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Abstract Data envelopment analysis (DEA) as a performance evaluation meth-
odology has lately received considerable attention in the construction of composite
indicators (CIs) due to its prominent advantages over other traditional methods. In
this chapter, we present the extension of the basic DEA-based CI model by
incorporating fuzzy ranking approach for modeling qualitative data. By interpreting
the qualitative indicator data as fuzzy numerical values, a fuzzy DEA-based CI
model is developed, and it is applied to construct a composite alcohol performance
indicator for road safety evaluation of a set of European countries. Comparisons of
the results with the ones from the imprecise DEA-based CI model show the
effectiveness of the proposed model in capturing the uncertainties associated with
human thinking, and further imply the reliability of using this approach for
modeling both quantitative and qualitative data in the context of CI construction.
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1 Introduction

As a performance evaluation methodology, data envelopment analysis (DEA) is
traditionally used to measure the so-called relative efficiency of a homogeneous set
of decision making units (DMUs) by allowing direct peer comparisons on the basis
of multiple inputs and multiple outputs [1]. However, as noted by Adolphson et al.
[2], it is possible to adopt a broader perspective, in which DEA is also appropriate
for comparing any set of homogeneous units on multiple dimensions. Based on this
perspective, DEA has been introduced to the field of composite indicators (CIs),
which is to aggregate a set of individual indicators that measure multi-dimensional
concepts but usually have no common units of measurement [3]. The most
attractive feature of DEA, relative to the other methods in developing a CI, such as
regression analysis (RA), principal components analysis (PCA), factor analysis
(FA), analytic hierarchy process (AHP), and the technique for order preference by
similarity to ideal solution (TOPSIS) (see also Saisana and Tarantola [4], OECD
[3], and Bao et al. [5]) is that, each DMU obtains its own best possible indicator
weights, i.e., the weights resulting in the highest index score for a DMU. This
implies that dimensions on which the DMU performs relatively well get a higher
weight. It is thereby also called ‘benefit of the doubt’ (BOD) approach [6]. In this
way, policymakers could not complain about unfair weighting, because each DMU
is put in the most favorable light, and any other weighting scheme would generate a
lower composite score. In other words, if a country turns out to be underperforming
based on the most favorable set of weights, its poor performance cannot be traced
back to an inappropriate evaluation process [7]. Due to the aforementioned char-
acteristic, the DEA-based CI construction has been widely explored in several
recent studies such as environmental performance index [8], human development
index [9], macro-economic performance index [10], sustainable energy index [11],
technology achievement index [12], and road safety performance index [13, 14].

However, as a ‘data-oriented’ technique, the applicability of DEA in the con-
struction of CIs relies mostly on the quality of information about the indicators. In
other words, obtainment of measurable and quantitative indicators is commonly
the prerequisite of the evaluation. Under many conditions, however, quantitative
data are inadequate or inappropriate to model real world situations due to the
complexity and uncertainty of the reality. Therefore, it is essential to take into
account the presence of qualitative indicators when making a decision on the
performance of a DMU. Very often it is the case that an indicator can, at most, be
specified with either ordinal measures, from best to worst, or with the help of
experts’ subjective judgments, such as ‘high’, ‘medium’ and ‘low’. Under these
circumstances, the basic DEA models are not capable of deriving a satisfactory
solution. Generally, two strategies have appeared in the literature to the treatment
of qualitative data within the DEA framework. One is to reflect the rank position of
each DMU with respect to each ordinal indicator by setting corresponding con-
straints, which results in the so-called imprecise DEA (IDEA) (see e.g., Cooper
et al. [15]; Cook and Zhu [16]). The other is to deal with the natural uncertainty
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inherent to some production processes by means of fuzzy mathematical pro-
gramming, such as the tolerance approach developed by Sengupta [17] and
Kahraman and Talgo [18], the a-level based approach introduced by Meada et al.
[19], the defuzzification and the possibility approach proposed by Lertworasirikul
[20] and Lertworasirikul et al. [21], and the fuzzy ranking approach developed by
Guo and Tanaka [22]. All of them are collectively named as fuzzy DEA (FDEA).

