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THE GREEN RINGS OF TAFT ALGEBRAS
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(Communicated by Birge Huisgen-Zimmermann)

Abstract. We compute the Green ring of the Taft algebra Hn(q), where n
is a positive integer greater than 1 and q is an n-th root of unity. It turns
out that the Green ring r(Hn(q)) of the Taft algebra Hn(q) is a commutative
ring generated by two elements subject to certain relations defined recursively.
Concrete examples for n = 2, 3, ..., 8 are given.

Introduction

The tensor product of representations of a Hopf algebra is an important ingre-
dient in the representation theory of Hopf algebras and quantum groups. In par-
ticular, the decomposition of the tensor product of indecomposable modules into a
direct sum of indecomposables has received enormous attention. For modules over
a group algebra this information is encoded in the structure of the Green ring (or
the representation ring) for finite groups, [1–4,9,11]. For modules over a Hopf alge-
bra or a quantum group there are results by Cibils on a quiver quantum group [7],
by Witherspoon on the quantum double of a finite group [18], by Gunnlaugsdóttir
on the half quantum groups (or Taft algebras) [10], and by Chin on the coordinate
Hopf algebra of quantum SL(2) at a root of unity [8]. However, the Green rings of
those Hopf algebras are either equal to the Grothendick rings (in the semisimple
cases) or not yet computed because of the complexity.

In this paper, we compute the Green rings of Taft algebras. It turns out that the
Green ring of a Taft algebra is much more complicated than its Grothendick ring. In
Section 1, we recall some basic definitions and results and make some preparations
for the rest of the paper. In Section 2, we recall the indecomposable modules over
the Taft algebraHn(q) from [7,10], using the terminology of matrix representations,
where n is a positive integer � 2 and q is a primitive n-th root of unity in the ground
field k. There are n2 non-isomorphic finite dimensional indecomposable modules
over Hn(q), and all of them are uniserial. Moreover, for each 1 � l � n, there are
exactly n finite dimensional indecomposable Hn(q)-modules M(l, r), r ∈ Zn, up
to isomorphism. Every indecomposable projective Hn(q)-module is n-dimensional.
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In Section 3, we describe the Green ring of Taft algebra Hn(q). We first recall
the decomposition formula of the tensor product of two indecomposable modules
over Hn(q) from [7,10]. From the decomposition formula, we know that the tensor
product of any two Hn(q)-modules is commutative. Moreover, the tensor product
of two indecomposable non-projective modules has a simple summand if and only
if the two indecomposable modules have the same dimension. Finally, we describe
the structure of the Green ring r(Hn(q)) of Hn(q). We show that the Green ring
r(Hn(q)) is generated by two elements subject to certain relations which can be
defined recursively.

1. Preliminaries

Throughout, we work over a fixed field k. Unless otherwise stated, all algebras,
Hopf algebras and modules are defined over k; all modules are left modules and
finite dimensional; all maps are k-linear; dim, ⊗ and Hom stand for dimk, ⊗k and
Homk, respectively. For the theory of Hopf algebras and quantum groups, we refer
to [12, 14–16].

Let 0 �= q ∈ k. For any integer n > 0, set (n)q = 1 + q + · · · + qn−1. Observe
that (n)q = n when q = 1, and

(n)q =
qn − 1

q − 1

when q �= 1. Define the q-factorial of n by (0)!q = 1 and (n)!q = (n)q(n−1)q · · · (1)q
for n > 0. Note that (n)!q = n! when q = 1, and

(n)!q =
(qn − 1)(qn−1 − 1) · · · (q − 1)

(q − 1)n

when n > 0 and q �= 1. The q-binomial coefficients

(
n

i

)
q

are defined inductively

as follows for 0 � i � n:(
n

0

)
q

= 1 =

(
n

n

)
q

for n � 0,

(
n

i

)
q

= qi

(
n− 1

i

)
q

+

(
n− 1

i− 1

)
q

for 0 < i < n.

It is well-known that

(
n

i

)
q

is a polynomial in q with integer coefficients and with

value at q = 1 is equal to the usual binomial coefficient

(
n

i

)
, and that

(
n

i

)
q

=
(n)!q

(i)!q(n− i)!q

when (n− 1)!q �= 0 and 0 < i < n (see [12, page 74]).
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THE GREEN RINGS OF TAFT ALGEBRAS 767

Throughout this paper, we fix an integer n � 2 and assume that the field k
contains an n-th primitive root q of unity. Then we have(

n

i

)
q

�= 0, (i)!q �= 0, for 0 < i < n,

and that n is not divisible by the characteristic of k, i.e.
1

n
∈ k.

