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Abstract: In surveys, when the number of respondents in a post-stratum is
small relative to the population size in that post-stratum, post-stratification
weights are inflated and modifications are required to obtain less variable es-
timates. Weight smoothing models, random-effects models that induce shrinkage
across post-stratum means, are such modifying methods. We describe the empir-
ical Bayes weight smoothing model approach to estimate the overall mean of a
binary survey outcome. The generalized linear mixed model formulation of this
model allows easy fitting. Two extensions of the model are presented. The esti-
mation of the prevalence and incidence trend of influenza-like illness using the
Great Influenza Survey in Flanders, Belgium, is considered as an application.
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1 Introduction

Stratification is the process of dividing the population into homogeneous
mutually exclusive strata before sampling to improve the representative-
ness of the sample. In observational studies post-stratification can be used
to correct for known differences between the obtained sample and the pop-
ulation. This is done by equating the distribution of a secondary variable
(e.g., age) measured in the sample with its distribution in the population,
and adjusting estimates using weighting techniques. This can improve both
the accuracy and precision of estimates (Little, 1991).
Let Y denote a binary survey outcome variable and X a discrete post-
stratifying variable with H levels and known population distribution. Let
Nh and nh denote the population and sample size in post-stratum h,
respectively. We assume that Nh is known. Define N =

∑H
h=1Nh and

n =
∑H

h=1 nh. We consider inference for the finite population mean Ȳ =∑H
h=1 PhȲh, where Ȳh is the population mean in post-stratum h and Ph =

Nh/N is the population proportion in post-stratum h.



2 Random-effects models to smooth post-stratification weights

An estimate for the population mean is of the form ȳ = 1
n

∑n
i=1 wi(h)yi,

where wi(h) is the weight of observation i belonging to post-stratum h. The
unweighted sample mean, ȳunw, is obtained when wi(h) = 1 (∀i), and can be

written as ȳunw =
∑H

h=1 phȳh, where ph = nh/n is the sample proportion
and ȳh is the sample mean in post-stratum h. Whenever ph deviates from
its population proportion Ph, the unweighted mean is a biased estimate.
The post-stratified mean estimate, ȳps, is obtained when wi(h) = Ph/ph
(∀i). While ȳps is an unbiased estimate of Ȳ , it has greater variance than
ȳunw. This increase in variance can overwhelm the reduction in bias, so
that the post-stratified mean estimate actually increases the mean squared
error. This happens especially when some weights are large.
A common approach to deal with this problem is weight trimming. This
procedure uses the bias-variance trade-off by introducing some bias in the
estimate, but effectively reducing the variance. An alternative model-based
strategy is to model the stratum means directly by random-effects. These
so-called weight smoothing models make a distributional assumption for
the Yi and use the model to predict the non-sampled values of Y . For a
Gaussian survey outcome these models are well explained in literature (see
e.g., Elliott and Little, 2000). For a binary survey outcome only the full
Bayesian approach has been discussed (Elliott, 2007) in the context of gen-
eralized linear regression estimators. We describe the empirical Bayes esti-
mation approach of weight smoothing models for binary data and present
two extensions of these models.

2 Weight Smoothing Models for Binary Data

The general form of the weight smoothing models for a binary survey out-
come is

Yi(h)|ph ∼ Binom(1, ph) and δ∗ ∼ NH(δ,D), (1)

where g(E[Yi(h)|ph]) = δ∗h, δ∗ = (δ∗1 , ..., δ
∗
H)T and δ = (δ1, ..., δH)T are

unknown vectors, D is an unknown H × H covariance matrix and g(·) is
the logit-link function. Under model (1) the weight smoothed estimate of
Ȳ is

ȳws = E[Ȳ |y] =
1

N

H∑
h=1

{nhȳh + (Nh − nh)µ̂h}, (2)

where µ̂h = E[Ȳh|y] = E[µh|y] = g−1(δ∗h). The unweighted and post-
stratified mean are obtained as estimates of (2) if D → 0 and D → ∞,
respectively. We consider four other cases of model (1) (Little, 1991; Lazze-
roni and Little, 1998; Elliott and Little, 2000):
(a) Exchangeable random effects (XRE): δh = β for all h,D = σ2

DIH .
(b) First order autoregressive (AR1): δh = β for all h, (D)ij = σ2

Dρ
|i−j|

for i, j ∈ {1, . . . ,H}.
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(c) Linear (LIN): δh = β0 + β1Xh for all h,D = σ2
DIH .