In this Chapter, we investigate FDEA, and more specifically, the fuzzy ranking
approach, to model qualitative data in the construction of CIs. Based on a brief
review of the basic DEA model and the DEA-based CI model in Sect. 2, we elaborate
the development of a FDEA-based CI model in Sect. 3. In Sect. 4, the proposed
model is illustrated by constructing a composite alcohol performance index for road
safety evaluation of a set of European countries, and the results are compared with
the ones from the IDEA model. The chapter ends with conclusions in Sect. 5.

2 DEA-based CI Model

Data envelopment analysis initially developed by Charnes et al. [1] is a non-
parametric optimization technique which employs linear programming tools to
obtain the empirical estimates of multiple inputs and multiple outputs related to a
set of DMUs. During the last decades, a number of different formulations have been
proposed in the DEA context, the best-known of which is probably the Charnes–
Cooper–Rhodes (CCR) model, and its multiplier form is presented as follows.

E0 ¼ max
Xs

r¼1

uryr0

s:t:
Xm

i¼1

vixi0 ¼ 1;

Xs

r¼1

uryrj �
Xm

i¼1

vixij� 0; j ¼ 1; � � � ; n

ur; vi� e; r ¼ 1; � � � ; s; i ¼ 1; � � � ;m

ð1Þ

The above linear program is computed separately for each DMU, and the
subscript, 0, refers to the DMU whose relative efficiency is to be evaluated. yrj and
xij are the rth output and ith input respectively of the jth DMU. ur is the weight
given to the rth output, vi is the weight given to the ith input, and e is a small non-
Archimedean number [23] for preventing the model to assign a weight of zero to
unfavorable factors.

To use DEA for CI construction, i.e., aggregating a set of individual indicators
into one overall index, however, only inputs or outputs of the DMUs will be taken
into account in the model. Mathematically, the DEA-based CI model (DEA-CI) can
be realized by converting the DEA model in (1) into the following constrained
optimization problem, which is also known as the CCR model with constant inputs.
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CI0 ¼ max
Xs

r¼1

uryr0

s:t:
Xs

r¼1

uryrj� 1; j ¼ 1; � � � ; n

ur � e; r ¼ 1; � � � ; s

ð2Þ

The n DMUs are now to be evaluated by combining s different outputs (or
indicators) with higher values indicating better performance, while the inputs of
each DMU in model (1) are all assigned with a value of unity. This linear program
is run n times to identify the optimal index score for all DMUs by selecting their
best possible indicator weights separately. In other words, the weights in the
objective function are chosen automatically with the purpose of maximizing the
value of DMU0’s index score and also respect the less than unity constraint for all
the DMUs. Meanwhile, all the weights are required to be positive. In general, a
DMU is considered to be best-performing if it obtains an index score of one in (2),
whereas a score less than one implies that it is underperforming.

3 Fuzzy DEA-CI Model

In model (2), the performance evaluation is generally assumed to be based upon a
set of quantitative data. However, in situations where some indicators might better
be represented in either ordinal measures or the help of expert subjective judg-
ments, the standard DEA-CI model cannot be used directly, because ordinal (or
qualitative) data cannot be simply treated as numerical ones for which a score of 2
is twice as large as a score of 1. The most that can be judged is that the former one
is preferred to or more important than the latter in a maximization context. In
recent years, fuzzy set theory [24] has been proposed as a valuable way to quantify
imprecision and vagueness in DEA framework, and a number of different fuzzy
DEA models has been developed (see e.g., Hatami-Marbini et al. [25]). In CI
construction, by interpreting the qualitative indicator data as fuzzy numerical
values which can be represented by means of fuzzy numbers or fuzzy intervals, the
basic DEA-CI model (2) can also be naturally extended to the following fuzzy one:

CI0 ¼ max
Xs

r¼1

ur~yr0

s:t:
Xs

r¼1

ur~yrj.1; j ¼ 1; � � � ; n

ur � e; r ¼ 1; � � � ; s

ð3Þ

where ~yrj denotes the rth fuzzy indicator value of the jth DMU.
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The resulted fuzzy DEA-based CI model (FDEA-CI) takes the form of a fuzzy
linear programming problem with fuzzy coefficients in the objective function and
also the constraints. Therefore, to compute the final index score for each DMU,
some fuzzy operations including ‘maximizing a fuzzy variable’ and ‘fuzzy
inequality’ are required. In what follows, we simply recall how to perform the
basic operations of arithmetics and the comparison of fuzzy intervals for ranking
purposes. To be more precise, we deal with LR-fuzzy numbers whose definition is
as follows.