The Taft algebra Hn(q) is generated by two elements g and h subject to the
relations (see [17])

gn = 1, hn = 0, hg = qgh.

Hn(q) is a Hopf algebra with coalgebra structure Δ and antipode S given by

Δ(g) = g ⊗ g, Δ(h) = 1⊗ h+ h⊗ g, ε(g) = 1,

ε(h) = 0, S(g) = g−1 = gn−1, S(h) = −q−1gn−1h.

Note that dimHn(q) = n2 and {gihj |0 � i, j � n − 1} forms a k-basis for Hn(q).
When n = 2, H2(q) is exactly Sweedler’s 4-dimensional Hopf algebra.

Let H be a Hopf algebra. The representation ring r(H) and R(H) can be
defined as follows: r(H) is the abelian group generated by the isomorphism classes
[V ] of finite dimensional H-modules V modulo the relations [M ⊕ V ] = [M ] + [V ].
The multiplication of r(H) is given by the tensor product of H-modules, that is,
[M ][V ] = [M ⊗ V ]. Then r(H) is an associative ring. R(H) is an associative
k-algebra defined by k ⊗Z r(H). Note that r(H) is a free abelian group with a
Z-basis {[V ]|V ∈ ind(H)}, where ind(H) denotes the category of finite dimensional
indecomposable H-modules.

2. Representations of Hn(q)

For a module M over a finite dimensional algebra A, let rl(M) denote the Loewy
length (=radical length=socle length) of M , and let l(M) denote the length of M .
Let P (M) denote the projective cover of M , and let I(M) denote the injective hull
of M .

Cibils constructed an nd-dimensional Hopf algebra kZn(q)/Id in [7], where q is
an n-th root of unity in k with order d. He classified the indecomposable modules
over kZn(q)/Id and gave the decomposition of the tensor products of two arbitrary
indecomposable modules there. When q is a primitive n-th root of unity, kZn(q)/In
is isomorphic to Hn(q) (see [7]). Therefore, from [7], one can get the classification
of indecomposable modules and the decomposition of the tensor product of two
indecomposable modules over Hn(q). For completeness, we will describe the inde-
composable modules over Hn(q) in this section, using the terminology of matrix
representation.

Let G(Hn(q)) denote the group of group-like elements in Hn(q). Then G(Hn(q))
= {1, g, · · · , gn−1} is a cyclic group of order n generated by g. The group algebra
kG(Hn(q)) is a Hopf subalgebra of Hn(q). There is a Hopf algebra epimorphism
π : Hn(q) → kG(Hn(q)) defined by π(g) = g and π(h) = 0. Since k contains
an n-th primitive root of unity, the group algebra kG(Hn(q)) is semisimple. It
follows that Kerπ = 〈h〉 ⊇ J(Hn(q)), the Jacobson radical of Hn(q). On the other
hand, since Hn(q)h = hHn(q) and hn = 0, J(Hn(q)) ⊇ (h) = Hn(q)h, the ideal
of Hn(q) generated by h. Hence Kerπ = (h) = J(Hn(q)). Thus, an Hn(q)-module
M is semisimple if and only if h · M = 0, and moreover M is simple if and only
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768 HUIXIANG CHEN, FRED VAN OYSTAEYEN, AND YINHUO ZHANG

if h · M = 0 and M is simple as a module over the Hopf subalgebra kG(Hn(q)).
Therefore, we have the following lemma.

Lemma 2.1. There are n non-isomorphic simple Hn(q)-modules Si, and each Si

is 1-dimensional and determined by

g · v = qiv, h · v = 0, v ∈ Si,

where i ∈ Zn := Z/(n).

Note that J(Hn(q))
m = Hn(q)h

m for all m � 1. Hence J(Hn(q))
n−1 �= 0, but

J(Hn(q))
n = 0. This means that the Loewy length of Hn(q) is n. Since every

simple Hn(q)-module is 1-dimensional, l(M) = dim(M) for any Hn(q)-module M .
Now let M be any Hn(q)-module. Since J(Hn(q))

s = Hn(q)h
s = hsHn(q), we

have rads(M) = hs ·M for all s � 1.

