identical. Given that we are only interested in the variance of the regression parameter β̂, we can
give an heuristic argument to justify why the estimator (C.2) is valid. Indeed, the variance of β̂ is impacted
by the component of the ÎO . These components depend only on the risk set and not directly on the time
at which the hazards parameters are measured. Therefore, if our purpose is only to estimate the variance
of β̂, we can assume that the hazards parameters pertain to times that are common across datasets, and
compute ÎO from (C.2).

In the estimator (C.2), all IT (θ̂)q and S(θ̂ )q must have the same dimension. However, due to the piece-

wise constant nature of Ŝk−1
0,T , ȳk

j , j ∈ D are sampled from a finite set of event times. This leads to tied ȳk
j

and a set of parameter for Ŝ0,T (which has one parameters for each event time) that can vary in size across m
sampling. To obtain untied times and a parameter set that does not change in size (i.e. a constant d) across
the generated dataset, we run an extra iteration k + 1 in which ȳk+1

j is sampled from Ŝk
0,T , considered as

piecewise linear.
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