Definition 1 [26] A fuzzy number ~M is an LR-fuzzy number,
~M ¼ ðmL;mR; aL; aRÞL;R, if its membership function has the following form:

l ~MðrÞ ¼
L mL�r

aL

� �
; r�mL

1; mL� r�mR

R r�mR

aR

� �
; r�mR

8
>><

>>:
ð4Þ

where the subset ½mL;mR� consists of the real numbers with the highest chance of
realization, aL is the left spread, aR is the right spread, and L and R are reference
functions defining the left and the right shapes of the fuzzy number, respectively,
which should satisfy the following conditions:

L;R : 0;1! 0; 1;

LðxÞ ¼ Lð�xÞ;RðxÞ ¼ Rð�xÞ;
Lð0Þ ¼ 1;Rð0Þ ¼ 1; and

LðxÞ and RðxÞ are strictly decreasing and upper semi-
continuous on supp( ~M) ¼ r : l ~MðrÞ[ 0

� �
.

In addition, an LR fuzzy number becomes an LL fuzzy number when
LðxÞ ¼ RðxÞ, an LL fuzzy number with LðxÞ ¼ max 0; 1� xj jð Þ is known as a
triangular fuzzy number, and a symmetrical LL fuzzy number is for the case of
aL ¼ aR.

Let us now recall the definition of the maximum of two fuzzy numbers.

Definition 2 [27] Let ~M and ~N be two fuzzy numbers and h a real number,
h 2 0; 1½ �. Then ~MJh ~N if and only if, 8k 2 h; 1½ �, the following two statements
hold:

inf s : l ~MðsÞ� k
� �

� inf t : l~NðtÞ� k
� �

sup s : l ~MðsÞ� k
� �

� sup t : l~NðtÞ� k
� � ð5Þ

where inf stands for infimum (lower bound or minimum), and sup stands for
supremum (upper bound or maximum).
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Hence, for LR-fuzzy numbers with bounded support, and using this ranking
method, at a given possibility level h, expression (5) becomes

mL � L�ðkÞaL� nL � L0�ðkÞbL 8k 2 h; 1½ �
mR þ R�ðkÞaR� nR þ R0�ðkÞbR 8k 2 h; 1½ �

ð6Þ

Therefore, using LR fuzzy numbers in the FDEA-CI model (3), i.e.,

~yrj ¼ ðylrj; yurj; arj; brjÞ, the constraint
Ps

r¼1
ur~yrj.1 can then be considered as

inequalities between an LR fuzzy number and a real number, and the use of an
ordering relation in (6) allows us to convert this fuzzy constraint into a crisp

inequality as:
Ps

r¼1
ur yurj þ brjR�ðhÞ
� �

� 1.1

Concerning ‘maximizing a fuzzy variable’, i.e., max
Ps

r¼1
ur~yr0, still using the

ordering relation in (6), this objective function can then be decomposed into two

crisp relations as: max
Ps

r¼1
ur ylr0 � ar0L�r0ðhÞ
� �

and max
Ps

r¼1
ur yur0 þ br0R�r0ðhÞ
� �

,

h 2 0; 1½ �, which should be maximized simultaneously. To this end, a weighted

function k1
Ps

r¼1
ur ylr0 � ar0L�r0ðhÞ
� �

þ k2
Ps

r¼1
ur yur0 þ br0R�r0ðhÞ
� �

with k1� 0,

k2� 0, and k1 þ k2 ¼ 1 is used to obtain the compromise solution. Three situa-
tions are usually considered, which are optimistic if k2 ¼ 1, pessimistic if k1 ¼ 1,
and indifferent if k1 ¼ k2.