Lemma 2.2. Let 1 � l � n and i ∈ Z. Then there is an algebra map ρl,i : Hn(q) →
Ml(k) given by

ρl,i(g) =

⎛
⎜⎜⎜⎜⎜⎜⎝

qi

qi−1

qi−2

. . .

qi−l+1

⎞
⎟⎟⎟⎟⎟⎟⎠

, ρl,i(h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

1 0

1
. . .

. . . 0

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let M(l, i) denote the corresponding left Hn(q)-module.

Proof. It follows from a straightforward verification. �

There is a k-basis {v1, v2, · · · , vl} of M(l, i) such that g · vj = qi−j+1vj for all
1 � j � l and

h · vj =
{

vj+1, 1 � j � l − 1,

0, j = l.

Hence we have vj = hj−1 · v1 for all 2 � j � l. Such a basis is called a standard
basis of M(l, i). For any integer i, we will often regard i as its image under the
canonical projection Z → Zn := Z/(n). We have the following lemma.

Lemma 2.3. For any 1 � l � n and i ∈ Z, let M(l, i) be the Hn(q)-module defined
as in Lemma 2.2. Then:

(1) soc(M(l, i)) = kvl ∼= Si−l+1 and M(l, i)/rad(M(l, i)) ∼= Si.
(2) M(l, i) is indecomposable and uniserial.
(3) If 1 � l′ � n and i′ ∈ Z, then M(l, i) ∼= M(l′, i′) if and only if l′ = l and

i′ = i in Zn.

Proof. (1) Since J(Hn(q)) = (h) = hHn(q) = Hn(q)h, soc(M(l, i)) = {v ∈
M(l, i)|h · v = 0} = kvl and rad(M(l, i)) = h · M(l, i) = span{v2, · · · , vl}. It
follows that soc(M(l, i)) ∼= Si−l+1 and M(l, i)/rad(M(l, i)) ∼= Si.

(2) By (1), soc(M(l, i)) is simple, and hence M(l, i) is indecomposable. Since
hl−1 ·M(l, i) �= 0 and hl ·M(l, i) = 0, rl(M(l, i)) = l. Hence l(M(l, i)) = rl(M(l, i)),
and so M(l, i) is uniserial.

(3) Obvious. �
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THE GREEN RINGS OF TAFT ALGEBRAS 769

As a consequence, we obtain the following:

Corollary 2.4. Let 1 � l � n and i ∈ Zn. Then:

(1) M(l, i) is simple if and only if l = 1. In this case, M(1, i) ∼= Si.
(2) M(l, i) is projective (injective) if and only if l = n.
(3) M(n, i) ∼= P (Si) ∼= I(Si+1).

Proof. (1): Follows from Lemma 2.3(1).
(2) and (3): Note that any finite dimensional Hopf algebra is a Frobenius algebra

and hence is a self-injective algebra. If l = n, then it follows from [5, Lemma 3.5]
that M(n, i) is projective and injective.

For any 0 � i � n − 1, let ei =
1
n

n−1∑
j=0

q−ijgj . Then {e0, e1, · · · , en−1} is a set

of orthogonal idempotents such that
n−1∑
i=0

ei = 1. We also have gei = qiei and

hn−1ei �= 0. Therefore, Hn(q)ei = span{ei, hei, · · · , hn−1ei} ∼= M(n, i). Thus, we
have a decomposition of the regular module Hn(q) as follows:

Hn(q) =
n−1⊕
i=0

Hn(q)ei ∼=
n−1⊕
i=0

M(n, i).

Hence M(n, i) ∼= P (Si), and M(n, 0), M(n, 1), · · · , M(n, n − 1) are all non-
isomorphic indecomposable projective Hn(q)-modules. So (2) and (3) follow from
Lemma 2.3. �

Since the indecomposable projective Hn(q)-modules are uniserial, any indecom-
posable Hn(q)-module is uniserial and is isomorphic to a quotient of an indecom-
posable projective module. Thus, we have the following theorem (see [7, page 467]).

Theorem 2.5. Up to isomorphism, there are n2 indecomposable finite dimensional
Hn(q)-modules as follows:

{M(l, i)|1 � l � n, 0 � i � n− 1}.

3. The Green ring of Taft algebra Hn(q)

We already know that there are n2 non-isomorphic indecomposable modules over
Hn(q). They are

{M(l, r)|1 � l � n, r ∈ Zn}.
The following lemma follows from a straightforward verification.