(d) Nonparametric (NPAR): δh = f(Xh) for all h,D = σ2
DIH , where

f is a nonparametric spline function. We use the approximating thin plate
spline family.
All these models can be cast in the generalized linear mixed model (GLMM)
framework. The model is fit by pseudo-restricted maximum likelihood esti-
mation based on linearisation. At convergence, estimates of µ̂h are obtained
and ȳws can be calculated. Calculation of the variance for ȳws can be either
done analytically or by a bootstrap method.

Extension 1: Assume a binary survey outcome is measured at different
time points, and interest is in the estimation of the time trend of the overall
mean, namely Ȳt = 1

Nt

∑Nt

i=1 Yit, for t = 1, ..., T . At each time point, the
unweighted or post-stratified mean can be calculated. However, one can use
a smoothed weight approach which exploits the time-trend. The general
form of this model is

Yi(h),t|pht ∼ Binom(1, pht), ∀ t, and δ∗t ∼ NH(δt,D). (3)

The unknown parameters δt = (δh1, ..., δhT )T are additively decomposed
into δht = δh + δt. For δh and D we assume models (a)-(d). For the time
trend a non-parametric trend, namely δt = ft(t), is assumed.

Extension 2: Misspecification in (1) leads to biased estimates for µ̂h in
(2) and consequently a biased estimate of ȳws. We propose the use of a
doubly robust weight smoothed estimate of the form

ȳws,dr =
1

N

H∑
h=1

{
nh
π̂h
ȳh + (Nh −

nh
π̂h

)µ̂h

}
, (4)

in analogy with doubly robust estimates in the missing data context. The
π̂h represent inclusion probabilities and are calculated using a method that
resembles a trimming weights approach.

3 Application

The Great Influenza Survey (GIS) is an observational survey based on the
voluntary participation of individuals via the internet aiming at the mon-
itoring of influenza-like illness (ILI). We use data from the Flemish GIS
from the 2010-2011 influenza season (n = 4551). Interest is in the esti-
mation of the overall prevalence and the incidence trend of ILI. The age
distribution of the GIS population is very dissimilar to the overall Flemish
population age distribution (Figure 1(a)). Post-stratification weights range
from 0.46 to 35.70 (18 age groups of length 5 years as post-strata). The un-
weighted mean estimate of the prevalence is 5.12% (95% CI: 4.52-5.80%),
whereas the post-stratified mean estimate is 7.10% (95% CI: 5.31-9.45%).
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FIGURE 1. (a) Age distribution of the GIS and Flemish population. (b) Esti-
mated unweighted and post-stratified trend with confidence intervals (CIs). (c)
Estimated weight smoothed and doubly robust weight smoothed trend with CIs.

The weight smoothed estimate using the NPAR model yields 6.88% (95%
CI: 5.69-8.30%). The doubly robust approach for the prevalence yields simi-
lar results, namely 6.82% (95% CI: 5.61-8.28%). The results of the incidence
trend estimation (using the NPAR model) is shown in Figure 1(b) and Fig-
ure 1(c). It is seen that the weight smoothing results are a compromise
between the unweighted and post-stratified trends.

4 Discussion

Weight smoothing models offer a good solution for inference of a binary sur-
vey outcome when some post-stratification weights are large. These models
can be cast into the GLMM framework which allows for implementation in
standard statistical software. In the real-life data application it was shown
that the different approaches yield substantially different results. It is there-
fore important to use weight smoothing models in this specific data context.
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