Thus, the FDEA-CI model (3) can now be transformed in the following crisp
linear programming problem:

CI0 ¼ max k1

Xs

r¼1

ur ylr0 � ar0L�r0ðhÞ
� �

þ k2

Xs

r¼1

ur yur0 þ br0R�r0ðhÞ
� �

s:t:
Xs

r¼1

ur yurj þ brjR
�
rjðhÞ

� �
� 1; j ¼ 1; � � � ; n

ur � e; r ¼ 1; � � � ; s

ð7Þ

Definition 3 DMU0 is called fuzzy best performing if and only if it obtains a
fuzzy index score of one at least at one possibility level h. Otherwise, it is fuzzy
underperforming.

Definition 4 DMU0 is called fuzzy non-dominated best performing if and only if
it obtains a fuzzy index score of one at all possibility levels h.

In particular, if indicators ~yrj are assumed to be symmetrical triangular fuzzy
numbers, which are often used to represent the uncertainty of information for

1 Ps

r¼1
ur ylrj � arjL�ðhÞ
� �

� 1 is always satisfied when
Ps

r¼1
ur yurj þ brjR�ðhÞ
� �

� 1.
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simplification, they can then be denoted by the pairs consisting of the corre-
sponding centers and spreads, ~yrj ¼ ðyrj; arjÞ, r ¼ 1; � � � ; s, j ¼ 1; � � � ; n, and the
model (7) can be substantially simplified as follows:

CI0 ¼ max k1

Xs

r¼1

ur yr0 � ð1� hÞar0ð Þ þ k2

Xs

r¼1

ur yr0 þ ð1� hÞar0ð Þ

s:t:
Xs

r¼1

ur yrj þ ð1� hÞarj

� �
� 1; j ¼ 1; � � � ; n

ur � e; r ¼ 1; � � � ; s

ð8Þ

Note that for triangular fuzzy numbers, L�rjðhÞ ¼ R�rjðhÞ ¼ 1� h;

0� h� 1; r ¼ 1; � � � s. The fuzzy index score of DMU0 can then be defined as

{
Ps

r¼1
u�r yr0 � ð1� hÞar0ð Þ,

Ps

r¼1
u�r yr0,

Ps

r¼1
u�r yr0 þ ð1� hÞar0ð Þ}, which represents the

pessimistic, indifferent, and optimistic situation, respectively.

4 Application and Discussion

To illustrate the use of the proposed FDEA-CI model, we apply it to construct an
alcohol performance index for a set of European countries based on both quan-
titative and qualitative indicators. In road safety context, driving under the influ-
ence of alcohol is believed to increase the risk and severity of road crashes more
than most other traffic law violations [28]. Therefore, it is valuable to compare the
situation of drinking and driving between countries for the sake of better under-
standing of this risk factor in each country. In doing so, several relevant indicators
can be considered. First, the percentage of road fatalities attributed to alcohol,
which represents the consequence of drinking and driving from the view of the
final outcome level, is commonly used as a representative alcohol indicator for
cross-country comparison. Moreover, at the intermediate outcome level, an
alcohol performance indicator is also developed, which is the percentage of
drivers above the legal blood alcohol concentration (BAC) limit in roadside
checks. In addition to the above two quantitative indicators, one more indicator
related to policy output, i.e., the effectiveness of overall enforcement against
drinking and driving, is also suggested to supplement the alcohol performance of
a country. Such a policy performance indicator, derived from the Global Status
Report on Road Safety prepared by the World Health Organization [29], in which
the respondents were asked to reach a consensus on their assessment of the
enforcement in the country, is qualitative in nature, and can only take the form of
ordered classes rated on a 0–10 scale (with 0 represents the worst drink driving
enforcement while 10 the best) rather than numerical values for the purpose of
description, comparison and evaluation of this risk factor for various countries.
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Data on these three indicators for the 28 European countries2 are presented in
Table 1, in which the first two quantitative indicators are normalized using the
distance to a reference approach [3] so as to ensure that they are expressed in the
same direction with respect to their expected road safety impact, i.e., a high
indicator value should always correspond to a low crash/injury risk. Taking the
percentage of alcohol-related fatalities as an example, the Netherlands performs
the best (1.000) while Slovenia worst (0.078), and all other countries’ values lie
within this interval.