Lemma 3.1. Let 1 � l � n and r, r′ ∈ Zn. Then

M(l, r)⊗ Sr′ ∼= Sr′ ⊗M(l, r) ∼= M(l, r + r′)

as Hn(q)-modules. In particular, Sr ⊗ Sr′ ∼= Sr+r′ and M(l, r) ∼= Sr ⊗ M(l, 0) ∼=
M(l, 0)⊗ Sr.

Cibils and Gunnlaugsdóttir derived the decomposition formulas of the tensor
product of two indecomposable modules over kZn(q)/In and the half-quantum
group u+

q in [7] and [10], respectively. From [7, Theorem 4.1] or [10, Theorem 3.1],
one gets the following Propositions 3.2, 3.3 and 3.4.
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770 HUIXIANG CHEN, FRED VAN OYSTAEYEN, AND YINHUO ZHANG

Proposition 3.2. Let 2 � l � n and r, r′ ∈ Zn. Then we have the Hn(q)-module
isomorphisms

M(l, r)⊗M(n, r′) ∼= M(n, r′)⊗M(l, r) ∼=
l⊕

i=1

M(n, r + r′ + i− l).

Proposition 3.3. Let 1 � l, l′ < n and r, r′ ∈ Zn. If l + l′ � n, then

M(l, r)⊗M(l′, r′) ∼=
l0⊕
i=1

M(|l − l′| − 1 + 2i, r + r′ + i− l0),

where l0 = min{l, l′}.

Proposition 3.4. Let 1 � l, l′ < n and r, r′ ∈ Zn. If l + l′ > n, then

M(l, r)⊗M(l′, r′) ∼= (

n−l1⊕
i=1

M(|l−l′|−1+2i, r+r′+i−l0))⊕(
l+l′−n⊕
i=1

M(n, r+r′+1−i)),

where l0 = min{l, l′} and l1 = max{l, l′}.

Following Propositions 3.3 and 3.4, we obtain the following:

Corollary 3.5. Let 1 � l, l′ � n − 1 and r, r′ ∈ Zn. Then there is a simple
summand in M(l, r)⊗M(l′, r′) if and only if l = l′.

The following property of M(l, r) can be derived from Lemma 3.1 and Proposi-
tions 3.2, 3.3 and 3.4.

Corollary 3.6. Let 1 � l, l′ � n and r, r′ ∈ Zn. Then

M(l, r)⊗M(l′, r′) ∼= M(l′, r′)⊗M(l, r).

From Theorem 2.5 and Corollary 3.6, one can deduce the following known result
(see [7, page 467]).

Corollary 3.7. For any Hn(q)-modules M and N , there is an Hn(q)-module iso-
morphism

M ⊗N ∼= N ⊗M.

In the sequel, we let a = [S−1] and x = [M(2, 0)] in the Green ring r(Hn(q)) of
Hn(q). From Corollary 3.7, we know that r(Hn(q)) is a commutative ring.

Lemma 3.8.

(1) an = 1 and [M(l, r)] = an−r[M(l, 0)] for all 2 � l � n and r ∈ Zn.
(2) If n > 2, then [M(l+1, 0)] = x[M(l, 0)]−a[M(l−1, 0)] for all 2 � l � n−1.
(3) x[M(n, 0)] = (a+ 1)[M(n, 0)].
(4) r(Hn(q)) is generated by a and x as a ring.
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THE GREEN RINGS OF TAFT ALGEBRAS 771

Proof. (1): Follows from Lemma 3.1 since [S0] is the identity of the ring r(Hn(q)).
(2): If n > 2 and 2 � l � n−1, then by Propositions 3.3 and 3.4 and Lemma 3.1,

we have

M(2, 0)⊗M(l, 0) ∼= M(l − 1,−1)⊕M(l + 1, 0)
∼= S−1 ⊗M(l − 1, 0)⊕M(l + 1, 0).

It follows that [M(l + 1, 0)] = x[M(l, 0)]− a[M(l − 1, 0)].
(3): By Proposition 3.2 and Lemma 3.1, we have

M(2, 0)⊗M(n, 0) ∼= M(n,−1)⊕M(n, 0)
∼= S−1 ⊗M(n, 0)⊕M(n, 0)
∼= (S−1 ⊕ S0)⊗M(n, 0).

It follows that x[M(n, 0)] = (a+ 1)[M(n, 0)].
(4): Follows from (1), (2) and (3). �

Corollary 3.9. Let u1, u2, · · · be a series of elements of the ring r(Hn(q)) defined
recursively by u1 = 1, u2 = x and

ul = xul−1 − aul−2, l � 3.