Table 1 Normalized numerical data and ordinal data on three alcohol indicators for 28 European
countries

Alcohol indicators

% of alcohol-
related
fatalities

% of drivers
above legal
alcohol limit
in roadside checks

Effectiveness
of overall
enforcement
on drinking
and driving

AT 0.463 0.116 9
BE 0.654 0.068 3
BG 0.855 0.123 7
CY 0.182 0.137 4
CZ 0.675 0.145 9
DK 0.143 0.301 8
EE 0.080 0.860 8
FI 0.136 0.593 8
FR 0.123 0.263 4
DE 0.306 0.093 4
EL 0.432 0.273 7
HU 0.283 0.279 5
IE 0.119 0.237 5
IT 0.992 0.098 7
LV 0.175 0.218 7
LT 0.321 0.555 6
LU 0.248 0.102 5
NL 1.000 0.081 9
NO 0.159 0.142 4
PL 0.438 0.091 7
PT 0.610 0.137 8
RO 0.423 0.070 8
SK 0.607 0.067 9
SI 0.078 0.122 6
ES 0.402 0.398 7
SE 0.357 1.000 6
CH 0.230 0.141 6
UK 0.228 0.051 5

2 Missing data are imputed by using Multiple Imputation in SPSS 20.0 [30].
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To combine these three alcohol indicators into one index score, symmetrical
triangular fuzzy numbers are first used for the ordinal data in this study, which are
defined as in Table 2.

In addition, to guarantee that all the three indicators will be used to some extent
by the models, the share of each of these three indicators in the final index score is
restricted to lie within the interval [0.1, 0.5], yet is rather broad to allow a high
level of flexibility, and the e value is chosen as 0.0001.

The alcohol performance index score of the 28 European countries can now be
computed by applying the FDEA-CI model (8). The results are shown in Table 3,
together with the ones from the IDEA-CI model. For more information on this
model, we refer to Shen et al. [31].

By using the FDEA-CI model, fuzzy index scores are obtained based on dif-
ferent possibility levels of h. In practice, the given possibility degree by decision
makers reflects their attitude on uncertainty. When h = 1, the ordinal data are
actually treated as numerical ones and the same index scores are obtained for each
country, no matter whether the decision makers are in a pessimistic, indifferent, or
optimistic consideration. When the given value of h becomes lower, it means the
decision makers are more cautious. As a consequence, a wider range of index
scores will be derived. In such a way, the uncertainties associated with human
thinking are effectively interpreted. Taking Belgium as an example, which was
assigned the lowest value of 3 for this ordinal indicator among all the 28 European
countries, it obtains an index score of 0.392 when h = 1. That is, decision makers
have no doubt about this value in representing the true performance of Belgium
with respect to this indicator, which is half of the value of 6 and one third of 9.
When h decreases to 0.5, this implies that decision makers are no longer fully sure
about the relation between 3 and 6, and the other numbers. In other words, the
value of 6 could be more (or less) than twice as large as the value of 3, and the
most that can be judged is that the former one is preferred to or more important
than the latter. As a result, an interval index score is obtained for Belgium, which
is between 0.359 (pessimistic) and 0.401 (optimistic), with a medium value of
0.382 (indifferent). The widest interval is derived when h = 0, which is {0.318,
0.373, 0.409}. Among all the 28 European countries, Sweden is the only non-
dominated best-performing country since it obtains the fuzzy index score of one at

Table 2 Representation of symmetrical triangular fuzzy numbers for the ordinal indicator values

Ordinal
data (~yrj)

Symmetrical triangular
fuzzy numbers ðyrj; arjÞ

Ordinal
data (~yrj)

Symmetrical triangular
fuzzy numbers ðyrj; arjÞ

0 0; 1
10

� �
1 1

10 ;
1
10

� �

2 2
10 ;

1
10

� �
3 3

10 ;
1
10

� �

4 4
10 ;

1
10

� �
5 5

10 ;
1
10

� �

6 6
10 ;

1
10

� �
7 7

10 ;
1
10

� �

8 8
10 ;

1
10

� �
9 9

10 ;
1
10

� �

10 1; 1
10

� �
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all possibility levels h. Whereas for other countries, their ranking could be slightly
changed when different possibility level and consideration are taken into account.

Moreover, by comparing the alcohol performance index scores of the 28
European countries with the ones from the IDEA-CI model, in which a crisp index
score is achieved, we find that the FDEA-CI score is lower than the one from the
IDEA-CI model, even in the optimistic situation with the lowest possibility level
of h. This can be partly explained by the fact that a relatively small and constant
value of e is used in the IDEA-CI model to reflect the minimum allowable gap
between the two ranking positions in terms of the indicator value, which results in
an extreme index score for each country. In other words, based on the same e
value, the index score from the FDEA-CI model would not exceed the one from
the IDEA-CI model. Nevertheless, a high correlation coefficient (0.989) is deduced
between the IDEA-CI score and the FDEA-CI score (taking h = 0.5 and the

Table 3 Composite alcohol performance index scores of 28 European countries based on the
FDEA-CI model and the IDEA-CI model

FDEA-CI IDEA-CI

h = 0 h = 0.5 h = 1

SE {0.872, 0.947, 1.000} {0.940, 0.973, 1.000} {1.000, 1.000, 1.000} SE 1.000
CZ {0.768, 0.792, 0.812} {0.795, 0.806, 0.816} {0.820, 0.820, 0.820} CZ 0.880
ES {0.684, 0.733, 0.775} {0.729, 0.752, 0.774} {0.773, 0.773, 0.773} ES 0.847
LT {0.670, 0.727, 0.778} {0.721, 0.750, 0.776} {0.774, 0.774, 0.774} FI 0.833
PT {0.694, 0.727, 0.749} {0.726, 0.740, 0.752} {0.755, 0.755, 0.755} PT 0.826
FI {0.686, 0.720, 0.750} {0.719, 0.735, 0.751} {0.752, 0.752, 0.752} LT 0.803
BG {0.672, 0.703, 0.729} {0.703, 0.717, 0.730} {0.732, 0.732, 0.732} EL 0.780
EL {0.634, 0.679, 0.717} {0.674, 0.696, 0.715} {0.713, 0.713, 0.713} BG 0.776
AT {0.624, 0.642, 0.658} {0.645, 0.654, 0.662} {0.666, 0.666, 0.666} AT 0.711
IT {0.598, 0.623, 0.643} {0.623, 0.634, 0.644} {0.646, 0.646, 0.646} IT 0.679
NL {0.566, 0.579, 0.590} {0.581, 0.587, 0.592} {0.594, 0.594, 0.594} NL 0.678
EE {0.535, 0.556, 0.574} {0.554, 0.564, 0.573} {0.572, 0.572, 0.572} DK 0.626
HU {0.468, 0.518, 0.558} {0.509, 0.532, 0.553} {0.547, 0.547, 0.547} HU 0.623
PL {0.505, 0.523, 0.537} {0.523, 0.531, 0.538} {0.539, 0.539, 0.539} EE 0.589
DK {0.496, 0.513, 0.526} {0.513, 0.521, 0.528} {0.530, 0.530, 0.530} PL 0.567
SK {0.467, 0.475, 0.482} {0.476, 0.480, 0.484} {0.486, 0.486, 0.486} SK 0.563
LV {0.440, 0.459, 0.474} {0.458, 0.466, 0.474} {0.474, 0.474, 0.474} RO 0.562
RO {0.446, 0.456, 0.466} {0.457, 0.462, 0.467} {0.469, 0.469, 0.469} LV 0.500
CH {0.402, 0.427, 0.448} {0.424, 0.435, 0.446} {0.443, 0.443, 0.443} DE 0.488
LU {0.357, 0.389, 0.414} {0.382, 0.397, 0.410} {0.405, 0.405, 0.405} CH 0.474
DE {0.339, 0.384, 0.423} {0.371, 0.394, 0.414} {0.404, 0.404, 0.404} BE 0.466
IE {0.360, 0.386, 0.405} {0.382, 0.393, 0.403} {0.401, 0.401, 0.401} LU 0.464
FR {0.340, 0.380, 0.408} {0.371, 0.389, 0.404} {0.399, 0.399, 0.399} FR 0.450
BE {0.318, 0.373, 0.409} {0.359, 0.382, 0.401} {0.392, 0.392, 0.392} IE 0.425
CY {0.300, 0.336, 0.362} {0.327, 0.343, 0.357} {0.351, 0.351, 0.351} CY 0.415
NO {0.291, 0.324, 0.347} {0.316, 0.330, 0.343} {0.337, 0.337, 0.337} NO 0.393
UK {0.290, 0.304, 0.315} {0.302, 0.309, 0.314} {0.314, 0.314, 0.314} UK 0.324
SI {0.250, 0.258, 0.264} {0.257, 0.261, 0.264} {0.264, 0.264, 0.264} SI 0.268
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indifferent situation as an example). This not only demonstrates the robustness of
their ranking results, but also implies the reliability of using fuzzy ranking
approach for modeling qualitative data.