Then [M(l, 0)] = ul for all 1 � l � n and (x− a− 1)un = 0.

Proof. Follows from Lemma 3.8. �

Let Z[y, z] be the polynomial algebra over Z in two variables y and z. We define
a generalized Fibonacci polynomial fn(y, z) ∈ Z[y, z], n � 1, recursively as follows:

f1(y, z) = 1, f2(y, z) = z, and fn(y, z) = zfn−1(y, z)− yfn−2(y, z), n � 3.

Let I be the ideal of Z[y, z] generated by polynomials yn−1 and (z−y−1)fn(y, z).
With the above notation, we have the following main result.

Theorem 3.10. The Green ring r(Hn(q)) of Hn(q) is isomorphic to the quotient
ring Z[y, z]/I.

Proof. By Lemma 3.8(4), r(Hn(q)) is generated, as a ring, by a and x. Hence there
is a unique ring epimorphism φ from Z[y, z] to r(Hn(q)) such that φ(y) = a and
φ(z) = x. Since an = 1 by Lemma 3.8(1), φ(yn−1) = 0. Let {ui}i�1 be the series of
elements of r(Hn(q)) given in Corollary 3.9. It is easy to see that φ(f1(y, z)) = u1

and φ(f2(y, z)) = u2. Now let i � 3 and assume that φ(fi−2(y, z)) = ui−2 and
φ(fi−1(y, z)) = ui−1. Then

φ(fi(y, z)) = φ(zfi−1(y, z)− yfi−2(y, z))

= φ(z)φ(fi−1(y, z))− φ(y)φ(fi−2(y, z))

= xui−1 − aui−2 = ui.
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772 HUIXIANG CHEN, FRED VAN OYSTAEYEN, AND YINHUO ZHANG

Thus φ(fi(y, z)) = ui for all i � 1. In particular, we have φ(fn(y, z)) = un,
and hence φ((z − y − 1)fn(y, z)) = (x − a − 1)un = 0 by Corollary 3.9. It follows
that φ(I) = 0 and that φ induces a ring epimorphism φ : Z[y, z]/I → r(Hn(q))
such that φ(v) = φ(v) for all v ∈ Z[y, z], where v denotes the image of v under the
natural epimorphism Z[y, z] → Z[y, z]/I.

Let A be the subring of r(Hn(q)) generated by a. A = Z〈a〉 is the group ring of
the cyclic group 〈a〉 over Z. By Corollary 3.9 we have u1 = 1 ∈ A and u2 = x ∈
Ax ⊂ A + Ax. By induction on i one can show that ui ∈ A + Ax + · · · + Axi−1

for all i � 1. Hence ui ∈ A + Ax + · · · + Axn−1 for all 1 � i � n. Thus for all
1 � i � n and r ∈ Zn, by Lemma 3.8(1) we have [M(i, r)] = an−r[M(i, 0)] =
an−rui ∈ A+Ax+ · · ·+Axn−1. It follows that r(Hn(q)) = A+Ax+ · · ·+Axn−1.
Since A is a free Z-module with a Z-basis {ai|0 � i � n− 1}, r(Hn(q)) is generated
by elements aixj , 0 � i, j � n−1, as a Z-module. Since r(Hn(q)) is a free Z-module
of rank n2, {aixj |0 � i, j � n − 1} forms a Z-basis for r(Hn(q)). Hence one can
define a Z-module homomorphism:

ψ : r(Hn(q)) → Z[y, z]/I, aixj �→ yizj = yizj , 0 � i, j � n− 1.

Obviously, Z[y, z]/I is generated by elements yizj , 0 � i, j � n− 1, as a Z-module.
Now we have

ψφ(yizj) = ψφ(yizj) = ψ(aixj) = yizj

for all 0 � i, j � n − 1. Hence ψφ = id, and so φ is injective. Thus, φ is a ring
isomorphism. �

The coefficients of the generalized Fibonacci polynomial fn(y, z) can be com-
puted. They are quite similar to those of the standard generalized Fibonacci poly-
nomial defined by

F1(y, z) = 1, F2(y, z) = z, and Fn(y, z) = zFn−1(y, z) + yFn−2(y, z), n � 3.

For completeness, we compute fn(y, z) in the following lemma, which might be
found elsewhere.

Lemma 3.11. Let Z[y, z] be the polynomial algebra over Z in two variables y and
z. Then for any n � 1, we have

(1) fn(y, z) =

[(n−1)/2]∑
i=0

(−1)i

[
n− 1− i

i

]
yizn−1−2i.

Proof. We prove it by induction on n. It is easy to check that equation (1) holds for
1 � n � 4. Now let n > 4 and assume that the equation holds for smaller positive
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THE GREEN RINGS OF TAFT ALGEBRAS 773

integers. If n = 2m+ 1 is odd, then we have

fn(y, z) = zf2m(y, z)− yf2m−1(y, z)

=
m−1∑
i=0

(−1)i

[
2m− 1− i

i

]
yiz2m−2i

−
m−1∑
i=0

(−1)i

[
2m− 2− i

i

]
yi+1z2m−2−2i

=
m−1∑
i=0

(−1)i

[
2m− 1− i

i

]
yiz2m−2i

+
m∑
i=1

(−1)i

[
2m− 1− i

i− 1

]
yiz2m−2i

= z2m +
m−1∑
i=1

(−1)i(

[
2m− 1− i

i

]
+

[
2m− 1− i

i− 1

]
)yiz2m−2i

+(−1)mym

=
m∑
i=0

(−1)i

[
2m− i

i

]
yiz2m−2i

=
[(n−1)/2]∑

i=0

(−1)i

[
n− 1− i

i

]
yizn−1−2i.

If n = 2(m+ 1) is even, then we have

fn = zf2m+1(y, z)− yf2m(y, z)

=
m∑
i=0

(−1)i

[
2m− i

i

]
yiz2m+1−2i

−
m−1∑
i=0

(−1)i

[
2m− 1− i

i

]
yi+1z2m−1−2i

=
m∑
i=0

(−1)i

[
2m− i

i

]
yiz2m+1−2i

+
m∑
i=1

(−1)i

[
2m− i

i− 1

]
yiz2m+1−2i

= z2m+1 +
m∑
i=1

(−1)i(

[
2m− i

i

]
+

[
2m− i

i− 1

]
)yiz2m+1−2i

= z2m+1 +
m∑
i=1

(−1)i

[
2m+ 1− i

i

]
yiz2m+1−2i

=
m∑
i=0

(−1)i

[
2m+ 1− i

i

]
yiz2m+1−2i

=
[(n−1)/2]∑

i=0

(−1)i

[
n− 1− i

i

]
yizn−1−2i.

Thus the proof is completed. �
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Now we can easily derive the Green rings r(Hn(q)) for n = 2, 3, ..., 8.

Corollary 3.12. When n = 2, r(H2(q)) ∼= Z[y, z]/(y2 − 1, (z − y − 1)z).
When n = 3, r(H3(q)) ∼= Z[y, z]/(y3 − 1, (z − y − 1)(z2 − y)).
When n = 4, r(H4(q)) ∼= Z[y, z]/(y4 − 1, (z − y − 1)(z3 − 2yz)).
When n = 5, r(H5(q)) ∼= Z[y, z]/(y5 − 1, (z − y − 1)(z4 − 3yz2 + y2)).
When n = 6, r(H6(q)) ∼= Z[y, z]/(y6 − 1, (z − y − 1)(z5 − 4yz3 + 3y2z)).
When n = 7, r(H7(q)) ∼= Z[y, z]/(y7 − 1, (z − y − 1)(z6 − 5yz4 + 6y2z2 − y3)).
When n = 8, r(H8(q)) ∼= Z[y, z]/(y8 − 1, (z− y− 1)(z7 − 6yz5 +10y2z3− 4y3z)).

Remark 3.13. (1) One can easily see that the Grothendick ring of Hn(q) is the
group ring kZn generated by the simple module M(1, 0). From the above
examples, we see that the Green ring is much more complicated than the
Grothendick ring.

(2) The Green rings of generalized Taft algebras and the Green rings of mono-
mial Hopf algebras [6] can be computed in a similar way. However, the
computations of the Green ring of the small quantum group or the Green
ring of the quantum double of a Taft algebra seem to be much more com-
plicated, as they are not finitely generated [5, 13].

(3) Since the module category of a quasitriangular Hopf algebra H is braided
monoidal, the Green ring of H is commutative. The Taft algebra Hn(q)
is not quasitriangular in the case n > 2 (not even almost cocommutative;
see [7]), but its Green ring is commutative. This leads to the following
question: can we characterize the class of Hopf algebras whose Green ring
is commutative?
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