5 Conclusions

In this chapter, we investigated the usage of fuzzy ranking approach in the DEA
framework for modeling both quantitative and qualitative data in the context of
composite indicator construction. By interpreting the qualitative indicator data as
fuzzy numerical values, a fuzzy DEA-based CI model was developed, and it was
further transformed into a crisp linear programming problem. The model was
demonstrated by combining three alcohol indicators (two quantitative and one
qualitative) into an alcohol performance index score for the 28 European countries.
The analysis of the results showed that fuzzy index scores obtained based on
different possibility levels were powerful in capturing the uncertainties associated
with human thinking, which was therefore superior over the imprecise DEA-based
CI model that only resulted in a crisp index score. However, the high similarity of
the ranking result based on these two models verified its robustness and also
implied the reliability of using the fuzzy ranking approach for modeling qualitative
data. In the future, exploration on the dual envelopment formulation of this model
and on the usage of other fuzzy techniques such as the a-level based approach and
the possibility approach, are worthwhile.

References

1. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units.
Eur. J. Oper. Res. 2, 429–444 (1978)

2. Adolphson, D.L., Cornia, G.C., Walters, L.C.: A unified framework for classifying DEA
models. Operational Research ‘90, pp. 647–657. Pergamon Press, New York (1991)

3. Organisation for Economic Cooperation and Development (OECD), Handbook on
constructing composite indicators: methodology and user guide. www.oecd.org/publishing/
corrigenda. OECD, Paris (2008)

4. Saisana, M., Tarantola, S.: State-of-the-Art Report on Current Methodologies and Practices
for Composite Indicator Development, EUR 20408 EN Report, the Joint Research Center of
European Commission, Ispra (2002)

5. Bao, Q., Ruan, D., Shen, Y., Hermans, E., Janssens, D.: Improved hierarchical fuzzy TOPSIS
for road safety performance evaluation. Knowl. Based Syst. 32, 84–90 (2012)

6. Cherchye, L., Moesen, W., Rogge, N., van Puyenbroeck, T.: An introduction to ‘benefit of
the doubt’ composite indicators. Soc. Indic. Res. 82, 111–145 (2007)

7. Shen, Y., Hermans, E., Brijs, T., Wets, G.: Data envelopment analysis for composite
indicators: a multiple layer model. Soc. Indic. Res. 114(2), 739–756 (2013)

8. Färe, R., Grosskopf, S., Hernández-Sancho, F.: Environmental performance: an index number
approach. Resour. Energ. Econ. 26, 343–352 (2004)

9. Despotis, D.K.: Measuring human development via data envelopment analysis: the case of
Asia and the Pacific. Omega 33, 385–390 (2005)

4 Fuzzy Data Envelopment Analysis in Composite Indicator Construction 99

http://www.oecd.org/publishing/corrigenda
http://www.oecd.org/publishing/corrigenda


10. Ramanathan, R.: Evaluating the comparative performance of countries of the Middle East
and North Africa: a DEA application. Socio-Economic Plann. Sci. 40, 156–167 (2006)

11. Zhou, P., Ang, B.W., Poh, K.L.: A mathematical programming approach to constructing
composite indicators. Ecol. Econ. 62, 291–297 (2007)

12. Cherchye, L., Moesen, W., Rogge, N., van Puyenbroeck, T., Saisana, M., Saltelli, A., Liska,
R., Tarantola, S.: Creating composite indicators with DEA and robustness analysis: the case
of the technology achievement index. J. Oper. Res. Soc. 59, 239–251 (2008)

13. Hermans, E., Brijs, T., Wets, G., Vanhoof, K.: Benchmarking road safety: lessons to learn
from a data envelopment analysis. Accid. Anal. Prev. 41(1), 174–182 (2009)

14. Shen, Y., Hermans, E., Ruan, D., Wets, G., Brijs, T., Vanhoof, K.: Evaluating trauma
management performance in Europe: a multiple-layer data envelopment analysis model.
Transportation Research Record: Journal of the Transportation Research Board 2(2148),
69–75 (2010)

15. Cooper, W.W., Park, K.S., Yu, G.: An illustrative application of IDEA (Imprecise Data
Envelopment Analysis) to a Korean mobile telecommunication company. Oper. Res. 49(6),
807–820 (2002)

16. Cook, W.D., Zhu, J.: Rank order data in DEA: a general framework. Eur. J. Oper. Res. 174,
1021–1038 (2006)

17. Sengupta, J.K.: A fuzzy systems approach in data envelopment analysis. Comput. Math.
Appl. 24(8), 259–266 (1992)

18. Kahraman, C., Tolga, E.: Data envelopment analysis using fuzzy concept. In: Proceedings of
the 28th International Symposium on Multiple-Valued Logic, Los Alamitos, pp. 338–343
(1998)

19. Meada, Y., Entani, T., Tanaka, H.: Fuzzy DEA with interval efficiency. In: Proceedings of the
6th European Congress on Intelligent Techniques and Soft Computing, Aachen, vol. 2,
pp. 1067–1071 (1998)

20. Lertworasirikul, S.: Fuzzy data envelopment analysis for supply chain modelling and
analysis. Dissertation Proposal in Industrial Engineering, North Carolina State University,
USA (2001)

21. Lertworasirikul, S., Fang, S.-C., Joines, J.A., Nuttle, H.: Fuzzy data envelopment analysis: a
possibility approach. Fuzzy Sets Syst. 139, 379–394 (2003)

22. Guo, P., Tanaka, H.: Fuzzy DEA: a perceptual evaluation method. Fuzzy Sets Syst. 119,
149–160 (2001)

23. Charnes, A., Cooper, W.W.: The non-Archimedean CCR ratio for efficiency analysis: a
rejoinder to Boyd and Fare. Eur. J. Oper. Res. 15(3), 333–334 (1984)

24. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
25. Hatami-Marbini, A., Emrouznejad, A., Tavana, M.: A taxonomy and review of the fuzzy data

envelopment analysis literature: two decades in the making. Eur. J. Oper. Res. 214(3),
457–472 (2011)

26. León, T., Liern, V., Ruiz, J.L., Sirvent, I.: A fuzzy mathematical programming approach to
the assessment of efficiency with DEA models. Fuzzy Sets Syst. 139, 407–419 (2003)

27. Inuiguchi, M., Ichihasi, H., Tanaka, H.: Fuzzy programming: a survey of recent
developments. In: Slowinski, R., Teghem, J. (eds.) Stochastic Versus Fuzzy Approaches to
Multi-objective Mathematical Programming under Uncertainty. Kluwer Academic
Publishers, Dordrecht (1990)

28. Hakkert, A.S., Gitelman, V., Vis, M.A. (eds.): Road Safety Performance Indicators: Theory.
Deliverable D3.6 of the EU FP6 project SafetyNet (2007)

29. World Health Organization (WHO), Global status report on road safety—time for action.
http://www.who.int/violence_injury_prevention/road_safety_status/2009/en/ WHO, Geneva
(2009)

30. IBM Corp. IBM SPSS missing values 20. http://www.ibm.com/spss (2011)
31. Shen, Y., Ruan, D., Hermans, E., Brijs, T., Wets, G., Vanhoof, K.: Modeling qualitative data

in data envelopment analysis for composite indicators. Int. J. Syst. Assur Eng Manag 2(1),
21–30 (2011)

100 Y. Shen et al.

http://www.who.int/violence_injury_prevention/road_safety_status/2009/en/
http://www.ibm.com/spss

	4 Fuzzy Data Envelopment Analysis in Composite Indicator Construction
	Abstract
	1…Introduction
	2…DEA-based CI Model
	3…Fuzzy DEA-CI Model
	4…Application and Discussion
	5…Conclusions
	References


